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This study focuses on the free-radical 
photo-polymerization of diacrylate mono-
mers. During this process, two functional 
groups (vinyl groups) of each diacrylate 
monomer are converted into a maximum 
of four chemi cal bonds. Acrylate mono-
mers with two or more functional groups 
have a dramatically different behavior than 
monoacrylates, since they form polymer 
networks rather than purely linear chains.[1] 
The structure of such a network plays a 
major role in defining the properties of 
the final material.[2,3] The infinite network 
is already seen to be formed[4] at remark-
ably low conversion of the multifunctional 
acrylates. This transition is called the gel 
point or percolation threshold.[5]

Several studies regarded the phase 
transition from sol to gel in multifunc-
tional acrylate systems. In ref. [4], the 
conversion of vinyl groups was followed 
experimentally, while the gel point was 
observed by a microrheological method 

as a change in the system’s rheology. Mathematical models 
describing the kinetics of acrylate polymerization appear in 
vari ous studies.[6–17] Wen et al.[3] developed a model based on 
the cubic lattice percolation and confirmed the expectation that 
the kinetics is closely interlinked with the structure develop-
ment of the polymer network due to radical trapping[18,19] and 
other reaction–diffusion phenomena.[20,21] Refs. [22–24] account 
for a termination rate that is dependent on the molecular size 
distribution. Most recently, a thiol–vinyl radical polymerization 
was investigated as a chemical alternative to acrylates.[25] The 
latter study predicts network structures that bear resemblance 
to those that appear in early modeling studies by Dušek.[26–28] 
Safranski and Gall[2] attempted to establish a link between ther-
momechanical properties of the photocuring system and the 
topology of the underlying network.

The methodology adopted in these studies can be viewed in 
a broader perspective of modeling for branched/crosslinked 
polymers. This field was initiated by Flory[5] based on ana-
lytical combinatorics and reaction kinetics. The combinato-
rial theory was then expanded by Stockmayer,[29] Ziff,[30] and 
others,[22,23,31,32] and culminated in the works by Dušek and 
Dušková-Smrčková, who combined both analytical methods and 
Monte Carlo (MC) simulations.[33] Notoriously, the analytical 
models are hard to custom-tailor to the specifics of the real-
world chemical systems since the latter typically feature a mix-
ture of monomers with functional groups of various kinds and 
substitution effects. This inability on one hand and increasingly 

Radical Polymerization

A novel technique is developed to predict the evolving topology of a diacrylate 
polymer network under photocuring conditions, covering the low-viscous 
initial state to full transition into polymer gel. The model is based on a new 
graph theoretical concept being introduced in the framework of population 
balance equations (PBEs) for monomer states (mPBEs). A trivariate degree 
distribution that describes the topology of the network locally is obtained 
from the mPBE, which serves as an input for a directional random graph 
model. Thus, access is granted to global properties of the acrylate network 
which include molecular size distribution, distributions of molecules with a 
specific number of crosslinks/radicals, gelation time/conversion, and gel/sol 
weight fraction. Furthermore, an analytic criterion for gelation is derived. This 
criterion connects weight fractions of converted monomers and the transition 
into the gel regime. Valid results in both sol and gel regimes are obtained by 
the new model, which is confirmed by a comparison with a “classical” macro-
molecular PBE model. The model predicts full transition of polymer into gel at 
very low vinyl conversion (<2%). Typically, this low-conversion network is very 
sparse, as becomes apparent from the predicted crosslink distribution.

1. Introduction

Inspired by recent developments concerning 3D printing and 
large-scale prints, inks based on mixes of multifunctional 
acrylates have become more and more attractive. Photo curable 
acrylate resins provide the possibility to create 3D objects by 
applying thin films of ink on a medium repeatedly. As the struc-
ture of cured acrylates has a strong impact on the final properties 
of the material, it is necessary to have an in-depth understanding 
of the formed networks. We present a novel mathematical model 
that gives insight into the topology of the network emerging 
during polymerization. This model is expected to greatly con-
tribute to the improvement of material properties and optimiza-
tion of process conditions in an efficient way.

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution-NonCommercial License, which permits use, dis-
tribution and reproduction in any medium, provided the original work is 
properly cited and is not used for commercial purposes.
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accessible computational power on the other resulted in a 
gradual shift of the focus to MC simulations,[34,35] population 
balance equation (PBE),[36–41] lattice modeling,[42] and molecular  
dynamics,[43] methodologies offering more flexibility than ana-
lytical models. Leiza and co-workers[44,45] were working on  
elaborate MC simulations for crosslink polymerization. Galina 
and Lechowicz[42] developed an MC method for 2D and 3D lattice 
networks based on the nearest-neighbor percolation process.

Despite increasing demand for PBE models in polymer reac-
tion engineering, only a few chemical systems have a known 
analytical solution,[46] and in the most of these cases one has 
to apply an approximation technique. Many 1D and 2D PBEs 
were solved numerically by being transformed into partial dif-
ferential equations in the generating function domain; see, for 
example, refs. [40,47]. The recent developments in approxima-
tion with radial basis functions gave access to modeling with 
multidimensional PBEs.[48] That said, solving PBEs numerically 
has an apparent drawback related to the “curse of dimension-
ality”: the computational cost increases exponentially with an 
increasing number of dimensions.[49] Moreover, PBEs do not 
give direct access to samples of topology, while such samples 
are obtainable with MC simulations.

In this paper, we propose a model for radical acrylate photo-
polymerization that benefits from the synergy of three different 
modeling styles: analytical combinatorics, MC simulations, 
and PBEs. This approach is most accurately placed within the 
emerging field of “random graph modeling” that only recently 
started to diffuse into chemistry.[50–54] A random graph refers 
to a probability distribution over all possible realizations of 
a graph and allows us to draw results that are typical to MC  
simulations with an analytical probabilistic consideration. One 
of the most attractive features is that results on random graphs 
are often obtainable as an explicit exact equation bypassing any 
simulations at all.[52] Thus, the topology becomes accessible 
without the need of balancing expensive computational time 
against statistical errors.

In the current work, it is assumed that cycles only form in 
the gel. Models that do allow for cycles before gel were devel-
oped by Dušek and Dušková-Smrčková[55] in the context of 
PBEs and Eichinger[50] for random graphs.

The rest of the paper is organized as follows. Section 2 intro-
duces the multifunctional acrylate photocuring problem for-
mulated as a classical macromolecular PBE problem. Section 3 
focuses on the local properties of the network. In this part, we 
introduce a monomer PBE (mPBE) that transit between various 
states. Similarly to the usual distinction between free monomers 
and monomers incorporated into polymer, we distinguish sev-
eral extra categories: free monomer, monomer connected to the 
network with one bond, monomer connected with two bonds, 
etc. Additionally, these monomer states are differentiated by 
the type of bonds and the number of radicals/vinyl groups on a 
monomer. Throughout the rest of the paper, we write polymer 
PBE (pPBE) when referring to classical macromolecular PBE 
models (for example, as in ref. [48]) and mPBE when referring 
to the new monomer state balance. The mPBE model provides 
local topological information on the polymer network, in par-
ticular, the probability for a monomer to have a given number 
of specific bonds, which shapes as a trivariate “degree distribu-
tion.” In Section 4, the local information provided by the degree 

distribution is used to construct the topology of the polymer 
network using random graph theory. To do so, we extend the  
ideas presented in refs. [52,56] to networks defined by a 
trivariate degree distribution. Utilizing this new formalism, 
global properties of the polymer network are obtained and 
analyzed. These include gelation time, gel/sol weight fraction, 
molecular size distribution, and other distributional properties 
of the acrylate network. Finally, the new approach is compared 
to a pPBE model from ref. [48] for validation.

2. Reaction Mechanism and pPBE

Like all radical polymerizations, photo-polymerization is based 
on three basic processes: initiation, propagation, and termina-
tion. In this paragraph, we follow the usual high-molecular for-
mulation of radical polymerization. The state of a polymer Ps, v, r  
is characterized by its size s, its number of vinyl groups v, also 
referred to as free pending double bonds (FPDBs), and radicals 
r.[9,57]

The chemical system, which is modeled in this paper, is 
based on the following reaction mechanism (see Figure 1 for 
illustration):

• Photoinitiation (initiator I2, initiator radical I)

 → 22
dI Ik

 (1)

• Initiation of a vinyl group (free divinyl monomer M2)

+  →2
2

1,1,1
iI M Pk

 (2)

Macromol. Theory Simul. 2017, 26, 1700047

Figure 1. Illustration of the reaction mechanism. The directed bond con-
necting the monomer units in the “Propagation” column denotes an 
out-bond for the left unit and an in-bond for the right unit. Under “Ter-
mination by recombination,” the units are connected by a bidirectional 
bond, which counts as a bidirectional bond for both units.
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+  → − +, , , 1, 1
iI P Ps v r

vk
s v r  (3)

• Propagation

+  → + +2 , ,
2

1, 1,
pM P Ps v r

rk
s v r  (4)

• Crosslinking

+  →′ ′ ′
′

+ ′ + ′− + ′, , , , , 1,
pP P Ps v r s v r

vr k
s s v v r r  (5)

• Termination by disproportionation

, , , , , , 1 , , 1
tdP P P Ps v r s v r

rr k
s v r s v r+  → +′ ′ ′

′
− ′ ′ ′−  

(6)

• Termination by recombination

, , , , , , 2
tcP P Ps v r s v r

vr k
s s v v r r+  →′ ′ ′

′
+ ′ + ′ + ′−  

(7)

The parameters kd, ki, kp, ktd, and ktc represent the rate con-
stants for each reaction with their numerical values listed in 
Table 1. In principle, during termination by disproportionation 
of acrylates, a terminal double bond is produced on one of the 
reacting monomer units. As this has little impact on the final 
topology, the terminal double bond is neglected in the present 
implementation of the reaction scheme.

The state of the chemical system is defined by the following 
pPBE
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(8)

The left-hand side denotes the time derivative of several 
time-dependent functions. For reasons of readability the 
explicit time dependency of these functions is omitted. The 

pPBE determining the molar concentration fs, v, r = [Ps, v, r] of a 
polymer state {s, v, r} as a function of time t is characterized by

φ φ φ φ φ= + + + +, , i p c td tcFs v r  (9)

with Fs, v, r being defined as the right-hand side of the pPBE. 
Variable s denotes the size of the component; v describes the 
number of FPDBs; and r defines the number of radicals of the 
component. The initiation rate of monomeric and polymeric 
vinyl groups φi is defined as

( )2 [ ][ ] [ ] ( 1)i i 2 1, 1, 1 i , 1, 1 , ,k M I k I v f vfs v r s v r s v rφ δ= + + −− − − + −  
(10)

where δs, v, r is defined as δ0, 0, 0 = 1 and δs, v, r = 0 for s ≠ 0, v ≠ 0, 
r ≠ 0. The propagation rate φp is defined as

2 [ ]( )p p 2 1, 1, , ,k r M f fs v r s v rφ = −− −  
(11)

the crosslinking rate φc is given by

∑φ = ′ − ′ +

− +
′ ′ ′ =

−

′ ′ ′ − ′ − ′+ − ′( 1)

( )

c p
( , , ) (1,0,1)

( 1, , )

, , , 1,

p , ,

k r v v f f

k c v c r f
s v r

s v r

s v r s s v v r r

r v s v r  

(12)

the termination rate by disproportionation φtd is defined as

φ = + −+( )2 ( 1)td td , , 1 , ,k c r f rfr s v r s v r  
(13)

and the termination rate by recombination φtc is given by

∑φ = ′ − ′ +

−
′ ′ ′ =

− +

′ ′ ′ − ′ − ′ − ′+( 2)

2

tc tc
( , , ) (1,0,1)

( 1, , 1)

, , , , 2

tc , ,

k r r r f f

k c rf
s v r

s v r

s v r s s v v r r

r s v r  

(14)

The functions cr, cv, and cc denote the total molar concentration 
of radicals, FPDBs, and crosslinks; [M2] and [I] correspond to the 
molar concentration of unreacted monomers and initiator radicals.

The function fs, v, r describes finite-sized molecules. Conse-
quently, the gel, an infinite molecule, is not captured. The first 
moments of fs, v, r are defined as

∑
∑
∑
∑
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= −

=

=
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c r f

s

s v r

s v r

c

s v r

s v r

v

s v r

s v r

r

s v r

s v r

 

(15)

with the number of crosslinks of a molecule being defined by

= −c s v  (16)

Before the gel point, the moments cs, sol, cc, sol, cv, sol, and cr, sol  
coincide with the total concentration of reacted monomer units 
cs, crosslinks cc, FPDBs cv, and radicals cr. After the gel point, the 
total number of monomer units is not conserved for fs, v, r, and 
its moments only apply to the sol part of the chemical system, 
which only includes finite-sized molecules. This implies that 

Macromol. Theory Simul. 2017, 26, 1700047

Table 1. Parameters defining the chemical system and the reaction 
mechanism are listed. This table includes the values of the initial con-
centration of divinyl monomers [M2](0) and initiator [I2](0), as well as 
the rate coefficients.[9]

Symbol Value Definition

[M2](0) 4.75 mol L−1 Initial concentration of the diacrylate

Mx 226 g mol−1 Molar mass of the diacrylate

[I2](0) 0.10 mol L−1 Initial concentration of initiator

kd 0.1296 s−1 Rate coefficient of photoinitiation

ki 6.1197 × 104 (s mol)−1 Rate coefficient of vinyl initiation

kp 6.1197 × 104 (s mol)−1 Rate coefficient of propagation

ktd 4.3955 × 107 (s mol)−1 Rate coefficient of termination by 

recombination

ktc 4.3955 × 107 (s mol)−1 Rate coefficient of termination by 

disproportionation
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the total concentration of crosslinks cc, FPDBs cv, and radicals 
cr need to be modeled independently of fs, v, r and are therefore 
included in Equation (8). The derivations of the right-hand side 
expressions of Equation (8) that correspond to �cr , �cv, and �cc  
using Equation (9) and Equations (10)–(14) are available in the 
Supporting Information.

In principle, the three variables s, v, and r characterizing the 
polymer are unbounded. Especially s and v reach very high values 
during the polymerization process. For the numerical evalu-
ation, an exact point-wise approach is not feasible as the pPBE 
would lead to a prohibitory number of differential equations: one 
for each combination of s, v, and r. A numerical recipe to solve 
the macromolecular polymerization problem was developed by 
Kryven and Iedema.[48] This method is used to solve the high-
molecular formulation of our problem. Its results serve as a com-
parison to the new random graph model (RGM) in Section 5.1.

3. The mPBE

The essential idea of the random graph approach is to first 
solve the mPBE generating the connectivity of monomer units 
in the polymer and then recover the polymer properties, such 
as the gel point and the weight distribution of the polymers, by 
a combinatorial argument. In contrast to the well-established 
pPBE, focusing mainly on the size of the polymer, we calculate 
the concentration of the states of monomer units determining 
the number of bonds per monomer unit as a function of time 
and then construct global properties such as the molecular size 
distribution in the RGM.

A state of a diacrylate monomer unit (see Figure 1) is char-
acterized by the number of vinyl groups v, radicals r, and the 
number of bonds, also referred to as the degree d, which is 
differentiated into three values: i, j, and k with d = i + j + k. 
The necessity of this differentiation arises from the different 
types of reactions. Later, when reconstructing the topology of 
the molecules, it is essential to ensure that two monomer units 
get connected by a bond only if both of them were subject of 
the same reaction (e.g., both underwent termination by recom-
bination). Therefore, it is necessary to store information on the 
history of the bond formation. We distinguish bonds formed 
by the “asymmetrical” propagation reaction (radical reacts with 
vinyl group) and the “symmetrical” termination by recom-
bination (radical reacts with radical). Let us define the direc-
tion of the propagation reaction from the radical toward the 
vinyl group (see Figure 1, “Propagation”). The monomer unit 
with a radical gets an out-bond, whereas the second monomer 
unit with the vinyl group gains an in-bond. Note that in the 
present work, the in-bond/out-bond notation has a different 
meaning than, for instance, in the work of Eichinger.[50] The 
bond formed by termination will be referred to as a “bidirec-
tional” bond — as distinct from the asymmetrical bonds (see 
Figure 1, “Termination by recombination”). A monomer unit 
with an out-bond can only be connected to a monomer unit 
with an in-bond, whereas a monomer unit with a bidirectional 
bond connects to another monomer unit with a bidirectional 
bond. Information concerning the directionality is required 
if the degree distribution is not symmetric with respect to in- 
and out-bonds.[52] The monomer state is then defined by the 

number of in-bonds i, out-bonds j, and bidirectional bonds k, 
additionally to v and r.

Let Mv, r, i, j, k be a monomer unit with its state being defined 
by the set of variables {v, r, i, j, k} and gv, r, i, j, k = [Mv, r, i, j, k] 
be the concentration of the monomers in this state. As the five 
dimensions of Mv, r, i, j, k are small (for diacrylates the possible 
values are {0, 1, 2}), solving the mPBE numerically is not hard.

The model is applied to photo-polymerization of a system 
consisting of diacrylates (two vinyl sites per monomer) and a 
photoinitiator. Similarly to Equations (1)–(7), we can now write 
the reaction mechanisms for monomer states Mv, r, i, j, k (see 
Figure 1), which is defined as follows:

• Photoinitiation of the initiator

 → 22
dI Ik

 
(17)

• Initiation of a vinyl group

+  → − +, , , , 1, 1, , ,
iI M Mv r i j k

vk
v r i j k

 
(18)

• Propagation (also including crosslinking)

+  → +′ ′ ′ ′ ′
′

− + ′− ′+ ′+ ′ ′, , , , , , , , , 1, , 1, 1, 1, 1, ,
pM M M Mv r i j k v r i j k

rv k
v r i j k v r i j k  (19)

• Termination by disproportionation

+  → +′ ′ ′ ′ ′
′

− ′ ′− ′ ′ ′, , , , , , , , , 1, , , , 1, , ,
tdM M M Mv r i j k v r i j k

rr k
v r i j k v r i j k  (20)

• Termination by recombination

+  → +′ ′ ′ ′ ′
′

− + ′ ′− ′ ′ ′+, , , , , , , , , 1, , , 1 , 1, , , 1
tcM M M Mv r i j k v r i j k

rr k
v r i j k v r i j k  (21)

In contrast to the definition of Ps, v, r, Mv, r, i, j, k does include 
the state of unreacted (free) monomers, which corresponds to  
M2, 0, 0, 0, 0. The reactions satisfy the conditions 0 ⩽ i, i′, j, j′, k, k′ ⩽ 2,  
i + j + k ⩽ 4, i′ + j′ + k′ ⩽ 4, j + k ⩽ 2, and j′ + k′ ⩽ 2 intrinsically. 
Outside this range, [Mv, r, i, j, k] is zero for all time. The reaction 
mechanism leads to 39 distinct states of a monomer unit that 
become populated in the course of the polymerization process.

The state of the chemical system is described by the mPBE, 
which is summarized to
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d 2 i
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(22)

The left-hand side denotes the time derivatives of the con-
centrations of all monomer states gv, r, i, j, k = [Mv, r, i, j, k], as well 
as the initiator [I2] and initiator radicals [I]. The right-hand side 
of the mPBE determining the concentration of monomer states 
at time t reads

= + −

+ + −

+ ′ + −

+ + −

+ + −

+ −

+ − −

+ −

+

+ −

( )
( )
( )
( )
( )

[ ] ( 1)

( 1)

( 1)

2 ( 1)

2 ( 1)

, , , , i 1, 1, , , , , , ,

p 1, 1, 1, , , , , ,

p , 1, , 1, , , , ,

td , 1, , , , , , ,

tc , 1, , , 1 , , , ,

G k I v g vg

k c v g vg

k c r g rg

k c r g rg

k c r g rg

v r i j k v r i j k v r i j k

r v r i j k v r i j k

v v r i j k v r i j k

r v r i j k v r i j k

r v r i j k v r i j k  

(23)
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The functions cr and ′c v  correspond to the total concentra-
tion of radicals and vinyl groups in the system. It is important 
to note the difference between ′c v  and cv: cv only accounts for 
FPDBs, whereas ′c v  also includes vinyl groups of the unreacted 
monomer units g2, 0, 0, 0, 0.

In contrast to the pPBE model, here, the total concentration of 
crosslinks cc, reacted monomer units cs, and FPDBs cv (sol + gel)  
coincide with the first moments of gv, r, i, j, k and are calculated by

∑
∑

∑
∑

=

′ =

= ′ −
= Θ + + −

= −

2

( 3)

, , , ,
, , , ,

, , , ,
, , , ,

2,0,0,0,0

, , , ,
, , , ,

, , , ,
, , , ,

2,0,0,0,0

c rg

c vg

c c g

c g i j k

c g g

r

v r i j k

v r i j k

v

v r i j k

v r i j k

v v

c v r i j k

v r i j k

s v r i j k

v r i j k  

(24)

with the Heaviside function

Θ = ≥
<





( )
1, for 0
0, for 0

x
x
x

 

(25)

Note that the mPBE allows us to easily distinguish between 
linear sequences (monomer units with two bonds) and 
crosslinks (three or four bonds).

Solving the system of Equation (8) numerically gives the con-
centrations of monomer states gv, r, i, j, k. Once the concentrations 
gv, r, i, j, k are known, the trivariate degree distribution u(i, j, k)  
is extracted. The distribution u(i, j, k) defines the probability 
of a monomer unit for having i in-, j out-, and k bidirectional 
bonds as a function of time t. The normalized trivariate degree 
distribution u(i, j, k) is calculated by

∑
∑=( , , )

, , , , ,

, , , , , , , ,

u i j k
g

g

v r v r i j k

v r i j k v r i j k

 

(26)

with

∑ =( , , ) 1
, ,

u i j k
i j k  

(27)

Let μlmn denote the partial moments of the degree distribu-
tion u(i, j, k) with

∑µ = ( , , )
, ,

i j k u i j klmn
l

i j k

m n

 
(28)

Since the number of in-bonds and out-bond is equal,  
μ100 = μ010. This equality naturally evolves from the reaction 
scheme. Note that these moments must be distinguished from 
the moments of the molecular size distribution.

4. The Random Graph Model

The aim of the current section is the derivation of a method to 
capture global properties of the network using a random graph 

formalism. The method represents an extension to previous 
works for undirected[56] and directed graphs without bidirec-
tional edges.[52]

We view a group of connected monomers, essentially a  
polymer molecule, as a directed graph. Let us start by intro-
ducing some basic terminology of graph theory. The chemical 
bonds between the monomer units are viewed as the edges of 
the graph, the monomer units are referred to as the nodes, and 
the number of bonds of a monomer unit is called the degree of 
the node. Therefore, we call u(i, j, k) the degree distribution. A 
polymer is thus represented as connected nodes, also called a 
connected component. Hence, we will refer to the out-bonds as 
out-edges, to the in-bonds as in-edges, and to the bidirectional 
bonds as bidirectional edges. An out–in connection between 
two nodes is resembled by a directed edge, an arrow, with its 
direction being defined as pointing from the node with an out-
edge (former radical site) to the node with an in-edge (former 
vinyl site). For a bidirectional connection between nodes, no 
starting and end points can be defined.

After the degree distribution is recovered from the mPBE, 
the global properties of the network are found by applying a 
random graph formalism. We will introduce a mathematical 
method utilizing generating functions to solve the global 
problem and recover some typical global characteristics like the 
gel point, the size of the giant component, and the molecular 
size distribution.

4.1. Generating Functions

Generating functions provide an elegant way of deriving global 
properties of the graph. Here, we follow a similar line of rea-
soning as in our previous paper discussing the bivariate (in- 
and out-bonds) variant of this problem.[52] First, the distribution 
u(i, j, k) is transformed to its generating function

∑=( , , ) ( , , )
, ,

U x y z u i j k x y z
i j k

i j k

 
(29)

with |x|, |y|, |z| ⩽ 1 and �∈, ,x y z . In this section, all newly 
introduced variables denoted by a capital letter indicate gener-
ating functions. U(x, y, z) satisfies

∑= =(1,1,1) ( , , ) 1
, ,

U u i j k
i j k  

(30)

which corresponds to the normalization of the total probability. 
The partial moments of the degree distribution are obtained as 
the partial derivatives of the generating function U(x, y, z) and 
the evaluation at point (x, y, z) = (1, 1, 1)

|( , , ) 1x
x

y
y

z
z

U x y z x y zlmn

l m n

µ = ∂
∂







∂
∂







∂
∂

















 = = =

 

(31)

For illustration purpose, let us consider the following example. 
The first moment of the in-edges, equivalent to the average 
number of in-edges of a node, is derived from the generating 
function of the degree distribution by
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( , , ) | ( , , )100 1
, ,

x
x

U x y z iu i j kx y z

i j k
∑µ = ∂

∂
== = =

 
(32)

Another important property of generating functions involves 
the transformation of the convolution operation. In the domain 
of generating functions, a convolution of two distributions (g*f)
(i, j, k) simplifies to the point-wise multiplication of their gener-
ating functions G(x, y, z)F(x, y, z).

4.2. Component Size Distribution

The directed network is described as locally tree like. For the for-
mulation of the random graph, several distributions are employed 
from the initial degree distribution u(i, j, k). If a node is sampled 
at random, its degree is given by u(i, j, k) by definition. Let us 
select a node by following a randomly chosen edge in some arbi-
trary direction. We are interested in the probability of this node 
to be connected to further nodes, which can be formulated by 
introducing a bias in the original degree distribution. For a node 
reached by an in-edge, the biased degree distribution is given by

µ
= + +( , , )

1
( 1) ( 1, , )in

100

u i j k i u i j k
 

(33)

Note that the shift of i on the right-hand side refers to the con-
dition that the minimum number of in-edges is one (reached 
via an in-edge), while i denotes the number of further in-
connections. The multiplication factor (i + 1) accounts for the 
increased probability to reach nodes with more in-edges. Like-
wise, biased degree distributions for nodes reached by an out- 
and bidirectional edge are given by

µ

µ

= + +

= + +

( , , )
1

( 1) ( , 1, )

( , , )
1

( 1) ( , , 1)

out
010

bi
001

u i j k j u i j k

u i j k k u i j k
 

(34)

Thus, the generating function of the biased degree distribu-
tions can be written as

( , , )
1

( , , )

( , , )
1

( , , )

( , , )
1

( , , )

in
100

out
010

bi
001

U x y z
x

U x y z

U x y z
y

U x y z

U x y z
z

U x y z

µ

µ

µ

= ∂
∂

= ∂
∂

= ∂
∂  

(35)

with Uin(1, 1, 1) = Uout(1, 1, 1) = Ubi(1, 1, 1) = 1.
Let us now consider connected components. The size distri-

bution of connected components in the system is denoted as 
w(s) with its generating function W(x). As the network is tree 
like, we can define win(s) as the size distribution of biased weak 
components that are reached by following a randomly picked 
in-edge to its end. In a directed network, the weak component 
is a component that is built by disregarding the direction of the 
edges. Analogously, wout(s) and wbi(s) are defined as the size dis-
tribution of weak components attached to a randomly chosen 
out- and bidirectional edges. The corresponding generating 

functions are denoted as Win(x), Wout(x), and Wbi(x) with |x| ⩽ 1 
and �∈x  (see Figure 2 for illustration).

We will now derive an expression for the generating func-
tion W(x) departing form U(x, y, z) as the only input for our 
model.[52] Suppose one selects a node by sampling a random in-
edge and following it to its end (edge with “*” in Figure 2). Let 
the reached node (red “Uin” in Figure 2) be the root of a biased 
weak component with size distribution win(s) (red domain in 
Figure 2). The remaining edges of the root node again lead to 
roots of biased weak components by i in-, j out-, and k bidirec-
tional edges, with probability uin(i, j, k). These “second genera-
tions” of biased weak components have the same size distribu-
tions win(s), wout(s), and wbi(s). There are i edges connecting the 
root node to i components wout(s) (black domain within the red 
domain in Figure 2, just one of the i domains is shown), j edges 
to components win(s), k edges to components wbi(s).

Suppose two populations of components are described 
by two specific size distributions w1(s) and w2(s). Consider a 
process according to which each component from the first 
population is joined with a randomly selected component 
from the second population. The size distribution for the 
resulting population is given by the convolution of the two 
size distributions, (w1*w2)(s). Thus, the distribution of the total 
size of the i components wout(s) follows as the i-fold convolu-
tion (wout*wout*⋅⋅⋅*wout)(s), which is generated by Wout(x)i. Like-
wise, the total size distributions of the other two types of weak 
components are represented by Win(x)j and Wbi(x)k. Hence, the 
size distribution of the biased weak component (red domain) 
equals the convolution of the three types of biased weak com-
ponents it is composed of, not yet including the root node. The 
distribution following from the convolution is given by ∑i, j, k 
uin(i, j, k)Wout(x)iWin(x)jWbi(x)k. The root node is included by 
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Figure 2. Representation of a random graph in the domain of generating 
functions for deriving the generating function of the component size dis-
tribution W(x). The root node of the component is described by U(x, y, z), 
the weak component by W(x).
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increasing the component size by 1, which, in the domain of 
the generating functions, leads to the factor x in front of the 
summation

( ) ( , , ) ( ) ( ) ( )in in
, ,

out in biW x x u i j k W x W x W x
i j k

i j k∑=
 

(36)

Analogously, the relation can be written for Wout(x) and 
Wbi(x). Equation (36) resembles the definition of a trivariate 
generating function. Hence, three coupled functional equations 
are formulated as

=
=

=

( ) ( ( ), ( ), ( ))
( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

in in out in bi

out out out in bi

bi bi out in bi

W x xU W x W x W x
W x xU W x W x W x
W x xU W x W x W x  

(37)

The generating function for the unbiased component size 
distribution is calculated following the same derivation as for 
Equation (36), but now realizing that a randomly chosen node 
is connected to biased components from Equation (37) via three 
kinds of edges. It is written as

=( ) ( ( ), ( ), ( ))out in biW x xU W x W x W x  (38)

As no analytic expression for W(x) is known, W(x) is obtained 
by a numerical solution of Equations (37) and (38). The compo-
nent size distribution w(s), which is the probability of a random 
node to be part of a component of size s, is obtained by the 
inverse generating function transform, which is equivalent to 
the Cauchy integral

�( )
1

2

( )
d1w s

i

W x

x
xs∫π

= +
 

(39)

For the numerical evaluation of the integral, the largest pos-
sible contour is used, which is given by the unit circle |x| = 1 
with �∈x .[56]

4.3. Analytic Criterion for the Phase Transition  
to the Giant Component

In this section, a formula is derived that gives a decisive crite-
rion for the phase transition of the chemical system to the gel 
regime, corresponding to the phase transition to the giant com-
ponent in the graph. This criterion requires only the knowledge 
of the trivariate degree distribution.

The giant component of the network corresponds to 
an infinite-sized component, the gel in a polymer system. 
During the polymerization process, polymers grow in size 
until the gel point is reached. At the gel point, the weight 
average mole cular weight 〈s〉 becomes singular, as the gel cor-
responds to a molecule of infinite size. Once the gel is pre-
sent, the bigger a finite-sized molecule is, the more likely it 
is to react with the gel. Molecules are “absorbed” by the gel 
and transit from the sol, the system of finite-sized molecules, 
to the gel. As the gel is excluded from the definition of the 
weight average mole cular weight 〈s〉, this process leads to a 
decrease of 〈s〉.[58]

The weight average molecular weight 〈s〉 is given by the first 
derivative of W(x) evaluated at x = 1

( ) |

(1)

1
(1)

1 ( ) ( , , ) ( ) ( , , )

( ) ( , , ) |

1

out in

bi , , 1
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W
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x
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y
U x y z
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U x y z

x
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〈 〉 =
′

= + ′ ∂
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+ ′ ∂
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+ ′ ∂
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=

=

 

(40)

with W(1) being the normalization factor. Using Equations (37)  
and (38), calculating the derivatives and inserting into  
Equation (40) leads to an expression of the form 〈s〉 = N/D. 
This expression diverges to infinity, if the denominator D 
approaches zero. After simplification of D = 0, the criterion for 
the phase transition can be written as

µ µ µ µ µ µ µ µ µ
µ µ µ µ µ µ
µ µ µ µ µ µ µ µ

− + − + −
+ + − −
+ − + − =

(2 ) ( ) ( )
( 2 )(2 )

2 ( ) ( ) 0

110
2

001 002 011
2

200 101
2

020

200 020 110 001 002

101 011 110 200 020 001 002  

(41)

with μlmn denoting the moments of the degree distribution (see 
Equation (28)) and μ100 = μ010 = μ. In previous works, analytic 
criteria for the phase transition to a giant component were 
found for the case of undirected graphs with an univariate 
degree distribution[59] and the giant weak component for 
directed graphs with a bivariate degree distribution.[52]

4.4. Gel Fraction

In a polymerization system, the gel fraction gf is defined as 
the ratio of monomer units in the gel to the total number of  
monomer units. As the presence of gel in a polymer system 
corresponds to the existence of a giant component in the graph, 
the gel fraction gf can also be defined as the ratio of nodes that 
are part of a giant component to the total number of nodes, 
which can be interpreted as the relative size of the giant compo-
nent. The gel point marks the transition point of a graph indi-
cating the first occurrence of a giant component.

The generating function of the component size distribu-
tion W(x) does not describe the giant component. Before 
the gel point, W(x) describes the whole system and satisfies 
W(1) = 1. After the gel point, where W(x) only describes the sol 
part and W(1) < 1, the gel fraction is given by

= −1 (1)fg W  (42)

4.5. Crosslinks, FPDBs and Radicals

In this section, distributions and gel fractions for crosslinks, 
FPDBs, and radicals are derived. The crosslink distribution 
wc(c) denotes the probability for a randomly chosen crosslink 
to be part of a component with c crosslinks. The FPDB distri-
bution wv(v) gives the probability for a randomly chosen FPDB 
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to be part of a component with v FPDBs. The radical distribu-
tion wr(r) denotes the probability for a randomly chosen radical 
to be part of a component with r radicals. These distributions 
correspond to weight distributions. The number distributions 

are obtained as ( )w c
c
c , ( )w v

v
v , and ( )w r

r
r . The derivations of the 

crosslink distribution wc(c), the FPDB distribution wv(v), and 
the radical distribution wr(r) follow the same idea of connected 
components as the derivation of the component size distribu-
tion w(s).

When deriving the crosslink distribution, crosslinks (degree 
d = i + j + k > 2) of a component are counted, whereas nodes 
that correspond to linear elements (d = 2) or dangling ends  
(d = 1) are not counted.

As in the derivation of the size distribution, we start selecting 
an in-edge and follow it to its end. This time, one may either 
or not end up in a crosslinking node, as shown by in-edges a 
and b in Figure 3, which circumstance demands to split the 
problem into two parts. We introduce two degree distributions, 
one for crosslinking nodes and one for non-crosslinking nodes. 
The first distribution, which describes crosslinks, is defined as

=
>
≤






( , , )

( , , ), for 2
0, for 2

au i j k
u i j k d

d
 

(43)

The second distribution of nodes, accounting for uncon-
nected nodes (d = 0), terminal units (d = 1) and nodes of d = 2, 
is written as

( , , )
( , , ), for 2

0, for 2
bu i j k

u i j k d
d

=
≤
>





  

(44)

The corresponding generating functions are defined as

∑
∑

=

=

( , , ) ( , , )

( , , ) ( , , )
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(45)

with x, y, and z satisfying the same bounds as in Equation (29), 
and similarly to Equation (35)
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x
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(46)

Analogously, Uout(x, y, z) and Ubi(x, y, z) are now repre-
sented by two functions: one for crosslinks and the other for 
non-crosslinks.

First, we present the part of the problem involving the 
crosslinking nodes. It proceeds in exactly the same manner 
as that for the size distribution before, yielding a convolution 
term ∑ ( , , ) ( ) ( ) ( ), , in

a
out in biu i j k W x W x W xi j k
c i c j c k , which is the distri-

bution of the biased weak component sizes not yet including 
the root (a crosslink by definition). In fact, this part of the solu-
tion describes the parts of the network exclusively consisting of 
crosslinking nodes. In Figure 3, this is depicted as the yellow 
nodes. In-edge “a” connects to a crosslinking node and in-
edge “b” to a non-crosslinking node. In the figure, the biased 
weak components, to which the in-edges “a” and “b” point, are 
denoted by ( )inW xc  (red domains). However, we only show the 
content of the component with the non-crosslinking node as 
the root, characterized by ( , , )in

bU x y z . Note that this content is 
exactly the same as in the other component ( )inW xc , except that 
the latter has a crosslinking node as the root, characterized by 

( , , )in
aU x y z . Repeating the procedure for out- and bidirectional 

edges yields two further convolution terms and ultimately, in 
the generating function domain, we find these contributions in 
Equation (47), in the terms with the x in front, due to including 
the root node.

Next, we derive the part of the distribution associated with 
the degree distribution of nodes without crosslinks, counting 
crosslinks connected by non-crosslinking nodes. Root 

( , , )in
bU x y z  is connected by i = ia + ib in-edges to i weak com-

ponents ( )outW xc  (green domains in Figure 3), again to further 
nodes, that may either or not be crosslinking nodes. Likewise, 
there are j = ja + jb out- and k = ka + kb bidirectional edges con-
necting to ( )inW xc  and ( )biW xc , respectively, with the prob-
ability distribution ( , , )bu i j kin . This leads to the convolution 
term ∑ ( , , ) ( ) ( ) ( ), ,

b
out in biu i j k W x W x W xi j k in
c i c j c k , as similar as before, 

denoting the distribution of the total number of crosslinks in 
a biased weak component. Since here the root does not con-
tain a crosslink, the total number including the root is equal 
to this convolution term. This is again repeated for out- and 
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Figure 3. Representation of a random graph in the domain of generating 
functions for deriving the generating function of the crosslink distribution 
Wc(x). Only the highlighted nodes are crosslinks and therefore counted.
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bidirectional edges, which results in further contributions to the  
generating function Equation (47). Note, that here factor x in 
front of the summation term is missing, since the root node 
does not contribute to the number of crosslinks.

Adding the generating function of the crosslink distribu-
tions from pure crosslinking parts and from parts counting 
crosslinks connected by non-crosslinking nodes, we arrive at 
three coupled functional equations

=
+
=

+
=
+

( ) ( ( ), ( ), ( ))
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(47)

They are similar to Equation (37), but they are rewritten in 
such a way that the number of crosslinks of a component is 
calculated. To obtain the weight distribution wc(c), the root node 
needs to be sampled from the set of crosslinks only. Therefore, 
the probability of choosing a crosslink as the root is normalized 
to 1 by 

µ
( , , )a

000
a

U x y z  with

µ = = = =( , , ) |000
a a

1U x y z x y z  (48)

The generating function of the crosslink distribution can be 
formulated as

µ
=( ) ( ( ), ( ), ( ))

000
a

a
bi out biW x

x
U W x W x W xc c c c

 
(49)

To obtain the crosslink distribution wc(c), the inverse trans-
formation is performed using Equation (39).

The gel fraction for crosslinks is obtained in the same way 
as the gel fraction of the total material, but now the generating 
function of the crosslink distribution of Equation (49) is used

= −1 (1)fg Wc c

 (50)

It corresponds to the ratio of crosslinks that are part of the 
gel to the total number of crosslinks. It is important to note that 
in general Equations (42) and (50) give different gel fractions.

For the derivation of the FPDB distribution, the degree distri-
bution u(i, j, k) is split into two distributions as well: one distri-
bution ua(i, j, k) of nodes that are counted (with an FPDB) and 
one distribution ub(i, j, k) of nodes that are not counted (without 
an FPDB). As the degree distribution does not include infor-
mation on FPDBs and radicals, the distributions are extracted 
from the concentration of the monomer states gv, r, i, j, k =  
[Mv, r, i, j, k] (see Equation (23)). The first distribution including 
nodes with one FPDB is defined as

∑=( , , )a
1, , , ,u i j k g r i j k

p  
(51)

the second distribution of nodes without an FPDB is formu-
lated as

∑= +( , , ) ( )b
0, , , , 2, , , ,u i j k g gr i j k r i j k

p  
(52)

Thus, ub(i, j, k) includes nodes without a vinyl group and 
unconnected nodes with two vinyl groups. Having ua(i, j, k) and 
ub(i, j, k), the same procedure is followed as for crosslinks using 
Equations (45)–(50). wv(v) is obtained by solving Equation (39) 
with the generating function of the FPDB distribution Wv(x) 
numerically. The gel fraction for FPDBs, the ratio of FPDBs that 
are part of the gel to the total number of FPDBs, is defined as

= −1 (1)fg Wv v

 (53)

In the case of the radical distribution, three classes of nodes 
need to be distinguished. The distributions for nodes with one 
radical, two radicals and without a radical are defined by

∑=( , , )a1
,1, , ,u i j k gv i j k

v  
(54)

∑=( , , )a2
,2, , ,u i j k gv i j k

v  
(55)

and

∑=( , , )b
,0, , ,u i j k gv i j k

v  
(56)

The corresponding generating functions, denoted as  
Ua1(x, y, z), Ua2(x, y, z), and Ub(x, y, z), as well as the generating 
functions of the biased distributions are defined analogously to 
Equations (45) and (46). As nodes with two radicals need to be 
counted twice, Equation (47) is modified to
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(57)

For choosing the root node, a random radical is sampled. The 
generating function of the radical distribution can be written as

( )
2

2 ( ( ), ( ), ( ))

2
( ( ), ( ), ( ))

2

000
a2

000
a1

a2
out in bi

000
a2

000
a1

a1
out out in

W x
x

U W x W x W x

x
U W x W x W x

r r r r

r r r

µ µ

µ µ

=
+

+
+  

(58)

with
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(59)

The gel fraction of radicals, the ratio of radicals that are part 
of the gel to the total number of radicals, is calculated by

= −1 (1)fg Wr r

 (60)
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The radical distribution wr(r) is obtained by the numerical 
inverse transformation from its generating function Wr(x) 
using Equation (39).

5. Results

The RGM is demonstrated on the polymerization process of a 
diacrylate and a photoinitiator under continuous UV irradiation 
in the absence of oxygen. Kinetic parameters (see Table 1) were 
obtained from an acrylate modeling study.[9] Since we want to 
show the ability of the model to predict network properties, we 
have kept kinetics as simple as possible.

For validation of our RGM, we use the pPBE model for 
crosslinking polymerization.[48]

5.1. Comparison to the pPBE Model

The polymer model is based on the pPBE defined in Equation (8).  
The limits of the dimensions are set to smax = 105 for the com-
ponent size, vmax = 105 for the number of FPDBs per compo-
nent, and rmax = 8 for the number of radicals per component. 
In the pPBE model, a set of Gaussian basis functions is intro-
duced for the approximation of the probability mass function 
on a logarithmic grid.

For comparison, the concentrations of reacted monomer 
units, FPDBs, radicals, and crosslinks in sol and gel are calcu-
lated with both models. Furthermore, we will compare the gel 
point prediction in both models.

5.1.1. Concentrations in Pregel and Gel Regime

The total concentration of reacted monomer units cs, FPDBs cv, 
radicals cr, crosslinks cc, initiator [I2], and initiator radicals [I] 
are calculated as a function of time. The vinyl conversion χ, the 
fraction of converted vinyl groups, is defined as

χ = −1
2[ ](0)2

c

M
v

 
(61)

with [M2](0) denoting the initial concentration of free divinyl 
monomers (see Table 1). Figure 4 shows the vinyl conversion 
χ versus time t and the development of a number of relevant 
species concentrations as the concentration of crosslinks 
versus vinyl conversion, ranging from 0% to 100% . The con-
centrations computed by both models, the RGM and the pPBE 
model, coincide. As the rate coefficients remain constant over 
time and trapping of radicals is not implemented explicitly, the 
final state of the chemical system at t → ∞ is characterized by 
cr → 0.

In the pPBE model, the number of crosslinks per molecule 
is not explicitly included in the reaction mechanism, but is 
defined by Equation (16) as c = s − v. This definition accounts 
for all monomer units without an FPDB. It is important to 
note that this definition not only includes monomer units 
that have three or four bonds, but a few units with two bonds 
as well. These monomer units are formed if one of the vinyl 

groups undergoes an initiation reaction followed by a termi-
nation of the radical. This problem is inherent to the high-
molecular formulation of the problem (Equation (8)), since 
the calculation of the “true” number of crosslinks in that 
approach requires solving the problem for another dimen-
sion—at the expense of more computational time. We did not 
carry out this extra effort in executing the pPBE approach. 
Note that the novel random graph approach does not suffer 
from this problem, as in this approach crosslinks are defined 
by their degree.

Figure 5 zooms in on a vinyl conversion range from 0 to 
0.006, which covers the sol–gel transition point that indeed 
turns out to occur at very low conversion. In this figure, addi-
tionally to the concentrations of the total system (blue line), 
the concentrations in the sol are illustrated, predicted by the 
RGM (red line) and pPBE (green line) models. In the RGM, 
the values are obtained by first calculating the gel fractions  
gf, fg c , fg v  and fg r  (see Sections 4.4 and 4.5). The gel fraction 
in Equation (42), gf, is defined as the fraction of monomer 
units in gel to the total amount of monomer units. Since it is 
relevant to relate the gel fraction to reacted monomers only, 
we introduce

=
[ ](0)

f f
pol 2g g

M

cs  
(62)

Macromol. Theory Simul. 2017, 26, 1700047

Figure 4. Total concentration (mol L−1) of reacted monomer units cs, 
FPDBs cv, radicals cr, crosslinks cc, initiator [I2], and initiator radicals [I], 
as a function of vinyl conversion χ as well as vinyl conversion χ versus 
time t (s).
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The concentrations in the sol of different species are then 
calculated by

= −
= −
= −
= −

(1 )

(1 )

(1 )

(1 )

f

f

f

f

,sol
pol

,sol

,sol

,sol

c c g

c c g

c c g

c c g

s s

c c
c

v v
v

r r
r

 

(63)

Naturally, before the gel point, the concentrations in sol 
equals the total concentrations ci,sol = ci. After a conversion of 
0.002, the gel point conversion χgel, the concentrations change 
significantly, which indicates the formation and growth of 
the gel.

The green line corresponds to the result of the pPBE model. 
The concentrations in the sol are directly given by the first 
moments of fs, v, r (see Equation (15)).

Ideally, both models (red and green lines) should produce the 
same results. Considering the reacted monomer units and the 
FPDBs, good agreement is observed for the whole range of con-
version. However, some discrepancy is observed, in particular 
at the gel point. It should be noted that at the gel point all the 
distributions possess long tails, as explained in Section 5.2. 
This requires the pPBE model to yield solutions until very high 
numbers of monomer units, FPDBs, etc. A trade-off between 
accuracy and computational time forces to impose cut-off 
lengths at the tails of the distributions. This is the main cause 
of the deviations between the pPBE and the RGM model. For 
instance, at the gel point the discontinuity is not predicted as 
sharply in the pPBE model as in the RGM.

Also, the crosslink distributions diverge at low conver-
sion. Note that the pPBE does not explicitly give the crosslink 

distribution, but it follows as the difference between monomer 
units and FPDBs. Obviously, since both distributions have 
numerical errors even larger deviations are expected in the dif-
ferential (crosslink) distribution.

In Figure 6, the different gel fractions calculated by the RGM 
are illustrated for a conversion range from 0 to 0.05. Here, one 
observes the remarkable fact that all polymers are already part 
of the network at conversions as low as 2%. The gel fraction of 
FPDBs fg v

 coincides with the gel fraction of reacted monomers 
f
polg . Note that this is not the case for the gel fractions of radi-

cals fg r
 and crosslinks fg c

. The probability for radicals of being 
part of the gel fg r

 is lower than for the overall material f
polg ,  

whereas the probability for crosslinks of being part of the gel 
fg c
 is higher than f

polg . This behavior is caused by the different 
processes these species are formed. Radicals are produced by 
the initiation of vinyl groups. As at a low conversion the highest 
concentration of vinyl groups lies in the group of unreacted 
monomers, initiation causes these monomer units to transit to 
the sol and therefore increases the relative concentration of rad-
icals in the sol. On the other hand, crosslinks are only formed 
by reacting a monomer unit that is already part of a polymer 
molecule, so its probability to transit to gel, or of already being 
part of the gel, is considerably higher than of being part of the 
sol.

5.1.2. Gel Point Estimation

In the previous section, the gel point became clearly visible as 
the conversion point at which the gel fraction starts to depart 
from zero. However, the analytic criterion for the existence of 
the giant component derived in Section 4.3 provides a way to 
find the gel point directly from the time-dependent trivariate 
degree distribution defined in Equation (26). The gel point 
conversion χgel is estimated by calculating the moments of the 

Macromol. Theory Simul. 2017, 26, 1700047

Figure 5. Concentrations (mol L−1) of reacted monomer units, FPDBs, 
radicals, and crosslinks as a function of conversion χ in the total system 
(cs, cv, cr, cc), and the sol (cs, sol, cv, sol, cr, sol, cc, sol) predicted by the RGM 
and the pPBE model.

Figure 6. Gel fractions of reacted monomers g f
pol

, FPDBs g
v
f , radicals g

r
f ,  

and crosslinks g
c
f  as a function of conversion χ.
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degree distribution and inserting them into Equation (41). The 
main advantage of the criterion is that it avoids the numerical 
solution of Equations (37) and (38). This means, that numerical 
errors are reduced to a minimum and the computation is very 
fast.

For the problem of the photocuring of the diacrylate system, 
the gel point is estimated at a vinyl conversion of χgel = 0.0020. 
The result of the numerical evaluation of the criterion is illus-
trated in Figure 7.

For the pPBE model, the gel point is estimated by calculating 
the polydispersity

=pdi 2 0

1
2

m m

m  
(64)

with

∑
∑
∑

=

=

=

2
2

, ,
, ,

1
, ,

, ,

0 , ,
, ,

m s f

m s f

m f

s v r

s v r

s v r

s v r

s v r

s v r  

(65)

denoting the second, first, and zeroth moments of the mole-
cular number distribution. The polydispersity is singular at the 
gel point. The gel point conversion χgel is defined as the conver-
sion, where the polydispersity reaches its maximum. Figure 8 
shows a dependency of the gel point estimation on the maximal 
number of radicals per component rmax. The higher the rmax, 
the sharper the observed peak becomes, and a shift to lower 
conversion is observed: χgel(rmax = 8) = 0.0023, χgel(rmax = 5) = 
0.0024, χgel(rmax = 3) = 0.0027.

5.2. Distributions

In Sections 4.2 and 4.5, methods for calculating the component 
size, crosslink, FPDB, and radical distributions are developed.

In Figure 9, the double-weighted distribution of molecular 
sizes [M2](0)Mxsw(s, χ) (molar mass of diacrylate Mx, see Table 1  
for numerical values) is depicted for several conversion points 
before and after the gel point. One may notice the shift of the 
peaks in the plot. The distribution at gel conversion χgel is 
observed to be very broad and goes far beyond the cut-off size 
of 104. The asymptotic behavior at the gel conversion is dis-
cussed in more detail for the single-weighted distribution [M2]
(0)w(s, χ).

In Figure 10, the component size distribution normalized to 
the sol concentration [M2](0)w(s, χ) is given for different conver-
sion points χ. As unreacted monomer units are not included 
in the graphic, the distribution starts at a low concentration for 
components of size s = 2 and shows an exponential decrease 
for larger components. For higher conversion, the distributions 
gradually become broader as components grow in size. How-
ever, the distributions still show exponential decrease. Con-
cerning the asymptotic behavior of the size distribution curves 
at phase transitions like the gel point, theories have been con-
structed based on universal characteristic of polymerization 
and aggregation problems. It has been shown for a very broad 
range of aggregation models that the tail of the size distribution 
obeys a power law w(s, χgel) ∝ s−τ with τ being the Fisher expo-
nent. When no information on spatial configuration is taken 
into account, at the gel point the Fisher exponent is expected 

to have a value of τ = 3
2

 for the weighted distribution of the 

component size w(s, χgel).[58] The dashed black line in Figure 10 

Macromol. Theory Simul. 2017, 26, 1700047

Figure 7. Gel point estimation by the RGM by the evaluation of the ana-
lytic gel point criterion as a function of conversion χ. The crossing of the 
lines indicates the gel point at a conversion of χgel = 0.0020.

Figure 8. Gel point estimation by the pPBE. The solid blue lines illus-
trate the polydispersity for different rmax. The dashed lines indicate the 
maximum of the pdi, which corresponds to the gel point estimate. For 
higher rmax, a shift of the maximum to lower conversion is observed. The 
black line indicates the gel point estimation from the RGM.
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corresponds to the theoretical asymptotic behavior of the tail of 
the component size distribution, the Fisher exponent.

The algebraic decrease of the tail at the gel point causes the 
singularity of the weight average molecular weight 〈s〉 at χgel, 
shown in Figure 11. In Figure 12, the component size distri-
bution is shown as a function of conversion and component 
size.

Far from the gel point assigning low values to the cut-off 
value for the number of radicals in the pPBE model still leads 
to good results. However, close to the gel point, polymers with 
a large number of radicals are formed and gain importance. At 
the gel point, the radical distribution obeys the same power law 
as the component size distribution. This is typically a problem 

for the pPBE model, as it relies on the limitations of its dimen-
sions. In contrast, the RGM does not suffer from this problem. 
Figure 13 illustrates the concentration of polymers in sol with 
r ∈ 1, …, 500 radicals as a function of conversion χ computed 
by the RGM. The concentration is calculated by the number 
distribution of radicals normalized to the concentration of radi-

cals in sol, χ χ( , )
( )

w r

r
cr

r
. This figure proves that in conversion 

regions at some distance from the gel point concentrations of 
molecules with many radicals are negligible. However, it also 
demonstrates that near the gel point multiradical molecules are 
formed with numbers of radicals of several hundreds.

Figure 14 illustrates the weighted crosslink distribution 
normalized to the concentration in sol cc(χ)wc(c, χ) with its 
generating function being defined by Equation (49). It defines 
the concentration of crosslinks that are part of a connected 
component with c crosslinks at conversion χ. Note that the 
concentration of crosslinks was already shown in Figure 5. At 
the gel point, it is still relatively low, 2 × 10−5 mol L−1. Real-
izing that the concentration of monomer units in polymer 
at the gel point is 0.02 mol L−1, the average crosslink density 
is given by 1 × 10−3. One may estimate the average length of 
linear polymer segments (chains without crosslinks, lengths 
between crosslinks, free dangling ends) to be 1000 monomer 
units. Hence, the network close beyond the gel point is very 
sparse. Even, at 2% conversion, when practically all polymer 
(98 %) belongs to gel, the crosslink density is still low, and the 
average linear segment amounts to ≈100 units. Note that both 
the crosslink density and its distribution as shown in Figure 14 
are important characteristics of the polymer network, directly 
linked to material properties like elasticity.[33,60] Hence, infor-
mation concerning crosslinks forms an important means of 
validation of our model.

Macromol. Theory Simul. 2017, 26, 1700047

Figure 10. Concentration (mol L−1) of monomer units/nodes that are 
part of a molecule/component of size s in sol for different conversion χ 
(indicated by the color). The dashed black line visualizes the asymptotic 
behavior w(s, χgel) ∝ s−τ with the Fisher exponent τ = 3

2
.

Figure 9. Double-weighted distribution of molecules of size s normalized  
to the concentration in sol for different conversion χ (indicated by  
the color).

Figure 11. Weight average molecular weight 〈s〉 as a function of conver-
sion χ. The peak coincides with the gel point estimation from the gel 
point criterion (black dashed line).
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6. Conclusion

A random graph model was developed to predict the topology 
of an evolving polymer network formed by free-radical photo-
polymerization. The formation of the network is considered 
as a random process, but governed by a well-formulated reac-
tion mechanism. The polymer network is viewed as a random 
graph with directed and undirected edges. The random graph 
is completely defined by a time-dependent trivariate degree dis-
tribution. The degree distribution, which acts as the input of 
the random graph, is obtained by the numerical solution of the 
mPBE defining the concentration of monomer states.

The system includes all the relevant photocuring reactions, 
but excludes inhibition reactions. As another simplifying 

assumption, the decrease of rate coefficients due to diffusion 
limitations has not been accounted for.

In comparison to the pPBE, formulated for the same system, 
the number of differential equations that need to be solved is 
much lower. The solution of the mPBE provides information 
on the number and type of bonds for all monomer units for the 
whole range of conversion. Therefore, local information on the 
topology of the network is available also for the gel regime.

Global properties of the network are predicted over the whole 
range of photocuring conditions from low-viscosity monomer 
to the fully solid polymer network using the random graph 
formalism. The concentrations of reacted monomer units, 
FPDB, radicals, and crosslinks in sol and gel are estimated 
by computing the corresponding gel fractions. The results 
are compared to the solution of a “classical” pPBE.[48] For the 
reacted monomer units, FPDBs, and radicals, the results of the 
two models are in good agreement. As the pPBE model is for-
mulated for a 3D distribution (size, FPDBs, and radicals), the 
number of crosslinks is not explicitly accounted for. Numerical 
errors in the pPBE prevent a reliable estimation of concentra-
tion of crosslinks in the sol after the gel point. In contrast, the 
concentration of crosslinks is directly accessible in the RGM. 
Additionally, the RGM is easily extendable to high dimensions 
to include additional properties of monomers. An extension 
only requires the adjustment of the formulation of the mPBE, 
the RGM remains the same.

An important property of evolving networks is the emergence 
of the gel. An analytic criterion is presented, which allows the 
determination of the exact the gel point. This criterion utilizes 
only moments of the temporal degree distribution as input. In 
the pPBE model, an exact gel point estimation is not possible 
due to the limits on the sizes of its dimension. Especially poly-
mers with high numbers of radicals become important in the 
region close to the gel point, which can only be considered in 
the RGM.

Macromol. Theory Simul. 2017, 26, 1700047

Figure 13. Concentration (mol L−1) of polymers with r ∈ 1, …, 500 radi-
cals as a function of conversion χ. The number of radicals is indicated 
by the color.

Figure 14. Concentration (mol L−1) of crosslinks in sol that are part 
of a molecule with c crosslinks for different conversion χ (indicated 
by the color). The dashed black line indicates the asymptotic behavior  

wc(c, χgel) ∝ c−τ with τ = 3
2.

Figure 12. Concentration (mol L−1, indicated by color) of monomer 
units/nodes in sol that are part of a molecule/component of size s as a 
function of conversion χ.
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The RGM provides the possibility of computing the 
weight distributions of component size, FPDBs, radicals, and 
crosslinks. The cut-off of the distributions is not an intrinsic 
property of the model, but can be chosen freely.

Under the model assumptions the gel point is predicted at a 
remarkably low vinyl conversion of 0.2%, while at 2% conver-
sion almost all polymer present (98%) already belongs to the gel 
(based on counting monomer units). From the concentration 
of crosslinks we may estimate the average length of the linear 
strands: linear chains, chain segments between crosslinks, and 
dangling segments. At the gel point, these strands in average 
count 1000 monomer units. Thus, our model reveals the inter-
esting nature of the polymer material at low-conversion stages 
of 2% as being one relatively sparse network molecule. This 
picture may change when applying decreasing reaction rates, 
for instance, by a quantitative feedback from the evolving net-
work topology leading to lower mobility of reacting functional 
groups. Moreover, allowing for cycles of arbitrary size in the 
sol part of the system might change the observed topology 
fundamentally.

Tracking the mobility of the reactive groups during the phase 
transition and in the early gel stages and the quantification of 
the consequences for the reaction rates as well as the imple-
mentation of cycles already at early conversion will be objec-
tives of our further modeling studies. Further validation will 
be explored through measurement of mechanical properties of 
experimental acrylate networks.

Abbreviations

FPDB free pending double bond
MC Monte Carlo
mPBE monomer PBE
PBE population balance equation
pPBE polymer PBE
RGM random graph model

Nomenclature

(g*f )(x) Convolution of the functions g(x) and f(x)
[I2](0) Initial concentration of photoinitiator
[M2](0) Initial concentration of diacrylate
[X] Molar concentration of X
χ Vinyl conversion
χgel Vinyl conversion at the gel point

�X  Time derivative of X
μlmn Partial moments of the degree distribution
τ Fisher exponent
Θ Heaviside function
c Number of crosslinks
cc Molar concentration of crosslinks
cr Molar concentration of radicals
cs Molar concentration of reacted monomer units
cv Molar concentration of FPDBs
cv′  Molar concentration of vinyl groups
cc, sol Molar concentration of crosslinks in sol
cr, sol Molar concentration of radicals in sol

cs, sol Molar concentration of reacted monomer units 
in sol

′,solcv  Molar concentration of vinyl groups in sol
cv, sol Molar concentration of FPDBs in sol
d Node degree
fs, v, r Molar concentration of polymer molecules with 

state {s, r, v}
gf Gel fraction of momomer units

polg f  Gel fraction of reacted momomer units
g f

c
 Gel fraction of crosslinks

g f
r

 Gel fraction of radicals
g f

v
 Gel fraction of FPDBs

gv, r, i, j, k Molar concentration of monomer units with state 
{v, r, i, j, k}

I Initiator radical
i Number of in-bonds/edges
I2 Photoinitiator
j Number of out-bonds/edges
k Number of bidirectional bonds/edges
kd Rate coefficient for photoinitiation
ki Rate coefficient for vinyl initiation
kp Rate coefficient for propagation
ktc Rate coefficient for termination by recombination
ktd Rate coefficient for termination by disproportionation
m0 0th moment of the molecular number distribution 

in sol
m1 1st moment of the molecular number distribution 

in sol
M2 Free divinyl monomer
m2 2nd moment of the molecular number distribution 

in sol
Mx Molar mass of the diacrylate
Mv, r, i, j, k  Monomer unit with v vinyl groups, r radicals, i 

in-bonds, j out-bonds and k bidirectional bonds
Ps, v, r Polymer molecule with size s, v vinyl groups and r 

radicals
pdi Polydispersity
r Number of radicals
s Size of the polymer molecule
t Time
u(i, j, k) Degree distribution
U(x, y, z) Generating function of the degree distribution
ubi(i, j, k) Degree distribution for nodes reached by a bidirec-

tional edge
Ubi(x, y, z) Generating function of ubi(i, j, k)
uin(i, j, k) Degree distribution for nodes reached by an in-edge
Uin(x, y, z) Generating function of uin(i, j, k)
uout(i, j, k) Degree distribution for nodes reached by an 

out-edge
Uout(x, y, z) Generating function of uout(i, j, k)
v Number of vinyl groups
w(s) Size distribution of a weak component
W(x) Generating function of w(s)
Wbi(s) Generating function of wbi(s)
wbi(s) Size distribution of a weak component reached by 

a bidirectional edge
Win(s) Generating function of win(s)
win(s) Size distribution of a weak component reached by 

an in-edge
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Wout(s) Generating function of wout(s)
wout(s) Size distribution of a weak component reached by 

an out-edge
wc(c) Crosslink distribution
wr(r) Radical distribution
wv(v) Vinyl distribution
x Indeterminate of the generating function
y Indeterminate of the generating function
z Indeterminate of the generating function 
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