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Sequential Association Rules in Atonal Music

Aline Honingh*, Tillman Weyde and Darrell Conklin

Music Informatics research group
Department of Computing
City University London

Abstract. This paper describes a preliminary study on the structure of
atonal music. In the same way as sequential association rules of chords
can be found in tonal music, sequential association rules of pitch class set
categories can be found in atonal music. It has been noted before that
certain pitch class sets can be grouped into 6 different categories [10].
In this paper we calculate those categories in a different way and show
that virtually all possible pitch class sets can be grouped into these cat-
egories. Each piece in a corpus of atonal music was segmented at the bar
level and of each segment it was calculated to which category it belongs.
The percentages of occurrence of the different categories in the corpus
were tabulated, and it turns out that these statistics may be useful for
distinguishing tonal from atonal music. Furthermore, sequential associ-
ation rules were sought within the sequence of categories. The category
transition matrix shows how many times it happens that one specific
category is followed by another. The statistical significance of each pro-
gression can be calculated, and we present the significant progressions as
sequential association rules for atonal music.

keywords: pitch class set categories, atonal music, sequential association
rules, similarity measures.

1 Introduction

A typical structure can usually be revealed in tonal music, when it is analyzed
harmonically. The chord progressions like the ones shown in Table 1 show some
general rules that can often be found in Western tonal music. Atonal music,
on the other hand, is not structured around a tonal center like tonal music.
Therefore, for atonal music, a progression table like this is impossible. Pitch
class set theory can be used to analyze atonal music and more analysis theories
have been proposed to analyze atonal music [7]. However, no analogy to chord
progression in tonal music has been proposed. In this paper, we will ask ourselves
the question whether any kind of progression rules for atonal music can be found
which could reveal partly the structure of atonal music.
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Table 1. Chord progression in major mode, taken from [9].

Chord|is followed by|sometimes by|less often by
i IV, V VI I1, 111

11 Vv IV, VI LIIT

m |vI v LI,V

v |V I II 111, VI

A% I VI, IV II1, 11

VI [IL Vv 111, IV I

VII |III 1

1.1 Atonal Music and Pitch Class Set Theory

A distinction is often made between “free” atonal music and twelve tone or serial
music. Twelve tone music differs from free atonal music in two important ways:
all 12 pitch classes are used and ordered. In this paper, when we speak about
atonal music, we mean both free atonal music and serial music.

For the analysis of atonal music, pitch class set theory has been developed.
Pitch class set theory has been described in 1973 by Alan Forte [4]. A pitch
class is a number between 0 and 11 and is an abstraction of a musical note. All
12 pitch classes represent the semitones from one octave. Collections of pitch
class sets (harmonic or melodic) can be analyzed according to pitch class set
theory. Forte [4] assumed two types of equivalence (besides the octave equivalence
and enharmonic equivalence that belong to pitch classes) related to collections,
namely transpositional equivalence and inversional equivalence. Furthermore,
the term ‘set’ covers permutation equivalence and cardinality equivalence. For
example, the set {0,4,7} represents all the chords/melodies that are composed
of these three pitch classes (including repetitions). Without these equivalence
classes, the number of possible pitch class sets would be huge. But taking these
equivalence relations into account, the list of possible pitch class sets are more
limited and each set in the list can be characterized by the so-called prime form of
the pitch class set (see e.g. [4] for more information). An other way of describing
a pitch class set is to characterize it by its intervallic content. The interval-class
vector or IcV is an array that expresses the intervallic content of a pitch class set.
Since in pitch class set theory an interval is equal to its inverse, an IcV consists
of six numbers instead of twelve, with each number representing the number
of times an interval class appears in the set. For example, the pitch class set
{0,4,7} has interval class vector [0 0 1 1 1 0] since it consists of 1 ‘minor third
or major sixth’, 1 ‘major third or minor sixth’, and 1 ‘perfect fourth or perfect
fifth’. An IcV represents a pitch class set together with all its transformations
according to the above mentioned equivalence classes.

Although the list of different pitch class sets according to Forte may be
limited, it still consists of 351 sets (that is the list of different prime forms, [4]),
and therefore similarity measures are sometimes useful.



2 Pitch Class Set Categories in Atonal Music

Many similarity measures have been developed for pitch class sets, for example
Isaacson’s IcVSIM [6], Forte’s R, relations [4], Morris’ SIM [8], Rahn’s MEMB
[11], Rogers’ cosf [12] and Scott and Isaacson’s Angle [13]. Many of these simi-
larity measures are based on the interval-class vector (IcV), i.e. those measures
compare two different IcV’s and output a value that characterizes their similar-
ity.

At first sight, these similarity measures seem to be not so much related to
each other. They differ in range, intention, way of calculation and more [10].
However, Quinn argues that those similarity measures have actually a lot in
common: they tend to group the IcV’s in six different categories, each of which
can be said to correspond to a cycle of one of the six interval classes [10]. A cycle
of interval classes can be thought of in the following way. A cycle of the interval
1 will read: 0,1,2,3,4, ... A cycle of the interval 2 will read: 0,2,4,6,.... A cycle of
the interval 3 will read: 0,3,6,9,... , and so on. Using a cluster analysis, Quinn
groups the tetrachords and pentachords in six categories according to several
different similarity measures. He identifies for each category a prototype. If a
certain pitch class set is grouped into a certain category, this pitch class set is
similar to the prototype of that category, according to the similarity measure
used. The set {0,1,2,3,4} (IcV=[4 3 2 1 0 0]) is the prototype of the Interval
Category 1 (IC1) in the pentachord classification, the set {0, 2,4, 6,8} (IcV=[1 3
12 2 1]) the prototype of IC2, and so on. The cycles of IC’s that have periodicities
that are less than the cardinality of their class (for example, pitch class 4 has a
periodicity of 3: {0,4,8}) are extended in the way described by Hanson [5]: the
cycle is shifted to pitch class 1 and continued from there. For example, the IC-6
cycle proceeds {0,6,1,7,2,8...} and the IC-4 cycle proceeds {0,4,8,1,5,9,2,...}.
Thus for every cardinality, a separate prototype characterizes the category. For
example, category IC4 has prototype {0,4} for sets of cardinality 2, prototype
{0, 4,8} for set of cardinality 3 and so on. Tables 2 and 3 give an overview of the
prototypes of pitch class set categories. Prototypes have been listed for sets from
2 to 10 notes. Pitch class sets with less than 2 notes or more than 10 notes do not
make sense. One pitch class set of cardinality 1 exists, {0}, with interval vector [0
0000 0] and it belongs equally to every category. The same is true for cardinality
11: only one prime form pitch class set exists: {0,1,2,3,4,5,6,7,8,9,10} with
interval vector [10 10 10 10 10 5] and belongs to every category equally. The
pitch class set of cardinality 12 contains all possible pitch classes.

Although the general classification into six categories is clear from the cluster
analysis by Quinn [10], some differences can still be found between classifications
with respect to different similarity measures. Comparing the clusters that are
obtained from the cluster analysis by Quinn on IcVSIM [6] and SATSIM [1],
it appears that two sets, {0,1,2,5,7} and {0,1,3,6,8}, that are categorized by
IcVSIM as IC5 are categorized by SATSIM as IC6 (see [10]). More differences
exist in the classifications when a comparison is made with more similarity mea-
sures. Aiming to group the pitch class sets uniformly, in this paper a slightly
different approach will be used to classify the pitch class sets. We have used the



Table 2. Prototypes expressed in pitch class sets for the six categories

prototypes (pc sets)

IC1[{0, 1}, {0, 1,21, {0, 1,2, 31, etc.
1C2/{0, 2}, {0, 2,4}, {0,2,4,6}, etc.
1C3/{0, 3}, {0,3,61, {0,3,6,9}, etc.
1C4[{0, 4}, {0,4,8}, {0,1,4,8}, etc.
1C5|{0, 7}, {0,2,7}, {0,2,5,7}, etc.
1C6|{0, 6}, {0,1,6}, {0,1,6,7}, etc.

Table 3. Prototypes expressed in interval class vectors for the corresponding classes
of different cardinality.

prototypes (IcV)

IC1 1C2 1C3 1C4 IC5 1C6
duochord  [[I00000][010000][001000][000100][000010][00000 1]
ﬁi;iiid [210000/[020200][002001][000300/[010020][10001 1]
::::Ziiord [321000/[030201][004002][101310/[021030][200022]
f,lfﬁfz.ihord 432100/ [131221][114112][202420/[032140][310132]
fllca;:ilslord [543210/[060603][225222][303630/[143250][42024 3]
;?;tsszhord 654321][262623][336333][424641][254361][53235 3]
f)lcai::}?ord 765442 [474643][448444][545752/[465472][644464]
flfr?iiiord 876663/ (686763668664 [666963][676683][766674]
Z}iffiord 988884/ [898884][889884][888984][888894][88888 5]
classes

prototypes themselves to classify pitch class sets into the aforementioned six cat-
egories by using the chosen similarity measure to calculate to which prototype
a pitch class set is closest. When doing this, the categorization of pentachords
according to the aforementioned similarity measures IcVSIM and SATSIM are
identical, so Quinn’s [10] claim about the six categories could be made even
stronger. Even more similarity measures could be compared in this respect. We
have compared the measures IcVSIM [6], SATSIM [1], ASIM [8] and cosf [12],
and found they all come up with the same classification for the duochords, pen-
tachords, heptachords, octachords, nonachords and decachords, and the classi-
fications for the trichords, tetrachords and hexachords differ at most by 3 pitch
class sets. This shows that similarity measures are not too different in this re-
spect, they agree on the classification in the six categories as we find a very high
overlap.

We will base our choice of which similarity measure to use, on the ambiguity
it produces. It turns out that Rogers’ cosf produces the least ambiguity: when



using it to calculate the category of a pitch class set, it outputs virtually always
only one category.

3 Sequential Association Rules

Each category can be seen to as having a particular character resulting from the
intervals that appear most frequently. Category 1 (see Table 2 for the prototypes)
consists of all semitones and is the category of the chromatic scale. Category 2 is
the category of the whole-tones or whole-tone scale. Category 3 is the category
of the diminished triads or diminished scale. Category 4 is the category of the
augmented triads or augmented scale. Category 5 is the category of the diatonic
scale. Category 6 is the category of the tritones or D-type all-combinatorial
hexachord (see [5]).

As we have shown above, four similarity measures group the pitch class sets
into the same categories. Since similarity plays a role in the analysis of music,
this might suggest that those categories play a structural role in atonal music.
In this paper we will try to discover sequential association rules between those
categories in a corpus of atonal music such as to come up with a table of ‘category
progressions’ for atonal music similar to that of Piston [9] for tonal music. A
sequential association rule is a progression a — b, where the probability p(b|a)
is higher than chance level, meaning that category b tends to follow category a
more often than expected [2].

3.1 The Method

The method has been implemented in Java, using parts of the Musitech Frame-
work [14], and operates on MIDI data. The MIDI file is segmented on the bar
level, as a first step to investigate the raw regularities that occur on this level.
The pitches from each bar form a pitch class set. From each pitch class set,
the interval class vector can be calculated after which the category it belongs
to can be calculated. Using Rogers’ cosf as similarity measure we calculate the
similarity to all prototypes of the required cardinality. The prototype to which
the set is most similar, represents the category to which the set belongs. If the
the pitch class set that is constructed from a bar contains less than 2 or more
than 10 different pitch classes, the category is not calculated since this does not
make any sense, as we explained in Sect. 2. Therefore, if a set (bar) contains
more than 10 different pitch classes, the bar is divided into beats and the beats
are treated as new pitch class sets. If a set contains less than 2 pitch classes, this
set is added to the set that is constructed from the next bar.

First of all, the number of occurrences of all categories are counted, such
that we get an overview of the piece in terms of the percentages of occurrence
of the different categories. Furthermore, the instances of each progression from
one category to another are counted.



A measure for the over-representation of a progression a — b is the ‘lift’.
This measure is taken from [2] and defined as follows:

p(bla)
p(b) ’

where p(z) denotes the probability of category x. The lift can be understood as
the number of observed progressions divided by the number of expected progres-
sions due to chance. If the lift is greater than 1, there is a positive correlation,
if the lift is smaller than 1, there is a negative correlation.

lift(a — b) =

(1)

4 Results

As described in the previous section, the occurrences of each category can be
counted. It can be expected that different types of music will show a different
occurrence rate for each category. To start with a tonal piece, for example, the
distribution of categories of the fourth movement of Beethoven’s ninth symphony
is shown is Table 4. One can observe that category 5 dominates the whole piece.

Table 4. Distribution of categories of the fourth movement of Beethoven’s ninth sym-
phony.

category|number of|percentage of
occurrences |occurrence

1 102 11.40 %

2 69 7.71 %

3 78 8.72 %

4 89 9.94 %

5 552 61.68 %

6 5 0.56 %

This turns out to be quite typical for tonal music. In the previous section we
have mentioned that each category can be seen as having a specific character
and category 5 represents the diatonic scale. Therefore, it is not surprising that
a piece of tonal music based on the diatonic scale is dominated by category 5.

For atonal music, we expect something different. We have run the program on
atonal music of Schoenberg, Webern, Stravinsky and Boulez. The complete list
of music is shown in Table 5. On average, the distribution as shown in Table 6
was found, using this corpus of atonal music. One can see that this distribution
is totally different from Table 4 and as such this method might be useful in
discrimination tasks. We can see that the music is not dominated anymore by
category 5 but a much more equal distribution is present in atonal music.

A transition matrix can be made with our method (Table 7), listing how
many times category i is followed by category j.



Table 5. The atonal music used in the method

composer |piece

Schoenberg|Pierrot Lunaire part 1, 5, 8, 10, 12, 14, 17, 21
Schoenberg|Piece for piano opus 33

Schoenberg|Six little piano pieces opus 19 part 2, 3, 4, 5, 6
Webern Symphony opus 21 part 1

Webern String Quartet opus 28

Boulez Notations part 1
Boulez Piano sonata no 3, part 2: “Texte”
Boulez Piano sonata no 3, part 3: “Parenthese”

Stravinsky |in memoriam Dylan Thomas Dirge canons (prelude)

Table 6. Distribution of categories from music of Schoenberg, Webern, Stravinsky and
Boulez

category|number of|percentage of|standard
occurrences |occurrence |deviation

1 313 28.25 % 10.56 %

2 117 10.56 % 6.14 %

3 166 14.98 % 7.68 %

4 179 16.16 % 7.97 %

5 138 12.45 % 7.15 %

6 195 17.60 % 6.20 %

We have calculated the lift matrix as described in the previous section (Table
8) from which one can see which progressions have a positive relation and which
have a negative relation.

To answer the question which progressions are meaningful, we have to per-
form a significance test. We would like to know which progressions have an
occurrence rate that is significantly higher or lower than chance level. We use
a chi-square test on the data of Table 7 to calculate which progressions cannot
be explained by our null hypothesis: the probability of class j following class i
does only depend on the overall number of j’s in the music. We calculate the
chi-square statistics for every progression separately by making a 2 x 2 contin-
gency table (with fields ¢ — j, ¢ — —j, =i — j, =i — —j), and calculate the
probability from the probability density function of the chi-square distribution
with 1 degree of freedom (Table 9). If we take the significance level to be 5%, the
progressions that are significantly meaningful are printed in boldface in Table 9.

Now that we can identify the meaningful progressions for our corpus of atonal
music, we can make a table for categories analogue to Piston’s table for chords.
From the lift value in Table 8 can be seen whether a significant progression rep-
resents a positive or negative association. These significant rules can be found in
Table 9 under the headings “is followed by” (positive association) and “less often
by” (negative association). One can see that there is a tendency for categories



Table 7. The transition matrix Table 8. The lift matrix

To To
category| 1 2 3 4 5 6 category|ll 2 3 4 5 6
1 (109 23 49 36 28 62 1 ]1.230.70 1.04 0.71 0.72 1.13
2| 2721121518 22 2 10.821.70 0.68 0.79 1.24 1.07
From 3 | 4918 30 21 24 22 From 3 |1.04 1.03 1.21 0.78 1.16 0.75
4 | 441729391532 4 10.87 0.90 1.08 1.35 0.67 1.02
5 | 331715292716 5 10.851.17 0.73 1.30 1.57 0.66
6 | 47 20 28 34 22 38 6 |0.850.97 0.96 1.08 0.91 1.11

Table 9. The significance matrix of the results displayed in Table 7.

To
category|1l 2 3 4 5 6

1 |0.001 0.020 >0.5 0.009 0.026 0.111
0.150 0.003 0.097 0.288 0.179 >0.5
>0.5 >0.5 0.1350.159 0.252 0.079
0.201 >0.5 >0.5 0.008 0.059 >0.5
0.163 0.438 0.104 0.047 0.003 0.030
0.167 >0.5 >0.5 0.345 1.222 0.254

From

S T W N

to follow itself, so that large regions in the music are represented by just one
category. This is in accordance with observations by Ericksson [3], who describes
7 categories similar to the ones described above and says that “it is often pos-
sible to show that one region [category] dominates an entire section of a piece”.
Besides these ‘repetitions’ of categories, one other progression can be identified
to present a sequential association rule: the progression from 5 to 4, and four
other progressions can be identified to present a negative association, sequential
‘avoidance’ rules: the progression from category 1 to 2, from 1 to 4, from 1 to 5,
and from 5 to 6.

Table 10. Category progression in atonal music.

Category|is followed by|sometimes by|less often by

1 1 3,6 2,45
2 2 1,3,4,5,6

3 1,2,3,4,5,6

4 4 1,2,3,5,6

5 4,5 1,2,3 6

6 1,2,3,4,5,6




5 Concluding Remarks

Although this work serves as a preliminary study on sequential association rules
in atonal music, some interesting things can be said. To sum up the results
of this paper, we showed first of all that the 6 different pitch class categories
described in [10], can be found in a different way by comparing all pitch class sets
to certain prototypes according to a specific similarity measure. Four different
similarity measures agree virtually always on the grouping of all possible pitch
class sets into these 6 categories. Furthermore, the distribution of notes into
these categories appears to be distinguishing between atonal and tonal music
and could perhaps be used as a tool for this purpose. Finally, a number of
sequential association rules have been found in a corpus of atonal music. A
sequential association rule is a progression from category ¢ to j that appears in
the music significantly more often than one would expect due to chance. These
progression rules may reveal a structure of atonal music that was not known
before.
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