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ABSTRACT Mycobacterial infections cause a significant burden of disease and
death worldwide. Their treatment is long, toxic, costly, and increasingly prone to fail-
ure due to bacterial resistance to currently available antibiotics. New therapeutic op-
tions are thus clearly needed. Antimicrobial peptides represent an important source
of new antimicrobial molecules, both for their direct activity and for their immuno-
modulatory potential. We have previously reported that a short version of the bo-
vine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17–30),
along with its variants obtained by specific amino acid substitutions, killed Mycobac-
terium avium in broth culture. In the present work, those peptides were tested
against M. avium living inside its natural host cell, the macrophage. We found that
the peptides increased the antimicrobial action of the conventional antibiotic etham-
butol inside macrophages. Moreover, the D-enantiomer of the lactoferricin peptide
(D-LFcin17–30) was more stable and induced significant killing of intracellular myco-
bacteria by itself. Interestingly, D-LFcin17–30 did not localize to M. avium-harboring
phagosomes but induced the production of proinflammatory cytokines and in-
creased the formation of lysosomes and autophagosome-like vesicles. These results
lead us to conclude that D-LFcin17–30 primes macrophages for intracellular micro-
bial digestion through phagosomal maturation and/or autophagy, culminating in
mycobacterial killing.

IMPORTANCE The genus Mycobacterium comprises several pathogenic species, in-
cluding M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria
are particularly difficult to treat due to their intrinsic impermeability, low growth
rate, and intracellular localization. Antimicrobial peptides are increasingly acknowl-
edged as potential treatment tools, as they have a high spectrum of activity, low
tendency to induce bacterial resistance, and immunomodulatory properties. In this
study, we show that peptides derived from bovine lactoferricin (LFcin) improve the
antimicrobial activity of ethambutol against Mycobacterium avium growing inside
macrophages. Moreover, the D-enantiomer of a short version of lactoferricin contain-
ing amino acids 17 to 30 (D-LFcin17–30) causes intramacrophagic death of M. avium
by increasing the formation of lysosomes and autophagosomes. This work opens the
way to the use of lactoferricin-derived peptides to treat infections caused by myco-
bacteria and highlights important modulatory effects of D-FLcin17–30 on macro-
phages, which may be useful under other conditions in which macrophage activa-
tion is needed.
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The Mycobacterium genus contains several species capable of causing severe dis-
ease, such as those belonging to the M. tuberculosis complex, M. leprae, and

nontuberculous mycobacteria (NTM) (1, 2). The incidence of NTM infections, predom-
inantly by species of the M. avium complex (MAC), is increasing worldwide, surpassing
in some regions the number of infections caused by M. tuberculosis (3, 4). Disseminated
infections caused by NTM occur mainly in patients with a compromised immune
system, such as HIV-infected patients, patients with cancer, and organ or stem cell
transplant patients, among others (reviewed in references 2, 5, and 6).

Mycobacteria are characterized by a unique, complex, highly impermeable cell wall
and are able to proliferate inside phagocytic cells, subverting the intracellular vesicular
trafficking. These characteristics confer upon them high resistance to chemotherapy
and the ability to cause persistent infections (7, 8). Treatment regimens are based on a
combination of several drugs taken for months to years and in general have limited
efficacies (9, 10). Furthermore, mycobacterial antibiotic resistance is increasing world-
wide, urging the need to develop novel classes of antimicrobial drugs (11).

Mycobacteria are facultative intracellular pathogens residing mainly inside macro-
phages. After being phagocytized, the mycobacteria arrest the maturation of the
phagosome, inhibiting the phagosome-lysosome fusion (12–14). This inhibition enables
mycobacteria not only to escape the harmful environment of lysosomes but also to
maintain the interaction with endosomes in the recycling pathway, allowing their
access to nutrients [e.g., transferrin-bound Fe(III)] needed to ensure survival and
proliferation inside the host (12, 15, 16). Cytokines such as gamma interferon (IFN-�)
and tumor necrosis factor alpha (TNF-�) play an important role in macrophage activa-
tion and mycobacterial growth restriction (17–20). However, the mechanisms by which
macrophages inhibit mycobacterial growth and the mechanisms used by mycobacteria
to resist and live inside macrophages are not fully understood. Respiratory burst and
nitric oxide (NO) are involved in M. tuberculosis killing (21–23), but they do not seem to
play an important role in the case of M. avium (15, 24, 25). Nutrient restriction, including
that of iron, is also thought to have a role, namely, through alterations in vesicular
trafficking that affect mycobacterium-harboring phagosomes (15). Cell death mecha-
nisms are also important for cell homeostasis and infection control. In fact, mycobac-
teria are known to modulate pathways such as apoptosis, autophagy, necrosis, and
pyroptosis, which have been implicated in infection containment but also in enhanced
bacterial spread (26–28).

Antimicrobial peptides (AMP) are an important component of the innate immune
response against pathogens. These peptides are widespread in nature as part of host
defense mechanisms, constituting potential new antimicrobial treatment options (29).
Although their mode of action is still under debate, they are thought to act with a
multiple-hit strategy, which probably contributes to their high efficacy and large
spectrum of activity. AMP can act directly on pathogens, either by disrupting the
membrane due to pore formation and/or micellization or by acting on internal targets
(30). They can also act by immunomodulation, being involved in several processes, such
as modulation of pro- and anti-inflammatory responses, chemoattraction, cellular
differentiation, angiogenesis, wound healing, enhancement of bacterial clearance,
autophagy, and apoptosis, among others (31). In the case of mycobacteria, one of the
most effective mechanisms of host resistance is the vitamin D-dependent induction of
an AMP (LL-37) and autophagy (32–34).

Lactoferricin is an antimicrobial peptide obtained by pepsin digestion of the highly
cationic N1 terminal domain of the iron-binding protein lactoferrin (35, 36). The bovine
lactoferricin is composed of 25 amino acids (positions 17 to 41 in the native protein)
(37) and has a broad-spectrum antimicrobial activity (reviewed in reference 38). A
shorter version, with amino acids 17 to 30 (LFcin17–30), was found to have high
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antimicrobial activity against both Gram-positive and Gram-negative bacteria (39). We
have previously shown that arginine residues are crucial for the antimicrobial activity of
LFcin17–30 against M. avium growing in broth culture and that the D-enantiomer
(D-LFcin17–30) was even more active than the L-enantiomer (40). In the present work,
LFcin17–30 and its variants were tested against M. avium growing inside mouse
macrophages, alone or in combination with the conventional antibiotic ethambutol.
We found that the D-LFcin17–30 enantiomer was the most active peptide, acting
through modulation of macrophages’ defense mechanisms.

RESULTS
Up to 40 �M, lactoferricin peptides are not toxic to primary mouse macro-

phages. Previously (40), we showed that bovine LFcin17–30 and its variants with all
arginines replaced with lysines and vice versa (LFcin17–30 all K and LFcin17–30 all R,
respectively), as well as the variant with all amino acids in the D-form (D-LFcin17–30)
(Table 1), killed M. avium in axenic cultures. In this work, we decided to investigate
whether those peptides were able to kill mycobacteria growing inside macrophages,
their natural host cells. We have also tested the possible synergistic effect of lactoferri-
cin peptides with ethambutol, a conventional antibiotic used in the clinics to treat
mycobacterial infections (41, 42). Before testing the compounds for their antimicrobial
activity, we evaluated their potential toxicity toward bone marrow-derived macro-
phages (BMM). In Fig. 1A and B, we show that the peptides, alone or in combination
with ethambutol, did not exert a significant toxic effect on noninfected (data not
shown) or infected macrophages at 40 �M, 1 and 5 days after incubation.

Lactoferricin peptides inhibit M. avium growth inside macrophages and syn-
ergize with ethambutol. Given that the peptides at up to 40 �M were not toxic to
macrophages, we evaluated their effect on M. avium growing inside these cells. Bone
marrow-derived macrophages were obtained from BALB/c mice and infected with M.
avium 2447 smooth transparent variant (SmT). The different peptides were added at 40
�M, and ethambutol was added at 7.2 �M. After 5 days in culture, the number of
intracellular bacteria per culture well was quantified in a CFU assay (Fig. 1D). Among the
peptides tested, only D-LFcin17–30 significantly inhibited the intramacrophagic growth
of M. avium (52% growth reduction, P � 0.001). None of the other peptides or
ethambutol alone significantly inhibited M. avium growth. Interestingly, when given to
the macrophages in combination with ethambutol, all peptides had a significant
inhibitory effect, revealing a possible synergistic effect between antibiotic and AMP. Of
note, even in combination with ethambutol, D-LFcin17–30 was still the most active
peptide (73% reduction in M. avium growth relative to the control; P � 0.001).

D-LFcin17–30 is more resistant to degradation by medium components than
LFcin17–30. To understand the reason why D-LFcin17–30 had a stronger effect on the
intramacrophagic growth of M. avium than LFcin17–30, and considering that peptide
degradation is one of the factors that can have an impact on efficacy, we evaluated by
high-performance liquid chromatography (HPLC) the kinetics of degradation of both
peptides in the presence of the cell culture medium used in the infection assays. As
expected, the peptide composed of amino acids in the D-form was significantly more
resistant to degradation, persisting with no more than 30% degradation for up to 96 h
of incubation, whereas 50% of the L-form of the peptide was degraded after 24 h of
incubation, being completely degraded after 96 h (Fig. 1C).

TABLE 1 Characteristics of synthetic lactoferricin peptides

Peptide Amino acid sequence Molecular wt Chargea

LFcin17–30 FKCRRWQWRMKKLG 1,923 �6
D-LFcin17–30 FKCRRWQWRMKKLG 1,923 �6
LFcin17–30 all K FKCKKWQWKMKKLG 1,839 �6
LFcin17–30 all R FRCRRWQWRMRRLG 2,007 �6
aCalculated overall charge at a pH of 7.0.

D-LFcin17–30-Treated Macrophages Kill Mycobacteria
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Lactoferricin peptides do not colocalize with M. avium inside macrophages. In
order to understand the mechanisms by which lactoferricin peptides inhibited the
intramacrophagic growth of M. avium, we characterized the intracellular distribution of
the peptides inside M. avium-infected macrophages. For that, we used peptides labeled
with TAMRA [5(6)-carboxytetramethylrhodamine, a rhodamine derivative], a strain of M.
avium expressing green fluorescent protein (GFP), and fluorescein-labeled markers of
endosomes or mitochondria. Figure 2 depicts representative pictures of macrophages
2 h after infection with M. avium and peptide treatment. LFcin17–30 (Fig. 2A) and
D-LFcin17–30 (Fig. 2B) exhibited similar distributions inside macrophages, and neither
colocalized with M. avium. The exclusion of the peptides from mycobacterium-
containing vesicles was not altered by the treatment with ethambutol (Fig. 2A and B,
second column), by the incubation time (20 min for up to 24 h [data not shown]), or the

FIG 1 Effect of lactoferricin peptides on M. avium-infected macrophages. (A) BALB/c mouse BMM were infected with M. avium 2447
SmT and incubated with LFcin17–30 (gray circles), D-LFcin17–30 (black squares), LFcin17–30 all K (white triangles), and LFcin17–30 all
R (white diamonds) for 24 h. At the end of this period, 10% resazurin (125 �M) was added, and 24 h later fluorescence was measured
at 560/590 nm to evaluate cell viability. The graph shows the averages � standard deviations of results of two independent
experiments, presented as percentages of viable cells relative to the number of corresponding non-peptide-treated infected cells. (B)
BALB/c BMM were infected with M. avium 2447 SmT and treated with 40 �M LFcin17–30, D-LFcin17–30, LFcin17–30 all K, or LFcin17–30
all R alone (nonpatterned bars) or in combination with 7.2 �M ethambutol (patterned bars). After 5 days of incubation, 10% resazurin
(125 �M) was added, and 24 h later fluorescence was measured at 560/590 nm to evaluate cell viability. The graph shows the
averages � standard deviations of results from three independent experiments, presented as percentages of viable cells relative to
the number of corresponding non-peptide-treated infected cells. (C) LFcin17–30 (gray circles) and D-LFcin17–30 (black squares) at a
40 �M final concentration were incubated with cell medium at 37°C. After 0, 0.5, 2, 4, 8, 24, 48, 72, and 96 h of incubation, a 40-�l
aliquot was immediately injected for RP-HPLC analysis using an elution gradient of 0 to 100% acetonitrile in 0.05% aqueous
trifluoroacetic acid (TFA) for 30 min at a flow rate of 1 ml/min. The results are presented as percentages of the remaining peptide in
relation to the amount of peptide present at time zero. (D) BALB/c BMM were infected with M. avium 2447 SmT and treated with 40
�M LFcin17–30, D-LFcin17–30, LFcin17–30 all K, or LFcin17–30 all R alone (nonpatterned bars) or in combination with 7.2 �M
ethambutol (patterned bars). After 5 days of incubation, bacteria were quantified by a CFU assay. The results represent the averages �
standard deviations from at least four independent experiments and are expressed as the percentage of intramacrophagic myco-
bacteria in each well relative to the number of mycobacteria in the nontreated infected cells (control) in each experiment. Statistics
were performed using two-way ANOVA with Tukey’s multiple-comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001 compared to
nontreated wells (control); #, P � 0.001 compared to ethambutol alone.
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time of peptide addition, either immediately after infection (Fig. 2) or 4 to 5 days after
infection (data not shown). Because the intracellular distribution of both peptides had
a vesicular appearance, we studied their colocalization with the endocytic pathway. For
that, M. avium-infected macrophages were coincubated with peptides and dextran-
fluorescein isothiocyanate (FITC) for 2 h, and we found that both peptides extensively

FIG 2 Intracellular distribution and localization of lactoferricin peptides in M. avium-infected macrophages. The
figure shows live-cell imaging of BALB/c BMM infected with M. avium and treated with 10 �M red fluorescent
peptide for 2 h: LFcin17–30 —TAMRA (A) or D-LFcin17–30 —TAMRA (B). First column, M. avium-GFP-infected
macrophages; second column, M. avium-GFP-infected macrophages treated with 7.2 �M ethambutol for 2 h; third
column, M. avium 2447 SmT-infected macrophages incubated with 22.5 �M fluorescein-conjugated dextran for 2
h; forth column, M. avium 2447 SmT-infected macrophages incubated with 200 nM MitoTracker Green for 30 min.
One representative cell of one representative experiment out of three is shown for each condition. Scale bar, 5 �m.

D-LFcin17–30-Treated Macrophages Kill Mycobacteria
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colocalized with endosomes (Fig. 2A and B, third column), suggesting that they are
internalized by this pathway. Importantly, neither LFcin17–30 nor D-LFcin17–30 signif-
icantly localized with mitochondria, which indicates that they will not exert a toxic
effect on this organelle (Fig. 2A and B, fourth column). The evaluation of macrophage
viability by resazurin reduction also indicated that the TAMRA-labeled peptides had no
toxicity toward the macrophages under the conditions of the assay (data not shown).

Lactoferricin peptides increase macrophage production of proinflammatory
cytokines. Considering that lactoferricin peptides appeared to decrease M. avium
viability inside macrophages without a direct interaction with the bacteria (Fig. 2), we
questioned whether they had a modulatory effect on macrophage function. For that,
we used macrophage supernatants to measure the levels of several cytokines 24 h after
infection with M. avium and concomitant treatment with the peptides. The treatment
with lactoferricin peptides significantly increased the production of interleukin 6 (IL-6)
(Fig. 3A) and TNF-� (Fig. 3B) by BMM infected with M. avium (but not by noninfected
macrophages [data not shown]), with no significant differences between the two
peptides. IL-1�, IL-10, CCL2, IL-12p40, and IFN-� were not significantly induced either
by M. avium infection or by peptide treatments (data not shown).

The antimicrobial effects of lactoferricin peptides inside macrophages are not
dependent on the production of TNF-� and/or of IL-6 by macrophages. Both
peptides increased the production of TNF-� by M. avium-infected macrophages, and
macrophage activation by TNF-� can lead to intracellular killing of mycobacteria (19,
20); therefore, we tested whether this cytokine was necessary for the antibacterial effect
of the peptides. We took BMM from Tnf�/� mice and from congenic C57BL/6 wild-type
mice, infected them with M. avium 2447 SmT, treated them with LFcin17–30 or
D-LFcin17–30, and measured M. avium growth after 5 days. Our results, presented in Fig.
3C, showed that, similarly to what was observed before in BALB/c macrophages (Fig.
1D), only D-LFcin17–30 significantly inhibited the growth of M. avium inside its host cell
(Fig. 3C). Strikingly, the effects of D-LFcin17–30 on M. avium intracellular growth were
similar for C57BL/6 and Tnf�/� BMM, leading us to conclude that TNF-� is not necessary
for the antibacterial effect of this peptide. By measuring cytokine levels in macrophage
supernatants, we confirmed not only that Tnf�/� BMM did not produce TNF-� but also
that these macrophages did not produce significant amounts of IL-6, showing that the
effect of the peptide is also IL-6 independent (data not shown).

FIG 3 Roles of cytokines in the antimycobacterial activities of lactoferricin peptides. Twenty-four hours after infection and treatment with 40 �M LFcin17–30
(gray) or D-LFcin17–30 (black), the levels of IL-6 (A) and TNF-� (B) were determined in the supernatant of BALB/c BMM. The graphs represent the averages �
standard deviations of results from three independent experiments, presented as the fold increase relative to their levels in noninfected control macrophages.
Statistical analysis was performed using one-way ANOVA with Tukey’s multiple-comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001 compared to nontreated
wells. (C) M. avium 2447 SmT growing inside C57BL/6 and Tnf�/� BMM were treated with 40 �M LFcin17–30 (gray) or D-LFcin17–30 (black). After 5 days of
incubation, bacteria were quantified by a CFU assay. The graph represents the averages from two independent experiments, expressed as the percentage of
growth of mycobacteria in each well relative to the growth of mycobacteria in the nontreated infected wells (control) in each experiment. Statistics were
performed using two-way ANOVA with Tukey’s multiple-comparison test. **, P � 0.01; ***, P � 0.001 compared to nontreated wells (control).
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D-LFcin17–30 induces ultrastructural alterations on M. avium-infected macro-
phages. To gain an in-depth knowledge of the mechanisms by which D-LFcin17–30
inhibits mycobacterial growth, transmission electron microscopy (TEM) was performed
on M. avium-infected macrophages treated with the lactoferricin peptides. Represen-
tative images of these assays are shown in Fig. 4. Striking alterations in macrophage
ultrastructure were evident when they were treated with D-LFcin17–30 (Fig. 4C). As was
expected, intact mycobacteria were difficult to detect, whereas in nontreated macro-
phages or even in LFcin17–30-treated macrophages, intact mycobacteria were visual-
ized (Fig 4A and B, arrowheads). Several double-membrane vesicles containing di-
gested material, suggestive of autophagosomes (Fig. 4C, asterisks), were observed in
D-LFcin17–30-treated macrophages. A high number of dense vesicles and multivesicu-
lar bodies loaded with dense material were also seen (Fig. 4C, black arrows). Large
structures, exhibiting several membranes and delimitations inside, suggestive of cell
material ingestion and fusion with endosomes, lysosomes, or autophagosomes (Fig. 4C,
white arrows), were frequently seen. These alterations were not observed in the case of
cells treated with LFcin17–30 (Fig. 4B). These observations suggested that D-LFcin17–30
induced significant alterations in the macrophage vesicular traffic and membrane
digestion pathways, which might contribute to mycobacterial killing.

M. avium-infected macrophages have increased lysosomal content and au-
tophagic vesicles upon D-LFcin17–30 treatment. Given the striking morphological
alterations induced by D-LFcin17–30 on M. avium-infected macrophages (Fig. 4C) and
the known role of cellular processes such as apoptosis, autophagy, and lysosomal
fusion in the macrophage-mycobacterium interaction (13, 43), we sought to quantita-
tively evaluate these processes in live-cell experiments. Macrophages were infected
with M. avium 2447 SmT and treated with either LFcin17–30 or D-LFcin17–30. After 4,
24, 48, 72, 96, and 120 h of incubation, the cells were analyzed for the three above-
mentioned parameters (Fig. 5). We observed no significant changes in the levels of
apoptosis or necrosis under any of the tested conditions, including treatment with
either LFcin17–30 or D-LFcin17–30 (data not shown). In order to evaluate the levels of
autophagy, we used the CYTO-ID kit, which is based on a cationic amphiphilic tracer
dye that labels vacuoles associated with the autophagy pathway and should not
accumulate within lysosomes (44). When we measured the total fluorescence intensity
associated with autophagic vesicles, we saw that D-LFcin17–30 slightly but significantly
increased the macrophages’ autophagic-vesicle content (Fig. 5A and B). Regarding the
evaluation of the lysosomal content, macrophages treated with D-LFcin17–30 had a
3-fold increase in density levels of the LYSO dye, which accumulates in live acidic
organelles, such as lysosomes (Fig. 5C and D). D-LFcin17–30 induced a similar increase
in the lysosomal content of noninfected macrophages (data not shown), indicating that
this effect is independent of mycobacterial infection. In agreement with the TEM results
(Fig. 4), large vesicles could be seen in cells treated with D-LFcin17–30, and these were
labeled with both LYSO and CYTO probes (Fig. 5B and D), indicating that these
structures can exhibit both lysosome and autophagosome features.

FIG 4 Ultrastructural alterations induced by lactoferricin peptides on M. avium-infected macrophages. Transmission electron microscopy of
BALB/c BMM infected with M. avium 2447 SmT (A) and treated with 40 �M LFcin17–30 (B) or D-LFcin17–30 (C) for 5 days. Scale bar, 2 �m. Symbols:
black arrowheads, intact mycobacteria; black arrows, dense and multivesicular bodies; white arrow, large dense structures probably resulting from
multivesicular fusion and digestion; asterisk, double-membrane vesicles.

D-LFcin17–30-Treated Macrophages Kill Mycobacteria
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DISCUSSION

In this work, we show that lactoferricin-based antimicrobial peptides strongly inhibit
the growth of M. avium inside its natural host cell, the macrophage, enhancing the
effect of the conventional antibiotic ethambutol. Moreover, we show that the
D-enantiomer of lactoferricin, D-LFcin17–30, activates lysosomal and autophagic path-
ways in the macrophage, which can be crucial for its capacity to kill intracellular
mycobacteria.

In a previous work, we showed that LFcin17–30, its variants with arginines replaced
with lysines and vice versa (LFcin17–30 all K and LFcin17–30 all R), and its D-enantiomer
(D-LFcin17–30) were all active against M. avium in axenic cultures (40). In contrast, we
now verify that only D-LFcin17–30 induces a significant decrease in mycobacterial
growth inside macrophages. However, all peptides were effective when combined with
the antibiotic ethambutol. The combination of antimicrobial peptides with conven-
tional antibiotics is of great potential interest, as it might reduce the dosages of each
compound, diminish the probability of resistance, and reduce the treatment time. In
the clinics, ethambutol is used in combination with other antimycobacterial drugs, not
only as a strategy to prevent the appearance of resistant strains but also due to its high
toxicity when given alone in high doses (9, 41). The advantageous combination of
ethambutol and iron chelators in the control of M. avium growth inside macrophages
was recently reported (45). Ethambutol acts by impairing the biosynthesis of the cell
wall, increasing cell permeability, and potentiating the actions of other drugs (9, 46, 47).
The improvement in the antimycobacterial activity observed in the present work when

FIG 5 Autophagic and lysosomal content of M. avium-infected macrophages treated with lactoferricin peptides. At the end
of 4, 24, 48, 72, 96, and 120 h of infection with M. avium 2447 SmT and treatment with D-LFcin17–30, macrophages were
incubated with CYTO-ID (A, B) or LYSO-ID (C, D) detection kits for 30 min at 37°C. (A, C) The results represent the averages from
three independent experiments, expressed as the fold increase in the fluorescence level of each detection reagent under each
condition and time point relative to the fluorescence level of the noninfected nontreated well at 4 h. Statistics were performed
using two-way ANOVA with Tukey’s multiple-comparison test. **, P � 0.01; ***, P � 0.001 compared to nontreated infected
wells. White circles, M. avium-infected macrophages; gray squares, M. avium-infected and LFcin17–30-treated macrophages;
black squares, M. avium-infected and D-LFcin17–30-treated macrophages. (B, D) Representative pictures of one experiment out
of three of M. avium-infected macrophages (top) and treated with D-LFcin17–30 (bottom) at 4, 72, and 120 h with CYTO-ID (B)
or LYSO-ID (D). Scale bar, 10 �m.
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ethambutol was administered together with the peptides is probably related to in-
creased membrane permeability induced by either ethambutol, the peptides, or both,
allowing for higher concentrations of the compounds to enter the cell and potentiating
their mutual activities.

Given that D-LFcin17–30 was more active than the L-peptides, we proceeded to
investigate the mechanism by which the D-enantiomer of LFcin17–30 exerts its anti-
mycobacterial activity inside macrophages. Due to their peptidic nature, AMP are highly
susceptible to proteases and other plasma components. This feature is one of the
obstacles to AMP application in the clinics, as it results in low stability and bioavail-
ability, limiting most current AMP applications to topical agents (48). One strategy
employed to overcome this problem is the use of nonnatural D-enantiomers of amino
acids, as they are more resistant to proteolytic activity (49). In fact, several reports
describe that AMP, including lactoferricin derivatives, composed of D-amino acids are
more resistant to degradation and have activities higher than or similar to those of their
counterparts with L-amino acids (50–56). In the case of the peptides studied in this
work, D-LFcin17–30 was capable of resisting degradation, and it persisted in cell culture
medium at a higher concentration than LFcin17–30 over time, indicating that this is
probably a crucial factor for its higher antimycobacterial activity. The fact that the
D-enantiomer is more active than the L-enantiomer also reveals that the observed
antimicrobial effect is probably not related to chiral receptors, because they would not
recognize D-amino acids.

Because we had reported previously that these peptides exhibit a direct antimicro-
bial effect against M. avium in broth culture (40), we initially hypothesized that the
inhibition of mycobacterial growth inside macrophages is the result of a direct effect on
the mycobacteria. However, when we studied the distribution and subcellular localiza-
tion of LFcin17–30 and D-LFcin17–30 inside M. avium-infected macrophages, we saw no
colocalization between AMP and bacteria. We performed all the assays in live cells with
fluorochrome-labeled peptides to avoid fixation-related artifacts, but we failed to
detect any colocalization, even in the presence of ethambutol, at any incubation time.
The peptides seemed to follow an endocytic pathway, colocalizing with fluorescein-
conjugated dextran. Although we cannot exclude a possible alteration in peptide
distribution caused by the fluorochrome link, the additional assays performed clearly
indicate that D-LFcin17–30 impacts macrophage biology, and this may cause mycobac-
terial killing rather than having a direct action on the bacteria.

The administration of LFcin17–30 and D-LFcin17–30 was accompanied by increased
levels of TNF-� and IL-6 production by M. avium-infected macrophages. TNF-� is
necessary for the hosts’ resistance to M. avium. This cytokine is involved in macrophage
activation, being able to induce intracellular killing of mycobacteria (19, 20, 57, 58). In
turn, IL-6 is a cytokine involved in the modulation of inflammation and the acute-phase
response, important for host responses to mycobacterial infections (59). Although both
peptides increased the levels of TNF-� and IL-6, these are not essential for the
antimicrobial effect of D-LFcin17–30, as their absence did not interfere with the
peptide’s effect. We did not detect increased production of nitrite in D-LFcin17–30-
treated macrophages (data not shown). Furthermore, we did not expect nitric oxide to
be involved in the antimycobacterial effect of D-LFcin17–30, since we have previously
shown that oxygen- and nitrogen-reactive species are not important for the control of
M. avium growth inside murine macrophages (24, 25).

Lactoferricin has been reported to have multiple roles in the host immune response.
Besides having a direct antimicrobial activity on several pathogens, lactoferricin can
inhibit septic shock by binding to endotoxins (60). Additionally, it has been shown to
selectively kill cancer cells (61–66) in a process involving both apoptosis and autophagy
(66). Autophagy is a host cell effector mechanism used as a quality control for the
removal of protein aggregates and damaged organelles. Under stress conditions, the
cell can activate autophagy for survival, selectively targeting different cargos for
degradation. Xenophagy, the autophagic degradation of intracellular pathogens, is an
innate defense weapon used by a host to control pathogen replication and prolifera-
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tion (67). In the case of mycobacterial infections, vitamin D3 concomitantly induces the
production of antimicrobial peptides (such as cathelicidin) and autophagy, both of
which play a role in the control of the pathogen’s growth within macrophages (32–34).
Interestingly, the peptide Beclin-1 was shown to control mycobacterial growth inside
macrophages by inducing autophagy (68), and the D-form of the peptide induces
higher activation of this pathway (69).

The ultrastructural changes observed in this work when M. avium-infected macro-
phages were treated with D-LFcin17–30, together with the increase in lysosomal and
autophagic vesicles, lead us to conclude that the peptide facilitates the targeting of
mycobacteria to lysosomal degradation. Given that D-LFcin17–30 is composed of
nonnatural D-amino acids, the cells may recognize the peptide as a stress signal, leading
to downstream activation of inflammatory pathways. We cannot clearly distinguish
whether autophagy or phagosomal maturation is being activated. These two pathways
overlap and can have common denominators (e.g., human VPS34 and RAB7) (8, 67, 70).
Either way, we postulate that lactoferricin primes mycobacteria for vesicular digestion,
having phagosomes or autophagosomes fusing with lysosomes for cargo degradation.

In summary, in this work, we showed that a D-enantiomer of lactoferricin, D-LFcin17–
30, modulates macrophage activity toward a state which favors mycobacterial elimi-
nation. This observation, together with the data on the safe use of lactoferricin peptides
to improve animal health in different mouse models (64, 71, 72), opens the way toward
a possible use of this peptide to treat mycobacterial infections as an adjunct therapy
with conventional antibiotics. Additionally, these data suggest other possible applica-
tions for D-LFcin17–30 in situations requiring macrophage activation.

MATERIALS AND METHODS
Peptides. Bovine lactoferricin peptides (LFcin17–30, D-LFcin17–30, LFcin17–30 all K, and LFcin17–30 all R)

(Table 1) were synthesized by solid-phase peptide synthesis using 9-fluorenyl-methoxycarbonyl (Fmoc)
chemistry with a Syro II synthesizer (Biotage, Uppsala, Sweden) as described previously (73). Peptide
synthesis-grade solvents were obtained from Actu-All Chemicals (Oss, The Netherlands), the preloaded
NovaSyn TGA resins from Novabiochem (Merck Schuchardt, Hohenbrunn, Germany), and the N-�-Fmoc-
amino acids from ORPEGEN Pharma (Heidelberg, Germany) and Iris Biotech (Marktredwitz, Germany).
LFcin17–30 and D-LFcin17–30 were labeled in synthesis with 5(6)-carboxytetramethylrhodamine (TAMRA;
Novabiochem) by coupling TAMRA to the �-amino group of an additional C-terminal lysine residue using
Fmoc-Lys(ivDde)-OH, resulting in a labeling stoichiometry of 1:1, without any free TAMRA remaining. Briefly,
the peptide was synthesized as described above on N-�-Fmoc-N-�-1-(4,4-dimethyl-2,6-dioxocyclohex-1-
ylidene)-3-methylbutyl-L-lysine coupled to NovaSyn TGR resin (Novabiochem) with the N-terminal amino acid
protected by N-�-tert-butoxycarbonyl. Subsequently, the ivDde-protecting group at the C-terminal Lys was
released by hydrazinolysis (2% hydrazine hydrate in N-methyl-2-pyrrolidone [NMP]) followed by overnight
incubation with 1.5 eq TAMRA in (NMP) containing 1.5 eq of 1-hydroxybenzotriazole (HOBt), 1.7 eq of
2-1[H-benzotriazole-1-yl]-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU), and 70 �l of N,N-diiso-
propylethylamine (DIPEA) in a final volume of 2 ml. Next, the peptide-containing resin was washed twice with
NMP and twice with 20% piperidine, followed by three consecutive washes with NMP, isopropyl alcohol (IPA),
and dichloromethane (DCM). Subsequently, the peptide was detached from the resin and deprotected as
described previously (73).

Peptides were purified to a purity of at least 95% by semipreparative reverse-phase HPLC (RP-HPLC)
(JASCO Corporation, Tokyo, Japan) on a Vydac C18 column (catalog number 218MS510; Vydac, Hesperia,
CA, USA), and the authenticity of the peptides was confirmed by matrix-assisted laser detection
ionization–time of flight (MALDI-TOF) mass spectrometry on a Microflex LRF mass spectrometer
equipped with an additional gridless reflectron (Bruker Daltonik, Bremen, Germany) as described
previously (73).

All purified peptides were freeze-dried. Peptide stock solutions were prepared in phosphate-buffered
saline (PBS; pH � 7.4), with 10% dimethyl sulfoxide (DMSO) in the case of the labeled peptides, and
stored at �20°C until use.

HPLC. Peptides (LFcin17–30 and D-LFcin17–30) were incubated with Dulbecco’s modified Eagle’s
medium (DMEM), supplemented as stated below, at 37°C for 4 days. At the end of 0, 0.5, 2, 4, 8, 24, 48,
72, and 96 h, an aliquot was taken from each mixture and analyzed by high-performance liquid
chromatography (HPLC). The HPLC (Hitachi Elite Autosampler L-2200, pump L-2130, diode array detector
L-2455, and column oven L-2300) was performed with a 150-mm-diameter C18 reverse-phase column
(Merck). Each analysis involved an injection volume of 40 �l and elution with 0 to 100% acetonitrile in
0.05% aqueous trifluoroacetic acid (TFA) at a flow rate of 1 ml/min; the detection wavelength was set to
220 nm. The chromatograms were analyzed with EZChrom Elite software, and the peaks were integrated
to extract the area.

Bacteria. In this work, two strains of Mycobacterium avium were used: (i) M. avium strain 2447 smooth
transparent variant (SmT), originally isolated by F. Portaels (Institute of Tropical Medicine, Antwerp,
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Belgium) from an AIDS patient, and (ii) M. avium 104:pMV306 (hsp60 gfp) expressing green fluorescent
protein (M. avium-GFP) (74). Mycobacteria were grown and stored as described previously (40).

BMM. Macrophages were derived from the bone marrow of male BALB/c, C57BL/6, and C57BL/6
TNF-�-deficient (Tnf�/�) mice bred at the i3S/IBMC animal facility. TNF-�-deficient breeder mice were
originally purchased from B & K Universal (East Yorkshire, UK). Bone marrow-derived macrophages (BMM)
were obtained as described previously (75).

Macrophage infection and quantification of bacterial growth. BMM at day 10 of culture were
infected with 106 CFU of M. avium 2447 SmT for 4 h at 37°C in a 7% CO2 atmosphere. After incubation,
cells were washed several times to remove noninternalized bacteria and reincubated with new medium
with or without 40 �M peptide (76.9 �g/ml LFcin17–30 and D-LFcin17–30, 73.6 �g/ml LFcin17–30 all R,
80.3 �g/ml LFcin17–30 all R), alone or in combination with the antibiotic ethambutol (2 �g/ml or 7.2 �M
ethambutol dihydrochloride; Sigma-Aldrich, St. Louis, MO, USA). Each condition was tested in triplicate.
After 5 days in culture, the intracellular growth of M. avium 2447 SmT was evaluated by determining the
number of CFU, as described previously (75).

Measurement of macrophage viability. The viability of BALB/c BMM was determined by resazurin
reduction. After 24 h of infection and peptide treatment, the supernatant was removed and macro-
phages were incubated with new medium containing 125 �M resazurin (Sigma-Aldrich, St. Louis, MO,
USA) for 24 h at 37°C in a 7% CO2 atmosphere. The fluorescence of resorufin, resulting from the
conversion from resazurin by metabolically active cells, was measured at an excitation wavelength (�ex)
of 560 nm and an emission wavelength (�em) of 590 nm.

Peptide’s distribution and localization inside macrophages. BALB/c BMM were cultured in �-Slide
8-well plates (ibidi GmbH, Germany). At the 10th day of culture, macrophages were infected with either
M. avium-GFP or M. avium 2447 SmT and treated with 10 �M LFcin17–30 —TAMRA or D-LFcin17–30 —
TAMRA. Simultaneously, half of the M. avium-GFP-infected macrophages were treated with 7.2 �M
ethambutol. Fluorescein-conjugated dextran (molecular weight, 10,000) (22.5 �M, final concentration)
(Molecular Probes, Invitrogen, Carlsbad, CA, USA) or MitoTracker Green FM (200 nM, final concentration)
(Molecular Probes, Invitrogen, Carlsbad, CA, USA) was added to M. avium 2447 SmT-infected macro-
phages for endosomal or mitochondrial labeling, respectively. Fluorescein-conjugated dextran was
added along with the peptides immediately after infection and incubated for 2 h, whereas MitoTracker
Green FM was incubated for 30 min prior to visualization. Macrophages were observed and photo-
graphed live, using a Leica TCS SP5II laser scanning confocal microscope (Laser Microsystems, Germany)
with a 63� oil objective. Immediately before visualization, cells were washed with PBS and kept in RPMI
medium without phenol red (Life Technologies, Inc., Paisley, UK).

Cytokine production. Cytokine production was evaluated in the supernatants of macrophage
cultures 24 h after infection with M. avium 2447 SmT and peptide treatment. The levels of six different
cytokines (IL-12p70, TNF-�, IFN-�, CCL2, IL-10, and IL-6) were determined using the BD cytometric bead
array (CBA) mouse inflammation kit (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s
instructions. Briefly, standards and samples were incubated for 2 h with a mixture of capture beads for
each cytokine and with a mixture of phycoerythrin (PE)-conjugated antibodies as a detection reagent.
Afterward, the wells were washed, the supernatant was discarded, and the beads were resuspended in
wash buffer. The standards and samples were then acquired in a BD FACSCanto II cytometer (BD
Biosciences, San Jose, CA, USA) and the results analyzed using the FCAP Array software (BD Biosciences,
San Jose, CA, USA).

Transmission electron microscopy. In brief, BALB/c BMM infected with M. avium 2447 SmT and
treated with lactoferricin peptides for 5 days were fixed with 2.5% glutaraldehyde (Electron Microscopy
Sciences, Hatfield, PA, USA) and 2% paraformaldehyde (Merck, Darmstadt, Germany) in cacodylate buffer
(0.1 M, pH 7.4) for 2 h at room temperature. Samples were dehydrated and embedded in Epon resin
(TAAB, Berks, England). Ultrathin sections (40- to 60-nm thickness) were prepared on an RMC Ultrami-
crotome (Powertome, USA) using diamond knives (DDK, Wilmington, DE, USA). The sections were
mounted on 200-mesh copper or nickel grids, stained with uranyl acetate and lead citrate for 5 min each,
and examined under a JEOL JEM 1400 TEM (Tokyo, Japan). Images were digitally recorded using an Orius
charge-coupled-device (CCD) digital camera (1,100 W; Gatan, Tokyo, Japan) at the HEMS/i3S of Univer-
sidade do Porto, Porto, Portugal.

Live-cell imaging. For live-cell imaging, BALB/c BMM were cultured on �-Plate 96-well ibiTreat (ibidi
GmbH, Germany) as stated above. After M. avium infection and treatment with lactoferricin peptides
(time zero), the cells were incubated at 37°C in a 7% CO2 atmosphere, and at the end of 4, 24, 48, 72, 96,
and 120 h, the levels of apoptosis and necrosis, the lysosomal content, and the autophagic levels were
assessed separately. For that, Enzo Cellestial fluorescent probes were used from the apoptosis/necrosis
detection kit, LYSO-ID detection kit, and CYTO-ID autophagy detection kit (Enzo Life Sciences Inc., USA).
According to the manufacturer’s instructions, at each time point the cells were washed and incubated
with the respective detection reagents for 30 min at 37°C in a 7% CO2 atmosphere. For visualization and
image acquisition, macrophages were incubated with PBS-5% fetal bovine serum (FBS). Images were
collected in a controlled environment (37°C and CO2 atmosphere) with a Nikon 40�/0.95-numerical-
aperture (NA) Plan Fluor objective in a high-throughput automated fluorescence wide-field microscope
(IN cell analyzer 2000; GE Healthcare, Little Chalfont, UK). The 2.5-dimensional (2.5-D) acquisition and
deconvolution mode was used to integrate the signal over a 1.5-�m Z-section, generating a pseudo 3-D
projection. Each well was screened for 10,000 nuclei (up to 72 fields). Quantification of the fluorescence
levels (expressed as the mean density value of the pixels) of each detection reagent (apoptosis, necrosis,
LYSO-ID, and CYTO-ID detection reagents) was performed with Developer Toolbox 1.9.2 (GE Health-
care, Little Chalfont, UK). Briefly, nuclear and cytoplasm segmentation algorithms were used to
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identify and quantify the number of cells under all conditions. The fluorescence level of each
individual cell, under each condition and kit, was measured, allowing us to calculate the mean
fluorescence value for each well.

Statistical analysis. Statistical analyses were performed with GraphPad Prism 6 (GraphPad Software,
Inc., La Jolla, CA, USA) using two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test.
Differences with a P value under 0.05 were considered significant (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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