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Abstract In our previous paper we associated to each non-constant elliptic function
f on a torus T a dynamical system, the elliptic Newton flow corresponding to f . We
characterized the functions for which these flows are structurally stable and showed a
genericity result. In the present paper we focus on the classification and representation
of these structurally stable flows. The phase portrait of a structurally stable elliptic
Newton flow generates a connected, cellularly embedded graph G( f ) on a torus T
with r vertices, 2r edges and r faces that fulfil certain combinatorial properties (Euler,
Hall) on some of its subgraphs. The graph G( f ) determines the conjugacy class of
the flow [classification]. A connected, cellularly embedded toroidal graph G with the
above Euler and Hall properties, is called a Newton graph. Any Newton graph G

can be realized as the graph G( f ) of the structurally stable Newton flow for some
function f . This leads to: up till conjugacy between flows and (topological) equiva-
lency between graphs, there is a one to one correspondence between the structurally
stable Newton flows and Newton graphs, both with respect to the same order r of
the underlying functions f [representation]. Finally, we clarify the analogy between
rational and elliptic Newton flows, and show that the detection of elliptic Newton
flows is possible in polynomial time. The proofs of the above results rely on Peixoto’s
characterization/classification theorems for structurally stable dynamical systems on
compact 2-dimensional manifolds, Stiemke’s theorem of the alternatives, Hall’s the-
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orem of distinct representatives, the Heffter–Edmonds–Ringer rotation principle for
embedded graphs, an existence theorem on gradient dynamical systems by Smale, and
an interpretation of Newton flows as steady streams.

Keywords Dynamical system (gradient-) · Desingularized Newton flow (rational,
elliptic) · Structural stability · Elliptic function (Jacobian, Weierstrass) · Phase
portrait · Newton graph (elliptic-, rational-) · Cellularly embedded toroidal
(distinguished)graph · Face traversal procedure · Steady stream · Complexity · Angle
property · Euler property · Hall condition

Mathematics Subject Classification 05C45 · 05C75 · 30C15 · 30D30 · 30F99 ·
33E05 · 34D30 · 37C15 · 37C20 · 37C70 · 49M15 · 68Q25

1 Elliptic Newton flows: a recapitulation

In order to clarify the context of the present paper, we recapitulate some earlier results.

1.1 Elliptic Newton flows on the plane and on a torus

Let f be an elliptic (i.e., meromorphic, doubly periodic) function of order r (�2) on
the complex plane C with (ω1, ω2), Imω2/ω1 > 0, as basic periods spanning a lattice
� (=�ω1,ω2).

The planar elliptic Newton flow N( f ) is a C1-vector field on C, defined as a
desingularized version1 of the planar dynamical system, N( f ), given by (cf. [8])

dz

dt
= − f (z)

f ′(z)
, z ∈ C. (1)

On a non-singular, oriented N( f )-trajectory z(t) we have (cf. [8]):

– arg f = constant and | f (z(t))| is a strictly decreasing function on t .

So that an N( f )-equilibrium is:

– attractor, or repellor, or saddle; see the comments on Fig. 1, where N ( f ), P( f )
and C( f ) stand for, respectively, the set of zeros, poles and critical points for f .

Comments on Fig. 1:

Figure 1 (a), (b): In a k-fold zero (pole) for f the flow N( f ) exhibits a stable (unsta-
ble) star node and each (principal) value of arg f appears precisely k times on equally
distributed incoming (outgoing) trajectories. Moreover, two different incoming (out-
going) trajectories intersect under a non-vanishing angle �/k, where � stands for the
difference of the arg f -values on these trajectories.

1 In fact, we consider the system dz/dt = −(1+ | f (z)|4)−1| f ′(z)|2 f (z)/ f ′(z): a continuous version of
Newton’s damped iteration method for finding zeros for f .
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Newton flows for elliptic functions II 693

Fig. 1 Local phase portraits around equilibria of N( f )

Figure 1 (c), (d): In case of a k-fold critical point (i.e. a k-fold zero for f ′, no zero for f )
the flowN( f ) exhibits a k-fold saddle, the stable (unstable) separatrices being equally
distributed around this point. The two unstable (stable) separatrices at a onefold saddle,
see Fig. 1 (c), constitute the “local” unstable (stable) manifold at this saddle point.

Functions of the type f correspond to the meromorphic functions on the complex
torus T (�) (=C/�ω1,ω2 ). So, we can interpret N( f ) as a global C1-vector field,

denoted2 N( f ), on the Riemann surface T (�) and it is allowed to apply results forC1-
vector fields on compact differential manifolds, such as certain theorems of Poincaré–
Bendixon–Schwartz on limiting sets and those of Baggis–Peixoto on C1-structural

stability. In particular, the local phase portraits aroundN( f )-equilibria are as in Fig. 1.

1.2 The canonical form for a toroidal Newton flow; the topology τ0

It is well known that the function f has precisely r zeros and r poles (counted by
multiplicity) on the half open / half closed period parallelogram P (=Pω1,ω2) given
by {t1ω1 + t2ω2: 0 � t1 < 1, 0 � t2 < 1}.

Denoting these zeros and poles by a1, . . . , ar , respectively b1, . . . , br , we have
(cf. [8,16]):

ai �= bj , i, j = 1, . . . , r, and a1 + · · · + ar = b1 + · · · + br mod�, (2)

2 Occasionally, we will refer to N( f ) as to a toroidal Newton flow.
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694 G. F. Helminck, F. Twilt

and thus

[ai ] �= [bj ], i, j = 1, . . . , r, and [a1] + · · · + [ar ] = [b1] + · · · + [br ], (3)

where [a1], . . . , [ar ] and [b1], . . . , [br ] are the zeros, respectively poles, for f on
T (�) and [ ·] stands for the congruency class mod� of a number in C.

Theorem 1.1 (Canonical form for toroidal Newton flows)

• Given a flow N( f ) on T (�), there exists an elliptic function f ∗ of order r with
period lattice�∗ (=�1,i ) together with a homeomorphism T (�) → T (�∗)map-
ping the phase portraits of N( f ) and N( f ∗) onto each other, thereby respecting
the orientations of the trajectories.

• Moreover: If a∗
1 , . . . , a

∗
r , respectively b

∗
1, . . . , b

∗
r , are the zeros and poles of f

∗ in
P∗ (=P1,i ), then

f ∗(z) = σ(z − a∗
1) · · · σ(z − a∗

r )

σ (z − b∗
1) · · · σ(z − b∗

r−1)σ (z − (b∗
r )

′)
,

(b∗
r )

′ = a∗
1 + · · · + a∗

r − b∗
1 − · · · − b∗

r−1,

where σ stands for the Weierstrass’ sigma function w.r.t. the lattice �∗.
• Conversely: if c1, . . . , cr , respectively d1, . . . , dr , stand for any pair of r tuples in

P∗ that fulfil relations (2), then due to the basic properties of the quasi periodic
function σ , a function of the form

σ(z − c1) · · · σ(z − cr )

σ (z − d1) · · · σ(z − dr−1)σ (z − d ′
r )

,

with d ′
r = c1+· · ·+cr −d1−· · ·−dr−1, is elliptic w.r.t. to�∗ with [c1], . . . , [cr ],

respectively [d1], . . . , [dr ], as zeros, poles on T (�∗).

Now, it is not difficult to see that the elliptic functions of order r , and also the underlying
toroidal Newton flows, can be represented by the set of all ordered pairs

({[c1], . . . , [cr ]}, {[d1], . . . , [dr ]})

of congruency classes mod�∗ with ci , di ∈ P∗, i = 1, . . . , r , that fulfil (3). This
representation space can be endowed with a topology, say τ0, that is induced by the
Euclidean topology onC, and is natural in the following sense (cf. [8]): given an elliptic
function f of order r and ε > 0 sufficiently small, there exists a τ0-neighbourhood O
of f such that for any g ∈ O, the zeros (poles) for g are contained in ε-neighbourhoods
of the zeros (poles) for f .
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Newton flows for elliptic functions II 695

Fig. 2 Basin of repulsion (attraction) in the phase portrait of N( f ) for a pole (zero) of f

1.3 Structural stability

Let Er (�) be the set of all elliptic functions f of order r on the torus T (�) = C/� and

Nr (�) the set of all toroidal Newton flows N( f ). We assume (no loss of generality;
see Sect. 1.2) that � = �1,i , and write Er (�) = Er , T (�) = T and Nr (�) = Nr .

By X (T ) we mean the set of all C1-vector fields on T , endowed with the C1-
topology. The topology τ0 on Er and theC1-topology on X (T ) arematched by (cf. [8]):

Lemma 1.2 The map Er → X (T ) : f �→ N( f ) is τ0-C1-continuous.

Two flowsN( f ) andN(g) in Nr are called conjugate, denotedN( f ) ∼ N(g), if there

is a homeomorphism from T onto itself mapping maximal trajectories of N( f ) onto

those of N(g), thereby respecting the orientations of these trajectories.

We call the flow N( f ) τ0-structurally stable, if there is a τ0-neighborhood O of

f such that for all g ∈ O we have N( f ) ∼ N(g). The set of all structurally stable

Newton flows N( f ) is denoted by ˜Nr .

By Lemma 1.2, it follows thatC1-structural stability forN( f ) implies τ0-structural

stability forN( f ). So, when discussing structural stable toroidal Newton flowswewill
skip the adjectives τ0 and C1. We proved (cf. [8]):

Theorem 1.3 (Characterization and genericity of structural stability)

(I) N( f ) ∈ ˜Nr if and only if the function f is non-degenerate, i.e., all zeros, poles
and critical points for f are simple, and no critical points for f are connected

by N( f )-trajectories.
(II) The set of all non-degenerate functions of order r is open and dense in Er .

We list some properties that will play a role in the sequel, see the comments on Fig. 1:
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696 G. F. Helminck, F. Twilt

Fig. 3 Planar and toroidal Newton flows for snω1,ω2 ; structurally stable

Lemma 1.4 (Properties of structurally stable toroidal Newton flows N( f ))

(a) If N( f ) is structurally stable, then also N(1/ f ) is, and N(1/ f ) = −N( f ).
[Duality]

(b) There are precisely 2r orthogonal saddles for N( f ).
(c) The boundary of the basin of a repellor (attractor) is made up by the unstable

(stable) manifolds at the saddles situated in this boundary (cf. Fig. 2).

As an illustrationwe present in Figs. 3 and 4 planar/toroidal Newton flows for Jacobian
functions snω1,ω2 with only simple attractors, repellors and saddles; see also [1,8] and
the forthcoming Remark 2.15. For more examples of (structurally stable) Newton
flows, see [9].

1.4 Toroidal versus rational Newton flows; purpose of the paper

If we choose for f rational functions (meromorphic on the Riemann sphere S2),
we obtain the class of so-called spherical Newton flows. These flows have many
concepts/features in commonwith (the class of) toroidal Newton flows and are already
studied before (cf. [10–13]); in fact, characterization and genericity results, analogous
to Theorem 1.3, have been proved.Moreover, spherical Newton flows can be classified
and represented in terms of certain sphere graphs (i.e. the “principal parts” of the phase
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Newton flows for elliptic functions II 697

Fig. 4 Planar Newton flow for
snω1,ω2 ; not structurally stable

portraits of structurally stable spherical Newton flows). The target of the present paper
is to prove such a classification and representation result for toroidal Newton flows.

2 Structurally stable elliptic Newton flows: classification

In this section, let f be non-degenerate of order r , thus N( f ) is structurally stable.
Then, the following definition makes sense: (cf. Sect. 1.1, Lemma 1.4).

Definition 2.1 The graph G( f ), f ∈ ˜Er , on the torus T is given by:

• Vertices are the r zeros for f on T (as attractors for N( f )).

• Edges are the 2r unstable manifolds at the critical points for f on T as N( f )-
saddles.

Note that the faces of G( f ) are precisely the r basins of repulsion of the poles, say

[bj ], j = 1, . . . , r , for f on T (as repellors forN( f )) and will be denoted by Fbj ( f );
their boundaries by ∂Fbj ( f ). These boundaries, consisting of unstable manifolds at

saddles for N( f ), are subgraphs of G( f ), see Fig. 2.

Analogously, we define the graph,3 say G∗( f ), on the poles and the stable N( f )-
manifolds at the critical points for f on T .

Lemma 2.2 Both G( f ) and G∗( f ) are multigraphs4 embedded in T .

Proof If G( f ) would have a loop, the two unstableN( f )-separatrices at some critical
point for f would approach the samezero, say [a], onT . In that case, the zeros (simple!)
for f in the plane, corresponding to [a], will be approached by two different trajectories
(of the planar version N( f )) with the same value of arg f . This is impossible (cf. the
comments on Fig. 1). The second part of the assertion follows by interchanging the
roles of the poles and zeros for f . 	


3 G( f ) and G∗( f ) are geometrical duals; see also Sect. 3.
4 i.e., multiple edges are allowed, but no loops (cf. [6]); note however that the concept of multigraph in
[18] includes loops.
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698 G. F. Helminck, F. Twilt

Fig. 5 The canonical regions of a structural stable flow on T

Corollary 2.3 Anedge inG( f )orG∗( f ) is contained in the boundaries of twodifferent
faces.

Next we introduce a graph on T , denoted G( f )∧G∗( f ), which may be considered as
the “common refinement of G( f ) and G∗( f )”.
Definition 2.4 The vertices ofG( f )∧G∗( f ) are defined as the zeros, poles and critical
points for f , whereas the edges are the stable and unstable separatrices ofN( f ) at the
critical points for f .

The faces of G( f )∧G∗( f ) are the so-called canonical regions for N( f ), i.e. the con-

nected components of what is left after deleting from T all theN( f )-equilibria and all

stable and unstable manifolds at the saddles of N( f ). A priori, the canonical regions
of a C1-structurally stable flow on T (without closed orbits) are of one of the Types

1, 2, 3 in Fig. 5 (cf. Fig. 2, [20]). However, by Lemma 2.2 the flow N( f )—although
structurally stable—cannot admit canonical regions of Types 2 and 3.

So, we only have to deal with canonical regions of Type 1. Since all zeros, poles
and critical points for f are simple, we find (see Sect. 1.1):

Lemma 2.5 In a canonical region of N( f ), the angles (anti-clockwise measured) at
the pole and the zero are well defined, strictly positive and equal.

Since a face Fbj ( f ) is built up from all canonical regions that have [bj ] in common,
we find:

Corollary 2.6 All (anti-clockwise measured) angles spanning a sector of Fbj ( f ) at
the vertices in its boundary, are non-vanishing and sum up to 2π .

Lemma 2.7 Each subgraph ∂Fbj ( f ) is Eulerian.
5

Proof Traverse the set of all canonical regions centered at [bj ] once. In this way we
determine a closed walk, say wbj , through all the vertices and edges of ∂Fbj ( f ); see
Fig. 6. By Corollary 2.3, this walk contains each edge of ∂Fbj ( f ) only once (since
otherwise the two stable separatrices at the saddle on such an edgemust originate from
[bj ]). So, wbj is the desired Euler trail. 	


5 i.e. the graph ∂Fbj ( f ) admits a so-called Euler trail: a closed walk that traverses each edge exactly once
and goes through all vertices. We do not distinguish between an Euler trail and its cyclic shift.
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Fig. 6 Oriented facial walks on
G( f ) and G∗( f )

The walk wbj in the above proof will be referred to as to the facial walk for ∂Fbj ( f ).
Analogously, we define the (Eulerian!) facial walks on the boundaries of the G∗( f )-
faces (i.e., the basins of attraction of the zeros, say [ai ], i = 1, . . . , r , for f on T as

attractors for the Newton flow N( f )).

Remark 2.8 Note that in these facial walks the same vertexmay occur more than once.
However, by Lemma 2.2, a vertex in a facial walk cannot be adjacent to itself.

The orientations of G( f ) and G∗( f ):
We endow (the faces of) G( f ) with a coherent orientation as follows: for each facial
walk we demand that the (constant) values of arg f (z) on consecutive edges form
an increasing sequence. This is imposed by the anti-clockwise ordering of the G( f )-
edges around a common vertex, which on its turn induces clockwise orientations of
the G∗( f )-edges incident to a given vertex. This leads to an orientation of (the facial
walks on) G∗( f ) which is opposite to the orientation of G( f ) as chosen before; see
Fig. 6. From now on we assume that all graphs G( f ) and G∗( f ), f ∈ ˜Er , are oriented
in this way: G( f ) always clockwise; G∗( f ) always anti-clockwise. By −G( f ) we
mean G( f ) with anti-clockwise orientation and by −G∗( f ) the clockwise oriented
graph G∗( f ).

Lemma 2.9 The (multi)graphs G( f ) and G∗( f ) are connected and cellularly embed-
ded.6

Proof We focus on G( f ) and follow the treatise [18] closely. Consider the r facial
walks wbj and put l j = length wbj . Consider for each wbj a so-called facial polygon,
i.e. a polygon in the plane with l j sides labelled by the edges of ∂Fbj ( f ) (taking
the orientation of wbj into account), so that each polygon is disjoint from the other
polygons. Now we take all facial polygons. Each G( f )-edge occurs precisely once in
two different facial walks and this determines orientations of the sides of the polygons.
By identifying each side with its mate, we construct (cf. [18]) an orientable, connected
surface S, homeomorphic to T , and (in S) a 2-cell embedded graph, which is—up to
an isomorphism—equal to G( f ). By Euler’s formula for graphs on T (cf. [5]), G( f ) is
connected and orientable as well. Finally, we note that a 2-cell embedding is always
cellular (cf. [18]). 	


6 i.e. each face is homeomorphic to an open disk in R
2.
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700 G. F. Helminck, F. Twilt

The abstract directed graph, underlyingG( f )∧G∗( f ), will be denoted byP( f ), where

the directions are induced by the orientations of the (un)stable separatrices at N( f )-
saddles. Each canonical region is represented by a quadruple of directed edges in
P( f ), and is associated with precisely one pole, one zero (in opposite position) and
two critical points for f on T . Following Peixoto [19,20], such a quadruple is called
a distinguished set (of Type 1). The graph P( f ) together with the collection of all
distinguished sets is denoted byP

d( f ). We say “Pd( f ) is realized by the distinguished

graph of N( f ) on T ”.
We need a classical result due to Peixoto (cf. [20]) on structurally, C1-stable vector

fields on 2-dimensional compact manifolds. In the context of our elliptic Newton flows
this yields (together with Lemma 1.2): if f, h ∈ ˜Er , then

N( f ) ∼ N(h) ⇐⇒ P
d( f ) ∼ P

d(h). (4)

Here,∼ in the l.h.s stands for “conjugacy” and∼ in the r.h.s. for isomorphism between
P
d( f ) and P

d(h) (as directed abstract graphs), preserving the distinguished sets and
respecting the cyclic ordering (induced by the embedding in T ) of the distinguished
sets around a common vertex.

Theorem 2.10 (Classification of structurally stable elliptic Newton flows by graphs)

Let N( f ) and N(h) be structurally stable (thus f, h ∈ ˜Er ), then

N( f ) ∼ N(h) ⇐⇒ G( f ) ∼ G(h) (and thus also G∗( f ) ∼ G∗(h)),

where ∼ in the r.h.s. stands for equivalency between the oriented graphs (i.e., an
isomorphism respecting their orientations).

Proof Apply (4) to N( f ) and N(h). 	

The graph G(1/ f ) is also well defined (with as faces Fai (1/ f )) and associated with

the structurally stable flow N(1/ f ) (=−N( f )). The flow N(1/ f ) is the dual version

of N( f ), i.e., N(1/ f ) is obtained from N( f ) by reversing the orientations of the
trajectories of the latter flow, thereby changing repellors into attractors and vice versa.
Clearly, G(1/ f ) and G∗( f ) coincide, be it with opposite orientations, i.e., G(1/ f ) =
−G∗( f ), where, due to our convention on orientations, G(1/ f ) is clockwise oriented.
Also, we have G( f ) = −G∗(1/ f ).

Note that, in general,N( f ) andN(1/ f ) are not conjugate. In the special case where

N( f ) ∼ N(1/ f ) we call these flows self-dual, and we have (Theorem 2.10)

N( f ) ∼ N

(

1

f

)

⇐⇒ G( f ) ∼ G

(

1

f

)

⇐⇒ G( f ) ∼ −G∗( f ).

If G( f ) ∼ −G∗( f ) holds, we call G( f ) and G∗( f ) self-dual.

123



Newton flows for elliptic functions II 701

Fig. 7 The graphs G( f ) and G∗( f ), f ∈ ˜E2

Remark 2.11 (On the classification under conjugacy and duality) Conjugate flows

are considered as equal. Although, in general, N( f ) and N(1/ f ) are not conjugate,
it is reasonable to consider also these flows, being related by a trivial (but orientation
reversing) identity, as “equal”. See our paper [9].

Remark 2.12 (On self-duality) If N( f ) is self-dual and conjugate with N(h), then

N(h) is also self-dual.

Corollary 2.13 Any two structurally stable 2nd order elliptic Newton flows are con-
jugate. In particular, these flows are self-dual.

Proof Let N( f ), f ∈ ˜E2, be chosen arbitrarily. By Corollary 2.3, the two faces of
G( f ) share their boundaries. So, the common facial walk w f of these faces is built
up from the four G( f )-edges and the two G( f )-vertices (each appearing twice but not
consecutive!). Hence, compare the construction in the proof of Lemma 2.9 and see
Fig. 7, G( f ) is determined by the anti-clockwise oriented walk w f . The same holds

for any other flow N(h) with facial walk wh , h ∈ ˜E2. Apparently, w f and wh maybe
considered as equal, under a suitably chosen relabeling of their vertices and edges.

Hence G( f ) ∼ G(h) and thus N( f ) ∼ N(h). In particular, put h = 1/ f , then we find
G( f ) ∼ G(1/ f ), compare Fig. 7 and Remark 2.12. 	

Remark 2.14 For basically the same proof of Corollary 2.13, see [22].

Remark 2.15 The flow N(sn), in the non-rectangular case (cf. Fig. 3) exhibits an
example of a 2nd order structurally stable elliptic Newton flow. By Corollary 2.13,
this is the only possibility (up to conjugacy) for a flow in ˜N2. Note that the flow in
Fig. 4 (rectangular case) is not structurally stable (because of the saddle connections).

We proceed by introducing flows that are closely related to N( f ),N( f ) and N( f ):
the so-called rotated Newton flows.

Definition 2.16 For f ∈ Er , let N⊥( f ) be a dynamical system of the type

dz

dt
= −i f (z)

f ′(z)
.

123



702 G. F. Helminck, F. Twilt

Apparently, N⊥( f )(=iN( f )) is a complex analytic vector field outside the set C( f )
of critical points for f . As in Sect. 1.1, we turnN⊥( f ) into a C1-system on the whole
plane with (on C\C( f )) the same phase portrait as N⊥( f ) by N⊥( f ) = iN( f ). The
function f , being elliptic, the system N⊥( f ) can be interpreted as a C1-flow on T

and as such it will be referred to as to N⊥( f ), in particular,

N⊥( f ) is of the class C1, and N⊥
(

1

f

)

= −N⊥( f ).

Lemma 2.17 Let z⊥(t) be the (maximal) N⊥( f )-trajectory through a non-equilibr-
ium ž = z⊥(0), then:

(i) f (z⊥(t)) = e−i t f (ž) [thus | f (z⊥(t))| = constant ( �= 0)].
(ii) A zero or pole for f is a center for N⊥( f ) [thus also for N⊥( f ),N⊥( f )].
(iii) A k-fold critical point for f is a k-fold saddle forN⊥( f ) [thus also for N⊥( f )].
Proof Assertions (i) and (iii): use N⊥( f ) = iN( f ). Note that outside N ( f ) ∪ P( f )
the flow N⊥( f ) can be considered as the Newton flow for h(z) = exp(− i log f (z)).
For assertion (ii): let z0 be a zero or pole for f with multiplicity k, thus an isolated
zero for N⊥( f ). In a neighborhood of z0, system N⊥( f ) is linearly approximated by

dz

dt
= −i(z − z0)

k
.

Thus z0 is a non-degenerate equilibrium for N⊥( f ) with characteristic roots ±i/k.
By the first assertion in the lemma, a regular integral curve through a point ž close to
z0, but �= z0, cannot end up at or leave from z0. Hence, this point is neither a focus,
nor a centro-focus for N⊥( f ) (cf. [2]) and must be a center for N⊥( f ). 	

In view of the above assertion (i), a closed orbit forN⊥( f ) cannot be a limit cycle, and
(by (ii)) a separatrix z⊥(t) leaving a saddle σ1 must approach a saddle σ2. Moreover,
this separatrix cannot connect σ1 to itself, i.e. σ1 �= σ2. In fact, let σ1 = σ2, since there
holds that arg h(z⊥(t)) = constant,

lim
t↓0 arg h(z⊥(t)) = arg h(σ1) and also lim

t↑0 arg h(z⊥(t)) = arg h(σ1),

which is impossible, see Fig. 8 and the comments on Fig. 1.
Note that—when introducing rotated Newton flows—no additional restrictions

were laid upon the function f . But now, we return to the case of non-degenerate func-

tions f . ThenN⊥( f ) has 2r simple saddles (corresponding to the critical points for f )
with altogether 4r separatrices, connecting different saddles. So, we may introduce:

Definition 2.18 The graph G⊥( f ), f ∈ Ěr , on the torus T is given by:

• Vertices are the 2r critical points for f (as saddles for N⊥( f )) on T .

• Edges are the 4r separatrices at the critical points for f (asN⊥( f )-saddles) on T .
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Fig. 8 No “self-connected”

N⊥(h)-saddles; σ1 is twofold;
h(z) = exp(−i log f (z))

Since all zeros and poles for f are centers forN⊥( f ), each G⊥( f )-face contains only
one zero or one pole for f . Moreover, the graph G⊥( f ) is cellularly embedded. Hence,
the graph G⊥( f ) has 2r faces.

Lemma 2.19 Let c be an arbitrary, strictly positive real number and put Lc =
{z: | f (z)| = c}. Then there holds:

(i) The level set Lc is a regular curve in R
2 (i.e., grad | f (z)| �= 0 for all z ∈ Lc) if

and only if Lc contains no critical points for f .
(ii) The graph G⊥( f ), f ∈ Ěr , is connected. In particular, f (z) admits the same

absolute value at all critical points z.

Proof (i) Use the Cauchy–Riemann equations. (ii) Apply Euler’s formula for toroidal
graphs (cf. [5]). 	


We orient the edges of G⊥( f ) according to their orientation as N⊥( f )-trajectories.
Let Ai and Bj be open subsets of C, corresponding to the (open) faces of G⊥( f ) that
are determined by the zero ai , respectively the pole bj , for f . Hence, the boundaries

of Ai are clockwise oriented, but those of Bj anti-clockwise. Since N⊥(1/ f ) =
−N⊥( f ) we have: reversing the orientations in G⊥( f ) turns this graph into G⊥(1/ f )
and thus, by Lemma 2.19 (ii), | f (z)| = 1 on G⊥( f ). See Fig. 9 for (parts of) the graphs

G⊥( f ),G( f ),G∗( f ) and G⊥(1/ f ),G(1/ f ),G∗(1/ f ). A canonicalN( f )-region, with
[ai ], [bj ] in opposite position, and the saddles σ, σ ′ consecutivew.r.t. the orientation of
Ai (or Bj ), will be denoted by Ri j (σ, σ ′) and it is contained in Fai (1/ f )∩Fbj ( f ). Note
that, in general, this intersection contains more canonical regions of type Ri j ( ·, ·). But
even so, these regions are separated by canonical regions, not of this type; compare

Remark 2.8. In view of Sect. 1.1 and Lemma 2.17 (i), under f the net of N( f )- and

N( f )⊥-trajectories on Ri j (σ, σ ′) is homeomorphically mapped onto a polar net in a
sector of the (u+ iv)-plane (u = Re f , v = Im f ), namely

si j (σ, σ ′) =
{

(u, v): 0 < u2 + v2 < ∞, arg f (σ ) < arctan
v

u
< arg f (σ ′)

}

.
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Fig. 9 The graphs G( ·),G∗( ·) and G⊥( ·) for f and 1/ f in ˜Er

Analogously, 1/ f maps the net of N( f )- and N( f )⊥-trajectories on R ji (σ, σ ′) onto
a polar net in a sector of the (U + iV )-plane (U = Re 1/ f , V = Im 1/ f ), namely

Si j (σ, σ ′) =
{

(U, V ): 0 < U 2 + V 2 < ∞, −arg f (σ ) < arctan
V

U
< −arg f (σ ′)

}

.

So, the polar nets on si j (σ, σ ′) and Si j (σ, σ ′) correspond under the inversion7

U = u

u2 + v2
, V = v

u2 + v2
.

Next we turn to the relationship between Newton flows and steady streams.

Remark 2.20 (Newton flows as steady streams) For f ∈ Ěr , we consider the planar
steady stream [15] with complex potential w(z) = − log f (z), potential function

(x, y) = − log | f (z)| and stream function ψ(x, y) = −arg f (z), where x = Re z,
y = Im z. Then the equipotential lines are given by − log | f (z)| = constant, the
stream lines by −arg f (z) = constant and the velocity field V (z) (=grad
) by the
complex conjugate of w′(z), i.e.

V (z) = |w′(z)|2
w′(z)

= −|w′(z)|2 f (z)
f ′(z)

(=|w′(z)|2N( f )).

Moreover, the zeros (poles) for f are just the sinks (sources) of strength 1, whereas the
critical points for f are the onefold stagnation points of the stream, compare also [8].
So, the “orthogonal net of the stream- and equipotential-lines” of the planar steady
stream is a combination of the phase portraits of N( f ) and N⊥( f ), see Fig. 10.

Hencewemay interpret the pair (N( f ),N⊥( f )) as a toroidal desingularized version
of our planar steady stream.

7 Here we use that in a canonical region the angles at the zero and the pole are equal.
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Fig. 10 The steady stream
w(z) = − log f (z), f ∈ Ěr

Finally, we clarify the “steady stream character” of the structurally stable elliptic
Newton flows from the point of view of the Riemann surface T .

Firstly, we note that the polar net on open (!) sectors as si j (σ, σ ′) and Si j (σ, σ ′)
is just the stream and equipotential lines of the steady stream with complex potential
− log(u+ iv), respectively − log(U + iV ). In particular, these stream and equipoten-
tial lines exhibit the phase portraits of respectively the flowsN(u+ iv) (=−(u+ iv)),
N(u+ iv)⊥ (=− i(u+iv)), andN(U + iV ) (=−(U+iV )),N(U + iV )⊥ (=− i(U+
iV )) on si j (σ, σ ′) and Si j (σ, σ ′) respectively. Deleting from T all zeros, poles and
critical points for f , we obtain “the reduced torus” Ť , an open submanifold of T .

Now the collection

{

Fai

(

1

f

)

\[ai ], Fbj ( f )\[bj ]: i, j = 1, . . . , r

}

exhibits a covering of Ť with open neighborhoods. Apparently, only in the case of
pairs (Fai (1/ f )\[ai ], Fbj ( f )\[bj ]) a non-empty intersection is possible. Even so, the
intersection

Fai

(

1

f

)

\[ai ] ∩ Fbj ( f )\[bj ]

consists of the disjoint union of sets of the type Ri j ( ·, ·), say R1
i j , . . . , R

s
i j . (Note that[ai ] occurs inwbj as many times as [bj ] occurs inwai .) This turns our covering into an

atlas for Ť with smooth (even complex analytic) coordinate transformations, induced
by the inversion u+iv ↔ 1/(u+iv) = U+iV .With aid of this atlas, wemay interpret

N( f ) andN⊥( f ) on each canonical region as the pull back of the most simple8 planar
flows N(u+ iv),N⊥(u+ iv), and N(U + iV ),N⊥(U + iV ) on the various sectors
si j ( ·, ·) and Si j ( ·, ·) respectively. Glueing the canonical regions Ri j ( ·, ·) along the

8 On the sectors si j (σ, σ ′), respectively Si j (σ, σ ′), the flowsN(u+ iv), respectivelyN(U + iV ), are parts
of North–South flows (cf. [8]).
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Fig. 11 The canonical regions Ri j , and the sectors si j (σ, σ ′) and Si j (σ, σ ′)

N( f )-trajectories in their common boundaries, we obtain the restrictions to Ť of
our original (rotated) Newton flows. In particular, the flows N(u+ iv) (=−(u +
iv)) and N(U + iV ) (=−(U + iV )) lead to an analytic function on Ť , namely the
restriction f |Ť , with as isolated singularities the zeros, poles and critical points for

f . By continuous extension to this singularities, we find the original flows N( f ) and

N⊥( f ). For an illustration, see Figs. 11 and 12.

3 Newton graphs

Throughout this section, the connected graph G is a cellular embedding in T , seen as a
compact, orientable, Hausdorff topological space of an abstract connectedmultigraph
G (i.e., no loops) with r vertices, 2r edges (r � 2); r = order G.

The forthcoming analysis strongly relies on some concepts from classical graph
theory on surfaces, which—in order to fix terminology—will be briefly reviewed.9

3.1 Cellularity; geometric duals

Since G is cellularly embedded, we may consider (cf. [18]) the rotation system � for
G:

� = {πv: all vertices v in G},

9 Again we follow the treatise [18] closely. Note however, that in [18] a multigraph may exhibit loops,
whereas in our case this possibility for G is ruled out.
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Fig. 12 Fai (1/ f )\[ai ] ∩ Fbj ( f )\[bj ] and its images under f and 1/ f (s = 3)

where the local rotation πv at v is the cyclic permutation of the edges incident with v

such that πv(e) is the successor of e in the anti-clockwise ordering around v.
If e (=v′v′′) stands for an edge, with end vertices v′ and v′′, we define a �-walk

(facial walk10), say w, on G as follows:

The face traversal procedure: Consider an edge e1 = (v1v2) and the closed walk11

w = v1e1v2e2v3 . . . vkekv1, which is determined by the requirement that, for i =
1, . . . , 
, we have πvi+1(ei ) = ei+1, where e
+1 = e1 and 
 is minimal.

10 Compare the facial walk wbj in Sect. 2.
11 We shall not distinguish between w and its cyclic shifts.
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Apparently, such “minimal” 
 exists since G is finite. Note that each edge
occurs either once in two different �-walks, or twice (with opposites orientations)
in only one �-walk; in particular, the first edge in the same direction which is
repeated when traversing w, is e1. As in the proof of Lemma 2.9, these �-walks
can be used to construct (patching the facial polygons along identically labelled
sides) a surface S and in S a so-called 24-cell embedded graph with faces deter-
mined by the facial polygons. By Euler’s formula (cf. [5]), there are r facial
walks. So, S is homeomorphic to T and the 2-cell embedded graph is isomorphic
to G. By the Heffter–Edmonds–Ringel rotation principle, the graph G is uniquely
determined up to isomorphism by its rotation system. We say G is generated by
�.

From now on, we suppress the role of the underlying abstract graphG and will not
distinguish between the vertices of G and those of G. Occasionally, G will be referred
to as to the pair (G,�). The G-faces (as well as the corresponding facial polygons)
are denoted by Fj ; their boundaries (as well as the corresponding �-walks) by ∂Fj ,
j = 1, . . . , r . We denote the sets of all vertices, edges and faces of G by V (G), E(G)

and F(G) respectively.
The embedding of G into the orientable surface T induces an anti-clockwise ori-

entation on the edges around each vertex v. In the sequel we assume that the local
rotations πv are endowed with this orientation (so that the inverse permutations π−1

v

are clockwise).
Given a cellularly embedded toroidal (G,�), the abstract graph G∗ is defined as

follows:

• The r vertices {v∗} are represented by the �-walks in G.
• Two vertices are connected by an edge e∗ iff the representing �-walks share an
edge e.

Hence, between theG-edges andG∗-edges, there is a bijective correspondence: e ↔ e∗.
In particular, G∗ has 2r edges, and an edge e∗ is a loop12 iff e shows up twice in a
�-walk of G.

The graph G∗ admits a 2-cell embedding in T : the (geometric) dual (G∗,�∗). In
fact, if the vertex v∗ in (G∗,�∗) is represented13 by the �-walk (e1 − · · · − el ),
then the cyclic permutation on the G∗-edges incident with v∗, say π∗

v∗ , is defined by
π∗

v∗ = (e∗
1 − · · · − e∗


 ). A �∗-walk of length 
′ corresponds to precisely one G-vertex
of degree 
′: compare Fig. 6, where G = G( f ) and G∗ = G∗( f ). The anti-clockwise
orientation of the local rotation systems in G induces a clockwise orientation on the
�-walk in G and thus a clockwise orientation on the rotation systems in G∗. This
results—by the face traversal procedure—into an anti-clockwise orientation on the
�∗-walks in G∗.

By −G (−G∗) we mean G (G∗) with the anti-clockwise (clockwise) orientation;
compare −G( f ) and −G∗( f ) in Sect. 2. It follows that (G∗,�∗)∗ = (G,�).

Note that if two cellularly embedded graphs in T are isomorphic, then also their
duals are.

12 In contradistinction to our assumption on G, the graph G∗ may admit loops.
13 We say: v∗ is “located” in the G-face, determined by the �-walk (e1 − · · · − e
).
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Fig. 13 Four multigraphs, cellularly embedded in T

3.2 The E(Euler)-property

In contradistinction to the case of facial walks in G( f ), f ∈ ˜Er , see Lemma 2.7, a
�-walk in G is in general not an Euler-trail. So, we need an additional condition.

Definition 3.1 (G,�) has the E(Euler)-property if every �-walk is Eulerian.

For an example of a second order graph (G,�) that has the E-property, see Fig. 13 (i).
This is not so for the third order graphs (G,�) in Fig. 13 (ii), (iii), whereas the graph
in Fig. 13 (iv) does not even fulfil the initial conditions laid upon G (because there are
three vertices and only five edges). Note, however, that also in the latter case the Euler
characteristic vanishes, so that this multigraph is toroidal as well.

Lemma 3.2 If (G,�) has the E-property, then this is also true for (G∗,�∗).

Proof Recall that the conditions “E-property holds for G” and “non-occurrence of
loops in G∗” are equivalent and apply (G∗)∗ = G. 	

From now on, we assume that both G and G∗ are multigraphs and fulfil the E-property.
In particular, each edge in these graphs is adjacent to two different faces.

Let v be an arbitrary vertex in G, contained in the boundary ∂F of a face F and
e1ve2 be a subwalk of the�-walkwF . The different edges e1, e2 are consecutive w.r.t.
the (clockwise) orientation of wF . The facial local sector of F at v, spanned by the
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Fig. 14 Pairs of facial sectors in
opposite position

ordered pair (e1, e2), is referred to as to an F-sector at v. Note that if v occurs more
than once in wF , two F-sectors at v cannot share an edge (because in that case the
common edge would show up twice in wF ). Hence, F-sectors at v must be separated
by facial sectors at v that do not belong to F . So, if e1ve2 and e′

1ve
′
2 are subwalks of

wF , spanning two facial F-sectors at v, then e1, e2, e′
1 and e

′
2 must be different. Thus

each vertex in ∂F has even degree.
Apparently, the number of all facial sectors at v equals the degree of v, and in G

there are altogether δ1 + · · · + δr (=4r) facial sectors, where the δi ’s stand for the
degrees of the vertices in G.

Similarly, there are δ∗
1 +· · ·+δ∗

r (=4r) facial sectors in G∗ with the δ∗
j ’s the degrees

of the G∗-vertices.
We write F = Fv∗ , where v∗ is the G∗-vertex defined by F . So, wF = wFv∗ .

Analogously, F∗
v stands for the G∗-face determined by v. Then e∗

2v
∗e∗

1 is a subwalk of
wF∗

v
and the different edges e∗

1, e
∗
2 are consecutive w.r.t. the anti-clockwise orientation

of this facial walk. We say that the Fv∗-sector at v, spanned by the pair (e1, e2) and the
F∗

v -sector at v∗ spanned by (e∗
1, e

∗
2) are in opposite position; see Fig. 14. Altogether

there are 4r of such (ordered) pairs of G-, G∗-vertices. Note that if v occurs p times in
wFv∗ , then v∗ shows up also p times in wF∗

v
.

The next step is to introduce the analogon of the common refinement G( f )∧G∗( f ).

Definition 3.3 The abstract graph P(G) is given as follows:

• There are 4r vertices (on three levels) represented by:
– the G-vertices [Level-1],
– the pairs s = (e, e∗), e ∈ E(G), e∗ ∈ E(G∗) [Level-2],
– the G∗-vertices [Level-3].

• There are 8r edges:
– a vertex on Level-2, represented by (e, e∗), is connected to two different ver-

tices on Level-1, namely the G-vertices incident with e, and to two different
vertices on Level-3, namely the G∗-vertices incident with e∗,

– vertices on Level-1 are not connected with vertices on Level-3.

P(G)-vertices on the Levels-1,3 are denoted as the corresponding G-, G∗-vertices. The
graph P(G) is directed by the convention: vertices on Level-1 (respectively Level-3)
are the end- (respectively begin-) points of its edges.

We claim the existence of a cellular embedding of P(G) in T , denoted G∧G∗, with
faces determined by the 4r pairs of facial sectors in opposite position. In order to
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verify this claim, consider an arbitrary pair of such sectors, given by the subwalks
e1ve2 and e∗

1v
∗e∗

2 with s
 = (e
, e∗

 ), 
 = 1, 2; compare Fig. 14. We specify local

rotation systems on P(G) at v and v∗ by πv and π∗
v∗ respectively. The rotation systems

at s1 and s2 are given by the cyclic permutations (s1v, s1v∗
1 , s1v1, s1v

∗), respectively
(s2v, s2v∗, s2v2, s2v∗

2), where v
 and v∗

 stand for the vertices incident with e
 and

e∗

 that are different from respectively v and v∗, 
 = 1, 2. The resulting rotation
system for P(G) is called (�,�∗). Now starting from vs2 we find the (�,�∗)-walk
(vs2, s2v∗, v∗s1, s1v).

This yields a cellular embedding of (P(G), (�,�∗)) into a surface homeomorphic
to T (because the alternating sum of the numbers of vertices, edges and (�,�∗)-
walks in P(G) vanishes). This embedding is denoted by G∧G∗, and can be viewed as
the common refinement of G and G∗. Each face in G∧G∗ is represented by a quadruple
of directed edges in P(G) and is associated with exactly one vertex on Level-1, one
vertex on Level-3 (in opposite position) and two vertices on Level-2. Moreover, each
G-face (G∗-face) is built up from the sets of all G∧G∗-faces centered at a G∗-vertex
(G-vertex), ordered in accordancewith the orientation ofG (G∗). This observation turns
the abstract graph P(G) into a distinguished graph P

d(G) with only distinguished sets
of Type 1 (in the sense of [20]).

Following Peixoto, the distinguished graph P
d(G) is realizable as the distinguished

graph of a C1-structurally stable vector field, say14 X(G) on T , with

• as hyperbolic attractors (repellors): the G-vertices (G∗-vertices),
• as onefold saddles: the other G∧G∗-vertices,
• as stable (unstable) separatrices at the saddles: theG∧G∗-edges with as begin point
a G∗-vertex (as end point a G-vertex),

• as canonical regions (of Type 1): the faces of G∧G∗.

Note that X(G) exhibits no “saddle connections”, no closed orbits and thus no limit
cycles.

In order to specify the roles of G and G∗, we occasionally write X(G) = XG∧G∗ .
Again, due to Peixoto’s classification result [20] on structural stability, we have15:

If H is any connected multigraph such as G (i.e., cellularly embedded in T , the E-
property holds, all �-walks are clockwise oriented, r vertices, 2r edges) then

XG∧G∗ ∼ XH∧H∗ ⇐⇒ G ∼ H (and thus G∗ ∼ H∗),

where, as in Sect. 2, in the l.h.s.∼ stands for conjugacy and in the r.h.s. for equivalency,
an isomorphism between graphs respecting their orientations.16

The flow X(G∗) is the dual version of X(G), i.e., X(G∗) is obtained from X(G)

by reversing the orientations of the trajectories of the latter flow, thereby changing

14 Since G∗ is determined by G, we occasionally refer to G as to the distinguished graph of X(G).
15 In fact, XG∧G∗ ∼ XH∧H∗ ⇔ P

d(G) ∼ P
d(H), where ∼ is defined as in (4).

16 More precisely, if � and �′ are rotation systems for G respectively H, then either π ′
ϕ(v)

= πv for all

v ∈ V (G), or π ′
ϕ(v)

= π−1
v for all v ∈ V (G), where ϕ is a homeomorphism on T with ϕ(G) = H. In the

first case we call ϕ orientation-preserving and in the second case orientation-reversing.
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repellors into attractors and vice versa. Since (G∗)∗ = G, the dual version of X(G∗) is
X(G).

Now, put H = −G∗, then

X(G) ∼ X(−G∗) ⇐⇒ G ∼ −G∗. [self -duality]

This observation can be paraphrased as:

Lemma 3.4 X(G) is self-dual iff G is self-dual.

Put δ(G) = {δi = deg(vi ): vi ∈ V (G)} and δ∗(G) = {δ∗
j = deg(v∗

j ): v∗
j ∈ V (G∗)},

then:

Lemma 3.5 G ∼ −G∗ ⇔ δ(G) = δ∗(G) (=δ(G∗)).

Proof Note that the δi ’s together with the claim “clockwise” (“anti-clockwise”) fix
the local rotations of G and G∗. Now the Heffter–Edmonds–Ringel rotation principle
together with (G∗)∗ = G proves the assertion. 	

From Lemmata 3.4 and 3.5 it follows:

Corollary 3.6 X(G) ∼ X(−G∗) ⇔ δ(G) = δ∗(G).

3.3 The A(Angle)-property

Recall that V (G) = {v1, . . . , vr } and δi = deg(vi ). The δi anti-clockwise ordered
edges, incident with the vertex vi , are denoted ei(k), ei(δi+1) = ei(1), k = 1, . . . , δi .
Note that all these edges are different (because G is a multigraph). Since T is locally
homeomorphic to an open disk, it is always possible to re-draw G, thereby respecting
� such that the anti-clockwise measured angles at vi between ei(k) and ei(k+1), say
2πωi(k), are strictly positive and sum up to 2π . The resulting graph is again denoted
by G. Since G is a multigraph, we have altogether 4r (=δ1 + · · · + δr ) “angles” ωi(k).
The set of all these angles is A(G). The subset of all angles between edges that are
consecutive edges in the �-walk wFj that span an Fj -sector, is called the set of angles
of Fj and will be denoted by a(Fj ). Finally, for fixed i , the set of all “angles” ωi(k),
k = 1, . . . , δi , is the “set a(vi ) of angles at vi”.

Definition 3.7 G has the A(Angle)-property if, possibly under a suitable local re-
drawing, the angles in A(G) can be chosen such that:

(A1) ωi(k) > 0 for all ωi(k) ∈ A(G).
(A2)

∑

a(vi )
ωi(k) = 1 for all i = 1, . . . , r .

(A3)
∑

a(Fj ) ωi(k) = 1 for all j = 1, . . . , r .

Note that conditions (A1) and (A2) can always be fulfilled; the crucial claim is condition
(A3).

Moreover, the sets of angles at the vertices v of G that fulfil conditions (A1) and
(A2) fix the anti-clockwise oriented local rotationsπv . Hence,G is determined by these
angles.
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Let J be an arbitrary non-empty subset of {1, . . . , r }. The subgraph of G generated
by all vertices and edges in the faces Fj , j ∈ J , is denoted by G(J ). An interior vertex
of G(J ) is a vertex of G that is only incident with G-faces labelled by J , whereas a
vertex ofG(J ) is called exterior if it is incident with both a face labelled by J and a face
not labelled by J . The sets of all interior, respectively all exterior, vertices in G(J ) are
denoted by Int G(J ) and Ext G(J ) respectively. If J = {1, . . . , r }, then |Int G(J )| =
|J | = |V (G(J ))| = |V (G)| (=r), where as usual | · | stands for cardinality.
Lemma 3.8 Assume that G fulfils the A-property. Then

|Int G(J )| < |J | < |V (G(J ))| for all J, ∅ �= J � {1, . . . , r }. (5)

Proof By Definition 3.7,
∑

j∈J

∑

a(Fj )

ωi(k) = |J |.

The contribution of any interior vertex of G(J ) to the sum in the l.h.s. of this equation
is equal to 1, whereas each exterior vertex contributes with a number that is strictly
between 0 and 1. Hence, we are done if—for the subsets J under consideration—we
can prove that Ext G(J ) �= ∅. So, assume Ext G(J ) is empty, thus Int G(J ) �= ∅. Let
JC be the complement of J in {1, . . . , r }. Thus ∅ �= JC � {1, . . . , r } and Ext G(JC)

(=Ext G(J )) = ∅. Hence, we also have Int G(JC) �= ∅. Now, the connectedness of
G yields a contradiction. 	

Remark 3.9 If G has the A-property, then: l.h.s. of (5) ⇔ r.h.s. of (5), so that one of
these equalities is redundant.

Lemma 3.10 If G fulfils |J | < |V (G(J ))| for all J , ∅ �= J � {1, . . . , r } (cf. (5)),
then:

Any assignment of an arbitrary vertex vi0 to any face Fj0 adjacent to vi0 ,

can be extended to a bijection T : V (G) → F(G), with v ∈ V (∂T(v)) and

T(vi0) = Fj0 , i.e., the assignment vi0 �→ Fj0 can be extended to a transversal

of the vertex sets V (∂Fj ), j = 1, . . . , r. (6)

Proof Consider the vertex set V (∂Fj ) of ∂Fj . Put for j ∈ {1, . . . , r }, pj = 1, if
j �= j0, and pj0 = 0. For all non-empty subsets J of {1, . . . , r } (i.e. including
J = {1, . . . , r }), we have

|V (G(J ))\{vi0}| �
∑

j∈J

pj .

According to a slight generalization of Hall’s theorem on distinct representatives
(cf. [17]), these inequalities are necessary and sufficient for the existence of pairwise
disjoint sets X1, . . . , Xr , such that

X j ⊂ V (∂Fj )\{vi0} with |X j | = pj , j = 1, . . . , r.
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Hence, the singletons (!) X j , j ∈ {1, . . . , r }, j �= j0, together with vi0 yield the
existence of the desired transversal T. 	

Now, let us re-label the angles of G by xλ, with λ = 1, . . . , 4r(= ∑r

i=1 deg(vi )). We
associate with G a 2r×4r -matrix M(G) with coefficients m
λ:

m
λ =

⎧

⎪

⎨

⎪

⎩

1, if 
 = 1, . . . , r, and xλ is an angle at v
, i.e. xλ in a(v
);
1, if 
 = r + 1, . . . , 2r, and xλ is an angle in a(F
−r );
0, otherwise.

Apparently, G has the A-property if and only if the following system of 2r equations
and 4r inequalities has a solution:

{

[M(G) | −1] · (x | 1)T = (0, . . . , 0)T,

xλ > 0, λ = 1, . . . , 4r.
(7)

Here, [M(G) | −1] stands for the matrix M(G) augmented with a (4r+1)-st column,
each of its elements being equal to −1, and (x |1) = (x1, . . . , x4r , 1).

Basically due to Stiemke’s theorem (cf. [14]), system (7) has a solution iff system
(8) below has no solution for which at least one of the inequalities is strict:

(

M(G)T

−1 · · · −1

)

. ZT � (0, · · · , 0)T, (8)

with Z = (z1, . . . , zi , . . . , zr , . . . , zr+ j , . . . , z2r ). Here,

(

M(G)T

−1 · · · −1

)

stands for the matrix M(G)T augmented with a (4r +1)-st row, all its coefficients
being equal to −1. For i, j ∈ {1, . . . , r }, the pair (i, j) is called associated, notation
(i, j) ∈ O, if vi and Fj share an angle.

Obviously, system (8) is equivalent with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

zi + zr+ j � 0, for all (i, j) ∈ O,
2r

∑


=1

z
 � 0.
(9)

But now we are in the position to apply Lemma 3.10.

Lemma 3.11 Consider a graph G, not necessarily with the E-property. Then we have

G has the A-property ⇔ |J | < |V (G(J ))| for all J, ∅ �= J � {1, . . . , r }.
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Proof (⇒). See Lemma 3.8.

(⇐). Suppose that Z = (z1, . . . , z2r ) is a solution of system (9) for which at least one
of the inequalities is not strict. We lead this assumption to a contradiction.

Consider an associated pair (i0, j0). So, the vertex vi0 and the face Fj0 have an
angle in common. Extend by Lemma 3.10, the assignment vi0 �→ Fj0 to a transversal
T as in (6) and define τ(i) by Fτ(i) = T(vi ). This means that vi and Fτ(i) share an
angle, thus (i, τ (i)) ∈ O; in particular, (i0, τ (i0)) = (i0, j0) ∈ O. Since Z fulfills (9),
we have zi + zr+τ(i) � 0, i = 1, . . . , r , and moreover (use that T is bijective) also

r
∑

i=1

(zi + zr+τ(i)) =
2r

∑


=1

z
 � 0.

Hence, zi + zr+τ(i) = 0, i = 1, . . . , r . In particular, zi0 + zr+ j0 = 0. Since the
associated pair (i0, j0) was chosen arbitrarily, we have zi + zr+ j = 0, for every
combination (i, j) ∈ O. This contradicts our assumption on Z . It follows that system
(9) does not have a solution for which at least one of the inequalities is strict. Thus
system (7) does admit a solution, i.e. (G,�) has the A-property. 	

Corollary 3.12 Let G be a graph as in Lemma 3.11. Then there holds:

G has the A-property ⇔ condition (6) holds for G.

Proof (⇒). See Lemmata 3.8, 3.10. (⇐). Follows from the (⇐) part of the proof of
Lemma 3.11. 	

The (equivalent) conditions “|J | < |V (G(J ))| for all J , ∅ �= J � {1, . . . , r }” and
(6) will be referred to as to the H(Hall)-condition; see also Sect. 5.2.

As it can be easily verified, the graphs G in Fig. 13 (i), (ii) fulfil the H-condition,
but G in Fig. 13 (iii) does not. Hence, by Lemma 3.11, or Corollary 3.12, the graphs G
in Fig. 13 (i), (ii) have the A-property, but this is not so for the graph in Fig. 13 (iii).

3.4 Newton graphs

Definition 3.13 Cellularly embedded toroidal graphs with r vertices, 2r edges (and
thus r faces) that fulfil the A- and E-properties are called Newton graphs of rank r.

Lemma 3.14 If (G,�) is a Newton graph, then this is also true for (G∗,�∗).

Proof In view of Lemma 3.2, we only have to show that (G∗,�∗) has the A-property.
Let v∗

0 be a G∗-vertex and consider an assignment v∗
0 �→ F∗

v0
, where F∗

v0
is a G∗-face

adjacent to v∗
0 corresponding with the G-vertex v0. So the pair (v0, v

∗
0) is in opposite

position, and v0 is adjacent to theG∗-face Fv∗
0
. By assumption,G fulfills theA-property.

So, we can extend (by Corollary 3.12) the assignment v0 �→ Fv∗
0
to a transversal of the

vertex sets of G (i.e., to pairs (vi , v
∗
i ) in opposite position such that all vi and v∗

i are
different), and thus to a transversal v∗

i → F∗
vi
of the vertex sets of G∗-faces (extending

v∗
0 �→ Fv∗

0
). Now, application of Corollary 3.12 yields the assertion. 	
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Fig. 15 (G, �) and its dual (G∗,�∗); partial

The above result is easily verified by a geometric argument. Consider (under the
assumption that the A- and E-properties hold for G) the graph G∧G∗ on T and proceed
in two steps (see Fig. 15):

Step 1: Re-draw G∧G∗ locally around the vertices of G (solid lines) such that the
angles in A(G) fulfil conditions (A1)–(A3) (in Definition 3.7).

Step 2: Due to condition (A3) for G, we may re-draw G∧G∗ locally around the vertices
of G∗ (dotted lines) such that the A(G)- and A(G∗)-angles of facial sectors in opposite
position are equal.

We conclude that also G∗ has the A-property, and find as a by-product:

Lemma 3.15 If G is a Newton graph, we may assume (possibly after a suitable local
re-drawing) that in each face of G∧G∗ the angles at the G- and G∗-vertices are equal
(and non-vanishing).

From now on we assume that a Newton graph and its dual are always oriented as G
and G∗ in Sect. 3.1. From Corollary 2.6 and Lemma 2.7 it follows:

Corollary 3.16 G( f ) and G∗( f ), f ∈ ˜Er , are Newton graphs.

In the forthcoming section we prove that in a certain sense the reverse is also true. We
end up this section with a lemma that we will use in the sequel:

Lemma 3.17 Let G be of order r = 2 or 3. Then, if r = 2, the A-property always
holds, whereas in case r = 3 the E-property implies the A-property.

Proof Let J be an arbitrary non-empty, proper subset of {1, . . . , r }.
Case r = 2: Note that |J | = 1, thus |V (G(J ))| > 1 (because G has no loops). So
we have |V (G(J ))| > |J |, i.e., the H-condition holds, and Lemma 3.11 yields the
assertion.

Case r = 3: If |J | = 1, then |V (G(J ))| > 1 (because G has no loops), thus
|V (G(J ))| > |J |. If |J | = 2, then |J c| = 1 and |V (G(J c))| � 2 (since G has no
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Fig. 16 Two graphs G

loops). Moreover, by the E-property, each edge must be adjacent to at least two faces.
This implies that Int G(J c) = ∅. Thus |Ext G(J )| = |Ext G(J c)| = |V (G(J c))| � 2
and |V (G(J ))| = |Ext G(J )| + |Int G(J )|. Distinguish now between two cases:

– Int G(J ) �= ∅, then |V (G(J ))| > |J |.
– Int G(J ) = ∅, then the three vertices of Gmust be exterior vertices for G(J ), thus
also |V (G(J ))| > |J |. Hence, |V (G(J ))| > |J | holds for all J under consideration,
and Lemma 3.11 yields the assertion. 	


Remark 3.18 In contradistinction to the A-property, the E-property does not hold for
all second order multigraphs G; compare Fig. 16 (i), where the dual G∗ admits a loop.
From Fig. 16 (ii), it follows that Lemma 3.17 (r =3) is not true in the case that r = 4.
From Fig. 13 (ii) we learn that the A-property does not imply the E-property, even if
r = 3.

4 Structurally stable elliptic Newton flows: representation

In this section we prove that the reverse of Corollary 3.16 is also true.

Theorem 4.1 Any Newton graph G of order r can be realized (up to equivalency) as
the graph G( f ), f ∈ ˜Er .

The proof is based on several steps. Starting point is an arbitrary Newton graph G.
We apply the results of Sect. 3. Let X(G) be a C1-structurally stable vector field on
T without limit cycles, determined (up to conjugacy) by G∧G∗, thus by G as the
“distinguished graph” of X(G) (cf. Footnote 14).

The flow X(G) is gradient like, i.e. up to conjugacy equal to a gradient flow (with
respect to a C1-Riemannian metric R on T ). This can be seen as follows: an arbi-
trary equilibrium, say x, of the (structurally stable!) flow X(G) is of hyperbolic
type, i.e. the derivative DxX(G) has eigenvalues λ1(x), λ2(x) with non-vanishing
real parts, cf. [19]. By the Theorem of Grobman–Hartman [7] (use also [13, The-
orem 8.1.8, Remark 8.1.10]), on a suitable y-coordinate neighborhood [with y =
(y1, y2)T] of x, the phase portrait of X(G) is conjugate with the phase portrait around
y = 0 of one of the flows given by
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Fig. 17 The possible local phase portraits of X(G) around y = 0

y′ = −
(

λ1 0
0 λ2

)

y, y(0) = 0,
with either λ1 = λ2 = 1, or λ1 = λ2 = −1

or λ1 = −λ2 = 1,

corresponding to the cases where y = 0 stands for respectively a stable star node, an
unstable star node and an orthogonal saddle; see comments on Figs. 1 and 17.

Applying a flow box argument (“cutting” and “pasting” of local phase portraits),
we find that X(G) is conjugate with a structurally stable smooth flow on T—again
denoted byX(G)—with as equilibria: 2r star nodes (r of them being stable, the other r
unstable) and 2r orthogonal saddles. The underlying “distinguished graph” is denoted
again by G. It follows that the angle between two G-edges (i.e. unstable separatrices at
saddles for X(G)) that are incident with the same G-vertex (i.e. a stable star node for
X(G)), may assumed to be well defined and non-vanishing.

We adopt the notations/conventions as introduced in the preambule toDefinition 3.7
(A-property). In particular, let the G-vertex vi stand for a stable node of X(G). In
Fig. 18 (a) we present a picture of X(G) w.r.t. the y-coordinates around 0 (=vi ). Here
the bold lines stand for G-edges, and the thin lines for other X(G)-trajectories on a
small disk D around y = 0. Note that the anglesωi(k) in this figure fulfil the conditions
(A1), (A2) ofDefinition 3.7. In Fig. 18 (b), we consider a similar configuration ofX(G)-
trajectories on D approaching vi , with the only additional condition that the tuples
(ei(1), . . . , ei(δi )) and (e′

i(1), . . . , e
′
i(δi )

) are equally ordered. Consider the oriented arcs
arc(i(k), i(k+1)) and arc′(i(k), i(k+1)) in the boundary ∂D of D, determined by
respectively the consecutive pairs (ei(k), ei(k+1)) and (e′

i(k), e
′
i(k+1)). Under suitable

shrinking/stretching, these arcs can be identified. This yields an orientation preserving
homeomorphism ψ from ∂D onto itself. It is easily proved that ψ can be extended
to a homeomorphism � : D → D mapping the X(G)-trajectories in Fig. 18 (a) onto
those in Fig. 18 (b). This procedure will be referred to as a local re-drawing (around
vi ).

With the aid of local re-drawings, together with a “cut” and “paste” construction,
the pair (X(G),G) can be changed into an equivalent structurally stable flow (again
denoted X(G)) and an equivalent distinguished graph (again denoted G), with pictures
as Fig. 18 (b) instead of Fig. 18 (a). We conclude that the angles ωi (k) in Fig. 18 (a)
may be altered arbitrarily (provided that conditions (A1), (A2) ofDefinition 3.7 persist)
without changing the topological types of X(G) and G.
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Fig. 18 Local phase portraits of X(G) around a stable star node before and after local re-drawing

Note that any toroidal graph, equivalent with a Newton graph (such as the original
graph G), is also a Newton graph (cf. Definition 3.1, Lemma 3.11). Moreover, not
only G, but also G∗ is Newtonian (cf. Lemma 3.14). Hence, compare (the proof of)
Lemma 3.15, with the aid of local re-drawings around the vertices ofG andG∗, together
with a “cut and past construction”, it is easily shown that: in each face of G∧G∗
(canonical X(G)-region), the angles at the G- and G∗-vertex (a stable, respectively
unstable, star node of X(G)) are equal and non-vanishing.

With respect to the various local y-coordinate systems around the X(G)-equilibria,
we define the 4r functions hi , h∗

i , h
∗∗
j , i = 1, . . ., r, j = 1, . . . , 2r , as follows:

hi (y) = 1

2
(y21 + y22 )

in case of stable nodes at y = 0

representing the r vertices vi of G,

h∗
i (y) = − 1

2
(y21 + y22 )

in case of unstable nodes at y = 0

representing the r vertices v∗
i of G∗,

h∗∗
j (y) = 1

2
(y21 − y22 )

in case of saddles at y = 0

representing the 2r edges ej of G.

Note that each function exhibits a non-degenerate critical point at y = 0. Moreover,
on a y-coordinate neighborhood N around an equilibrium of X(G), the vector field
X(G) is the negative gradient vector field [w.r.t. the standard Riemannian structure
on N ] of the associated function. Apparently, the flow X(G), being structurally stable
on T (without limit cycles), together with the functions hi , h∗

i and h∗∗
j , fulfils the

requirements (1)–(4) laid upon [21, Theorem B]. So, applying this theorem we may
conclude that there is a function h on T such that:

1. The critical points of h coincide with the equilibria of X(G) and h coincides with
the functions hi , h∗

i , h
∗∗
j plus a constant in some neighborhood of each critical

point.
2. Dh(x) ·X(G)|x < 0 outside the critical point set Crit(h) of h.

123



720 G. F. Helminck, F. Twilt

3. The function h is self-indexing, i.e., the value of h in a critical point β equals the
Morse index of β = # (negative eigenvalues of D2h(β)). Thus, h(β) = 0 (=2),
in case of a stable (unstable) node and h(β) = 1 in case of a saddle.

As a corollary (cf. [13, Theorem 8.2.8] and [21]), we conclude that there is a variable
(Riemannian) metric R( ·) on T such that

gradR h = X(G),

where gradR h is a vector field on T of the form (w.r.t. local coordinates x for T )

gradR h(x) = −R−1(x)DTh(x).

Here R(x) is a symmetric, positive definite 2×2-matrix with coefficients depending
in a C1-fashion on x. Note that the direction of gradR h is uniquely determined by the
above transversality condition 2, whereas on the neighborhoods N around the X(G)-
equilibria, the matrices R( ·) are just the 2×2-unit matrix I2. Moreover, gradR h(x) �=
0 if and only if x is outside the set Crit(h) (= set of X(G) − equilibria).

For x /∈ Crit(h), let grad⊥
R(x)h(x) �= 0, be a vector R-orthogonal to gradR(x)h(x),

i.e.

(grad⊥
R(x)h(x))T.R(x).(−R−1(x).DTh(x)) [=−Dh(x).grad⊥

R(x)h(x)] = 0. (10)

Let x0 be a point in the level set Lc = {x ∈ T : h(x) = c, c = constant}. Then we
have:

• Assume x0 /∈ Crit(h), thus Lc is, locally around x0, a regular curve. By (10), this
local curve is R-orthogonal to the trajectory of X(G) (=gradR h) through x0.

• If x0 ∈ Crit(h), then x0 is either an isolated point, surrounded by closed regular
curves Lc, c �= 0, 2 (in the case where x0 is aX(G)-node), or a ramification point at
the intersection of two (orthogonal) components of L1 (in case of a X(G)-saddle).
This follows from the fact that on the neighborhoods N around the equilibria of
X(G), the Riemannian metric R is just the standard one.

So, we may subdivide the level sets Lc into the disjunct union of maximal regular
curves (to be referred to as to the level lines Lc) and single points (in Crit(h)). Let
x(t), x(0) /∈ Crit(h) be a trajectory forX(G) (=gradR h). Since R−1(x) is a symmetric,
positive definite matrix, we have

d

dt
h(x(t))|t=0 = Dh(x(0)) · x′(0)

= Dh(x(0)) · (−R−1(x(0))) · DTh(x(0)) < 0.
(11)

So, h(x(t)) decreaseswhen t increases, and by the indexing condition 3, 0 � h(x) � 2,
for all x ∈ T . By (11), when travelling along the boundary of an open canonicalX(G)-

region [=G∧G∗ − face], say Ri j in Fig. 19, the functional values of h vary strictly
from 2 (at the unstable node v∗

j ) via 1 (at a saddle σ1 or σ2) to 0 (at the stable node
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Fig. 19 The canonical X(G)-region Ri j

vi ). From this it follows (use also the transversality condition 2.) that a level line Lc,

entering Ri j through the boundary ∂Ri j between vi and σ1 [thus 0 < c < 1], must

leave this region through ∂Ri j between vi and σ2. Also, if Lc enters Ri j through ∂Ri j

between v∗
j and σ1 [thus 1 < c < 2], then it leaves Ri j through ∂Ri j between v∗

j and
σ2. By the same argumentation, the saddles σ1 and σ2 are connected by a level line
L1. Considering unions of all G∧G∗-faces incident with the same vertex representing
a stable (unstable) attractor of X(G), we find that the level sets Lc, c �= 0, 1 or 2,
are closed smooth regular curves, either contractable to a stable attractor [in case
0 < c < 1], or to an unstable attractor [in case 1 < c < 2] . Altogether, a level
line Lc is either a closed curve, or it connects two different X(G)-saddles. Hence, the
following definition makes sense (compare also Definition 2.18):

Definition 4.2 The graph G⊥ on the torus T is given by:

• Vertices are the 2r saddles for X(G) on T .
• Edges are the 4r level lines L1 connecting different saddles of X(G).

Apparently, G⊥ is cellularly embedded, and, by Euler’s formula, this graph is con-
nected (since there are 2r faces, determined by the stable and unstable nodes ofX(G)).
So, the function h admits the same value on (the edges and vertices of)G⊥, whereas, by
the self-indexing condition 3, we know that this value equals 1. Thus, the embedded
graph G⊥, as a point set in T , is just the level set L1. This leads to Fig. 20, where we
present the graphs G,G∗ and G⊥, together with some more level lines Lc. We endow
the level lines Lc, 0 < c < 1 (the level lines Lc, 1 < c < 2) with the anti-clockwise
(clock-wise) orientation. Doing so, we can turn G⊥ into an oriented graph; see Fig. 20.

We fix the vector field grad⊥
R(x)h(x) by demanding that it has the same length

as gradR h(x) (w.r.t. the norm, induced by R(x)) and is oriented according to the
orientation of the level line Lc through x, see Fig. 19. So, by (10), we may interpret
the net of X(G)-trajectories and level lines Lc as the R-orthogonal net of trajectories
for the vector fields gradR h and grad⊥

R h. The switch from X(G) to X(G∗) (=−X(G))

causes the reverse of the orientations in this net. So, for the open canonical regions of

X(G) and X(G∗), we have Ri j = R∗
j i (as point sets). However, the role of vi and v∗

j,
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Fig. 20 The graphs G∧G∗,G⊥ and some level sets for h

and of σ1 and σ2 (w.r.t. the orientations of the trajectories) is exchanged, see Fig. 21,

where the equal angles at vi and v∗
j in Ri j and R∗

j i are denoted by α.
Reasoning as in the case of the function h forX(G), we find a self-indexing smooth

function, say g, for X(G∗) with the following property: when traveling along the

boundary of R∗
j i , the functional values of g vary strictly from 2 (at the unstable node

vi ) via 1 (at a saddle σ1 or σ2) to 0 (at the stable node v∗
j ).

Consider an arbitrary X(G)-trajectory, say γ�, in Ri j , approaching vi under a posi-
tive angle � with the G-edge (=X(G)-trajectory) viσ1; see Fig. 21. The set of all such
trajectories is parametrized by the values of � in the interval (0, α) and the functional

values of h (or g) on Ri j . We map γ� onto the half ray r(x) exp(i�), x ∈ γ�, where

r(x) = h(x), if x is on γ� between vi and p (= intersection γ� ∩ L1),

r(x) = 1

g(x)
, if x is on γ� between p and v∗

j .

In this way, the R-orthogonal net of trajectories for X(G) (=gradR h) and grad⊥
R h

on Ri j can be homeomorphically mapped onto the polar net on the open sector, say

s(Ri j ), in the complex plane as in Fig. 22 (a). Here 0 corresponds to vi , and σ ′
1, σ

′
2

(both situated on the unit circle) are related to respectively σ1 and σ2.

Similarly, the trajectory γ∗
�∗ inR∗

j i can bemapped onto the half ray exp(i�∗)/r(x),
x ∈ γ ∗

�∗ , where �∗ is the angle at v∗
j between this trajectory and the G∗-edge v∗

j σ1,
see Fig. 21, where �∗ = � (apart from orientation). Hence, the R-orthogonal net

of trajectories for X(G∗) (=−gradR h) and −grad⊥
R h on R∗

j i can be homeomorphi-

cally mapped onto the polar net on the sector, obtained from s(Ri j ) by reflection in
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Fig. 21 Ri j and R∗
i j

the real axis. We call this sector S(R∗
j i ). Here 0 corresponds to v∗

j , and (σ ∗
1 )′, (σ ∗

2 )′
(both situated on the unit circle) are related to respectively σ1 and σ2. Reversing the
orientations of the polar net in the latter section, we obtain a polar net, oriented as

the X(G) (=gradRh) and grad⊥
R h-trajectories on Ri j . Endowed with this polar net we

rename S(R
∗
j i ) as S(Ri j ). Apparently, the polar nets on s(Ri j ) and S(Ri j ) correspond

under the inversion z → 1/z. Compare Fig. 22 (a), (b). In the same way, we map a

neighbouring region Ri j ′ as in Fig. 21, homeomorphically onto the sector s(Ri j ′) in

Fig. 22 (a) and also onto S(Ri j ′) in Fig. 22 (c). Repeating this procedure we are able
to map all canonical regions of X(G) onto (the closures of) sectors of the types s( ·)
and S( ·) in such a way that together they cover, for each value of i and j , a copy of
the complex plane (compare also Figs. 11, 12).

In analogywithRemark2.20,weconsider the reduced torus Ť = T \{G∧G∗-vertices},
and on Ť the covering by open neighborhoods

{F∗
vi

\vi , Fv∗
j
\v∗

j }, i, j = 1, . . . , r,

where F∗
vi
and Fv∗

j
stand for the basins ofX(G) for respectively vi and v∗

j . Again, only

intersections of the type (F∗
vi

\vi )∩(Fv∗
j
\v∗

j ) are possibly non-empty. Even so, such an

intersection consists of the disjoint union of regions of the type Ri j , say R1
i j , . . . ,R

s
i j ,

where s is the amount of vertices vi (vertices v∗
j ) in the �-walks of Fv∗

j
(of F∗

vi
).

Note that at vi , respectively v∗
j , these regionsR

k
i j are endowed with the anti-clockwise

(clockwise) cyclic orientation, and are separated by regions not of this type; compare
Remark 2.8 and Sect. 3.2.
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Fig. 22 s(Ri j ), S(Ri j ) and s(Ri j ′ ), S(Ri j ′ )

Now, we proceed as in Remark 2.20. The open covering of Ť provides this manifold
with a complex analytic structure, exhibiting coordinate transformations

s(Rk
i j ) ↔ S(Rk

i j ), i, j = 1, . . . , r,

induced by the inversion z → 1/z. We pull back the restrictions of the function z

(respectively 1/z) on the various sectors s(Rk
i j ), respectively S(Rk

i j ) to Ť . By glueing
all canonical regions for X(G) along the trajectories in their common boundaries,
we construct a complex analytic function on Ť . Continuous extension to T yields a
meromorphic function, say f on T , with r simple zeros (poles) at vi (v∗

j ) and 2r simple

saddles at σ1, . . . , σ2r . Since N(z) = −z, N(1/z) = −1/z, we find X(G) = N( f ),
thus G = G( f ). This proves Theorem 4.1.
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We combine this result together with the results in Theorem 2.10 and Corollary
3.16 to obtain:

Theorem 4.3 (Representation of structurally stable elliptic Newton flows by graphs)
Up to conjugacy (∼) between flows and equivalency (∼) between graphs, the struc-
turally stable Newton flows of r th order are 1-1 represented by the Newton graphs of
order r .

5 Final remarks

5.1 Rational versus elliptic Newton flows

Our study is inspired by the analogy between rational and elliptic functions. We raised
the question whether, and (even so) to what extent, this analogy persists in terms of
the corresponding Newton flows (on, respectively, the Riemann sphere S2 and the
torus T ). An affirmative answer to this question is given by comparing the character-
ization, genericity, classification and representation aspects of rational Newton flows
(see [8, Theorem 2.1]) with their counterparts as described in Theorems 1.3, 2.10
and 4.3.

More in particular, this analogy becomes manifest when we look at the special case
of balanced rational Newton flows of order r � 1. By these, we mean structurally

stable flows of the formN(pn/qm), with pn, qm two co-prime polynomials of degrees
respectively n,m, |n − m| � 1, r = max{n,m}. Such flows admit 2r star nodes (r
stable and r unstable) together with 2r − 2 orthogonal saddles. [Note that at z = ∞
(north pole) there is an unstable node if n = m + 1, a stable node if m = n + 1, and a
saddle ifm = n.] Due to the duality property,17 the transition pn/qm ↔ qm/pn causes

the reverse of orientations of the trajectories of N(pn/qm) and N(qm/pn). So, these
flows may be considered as equal and we assume n � m. Now, the oriented sphere

graph G(pn/qm) for N(pn/qm) can be defined (in strict analogy with Definition 2.1)
as a connected, cellularly embedded multigraph with r vertices, 2r − 2 edges and
r faces; apparently, also G(qm/pn) = −G∗(pn/qm) holds. As in the elliptic case,
it can be proved that G(pn/qm) fulfils both the E- and the A-property. (However,
in this special case it is found that the later property already implies the first one.)
Subsequently, it is shown that any cellularly embeddedmultigraph in S2 with r vertices,
2r − 2 edges and r faces, admits the A-property iff certain (Hall) inequalities are
satisfied. Altogether, this leads to a concept of Newton graph that is formally the
same as the concept of Newton graph in Definition 3.13. In particular, classification
and representation results, similar to Theorems 2.10 and 4.3, are derived (cf. [11,
12]).

We conclude that there is a striking analogy between the balanced Newton flows
and elliptic Newton flows, both of order r . Note that an elliptic Newton flow of order
1 is not defined, whereas a balanced Newton flow of order 1 is just the North–South
flow (cf. [8, Figs. 7, 8] for n = 1).

17 Duality for rational Newton flows is easily verified, see (1).

123



726 G. F. Helminck, F. Twilt

Fig. 23 The different graphs for balanced rational Newton flows of order r = 2, 3

Finally, we note that, as in the elliptic case, for lower values of r a list of all possi-
ble (up to conjugacy and duality) balanced Newton flows, represented by their graphs,
is available. For example, see Fig. 23, where the pictures of the graphs Gr (pn/qm)

and G∗
r (pn/qm), r = 2, 3, suggest that the conditions (A1)–(A3) of Definition 3.7

are indeed fulfilled. The proof that these graphs are the only possibilities, based
on the Representation Theorem for rational Newton flows (compare [11]), is omit-
ted.

5.2 Complexity aspects

We indicate the existence of a “good” (i.e., polynomial) algorithm deciding whether
a given cellularly embedded toroidal graph Gr is a Newton graph or not. To this aim,
we check both the E- and A-property.

E-property: Use that the graphs (facial walks) ∂Fj are Eulerian iff all vertices have
even degree.

A-property: Let B be a finite bipartite graph with bipartition (X,Y ), and denote for
any subset S in X the neighbour set in Y by N (S). We consider the so-called Strong
Hall Property (cf. [4]):

|S| < |N (S)| for all non-empty S ⊂ X. (12)

For each bipartite graph, obtained from (B, X,Y ) by adding one vertex (p) to X and
one edge which joins p to a Y -vertex, we also consider the Hall property (cf. [3]):

|Š| � |N (Š)| for all subsets Š of X ∪ { p}. (13)

It is easily shown that (12) and (13) are equivalent, and thus, because the verification
of (13) is possible in polynomial time (cf. [3]), this is also true for (12). Now, we
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select an arbitrary Gr -face Fj , say Fr , and specify (B, X,Y ) by X = {F1, . . . , Fr−1}.
Y = V (Gr ), where adjacency is defined by inclusion. The inequalities in the r.h.s. of
Lemma 3.11 take the form (12) for all non-empty J in {1, . . . , r −1}, and considering
all possible choices for Fj , we are done.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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