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Abstract We present a continuous-time generalization of the seminal research and
development model of d’Aspremont and Jacquemin (Am Econ Rev 78(5):1133–1137,
1988) to examine the trade-off between the benefits of allowing firms to cooperate in
research and the corresponding increased potential for product market collusion. We
show the existence of a solution to the optimal investment problem using a combi-
nation of results from viscosity theory and the theory of planar dynamical systems.
In particular, we show that there is a critical level of marginal cost at which firms
are indifferent between doing nothing and starting to develop the technology. We find
that colluding firms develop further a wider range of initial technologies, pursue inno-
vations more quickly, and are less likely to abandon a technology. Product market
collusion could thus yield higher total surplus.
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1 Introduction

An important reason for allowing firms to set up research and development (R&D)
cooperatives is that these “organizations, jointly controlled by at least two participat-
ing entities, whose primary purpose is to engage in cooperative R&D” [1] internalize
technological spillovers—the free flow of knowledge from the knowledge creator to
its competitors. Indeed, Bloom et al. [2] estimate that a 10% increase in a competitor’s
R&D is associatedwith up to a 3.8% increase in a firm’s ownmarket value. The exemp-
tion for R&D cooperatives in anti-cartel legislation is thus perceived to diminish the
failure of the market for R&D. However, as Scherer [3] observes: “the most egregious
price fixing schemes in American history were brought about by R&D cooperatives”,
an observation that constitutes the classic counterargument to a permissive antitrust
treatment of R&Dmarkets [4–6]. For instance, Goeree and Helland [7] find that in the
US the probability that firms join an R&D cooperative has dropped due to a revision of
antitrust leniency policy in 1993. This revision is perceived as making collusion less
attractive. They conclude that “Our results are consistent with RJVs [research joint
ventures] serving, at least in part, a collusive function.” The laboratory experiments
of Suetens [8] also show that members of an RJV are more likely to collude on price.
At the same time, it is quite well established that the prospect of future market power
enhances a firm’s incentives to invest in R&D [9]. As Greenspan [10] puts it:

No one will ever knowwhat new products, processes, machines, and cost-saving
mergers failed to come into existence, killed by the Sherman Act before they
were born. No one can ever compute the price that all of us have paid for that
Act which, by inducing less effective use of capital, has kept our standard of
living lower than would otherwise have been possible.

In this paper, we develop a dynamic model of R&D that considers explicitly the
cost of “new … processes” that “failed to come into existence … before they were
born” because of the ban on price-fixing agreements.

The channels through which cooperation in R&D facilitates product market col-
lusion have been examined in a number of theoretical studies [11–15]. According to
Fisher [16, p. 194]:

… [firms] cooperating in R&Dwill tend to talk about other forms of cooperation.
Furthermore, in learning how other firms react and adjust in living with each
other, each cooperating firm will get better at coordination. Hence, competition
in the product market is likely to be harmed.

In the short run, the reduced intensity of product market competition is likely to
hurt consumers. At the same time, it could enhance the functioning of an R&D coop-
erative. For instance, Geroski [17] argues that it is the feedback from product markets
that directs research toward profitable tracks and that, therefore, for an innovation to
be commercially successful, there must be strong ties between marketing and devel-
opment of new products. And Jacquemin [18] puts forward that R&D cooperatives
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are fragile and unstable. He reasons that when there is no cooperation in the product
market, there exists a continuous fear that one partner in the R&D cooperative may
be strengthened in such a way that it will become too strong a competitor in the prod-
uct market. Preventing firms from collaborating in the product market may therefore
destabilize R&D cooperatives or prevent their formation in the first place. Our focus
is on private incentives to develop cost-saving technologies over time. In particular,
we show that if firms collude in the product market, a wider range of technologies
is fully developed. We also show that firms competing in the product market realize
an inferior productive efficiency. We thus identify situations where product market
collusion increases total surplus.

Dynamic models of R&D were first introduced to study patent races whereby suc-
cessful innovators capture the entire market. This literature starts with Loury [19]
and Lee and Wilde [20] ([21] surveys the early contributions). Patent race models
examine, in essence, the time it takes for a cost-saving innovation to be completed.
R&D investments reduce this completion period. Because in these models the R&D
process itself cannot fail, the R&D-investment decision is transformed into a static
one. Meanwhile, a large literature has developed on the relation between intellectual
property rights and antitrust policies. For instance, Quirmbach [22] finds that there
is an optimal level of collusion that is in-between perfect competition and full col-
lusion. And Green and Scotchmer [23] show that it is optimal to allow for collusion
through sequential licensing in case the next innovation is a truly new application of
existing patents. More recently, another strand of dynamic R&D models has devel-
oped: continuous-time generalizations of strategic R&D models. These models allow
for “smoothing the investment efforts over a long time” [24], a type of investment
behavior that is observed in practice and that constitutes a key feature of continuous-
time models. Cellini and Lambertini [24] is the first continuous-time generalization
of the seminal analysis of d’Aspremont and Jacquemin [25]. In the duopoly game of
d’Aspremont and Jacquemin [25], firms first invest in cost-reducing R&D and then
play a Cournot game in the product market. In the continuous-time version of Cellini
and Lambertini [24], both firms start from an initial technology (that is, a level of
marginal cost) and invest continuously in R&D. This gradually reduces the initial
level of marginal cost toward the steady-state level. In contrast to the static generaliza-
tion of d’Aspremont and Jacquemin [25] by Hinloopen [26], Cellini and Lambertini
[24] find that the aggregate level of R&D is monotonically increasing in the number
of independent competitors.

We also consider a continuous-time generalization of d’Aspremont and Jacquemin
[25]. There are two distinguishing features of our analysis. First, we consider all pos-
sible initial marginal cost levels, including those exceeding the choke price (the lowest
price for which there is no demand). Especially in the early stages of development, it
is quite likely that the cost of a new technology (the cost, say, to develop a prototype)
exceeds the highest willingness to pay in the market. We characterize situations where
such initial technologies are only developed if firms collude in the product market.
Indeed, excluding initial marginal costs that are above the choke price ignores “ …
new … processes … [that] failed to come into existence, [as they are] killed by the
Sherman Act before they were born.” These instances constitute a direct welfare gain
of product market collusion.
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Second, in addition to near-equilibrium paths, we consider all trajectories that are
candidates for an optimal solution. This global analysis yields a bifurcation diagram
that indicates for every possible parameter combination the qualitative features of any
market equilibrium as well as of the transient dynamics toward it. We thus identify
critical parameter values: points in parameter space at which the optimal investment
function changes qualitatively. In particular, we determine the value of marginal costs
for which R&D investments are terminated, and for which they are not initiated at
all. We prove that these critical cost levels are affected by firm conduct. Therefore,
extending the R&D cooperative to product market collusion can lead to qualitatively
different long-run solutions, in spite of starting from an identical initial technology.

The related literature [24,27–30] has not considered initial marginal cost levels
that exceed the choke price nor has it carried out a global analysis. In all these papers,
any of the initial (permissible) technologies will be developed to full materialization;
technologies that are only developed under specific regimes (i.e., product market col-
lusion) remain hidden. The only exception is Hinloopen et al. [31], who characterize
the equilibria of a continuous-time dynamic monopoly with R&D investments. We
expand their analysis in three directions. First, we consider a duopoly rather than a
monopoly. Second, we examine two different scenarios: one in which firms cooperate
in R&D and compete in the product market (labeled “partial collusion”), and one in
which firms cooperate both in R&D and in setting price (labeled “full collusion”).
Indeed, comparing the two scenarios allows us to examine the effects of extending
cooperation in R&D toward collusion in the product market. And third, rather than
relying on numerical simulations, we prove a set of propositions that characterize the
dynamics of the model throughout the entire parameter space.

Our framework yields four possible outcomes for any initial draw of a new tech-
nology (cf. [31]). First of all, a “Promising Technology” arrives, whereby the initial
technology is developed through continuous R&D investments. This can occur for
initial cost levels both below and above the choke price. In the latter case, production
starts only after some time, because early R&D efforts have to bring down marginal
cost below the choke price. Second, a “StrainedMarket” arises: initial marginal cost is
below the choke price and firms invest in R&D, but the technology is not likely to be
developed to full materialization. In case of an “Uncertain Future,” the third situation,
it is not immediately clear whether the long-run steady state will be reached, or that
it is optimal to gradually leave the market. Only time will tell. Fourth, an “Obsolete
Technology” can emerge: whatever the initial marginal cost, the technology is either
not developed or developed only to be taken off the market in due time. The long-run
steady state will not be reached in either case.

All four technologies can emerge under both partial collusion and full collusion.
Comparing the two scenarios throughout the entire parameter space, we find that if
firms collude in the product market (i) it is more likely that an initial technology
qualifies as a “Promising Technology,” and if so, that it is more likely to be devel-
oped further, (ii) it is less likely that an initial technology qualifies as an “Obsolete
Technology,” and if so, it is more likely that firms invest in R&D, albeit temporar-
ily, and (iii) if an initial technology causes a “Strained Market” or if it induces an
“Uncertain Future,” it is less likely that it will be taken off the market in due time.
Put differently, due to product market collusion it is more likely that firms invest
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in R&D, and that these investments eventually lead to a steady state with positive
production.

Our analysis qualifies the per se prohibition of collusion in product markets for
high-tech industries. A higher total surplus obtains if colluding firms develop an ini-
tial technology and arrive at the saddle-point steady state while firms that compete
in the product market would not develop the technology at all. We show that this is
more likely to happen if new technologies arrive in circumstances that offer a high
profit potential (that is, large markets and efficient R&D processes). Under these cir-
cumstances, product market collusion can also yield higher total surplus if competing
firms would develop the new technology as well, be it to take it off the market in due
time, or to arrive at the saddle-point steady state. And in so far, higher R&D invest-
ments as such are desirable (as suggested in the endogenous growth literature; see,
e.g., [32,33]) the case for prohibiting collusion per se is further weakened. On the
other hand, colluding firms tend to hold on longer to technologies that are destined
to leave the market. This is not desirable from a social welfare point of view if that
prevents the development of new, superior technologies.

A particularly difficult situation arises when the initial technology is above the
choke price and if it will be developed only if firms collude in the product market. The
welfare cost of prohibiting firms to collude then remains hidden because no production
is affected by this prohibition. There is no production yet, and because collusion is
prohibited, there will be no production in the future. Put differently, no production
will be taken off the market if firms are prohibited to collude in the product market,
leaving the welfare cost unnoticed. Our analysis thus offers a first glance at “new …
processes … [that] failed to come into existence, killed by the Sherman Act before
they were born.”

The remainder of the paper is organized as follows. The basics of the model are
introduced in Sect. 2. In Sect. 3, the necessary conditions for optimal production
and investment schedules are derived under partial collusion and full collusion. The
corresponding bifurcation diagrams are derived in Sect. 4 and the two scenarios are
compared in Sect. 5. Section 6 concludes. Appendices contain the proofs of all propo-
sitions.

2 The Model

Our present model is an extension of the global monopoly framework of Hinloopen et
al. [31] to two firms, and it builds on Cellini and Lambertini [27]. Do note that Smrkolj
andWagener [34] show that the equilibrium considered in [27] is not subgame perfect.
Time t is continuous: t ∈ [0,∞[. There are two a priori fully symmetric firms that
both produce a homogeneous good at constant marginal costs ci (t). At every instant,
the market price p(t) is given as

p(t) = Ā − Q(t), (1)

where Q(t) = q1(t) + q2(t), with qi (t) the quantity produced by firm i at time t , and
where Ā is the choke price.
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Each firm i can reduce its marginal cost ci (t) by investing in R&D. In particular,
when firm i exerts R&D effort ki (t), its marginal cost evolves as

dci
dt

(t) ≡ ċi (t) = ci (t)
(−ki (t) − β̄k j (t) + δ̄

)
, (2)

where k j (t) is the R&D effort exerted by its rival and where β̄ ∈ [0, 1] measures the
degree of spillover.

Note that efficiency of production is assumed to decrease at a constant rate, as
captured by δ̄ > 0. This depreciation is due to (exogenous) aging of technology and
organizational forgetting [28,35]. As Benkard [36, p. 590] observes: “… an aircraft
producer’s stock of production experience is constantly being eroded by turnover, lay
offs and simple losses of proficiency at seldom repeated tasks. When producers cut
back output, this erosion can even outpace learning, causing the stock of experience to
decrease.” In our model, R&D investment yields know-how gains but the logic of the
argument is the same. For instance, complementary inputs that are typically purchased
also constitute a fraction of production cost. Incorporating these inputs becomes ever
more costly due to their inherent evolution over time, especially for firms that are
relatively sluggish in R&D, as R&D efforts also determine any firm’s “absorptive
capacity” [37].

A non-positive depreciation rate yields trivial equilibria. Every initial technology
will be developed in case δ̄ is negative, as there is an exogenous reduction in marginal
cost over time. For δ̄ = 0, consider δ̄ to be marginally positive. In that case, the value
of initial marginal cost that would make it optimal not to invest in R&D is far above the
choke price because only an infinitesimally small investment in R&D is then needed
to reduce marginal cost over time.

Both firms are endowed with a given identical initial technology ci (0) = c j (0) =
c0, which represents the state of the technology at the moment of the invention of the
product. Per unit of time, the costs of R&D efforts are

Γi (ki ) = b̄k2i , (3)

where b̄ > 0 is inversely related to the cost-efficiency of the R&D process. The
R&D process is thus assumed to exhibit decreasing returns to scale ([38]; see also the
discussion in [31]). Both firms discount the future with the same constant rate ρ̄ > 0.
Either firm’s instantaneous profit therefore equals

πi (qi , Q, ki , ci ) = ( Ā − Q − ci )qi − b̄k2i , (4)

with corresponding total discounted profit

Πi (qi , Q, ki , ci ) =
∫ ∞

0
πi (qi , Q, ki , ci )e

−ρ̄tdt. (5)

The model has five parameters: Ā, β̄, b̄, δ̄, and ρ̄. To simplify the analysis, we
rescale the model such that it has only three parameters. Rescaling is done by choosing
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“natural units” for the problem; it does not involve making special parameter choices.
Rather, each choice of parameters in the original model corresponds to a choice of
parameters in the rescaled model. The complexity reduction obtained by the scaling
is a consequence of the fact that in the original parameters, many choices give rise to
mathematically equivalent models. In mathematical terms, we embed the given five-
parameter family of models in a six-parameter family. We then show that the scaling
transformations we consider allow us to choose three parameter values to be equal to
1, effectively reducing the number of parameters to three.

Lemma 2.1 The following equations define new variables

t = t̃

δ̄
, ci = Āc̃i , qi = Āq̃i , Q = ĀQ̃,

ki = Ā√
b̄
k̃i , πi = Ā2π̃i , Πi = Ā2

δ̄
Π̃i ,

and new parameters φ = Ā/(δ̄
√
b̄) and ρ̄ = δ̄ρ̃. In the new variables, the model takes

the form:

π̃i (q̃i , Q̃, k̃i , c̃i ) = (1 − Q̃ − c̃i )q̃i − k̃2i , (6)

Π̃i (q̃i , Q̃, k̃i , c̃i ) =
∫ ∞

0
π̃i (q̃i , Q̃, k̃i , c̃i )e

−ρ̃ t̃ d t̃, (7)

˙̃ci = c̃i
(
1 − φ

(
k̃i + β̄ k̃ j

))
, c̃i (0) = c̃0, (8)

where c̃i ≥ 0, and with the control restrictions q̃i ≥ 0 and k̃i ≥ 0.

The proof of the lemma is given in “Appendix A.”

Remark 2.1 Rescaling the model as in Lemma 2.1 introduces a new parameter: φ. It
is one-to-one related to the profit potential of a technology. Higher potential revenues
come with a higher Ā, and each unit of R&D effort costs more if b̄ increases, while it
reduces marginal cost by less the higher is δ̄. In sum, a lower (higher) φ corresponds
to a lower (higher) profit potential.

Remark 2.2 In mathematical terms, the original model is a specimen of the six-
parameter model given by

ċi = ci
(
δ − φ(ki + βk j )

)
, Πi =

∫ ∞

0

(
(A − Q − ci )qi − bk2i

)
e−ρtdt,

with parameters values

(A, b, δ, β, φ, ρ) = ( Ā, b̄, δ̄, β̄, 1, ρ̄).
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The—equivalent—model in new variables is an instance of the same six-parameter
model, but with parameters values

(A, b, δ, β, φ, ρ) =
(
1, 1, 1, β̄,

Ā

δ̄
√
b̄
,
ρ̄

δ̄

)
.

We can, and will, without loss of generality drop the tildes from the “new” variables,
the bars from the parameters, and take A = 1, b = 1 and δ = 1.

To illustrate the usefulness of Lemma 2.1, consider two models with different
original parameterizations: (i) Ā = 10, b̄ = 1, δ̄ = 0.2, ρ̄ = 0.1, β̄ = 0.5, (ii)
Ā = 20, b̄ = 4, δ̄ = 0.2, ρ̄ = 0.1, β̄ = 0.5. Both models correspond to the same
rescaled model with φ = Ā/δ̄

√
b̄ = 50, ρ̃ = ρ̄/δ̄ = 0.5, β̄ = 0.5 and are therefore

mathematically equivalent in the sense that they have the same solution in rescaled
variables.

3 Partial Collusion and Full Collusion

In this section, we derive the necessary conditions for optimal production and invest-
ment schedules in case firms cooperate in R&D but compete in the product market
(Sect. 3.1), and in case firms cooperate in R&D and collude in the product market
(Sect. 3.2).

3.1 Partial Collusion

Both firms operate their own R&D laboratory and production facility. They select their
output levels non-cooperatively and adopt a strictly cooperative behavior in determin-
ing their R&D efforts so as to maximize joint profits. These assumptions amount to
imposing a priori the symmetry condition ki (t) = k j (t) = k(t). ci (0) = c j (0) = c0
implies that ci (t) = c j (t) = c(t). Equation (8) thus reads as

ċ = c(1 − (1 + β)φk). (9)

It may seem reasonable to assume that when firms cooperate in R&D, they also fully
share information, that is, to assume the level of spillover to be at its maximum (β = 1;
see [39]). For the sake of generality, we do not a priori fix the value of β at its maximal
value. There are also intuitive arguments for not doing so as there might still be some
ex post duplication and/or substitutability in R&D outputs if firms operate separate
laboratories (see the discussion in [40]).

The instantaneous profit of firm i is

πi (qi , Q, k, c) = (1 − Q − c)qi − k2, (10)

with Q = q1 + q2, yielding its total discounted profit over time
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Πi (qi , Q, k, c) =
∫ ∞

0
πi (qi , Q, k, c)e−ρtdt. (11)

As firms jointly decide on their R&D efforts, the only independent decisions are those
of production. However, as quantity variables do not appear in the equation for the
state variable (9), production feedback strategies of a dynamic game are simply static
Cournot–Nash strategies of each corresponding instantaneous game.

Maximizing πi over qi ≥ 0 gives us standard Cournot best-response functions for
the product market

qi (q j ) =
{

1
2 (1 − c − q j ), if q j < 1 − c,

0, if q j ≥ 1 − c.
(12)

Note that the constraint qi ≥ 0 is binding when q j ≥ 1−c. Solving for Cournot–Nash
production levels, we obtain

qN =
{

1
3 (1 − c), if c < 1,

0, if c ≥ 1.
(13)

Consequently, the instantaneous profit of each firm is

π(c, k) =
{

1
9 (1 − c)2 − k2, if c < 1,

−k2, if c ≥ 1.
(14)

We assume that firms face no financial constraints; they can invest in R&D prior
to production. Indeed, credit rationing would impose an upper limit on the value of
an indifference point; qualitatively it would not change our conclusions, however.
Also, for a sample of Italian manufacturing firms, Piga and Atzeni [41] find that
credit constraints are negligible for R&D intensive firms. And Bond et al. [42] find
no significant relationship between the level of R&D investments and cash flow for
German and UK firms, while Harhoff [43] finds a weak but statistically significant
relationship for both small and largeGermanfirms.The sensitivity ofR&Dinvestments
to cash flow fluctuations seems to be stronger for US firms (e.g., [44,45]), but by and
large, the literature on the importance of financial constraints for R&D investment is
inconclusive (see [46] for an overview).

The dynamic optimization problem of the R&D cooperative boils down to finding
an R&D effort schedule k∗ for either firm that maximizes the total discounted joint
profit, taking into account the state Eq. (9), the initial condition c(0) = c0, and the
control constraint k(t) ≥ 0 which must hold at all times. Note that according to (9), if
c0 > 0, then c(t) > 0 for all t . The natural state space of this problem would be the
interval ]0,∞[ of positive marginal cost levels, but for mathematical convenience, we
extend this to R by specifying that πi (qi , Q, k, c) = 0 if c < 0.

In order to close the model, we have to specify the set of admissible effort schedules
k(t).
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Definition 3.1 An R&D effort schedule is admissible if it is a bounded nonnegative
measurable function.

To solve this problem, we introduce the current-value Pontryagin function (also
called the un-maximized Hamilton or pre-Hamilton function), whereby we omit a
factor 2 for joint profits to obtain the solution expressed in per-firm values (due to
symmetry, maximizing per-firm total profit corresponds to maximizing joint total
profit)

P(c, k, λ) =
{

1
9 (1 − c)2 − k2 + λc(1 − (1 + β)φk), if c < 1,

−k2 + λc(1 − (1 + β)φk), if c ≥ 1,
(15)

where λ is the current-value costate variable of a firm in the R&D cooperative. The
costate (or shadow value) measures the marginal worth of the increment in the state c
for each firm at time t when moving along the optimal path. As we expect an increase
of the marginal costs to entail lower profits for the firm, we expect the shadow value
to be non-positive—that is λ(t) ≤ 0—along optimal trajectories.

We use Pontryagin’s maximum principle to obtain the solution to our optimization
problem. Maximizing over the control k ≥ 0 yields

k = max

{
0,−1

2
λc(1 + β)φ

}
. (16)

The maximum principle states further that the optimizing trajectory necessarily cor-
responds to the trajectory of the state–costate system

ċ = ∂P

∂λ
, λ̇ = ρλ − ∂P

∂c
, (17)

where k is replaced by its maximizing value. For λ ≤ 0, relation (16) gives a one-
to-one correspondence between the costate λ and the control k. We use this relation
to transform the state-costate system into a state-control system which an optimizing
trajectory has to satisfy necessarily as well. This system consists of two regimes (fol-
lowing the two part composition of the Pontryagin function). The first one corresponds
to c < 1 and positive production (q = (1 − c)/3). The second one corresponds to
c ≥ 1 and zero production. Note that in the non-rescaled model, the analogous con-
ditions for positive and zero production are c(t) < Ā and c(t) ≥ Ā, respectively. The
state-control systemwith positive production consists of the following two differential
equations:

ċ = c (1 − (1 + β)φk) , k̇ = ρk − (1 + β)φ

9
c(1 − c). (18)

The state-control system with zero production is given by

ċ = c (1 − (1 + β)φk) , k̇ = ρk. (19)
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3.2 Full Collusion

Under full collusion, firms determine jointly their R&D efforts and their output levels.
This amounts to imposing a priori the symmetry conditions ki (t) = k j (t) = k(t) and
qi (t) = q j (t) = q(t). Equation (8) reads again as Eq. (9). The profit of each firm at
every instant is

π(q, k, c) = (1 − 2q − c)q − k2, (20)

with corresponding total discounted profit

Π(q, k, c) =
∫ ∞

0
π(q, k, c)e−ρtdt. (21)

The optimal control problem of the two colluding firms is to find controls q∗ and k∗
that maximize the profit functional Π subject to the state Eq. (9), the initial condition
c(0) = c0, and two control constraints that must hold at all times: q ≥ 0 and k ≥ 0.
Notice, again, that according to (9), if c0 > 0, then c(t) > 0 for all t .

The current-value Pontryagin function in case of full collusion reads as:

P(c, q, k, λ) = (1 − 2q − c) q − k2 + λc (1 − (1 + β)φk) , (22)

where λ is the current-value costate variable. It now measures the marginal worth
at time t of an increment in the state c for a colluding firm when moving along the
optimal path.

The necessary conditions for the solution to the dynamic optimization problem con-
sist again of a state-control system which has two regimes. As in the partial collusion
case, the first regime corresponds to c < 1 and positive production (q = (1 − c)/4),
while the second regime corresponds to c ≥ 1 and zero production.

The state-control system in the region with positive production reads as

ċ = c (1 − (1 + β)φk) , k̇ = ρk − (1 + β)φ

8
c(1 − c), (23)

whereas the state-control system with zero production is

ċ = c (1 − (1 + β)φk) , k̇ = ρk. (24)

4 Analysis

Consider the system

ċ = c (1 − (1 + β)φk) , k̇ = ρk − αφ(1 + β)c(1 − c)χ(c), (25)

where χ(c) = 1 if 0 < c < 1 and χ(c) = 0 if c ≥ 1 (or c ≤ 0). Systems (18)–(19)
and (23)–(24) are instances of system (25), with α = 1/9 for the partial collusion
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scenario and α = 1/8 for the full collusion scenario. Indeed, the monopoly system in
Hinloopen et al. [31] is also a special case of system (25), with α = 1/4.

The first result gives the properties of the steady states of the state-control system
(see “Appendix B” for the proof).

Proposition 4.1 Let

D = 1

4
− ρ

α(1 + β)2φ2 .

Depending on the value of D, there are three different situations.

A. If D > 0, the state-control system with positive production (23) has three steady
states:
i. (ce, ke) = (0, 0) is an unstable node,

ii. (ce, ke) =
(
1
2 + √

D, 1
(1+β)φ

)
is either an unstable node or an unstable focus,

and
iii. (ce, ke) =

(
1
2 − √

D, 1
(1+β)φ

)
is a saddle-point steady state.

B. At D = 0, there are two steady states:
i. (ce, ke) = (0, 0), which is an unstable node, and

ii. (ce, ke) =
(
1
2 ,

1
(1+β)φ

)
, which is a semi-stable steady state.

C. If D < 0, the origin (ce, ke) = (0, 0) is the unique steady state of the state-control
system with positive production, which is unstable.

The system consequently exhibits a saddle-node bifurcation at D = 0.

Remark 4.1 The stable manifold of the saddle-point steady state is one of the candi-
dates for an optimal solution. However, as neither the Mangasarian nor the Arrow
concavity conditions are satisfied, the stable manifold is not necessarily optimal.
Proposition 4.1 already implies that there should be other candidates for optimal-
ity as there is a parameter region for which there is no saddle point and hence no stable
manifold to it.

The following result clarifies (“Appendix C” contains the proof).

Proposition 4.2 The set of candidates for an optimal solution consists of the stable
paths Ws− of the saddle-point steady state and the trajectory E through the point
(c, k) = (1, 0).

Proposition 4.2 is illustrated in Fig. 1. The thick black lines Ws− and E indicate
optimal solutions. The dotted vertical line c = 1 separates the region with zero pro-
duction from the region with positive production. We label the trajectory E the “exit
trajectory”, as following this trajectory implies that firms eventually leave the region
with positive production.

Proposition 4.2 only reduces the set of trajectories by applying necessary conditions
for optimality, but there is no guarantee that an optimal solution exists. The next
proposition summarizes when an optimal solution exists.

Proposition 4.3 For all admissible values of the parameters, and all initial points,
the optimal control problem has at least one solution, which is among the candidates
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Fig. 1 Candidate maximizing
trajectories Ws− and E in the
state-control space
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specified in Proposition 4.2. Moreover, there is at most one initial state ĉ such that
there are two optimizing trajectories starting at ĉ.

The proof is in “Appendix D.”
To assess the dependence of the solution structure on the model parameters, we

carry out a bifurcation analysis. This consists of identifying those parameter values for
which the qualitative structure of the optimal dynamics changes. These “bifurcating”
values bound open parameter regions such that the optimal dynamics are qualitatively
identical for all parameter values in a region (see [47,48]). Put differently, for all points
in a region, a sufficiently small change in parameter values will not lead to a qualitative
change of the optimal dynamics; regions characterize stable types of dynamics.

System (25) has four distinct stable dynamics types (cf. [31]). These are illustrated in
Fig. 2 in case of partial collusion. Note that the same types emerge under full collusion
(the stable dynamics types are compared across scenarios in Sect. 5). The first type
is a “Promising Technology.” In this case, there exists an initial technology ĉ > 1
that is an indifference threshold: a point in state space where the decision maker is
indifferent between twooptimal trajectories that have distinct long-term limit behavior.
In particular, for 0 < c0 ≤ ĉ it is optimal to start developing the initial technology,
ending up in the saddle-point steady state in the region with positive production. If
1 < c0 ≤ ĉ, initially firms invest only in R&D; production begins whenever c(t) < 1.
If c0 ≥ ĉ, it is optimal not to initiate R&D efforts; potential future profits do not suffice
to compensate for losses that would be incurred in the initial periods during which
firms would invest in R&D but would not produce yet (note that for c0 = ĉ, there are
two distinct R&D investment trajectories, which are, nevertheless, both optimal; see
also Proposition 4.3).

The second type corresponds to a “Strained Market,” where there is an indifference
threshold below the choke price (that is, in the region with positive production): 0 <

ĉ < 1. In this case, if 0 < c0 < ĉ, the initial technology will be developed toward the
saddle-point steady state. If ĉ < c0 < 1, the exit trajectory applies; R&D investments
only serve to slow down the technological decay.

In a small part of the parameter space, the third type arises: an “Uncertain Future.”
Initial technologies (states) are now divided by a repelling steady state (rather than an
indifference point). If the system starts exactly at the repelling point cR , it stays there
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Fig. 2 R&D investment trajectories for the four stable dynamics types of system (25) with α = 1/9 (partial
collusion). Parameters: a (β, ρ, φ) = (1, 0.5, 4), b (β, ρ, φ) = (1, 1, 3.5), c (β, ρ, φ) = (1, 4, 6.1),
d (β, ρ, φ) = (1, 1, 2.5). a Promising Technology, b Strained Market, c Uncertain Future, d Obsolete
Technology

indefinitely; when it starts close to it, it stays there for a long period of time, after
which it converges to one of the two attractors: the steady state or the exit trajectory.

The fourth type typifies the dynamics of an “Obsolete Technology.” Whatever the
initial technology, (eventually) the firms leave the market; R&D investments are only
used to slow down the technical decay.

The four different dynamics types are grouped conveniently in a bifurcation dia-
gram (see Fig. 3): the graph that indicates for every possible parameter combination the
qualitative features of anymarket equilibrium as well as the transient dynamics toward
them. In Fig. 3, the uppermost curve represents parameter values forwhich the indiffer-
ence point is exactly at c = 1. At the saddle-node curve (SN), an optimal repeller and
an optimal attractor collide and disappear. The curve SN’ corresponds to saddle-node
bifurcations in the state-control system that do not correspond to optimal dynamics.
At the indifference-attractor bifurcations (IA), an indifference point collides with an
optimal attractor and both disappear. Finally, at an indifference-repeller bifurcation
(IR), an indifference point turns into an optimal repeller. The central indifference-
saddle-node (ISN) bifurcation point at (ρ, φ(1 + β)) ≈ (2.14, 8.78) organizes the
bifurcation diagram. The curve representing indifference points at c = 1 obtains a
value of φ(1 + β) ≈ 2.998 for ρ = 1 × 10−5.
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Fig. 3 Bifurcation diagram (partial collusion)

5 Collusion and the Incentives to Innovate

In this section, we compare the global optimum of the two scenarios. For a welfare
comparison, we introduce total discounted values of profits (Π ), consumer surplus
(CS), and total surplus (TS):

Π =
∫ ∞

0
π(t)e−ρtdt, (26)

CS =
∫ ∞

0

1

2
(1 − p(t))Q(t)e−ρtdt =

∫ ∞

0
2q(t)2e−ρtdt, (27)

TS = 2Π + CS, (28)

where at time t = 0 firms start with c0 and then invest along the optimal trajectory
γ (t) = (c(t), k(t)) as t → ∞.

We first formally establish that the two scenarios yield different (optimal) trajecto-
ries. In Fig. 4, the bifurcation diagrams of both scenarios are superimposed. There are
significant quantitative differences between the two diagrams, as reflected by the dif-
ferent locations of the curves that divide the parameter space. Let Ii , I Ii , . . . , i = 1, 2
denote regions I , I I, . . . under scenario i , with i = 1 (2) corresponding to partial
(full) collusion. The following then holds (see “Appendix E” for the proof).

Proposition 5.1 The following inclusions hold:

I1 ⊂ I2, I1 ∪ I I1 ⊂ I2 ∪ I I2, I1 ∪ I I1 ∪ I I I1 ⊂ I2 ∪ I I2 ∪ I I I2.

The first inclusion of Proposition 5.1 implies that the “Promising Technology”
region is larger if firms collude in the product market; due to collusion, the situation
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Fig. 4 Superimposed bifurcation diagrams. Partial collusion curves are gray, full collusion ones are black

where firms first invest in R&D, and only after some initial development period start
producing, is more likely to occur. From the third inclusion follows that the “Obso-
lete Technology” region is smaller if firms collude; firms that collude are less likely
either not to develop an initial technology or to invest in R&D only to abandon the
technology in time.

5.1 R&D Investment Incentives

In line with much of the related literature [9], Proposition 5.1 suggests that colluding
firms have in general a stronger incentive to invest in R&D. This turns out to be the
case, as the next proposition formally shows (see “Appendix F.1” for the proof).

Proposition 5.2 Investment in R&D in the full collusion scenario is always at least
as high as in the corresponding partial collusion scenario.

Proposition 5.2 implies the following. First of all, whenever both scenarios lead to
the saddle-point steady state, marginal costs in the full collusion scenario are lower
than in case of partial collusion, because fully colluding firms have invested more
in cost-reducing R&D to arrive at the long-run equilibrium. Put differently, product
market collusion yields a higher production efficiency.

Second, if the initial technology leads to production after some initial development
period only, colluding firms will enter this production phase more quickly because at
every instant of the pre-production phase they invest more in R&D in order to bring
the level of marginal costs below the choke price.
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Fig. 5 State-control space (a), total discounted profit (b), consumer surplus (c), and total surplus (d), when
the exit trajectory is an optimal solution. Parameters: (β, ρ, φ) = (1, 1, 2). Curves of the partial (full)
collusion scenario are gray (black)

Third, firms that collude in the product market abandon obsolete technologies at a
lower pace. This implication has a similar vein as the argument of Arrow [49], that a
monopolist has less incentive to invest inR&D than an otherwise identical but perfectly
competitive market, because by doing so the monopolist replaces current monopoly
profits by future (higher) monopoly profits. Here, the alternative for colluding firms
is to exit the market more quickly (rather than staying in the market as a monopolist,
as in Arrow [49]), an alternative that for them is not optimal (see Fig. 5).

The difference in R&D intensity across the two scenarios is also reflected in the
type of trajectories that firms select. To characterize this difference for all possible
situations, it is convenient to have defined the threshold level of initial marginal cost
ĉ between “eventual exit” and “eventual positive production.” Formally, set ĉ = 0 in
the “Obsolete Technology” region and let ĉ1 and ĉ2 denote the threshold level for the
partial collusion and the full collusion scenarios, respectively. We can then state the
following (see “Appendix F.2” for the proof).

Proposition 5.3 For all parameter values, either ĉ1 < ĉ2 or ĉ1 = ĉ2 = 0.

The implications of Proposition 5.3 are twofold. First, if firms collude in the product
market, the set of initial technologies that are developed toward the saddle-point steady
state is larger (see Fig. 6). In particular, if the initial technology c0 falls in the non-
empty interval ]ĉ1, ĉ2[, it will only be brought to full materialization if firms collude
in the product market.
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Fig. 6 State-control space (a), total discounted profit (b), consumer surplus (c), and total surplus (d), when
the indifference point is in the region with zero production. Parameters: (β, ρ, φ) = (1, 0.1, 2.25). Curves
of the partial (full) collusion scenario are gray (black)

Second, the set of initial technologies that triggers no investment in R&D at all or
that induces firms to select the exit trajectory is smaller if firms collude in the product
market. Figure 7 illustrates this for a “Strained Market.” The strained investment
circumstances induce partially colluding firms to exit the market in due time for all
c0 > ĉ1. In contrast, fully colluding firms exit the market only for c0 > ĉ2. Initial
technologies c0 in the interval ]ĉ1, ĉ2[ are therefore only brought to full maturation by
firms that collude in the product market.

We can conclude that due to collusion in the product market (i) it is more likely that
an initial technology qualifies as a “Promising Technology,” and if so, that it is more
likely to be developed further, (ii) it is less likely that an initial technology qualifies
as an “Obsolete Technology,” and if so, it is more likely that firms invest in R&D,
albeit temporarily, and (iii) if an initial technology causes a “Strained Market” or if it
induces an “Uncertain Future,” it is less likely that it will be taken off the market in due
time. Put differently, due to product market collusion it is more likely that firms invest
in R&D, and that these investments eventually lead to a steady state with positive
production.

5.2 Total Surplus

We next consider the effect of product market collusion on total surplus. Obviously,
collusion in the product market yields higher total surplus if colluding firms develop an
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Fig. 7 State-control space (a), total discounted profit (b), consumer surplus (c), and total surplus (d), when
the indifference point is within the region with positive production. Parameters: (β, ρ, φ) = (1, 0.1, 2).
Curves of the partial (full) collusion scenario are gray (black); curves of the stable path (exit trajectory) are
solid (dotted). Dots indicate the saddle-point steady state

initial technology and arrive at the saddle-point steady state while firms that compete
in the product market would not develop the technology at all. Formally:

Proposition 5.4 Whenever both scenarios have an indifference point above the choke
price, the full collusion scenario yields higher consumer surplus and total surplus
than the partial collusion scenario for all initial technologies in-between the two
indifference points.

Proof The proof follows trivially from the fact that i) for all values of c above the
indifference point in the region where c ≥ 1, both q = 0 and k = 0 for all t ∈ [0,∞[,
and i i) for all values of c below the indifference point,Π > 0 and for some finite time
T also q > 0 for all t > T as t → ∞. �

Figure 6 illustrates Proposition 5.4: for all c0 ∈ ]ĉ1, ĉ2[, collusion in the product
market yields a higher total surplus. Figure 8 illustrates some comparative statics of
the indifference points in this case. Indeed, these points are positively related tomarket
size and R&D efficiency. Note, however, that also �ĉ = ĉ2 − ĉ1 increases if the R&D
process becomes more efficient and/or if the market size becomes larger, the more
so the lower is the discount rate (in Fig. 8, a lower discount rate corresponds to a
larger slope of the convex curves). Because future mark-ups are positively related to
both market size and R&D efficiency, an increase in either of these two has a larger
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(positive) effect on future profits if firms collude in the product market. And these
future benefits feature more prominently in total discounted profits if the discount
rate is lower. Therefore, indifference points correspond to lower marginal cost values
if the discount rate goes up, all else equal (cf. the relative location of C1 and C2 in
Fig. 8).

Product market collusion can also yield higher total surplus if colluding firms
arrive at the saddle-point steady state while firms that compete in the product market
would select the exit trajectory. In these cases, firms that compete in the product
market temporarily produce more. This is offset by the added benefits of sustained
R&D investments under full collusion if the discount rate is sufficiently small (see
Fig. 7).

Finally, collusion in the product market can also yield a higher total surplus if under
both scenarios firmswould select the trajectory toward the saddle-point steady state: in
Fig. 9, for all c0 ∈]c�, ĉ2[, total surplus is higher if firms collude in the product market.
In this example, the discount rate is high: ρ = 10, which corresponds, for instance,
to the non-rescaled variables δ̄ = 0.01 and ρ̄ = 0.1. Also, the initial marginal costs
are sufficiently high. In such an environment, the higher R&D investments and the
reduced importance that is attached to future surplus work in favor of product market
collusion as under this scenario firms will reach the production stage more quickly, a
benefit that more than offsets the welfare loss of future increased mark-ups. That is,
a higher (rescaled) discount rate ρ̃ = ρ̄/δ̄ implies either a higher discount rate ρ̄ or a
lower δ̄. With a lower δ̄, cost reductions take longer, such that the time difference in
reaching the production stage between the two scenarios becomes more pronounced.
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Fig. 9 Total surplus when the indifference point is in the region with zero production. Parameters:
(β, ρ, φ) = (1, 10, 50). Gray curves correspond to partial collusion, whereas the black ones correspond to
full collusion. c� ≈ 3.6, ĉ1 ≈ 4.01, ĉ2 ≈ 4.74. For all c0 ∈]c�, ĉ2[, total surplus is higher if firms collude
in the product market

6 Conclusions

Schumpeter’s famous observation continues to challenge the design of optimal com-
petition policies for high-tech sectors. The classic rationale for competition policies
is rooted in their effect on total surplus. Typically, product market collusion transfers
consumer surplus to firm profits, resulting in a net loss of total surplus. To date, the
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literature considers this result to be robust to the increased incentive to invest in R&D
that comes with collusion in the product market. Our analysis shows that it actually
fails this robustness check if the phase of development prior to production is taken
into account and/or if all possible R&D investment trajectories are considered.

According to our analysis, extending an R&D cooperative agreement to collusion
in the product market is welfare enhancing if the market size is large and/or the R&D
process is efficient, given a relatively modest discount rate. The profit potential of a
new technology is then relatively large. As a result, firms that collude in the product
market bring more initial technologies to full materialization.

A particularly disturbing situation arises when the initial draw c0 out of ]ĉ1, ĉ2[
is above the choke price (c0 > 1). The welfare cost of prohibiting firms to collude
in the product market then remains hidden because no production is affected by this
prohibition. There is no production yet, and because collusion is prohibited, there will
be no production in the future. Put differently, no production will be taken off the
market if firms are prohibited to collude in the product market.

Our analysis thus signals a potential problem for antitrust policy as it shows that
prohibiting collusion in the product market per se is not univocally welfare enhancing.
It also shows that the associated welfare costs might not surface. Further research is
needed to substantiate our qualification of prohibiting collusion per se, including the
development of richer models that allow for learning by doing, stochastic R&D, and
asymmetries between firms.
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Appendix A: Proof of Lemma 2.1

We shall refer to the original variables t , qi , . . . as the “old” variables, and to the
variables t̃ , q̃i , . . . as the “new” variables.

In the new variables, the left- and right-hand sides of equation (2) take the form

dci
dt

= Āδ̄
dc̃i
dt̃

, ci (−ki − β̄k j + δ̄) = Āc̃i

(
− Ā√

b̄
k̃i − β̄

Ā√
b̄
k̃ j + δ̄

)
.
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Equation (2) then simplifies to

dc̃i
dt̃

= c̃i

(
1 − Ā

δ̄
√
b̄

(
k̃i + β̄ k̃ j

))
= c̃i

(
1 − φ

(
k̃i + β̄ k̃ j

))
,

as claimed in the lemma.
Writing the total discounted profit in the new variables yields

Πi =
∫ ∞

0

(
( Ā − Q − ci )qi − b̄k2i

)
e−ρ̄tdt

=
∫ ∞

0

(

( Ā − ĀQ̃ − Āc̃i ) Āq̃i − b̄

(
Ā√
b̄

)2

k̃2i

)

e−δ̄ρ̃(t̃/δ̄) 1

δ̄
dt̃

= Ā2

δ̄

∫ ∞

0

(
(1 − Q̃ − c̃i )q̃i − k̃2i

)
e−ρ̃ t̃dt̃ = Ā2

δ̄
Π̃i .

�

Appendix B: Proof of Proposition 4.1

Second rescaling of the problem Recall the dynamic optimization problem: to maxi-
mize

Π =
∫ ∞

0

(
α(1 − c)2χ(c) − k2

)
e−ρtdt,

subject to the dynamic restriction ċ = (1 − φ(1 + β)k)c. This problem is rewritten
by introducing constants

K = 1

φ(1 + β)
and μ = αφ2(1 + β)2

4ρ
, (29)

and the variable u = k/K . It is then seen to be equivalent to the problem to maximize

V = Π

K 2 =
∫ ∞

0

(
4ρμ(1 − c)2χ(c) − u2

)
e−ρtdt, (30)

subject to the dynamic restriction

ċ = (1 − u) c (31)

and the control restriction u ≥ 0. The Pontryagin function of this problem is

P = 4ρμ(1 − c)2χ(c) − u2 + λc(1 − u),
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which is maximized at

u = max
{
0,− c

2
λ
}

. (32)

This yields the Hamilton function

H = 4ρμ(1 − c)2χ(c) + λc +
{

(λc)2

4 , if λ ≤ 0,

0, if λ > 0.
(33)

If λ ≤ 0, the associated state-costate equations read as

ċ = Hλ = λc2

2
+ c, λ̇ = ρλ − Hc = ρλ + 8ρμ(1 − c)χ(c) − λ2

2
c − λ, (34)

whereas if λ > 0, they simplify to

ċ = c, λ̇ = (ρ − 1)λ + 8ρμ(1 − c)χ(c). (35)

For λ ≤ 0, relation (32) defines a variable transformation that puts the system into
state-control form

ċ = F1(c, u) = c (1 − u) , u̇ = F2(c, u) = ρ (u − 4μc(1 − c)χ(c)) . (36)

Note that this system is only valid for u ≥ 0, as for λ > 0, the relation between u and
λ fails to be one-to-one. For later use, we note that in (c, u) variables, the Hamilton
function takes the form

Hcontrol(c, u) = 4ρμ(1 − c)2χ(c) + u2 − 2u. (37)

B.1 Steady States

To determine the steady states of the state-control system (36), we solve the equations
ċ = 0, u̇ = 0. It is immediate that this system has no solutions if c > 1.

If 0 ≤ c ≤ 1, the equation ċ = 0 is satisfied if c = 0 or u = 1. Substitution
into u̇ = 0 of the former yields the steady state (c, u) = (0, 0). Substitution of the
latter leads to the quadratic equation c2 − c + 1/(4μ) = 0, which can be written as
(
c − 1

2

)2 − D = 0 with

D = 1

4

(
1 − 1

μ

)
. (38)

Note that D < 1
4 , as all parameters are assumed to have positive values. For D > 0,

the quadratic equation has two real solutions

c± = 1

2
± √

D = 1 ± √
1 − 1/μ

2
,
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both satisfying 0 < c± < 1; for D = 0, there is a single real solution c = 1/2, while
for D < 0, there is no real solution.

Summarizing, in the region 0 ≤ c ≤ 1, there is always the steady state (c, u) =
e0 = (0, 0). If D = 0, there is the additional steady state

(c, u) = eb =
(
1

2
, 1

)
, (39)

and if D ≥ 0, there are

(c, u) = e± = (c±, u±) =
(
1

2
± √

D, 1

)
. (40)

These are all the steady states of the state-control system (36).

B.2 Stability

To analyze stability, we have to determine the eigenvalues of

DF =
(

1 − u −c
4ρμ(2c − 1) ρ

)

at the steady states e0, e+ and e−. As

DF(e0) =
(

1 0
−4ρμ ρ

)
,

which has eigenvalues ρ and 1, the point e0 is always an unstable node.
Denote the eigenvalues of the matrix

DF(e±) =
(

0 −c±
±8ρμ

√
D ρ

)
(41)

by λi±, i = 1, 2. They satisfy λ1± + λ2± = trace DF(e±) = ρ and λ1±λ2± =
det DF(e±) = ±8ρμc±

√
D. We have seen before that c± > 0 whenever it is real.

If D > 0, it follows that the eigenvalues λ1−, λ2− have opposite sign, and e− is a sad-
dle, whereas λ1+ and λ2+ have the same sign and positive sum, implying that e+ is an
unstable node.

Expressing these results in the original variables, we obtain the results announced
in the proposition.
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B.3 Bifurcation Analysis

It remains to prove the occurrence of a saddle-node bifurcation. If μ = μb = 1, then
D = 0 and the point eb = (cb, ub) = (1/2, 1) is a steady state with eigenvalues 0 and
ρ, respectively.

We use a result from Sotomayor [50] (quoted as Theorem 3.4.1 in Guckenheimer
and Holmes [51]), which for planar dynamical systems states that if the family

ẋ = F(x;μ)

parametrized by μ satisfies the following three conditions

A. Dx F(x0;μ0) has a simple eigenvalue 0 with right eigenvector v and left eigen-
vector w;

B. wDμF(x0;μ0) �= 0;
C. w

[
D2
x F(x0;μ0)(v, v)

] �= 0;

then it features a non-degenerate saddle-node bifurcation at x = x0 for μ = μ0.

As DF(eb;μb) =
(
0 −1/2
0 ρ

)
, it follows that v = (1, 0) and wT = (2, 1) are

respectively left and right eigenvectors associated with the eigenvalue 0. Furthermore,

wDμF(eb;μb) = w

(
0

−ρ

)
= −ρ �= 0

and

w
[
D2
x F(eb;μb)(v, v)

]
= w

∂2

∂c2
F = w

(
0
8ρ

)
= 8ρ �= 0.

We conclude that a non-degenerate saddle-node bifurcation occurs in the system at
μ = 1. This completes the proof of Proposition 4.1. �

Appendix C: Proof of Proposition 4.2

As in the proof of Proposition 4.1, introduce the constants

K = 1

φ(1 + β)
and μ = αφ(1 + β)

4ρK
= αφ2(1 + β)2

4ρ
,

as well as the rescaled control variable u = k/K . The state-control system then takes
the form

ċ = c (1 − u) , u̇ = ρ
(
u − 4μc(1 − c)χ(c)

)
. (42)

Recall also the notations

e0 = (0, 0), e− =
(
1 − √

1 − 1/μ

2
, 1

)
, e+ =

(
1 + √

1 − 1/μ

2
, 1

)
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for the three steady states of the system, and introduce e1 = (1, 0).
To prove the proposition, the state-control space is partitioned into four subsets,

R1, R2, R3 and E . Of these, the sets R3 and E are independent of the values of the
system parameters. They are given as R3 = {(c, u) : 0 < c < 1, u = 0} and
E = {(c, u) : c ≥ 1, u = 0}. Let U = {(c, u) : u > 0} be the upper half plane.
Given the set R1, the set R2 is equal to R2 = U\R1.

It remains to specify R1, which is the first step in the proof. Then it is shown
that no trajectory in either R2 or R3 can be optimal. The next step is to demonstrate
that of the trajectories in R1, only those can be optimal which converge either to a
steady state in R1, necessarily a saddle, or which end up in the “exit trajectory” E .
Then it has to be shown that the trajectories that are not excluded up to this point, the
candidate trajectories, “cover” the state space; that is, for every initial state c0, there
is at least one candidate trajectory passing through the line c = c0. Using parts of the
remaining candidate trajectories, we construct a viscosity solution of the Hamilton–
Jacobi equation,which is then necessarily the value function. This shows the optimality
of the remaining trajectories.

C.1 Definition of R1

Set u0 = max{1, μ}, and consider the trajectory γ (t) = (c(t), u(t)) of the system
(42) that passes at t = 0 through the point (1, u0).

Ifμ ≤ 1, thenu0 = 1and R1 is specified as R1 = {(c, u) : 0 ≤ c ≤ 1, 0 < u ≤ 1} .

If the other possibility μ > 1 obtains, then u0 = μ > 1 and ċ(0) < 0. In this
situation, let τ be the least upper bound of those negative values of t that satisfy
c(t) ≤ 1; that is, let τ = sup{t < 0 : c(t) ≤ 1}.

We claim that τ is finite. Arguing by contradiction, assume that τ = −∞. Then
for all t < 0 we have c(t) > 1, and Eq. (42) implies that for all t < 0 we have
u(t) = u0eρt . In particular, there is a t1 < 0 such that u(t) < u0eρt1 =: K1 < 1 for all
t < t1. But for those values of t , it follows that ċ = (1 − u) c > (1 − K1) c =: K2c,
where K2 > 0. Gronwall’s lemma implies then that c(t) < eK2(t−t1)c(t1) if t < t1.
But for t sufficiently small, this is smaller than 1, contradicting the hypothesis that
τ = −∞. Hence τ is finite.

Introduce uτ by the equation γ (τ) = (1, uτ ). The set R1 is defined as follows: it is
the open region bounded by the concatenation of the curve γ taken between t = 0 and
t = τ , connecting (1, u0) and (1, uτ ), the vertical line segment connecting (1, uτ ) to
e1, the horizontal segment connecting e1 to e0, the vertical segment connecting e0 to
(0, u0), and the horizontal segment connecting (0, u0) to (1, u0). See Fig. 10 for the
possible shapes of R1.

C.2 Trajectories in R2 Cannot Be Optimal

In the second step of the proof, the transversality condition is used to show that any
trajectory that passes through points in R2 cannot be optimal.
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R1

R2

R3

E
1

c

μ

1

u

(a)

R1

R2

R3

E
1

c

μ

1

u

(b)

Fig. 10 Definition of the set R1. Solid curves denote the boundary of the set, dashed curves the isoclines
of the system (36). a μ ≤ 1, b μ > 1

Beginning with R2, we note that the subset

R(1)
2 = {(c, u) : 0 ≤ c ≤ 1} ∩ R2

of R2 is a forward trapping region: once a trajectory of (42) is inside R(1)
2 , it remains

inside for all subsequent times. This fact is established by demonstrating that the vector
field defined by (42) is inward pointing on the boundary of R(1)

2 . For, if u = u0 =
max{1, μ} and 0 ≤ c ≤ 1, then

u̇ ≥ ρ(μ − 4μc(1 − c)) = 0.

If c = 0, then ċ = 0, and if finally c = 1 and u ≥ u0 ≥ 1, then

ċ ≤ c (1 − 1) = 0.

Actually, we can make the sharper statement that if u > u0, then

u̇ > 0. (43)

To show that no trajectory that enters R(1)
2 can be maximizing, pick an arbitrary

trajectory γ such that γ (t0) ∈ R(1)
2 at a given time t0. By the Poincaré-Bendixon

theorem, γ (t) is either unbounded, or its ω-limit set is a steady state, or a limit cycle.
The latter possibility is excluded, as the state-costate system, which is in one-to-one
relation with the state-control system, has constant positive divergence everywhere
(see [47]). There are no steady states in R(1)

2 . Hence there is a sequence t0, t1, . . . such
that |γ (ti )| → ∞. In particular, there is t̄ > t0 such that u(t̄) > 2u0. But then u(t) is
monotonely increasing toward infinity as t > t̄ , as a consequence of (43).

Consequently, if t ≥ t̄ , then ċ ≤ (1 − 2u0) c ≤ −c. By Gronwall’s lemma it
follows that

c(t) ≤ c(t̄)e−(t−t̄). (44)
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Likewise, if t ≥ t̄ , then u(t) > 2u0 and u̇ ≥ ρ(u − μ). Gronwall’s lemma implies
then that

u(t) ≥ μ + (2u0 − μ)eρ(t−t̄). (45)

If the trajectory γ (t) = (c(t), u(t)) is optimal, then by the Hamilton–Jacobi equation
(see, e.g., Wagener [47]), the total profit Π takes the value

Π(c(0)) = 1

ρ
H(c(0), λ(0)) = 1

ρ
Hcontrol(c(0), u(0)). (46)

Michel’s transversality condition (Michel [52]) states that along a maximizing trajec-
tory the relation

lim
t→∞ Π(c(t))e−ρt = 0

holds. Combining (46) and (37) yields

Π(c(t))e−ρt ≥
(
4ρμ(1 − c(t))2χ(c(t)) + u(t)(u(t) − 2)

) e−ρt

ρ
.

Using that the first term between brackets is always nonnegative, and taking into
account (45) yields that

Πe−ρt ≥ (2u0 − μ)eρ(t−t̄)(μ − 2 + (2u0 − μ)eρ(t−t̄))e
−ρt

ρ
.

As 2u0 − μ ≥ μ > 0, it follows that the right hand side of this inequality tends to
infinity as t → ∞. But then

lim
t→∞ Π(c(t))e−ρt = ∞,

and γ cannot be a maximizing trajectory.
It remains to show that no trajectory passing through R(2)

2 = R2\R(1)
2 , the com-

plement of R(1)
2 in R2, can be optimal. Consider therefore a trajectory γ such that

γ (t0) ∈ R(2)
2 for some t0. As in the definition of the region R1, using Gronwall’s

lemma it can be shown that there is some t1 > t0 such that u(t1) > 1, and some
t2 > t1 such that u(t2) > 1 and c(t2) = 1. But then γ enters the trapping region R(1)

2 ,
and we have already seen that such trajectories cannot be optimal.

C.3 Trajectories Intersecting R3 Cannot Be Optimal

If a trajectory intersects R3, the state-control representation breaks down, and we have
to switch to the state-costate representation.

Pick an arbitrary state-costate trajectory γ (t) = (c(t), λ(t)), with associated control
u(t) = max{0,−c(t)λ(t)/2}, such that

(
c(t0), u(t0)

) ∈ R3 for some t0 ≥ 0 and(
c(t), u(t)

) ∈ R1 for all t < t0 that are sufficiently close to t0. The costate λ satisfies
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λ(t0) = 0. Equation (34) then implies that λ̇(t0) > 0. The region R̃3 = {(c, λ) : λ >

0} is a trapping region for the state-costate flow, as λ̇ ≥ 0 whenever λ = 0.
Using Gronwall’s lemma, we show first that

c(t) ≥ c(t0)e
(t−t0),

for t > t0, since ċ = c ≥ c in R̃3 (Eq. 35). It follows that there is t1 > t0 such
that c(t) > 1 for all t > t1. Consequently χ(c(t)) = 0 for these values of t , and the
state-costate equations reduce to

ċ = c, λ̇ = (ρ − 1)λ. (47)

Let h(t) = H(c(t), λ(t)). For all t > t1 we have c(t) > 1 and λ(t) > 0 and
consequently h(t) = λ(t)c(t) > 0. Compute:

ḣ = λ̇c + λċ = ρλc = ρh.

Hence h(t) = h(t1)eρ(t−t1) for all t > t1. But then limt→∞ h(t)e−ρt = h(t1)e−ρt1 >

0. If γ is optimal, Michel’s transversality condition implies that

lim
t→∞ Π(c(t))e−ρt = lim

t→∞
1

ρ
H(c(t), λ(t))e−ρt = lim

t→∞
h(t)

ρ
e−ρt = 0.

As this is a contradiction, the trajectory γ cannot be optimal.

C.4 Trajectories in R1 with Wrong Limit Behavior Cannot Be Optimal

As the set R1 is bounded, by the Poincaré-Bendixon theorem trajectories in R1 can
either converge to a steady state or leave R1 (cf. the argument in Sect. C.2). Those
entering either R2 or R3 have already been shown to be suboptimal. The remaining
possibility is to leave R1 through the point e1 and enter the line segment E ; these
trajectories remain candidates for optimality.

Trajectories remaining in R1 have to converge to a steady state. From proposi-
tion 4.1, we learn that e0 and e+ are unstable nodes, to which no trajectory can
converge as t → ∞. The only remaining candidate is then the saddle e−, if μ > 1, or
the bifurcating point eb if μ = 1.

This completes the proof of Proposition 4.2. �

Appendix D: Proof of Proposition 4.3

D.1 Construction of Policy Functions

The first step in the proof is to construct those (parts of) trajectories of the system (42)
that will turn out to optimize the profit functional. In particular, we shall construct
a, possibly multivalued, policy function uf such that the following holds. If (c0, u0)
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is such that u0 = uf(c0), then the trajectory (c(t), u(t)) of (42) starting at this point
satisfies, for all t ≥ 0, that ċ(t) �= 0 and u(t) = uf(c(t)).

Again we have to distinguish between the situations μ < 1 and μ ≥ 1.

D.1.1 No Steady States in R1

If μ < 1, the only steady state of (42) is the origin e0, which is an unstable node.
Therefore, the only candidate optimizer is the trajectory γ (t) passing through the point
γ (0) = e1; see Fig. 12a. Note that a corollary of the analysis performed above is that
the set R1 is a backward trapping region: if a trajectory is in R1 for some time, it is in
R1 for all previous times, and it necessarily converges to the origin as t → −∞.

Write γ (t) = (cγ (t), uγ (t)). The fact that γ (t) ∈ R1 for all t < 0 implies that
ċγ > 0 for all t < 0—recall that R1 is open. Moreover, as u(t) = 0 for all t ≥ 0, it
follows that ċγ > 0 for all t as well, and that the map cγ : R →]0,∞[ is invertible,
with inverse t = tγ (c). Define uf : ]0,∞[→ R by

uf(c) = uγ

(
tγ (c)

)
.

Then the image of the curve γ : R → R
2 is equal to the graph of the function

uf : ]0,∞[→ R, as
uγ (t) = uf(cγ (t))

for all t .

D.1.2 μ > 1: Construction of the Region S1

If μ > 1, though R1 is still a backward trapping region, there are at least two steady
states in R1: apart from the origin e0, which is in the boundary of R1, we have e− and
e+ in the interior of R1. As seen before, if D > 0, the first is a saddle and the second
a repeller; if D = 0, and hence μ = 1, these two points coincide in eb.

Introduce the curve segments δi , i = 1, . . . , 4, as follows: δ1 is the part of the
parabola u = 4μc(1 − c) connecting e0 to e−, δ2 the segment of the line u = 1
connecting e− to e+, δ3 that part of the same parabola connecting e+ to e1, and δ4 the
segment of the line u = 0 connecting e1 to e0. All curves δi are taken without their
endpoints. Let finally S1 ⊂ R1 be the open subregion of R1 that is bounded by the
curves δi , i = 1, . . . , 4. See Fig. 11.

Let, as before, γ (t) = (c(t), u(t)) be the trajectory of (42) satisfying γ (0) = e1.
As the open set S1 is bounded, the trajectory γ either converges to a steady state on
the boundary of S1, or it enters S1 for the last time by crossing one of the curves δi .
We analyze the possibilities one by one.

D.1.3 Invoking the Poincaré–Bendixon Theorem

We classify the possible limit behavior of the trajectory γ (t) that satisfies γ (0) = e1
as t → −∞. The region R1 being a bounded backward trapping region, γ (t) ∈ R1
for all t < 0.
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Fig. 11 Subdivision of region
R1. The vertices e0, e1, e− and
e+, the edges δi , i = 1, . . . , 4,
and the faces Si , i = 1, . . . , 4
are defined in the text

S1

S2

S3 S4

1

δ

δ δ

δ

2

3

4e0 e1

e e

c

u

The Poincaré–Bendixon theorem (cf. [53], p. 29) asserts that, asymptotically, γ (t)
converges either to a steady state, a limit cycle, or a heteroclinic cycle. Since the state–
control system (36) is diffeomorphic to the state–costate system (34), and since the
latter has positive divergence everywhere, the existence of limit cycles or heteroclinic
cycles is ruled out (cf. [47]). Therefore γ (t) can converge either to e0, or e−, or e+,
as t → −∞.

Looking more precisely at the behavior of γ (t) in S1, we claim that either of the
following possibilities holds:

A. γ (t) ∈ S1 for all t and γ (t) → e− as t → −∞;
B. γ (t) ∈ S1 for all t and γ (t) → e+ as t → −∞;
C. there is a largest value t1 of t such that γ (t) ∈ S1 and γ (t1) ∈ δ1;
D. there is a largest value t1 of t such that γ (t) ∈ S1 and γ (t1) ∈ δ2.

This is equivalent to stating that if γ (t) ∈ S1 for all t , it cannot tend to e0 as t → −∞.
The claim follows from the fact that u̇(t) < 0 in S1 and that e0 = (0, 0), which

implies that limt→−∞ u(t) = 0, u(0) = 0 and u̇(t) < 0 for t < 0, which is a
contradiction.

We proceed by analyzing these situations one by one.

D.1.4 The Trajectory γ Remains in S1 and Tends to e−

Reasoning as in the situation D < 0, we obtain a policy function u(1)
f : ]c−,∞[→ R

with limc↓c− u(1)
f (c) = u− = 1. This function is however not defined for all c > 0.

To construct a policy function for 0 < c < c−, we take a trajectory γ s on the left half
of the stable manifold of the saddle e−.

We claim that this part of the stablemanifold is contained in its entirety in the region
S2 that is bounded by δ1, the segment of u = 1 connecting e− to the point (0, 1), and
the segment of the line c = 0 connecting the point (0, 1) to e0. It is straightforward
to show that S2 is a backward trapping region; consequently, every trajectory in S2
converges to the unstable node e0 as t → −∞.
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The stable manifold of e− is tangent to the stable eigenspace of

DF(e−) =
(

0 −c−
−8ρμ

√
D ρ

)
,

cf. Eq. (41), at e−. Note that the vector v = (0, 1) cannot be an eigenvector of this
matrix, as c− �= 0. Therefore, any eigenvector v = (v1, v2) satisfies v1 �= 0; it may
therefore be assumed that v1 = 1.

Let vs = (1, vs2) be the stable eigenvector, with eigenvalue λs < 0. The eigenvalue
equation DF(e−)vs = λsvs then yields vs2 = −λs/c− > 0. Locally around the
saddle, the stable manifold coincides with the graph of a function ws , defined on a
neighborhood of c−, which is of the form

ws(c) = c− + vs2(c − c−) + O((c − c−)2).

In particular, if c0 < c− is sufficiently close to c−, then dws/dc > 0 for all c ∈ [c0, c−].
The trajectory γ (t) of (42) such that γ (0) = (c0, ws(c0)) consequently satisfies
c0 ≤ c(t) < c−, as well as ċ(t) > 0 and u̇(t) > 0 for all t ≥ 0. We infer that
necessarily

4μc(t)(1 − c(t)) < u(t) < 1

for all t ≥ 0, and hence (c(t), u(t)) ∈ S2 for all t ≥ 0. But as S2 is a backward
trapping region, the trajectory γ is contained in S2 for all t , hence satisfying

γ (t) → e0 as t → −∞, and γ (t) → e− as t → ∞.

As in S2, we have ċ > 0 everywhere, and we construct as above a policy function
u(2)
f : ]0, c−[→ R, with limc↑c− u(2)

f (c) = u− = 1. It follows that the function

uf(c) =

⎧
⎪⎨

⎪⎩

u(1)
f (c), if c > c−,

u−, if c = c−,

u(2)
f (c), if 0 < c < c−,

is a continuous policy function that is defined for all c > 0.

D.1.5 The Trajectory γ Remains in S1 and Tends to e+

Asbefore,we can construct a policy functionu(1)
f : ]c+,∞[ → R,with limc↓c+ u(1)

f (c)
= u+ = 1. The remaining part of the policy function has to be furnished by the stable
manifold of e−.

As above, the left half of this stable manifold furnishes a policy function u(2)
f :

]0, c−[ → R, with limc↑c− u(2)
f (c) = u− = 1. We turn to the right half of the stable

manifold. For values of c0 larger than but close to c−, the point (c0, u0) = (c0, ws(c0))
on the stable manifold is contained in the bounded open region S3 that is bounded by
the line u = 1 and the parabola u = 4μc(1 − c). In this region, ċ < 0 and k̇ < 0. Fix
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(c0, u0) and consider the trajectory γ of (42) such that γ (0) = (c0, u0). This trajectory
enters S3 through the part of the parabola connecting its vertex (1/2, μ)with the point
e+. It enters from the region S4 that is bounded by that same part of the parabola, the
line u = u+ and the boundary of R1. In that region, ċ < 0, but k̇ > 0. It follows that
the trajectory has to enter S4 through the line segment of c = c+ connecting e+ and
(c+, μ), or through one of the endpoints.

If γ (t) → e+ as t → −∞, then its graph defines a policy function u(3)
f : ]c−, c+[ →

R with limc↓c− u(3)
f (c) = u− = 1 and limc↑c+ u(3)

f (c) = u+ = 1. A continuous
policy function is then given by

uf(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(1)
f (c), if c > c+,

u+, if c = c+,

u(2)
f (c), if 0 < c < c−,

u−, if c = c−,

u(3)
f (c), if c− < c < c+.

Otherwise, there is a time t1 < 0 such that c(t1) = c+ and u(t1) > u+. As in this
case γ (t) does not tend to a steady state in the boundary of S4, it has to enter S4 for
some t2 < t1; the only possibility for this is through the line u = 1. We therefore have

γ (t2) = (cM , 1),

where cM is defined by this equation. In this situation, the graph γ ([t2,∞[)
defines a policy function u(3)

f : ]c−, cM [ → R with limc↓c− u(3)
f (c) = u− =

1 and limc↑cM u(3)
f (c) = 1. On the interval ]c+, cM [, there are now two policy func-

tions defined. Introduce the associated profits

Π(i)(c) = ρ−1Hcontrol(c, u
(i)
f (c)), i = 1, 3.

For fixed values of c, the function Hcontrol(c, u) is minimal at u = 1. Hence the policy
u(3)
f is superior to u(1)

f at c = c+, in the sense that Π(3)(c+) > Π(1)(c+), since

u(1)
f (c+) = 1. In the same manner, it follows that Π(3)(cM ) < Π(1)(cM ). As both

functions are continuous, there is a value c = ĉ such that Π(3)(ĉ) = Π(1)(ĉ). This is
an indifference point, as the manager is indifferent between two policies at this state.
A policy function, which is at one point two valued, is then given by

uf(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(1)
f (c), if c > ĉ,

u(1)
f (ĉ) or u(3)

f (ĉ), if c = ĉ,

u(2)
f (c), if 0 < c < c−,

u−, if c = c−,

u(3)
f (c), if c− < c < ĉ.
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Fig. 12 Illustration of various possibilities for the trajectory γ through the point e1 = (1, 0). a μ < 1, b
μ > 1, γ in S1 for all t < 0, c μ > 1, γ enters S1 through δ1, d μ > 1, γ enters S1 through δ2

The induced total profit Π(c) = Hcontrol(c, uf (c))/ρ is locally Lipschitz continuous
for all c �= 0. This follows from the coercivity of the Hamilton function H if c is
bounded away from 0 as in Bardi and Capuzzo-Dolcetta [54], Proposition II.4.1.

As the instantaneous profit π = α(1 − c)2 − k2 is bounded, it is not hard to show
that if the initial condition is larger than some value c̄, the optimal action is to set
k = 0, which results in Π(c) = 0 for c > c̄. We conclude then that Π(c) is Lipschitz
continuous everywhere.

D.1.6 The Trajectory γ Enters S1 for the Last Time Through δ1

The next situation to be investigated is that the trajectory γ satisfying γ (0) = e1 enters
S1 through δ1 at some time t1 < 0, and remains in S1 for all t1 < t < 0: see Fig. 12c.

Since γ (t1) ∈ δ1, it follows that γ (t) ∈ S2 for all t close to, but smaller than t1.
As S2 is a backward trapping region, γ (t) ∈ S2 for all t < t1, and necessarily γ (t)
converges to e0 as t → −∞. Moreover, ċ > 0 in both S1 and S2, and we can construct
a policy function that is differentiable for all c > 0 exactly as in the situation that the
trajectory remains in S1 for t < 0 and converges to e0.
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D.1.7 The Trajectory γ Enters S1 for the Last Time Through δ2

Finally, consider the situation that the trajectory γ that passes through e1 at t = 0
enters S1 through δ2 for some t1 < 0, and remains in S1 for all t1 < t < 0: see
Fig. 12d.

Introduce cm by setting γ (t1) = (cm, 1). Since γ (t1) ∈ δ2, we have c− < cm < c+.
As ċ(t) > 0 for t1 < t < 0 as well as for t ≥ 0, we can construct a continuous policy
function u(1)

f : [cm,∞[ → R with u(1)
f (cm) = 1 in the usual manner.

The left branch of the stable manifold of the saddle e− furnishes a continuous
policy function u(2)

f : ]0, c−[ → R, with limc↑c− u(2)
f (c) = u− = 1, and the right

branch of that manifold furnishes a continuous policy function u(3)
f : ]c−, cM [ →

R, with limc↓c− u(3)
f (c) = u− = 1 and u(3)

f (cM ) = 1, where c+ ≤ cM . Invoking the

same arguments as above, we show that u(3)
f is superior to u(1)

f at c = cm and inferior
to it at c = cM . By the intermediate value theorem, there is an indifference point ĉ
such that cm < ĉ < cM , and such that the manager is indifferent between the two
policies at c = ĉ. A policy function defined on all points of state space is then

uf(c) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(1)
f (c), if c > ĉ,

u(1)
f (ĉ) or u(3)

f (ĉ), if c = ĉ,

u(2)
f (c), if 0 < c < c−,

u−, if c = c−,

u(3)
f (c), if c− < c < ĉ.

D.1.8 At Bifurcation: μ = 1

Finally, we have to discuss the case μ = 1, where there are only two steady states in
the boundary of R1: the repeller e0 and the steady state eb = (1/2, 1). As

DF(eb) =
(
0 − 1

2
0 ρ

)
,

eb has an unstable eigenspace, which is the span of the vector vu = (1,−2ρ), and a
neutral eigenspace spanned by vc = (1, 0). That is, eb is a stable node.

The trajectory γ (t) for which γ (0) = e1 can either cross the parabola u = 4c(1−c)
for a value 0 < c < 1

2 or it can remain in R1 for all t < 0 and tend to eb. In the first
situation, a policy function can be constructed exactly as in the situation that μ > 1
and γ intersects δ1; see Sect. D.1.6.

In the second situation, γ coincides with the unstable manifold of eb. There is a
unique trajectory γ̃ connecting e0 with eb, which is the limit of similar trajectories
that connect e0 with the stable manifold of e− for μ > 1. As γ̃ lies entirely in S2, we
have ċ(t) > 0 there. Proceeding as usual, we can find a continuous policy function
uf(c) such that its graph coincides for 0 < c < 1

2 with the curve γ̃ , while for c > 1
2 ,

it coincides with γ . Note that uf(c) is continuously differentiable everywhere except
at c = 0 and c = 1

2 .
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D.1.9 Summary

For all parameters, we have constructed a policy function uf : ]0,∞[ → R, which
is single valued except at most at one point ĉ, the indifference point. Moreover, the
values of the two trajectories originating at an indifference point are the same, and
uf(c) = 0 if c is sufficiently large.

D.2 Policy Functions Generate Viscosity Solutions of the Hamilton–Jacobi Equa-
tion

Using relation (46), we have that

V (c) = 1

ρ
Hcontrol(c, uf (c))

is well defined at c = ĉ, continuous and continuously differentiable at all points
c > 0 except ĉ. Moreover, the value of the total profit (30) along a trajectory γ of the
state-control system (36) such that γ (0) = (c, uf(c)) is equal to V (c).

We shall argue that V (c) is a viscosity solution—a term which we shall define
shortly—of the Hamilton–Jacobi equation of our optimization problem, that the value
function is another viscosity solution and that viscosity solutions of our problem are
unique. From this argument, it follows that V (c) is the value function of our problem
and that u(t) = uf(c(t)) is the optimizing control.

D.2.1 Viscosity Solutions

We quote the definition of viscosity sub- and supersolutions from Bardi and Capuzzo-
Dolcetta [54, Sec. II.1, p. 26].

Definition D.1 LetΩ be an open domain ofRn , and let the function H = H(x, p) be
a continuous real valued function on Ω ×R

n , defining the Hamilton–Jacobi equation

ρW (x) − H(x, DW (x)) = 0, (48)

where DW (x) is the gradient of W in x .

1◦ A function W is a viscosity subsolution of (48) at x , if for every continuously
differentiable function w such that the difference W − w takes a local maximum
at x , we have

ρW (x) − H(x, Dw(x)) ≤ 0. (49)

2◦ A function W is a viscosity supersolution of (48) at x , if for every continuously
differentiable function w such that the difference W − w takes a local minimum
at x , we have

ρW (x) − H(x, Dw(x)) ≥ 0. (50)

3◦ A functionW is a viscosity solution of (48) at x , if it is both a viscosity subsolution
and a viscosity supersolution at x .

123



604 J Optim Theory Appl (2017) 174:567–612

D.2.2 V (c) is a Viscosity Solution

Recall that in Sect. 3.1, we have extended themathematical definition of the problem to
the real line, such that V (c) = 0 for all c ≤ 0. Return to the state-costate representation
(34), and introduce the feedback costate function λf(c) = − 2

c uf(c) if c > 0 and
λf(c) = 0 if c ≤ 0. Note that then

V (c) = 1

ρ
H(c, λf(c)). (51)

By construction, if γ (t) = (c(t), λ(t)) is a solution of the state-costate system such
that λ(0) = λf(c(0)), then λ(t) = λf(c(t)) for all t. If t > 0, then c(t) �= ĉ and λf is
differentiable at c(t); by the chain rule

λ̇ = λ′
f(c)ċ. (52)

We claim that λf(c) = V ′(c) for all c �= ĉ. For, differentiating (51) with respect to c
yields

V ′(c) = 1

ρ

(
Hc + Hλλ

′
f(c)

)
.

Evaluating this equation at c = c(t), using first (52) and then (34) gives

V ′(c(t)
) = 1

ρ

(
Hc + Hλ

λ̇

ċ

)
= 1

ρ

(
Hc + Hλ

ρλ − Hc

Hλ

)
= λ(t) = λf

(
c(t)

)
,

which proves the claim.
It follows that the function V defined by (51) is a regular solution of the Hamilton–

Jacobi equation

ρV (c) = H(c, V ′(c)) (53)

for all c �= ĉ.
As V is continuously differentiable in the neighborhood of every point c̄ �= ĉ, V

is a viscosity solution of the Hamilton–Jacobi equation (53) at c̄ if and only if it is a
regular solution there.

It remains to show that V is a viscosity solution at an indifference point ĉ. Note
that the left and right limits of V ′(c) exist at ĉ; we write

λ̂− = lim
c↑ĉ

V ′(c), λ̂+ = lim
c↓ĉ

V ′(c).

From the analysis done above, we infer that λ̂− < λ̂+. Let v be a continuously differ-
entiable function such that V − v takes a local minimum at c = ĉ. Then necessarily

lim
c↑ĉ

V ′(c) − v′(c) ≤ 0, lim
c↓ĉ

V ′(c) − v′(c) ≥ 0, and hence λ̂− ≤ v′(ĉ) ≤ λ̂+. (54)
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As ĉ is an indifference point, we have that H(ĉ, λ̂−) = H(ĉ, λ̂+) = ρV (ĉ).Moreover,
the Hamilton function H(c, λ) is convex in λ. Together with (54) this implies that

ρV (ĉ) − H(ĉ, v′(ĉ)) ≥ 0.

Hence V is a viscosity supersolution.
Consider now the situation that v is a continuously differentiable function such that

V − v takes a local maximum at ĉ. Then limc↑ĉ V ′(c) − v′(c) ≥ 0, limc↓ĉ V ′(c) −
v′(c) ≤ 0, and hence v′(ĉ) ≤ λ̂− < λ̂+ ≤ v′(ĉ), which is a contradiction. There is
no differentiable function such that V − v takes a local minimum; but then for all
such functions, the inequality (49) holds at ĉ, and V is a viscosity subsolution, and
therefore a viscosity solution.

D.2.3 Uniqueness of Viscosity Solutions

We shall state a theorem that is a direct corollary of Theorem III.2.12 from Bardi and
Capuzzo-Dolcetta to show that the value function V is the unique viscosity solution
of the Hamilton–Jacobi equation (53).

Recall the notation BR(0) = {x ∈ R
n : |x | < R}, and recall that a function

ω : [0,∞[ → [0,∞[ is a modulus if it is continuous, non-decreasing and ω(0) = 0.
The theorem depends on four assumptions. The first three concern the controlled

dynamics ẏ = f (y, a).

Assumption D.1 A is a topological space, and f : Rn × A → R
N is continuous.

Assumption D.2 f is bounded on BR(0) × A for all R > 0.

Assumption D.3 There is a constant L > 0 such that | f (x, a)− f (y, a)| ≤ L|x − y|
for all x, y ∈ BR(0), a ∈ A.

The final assumption concerns the objective functional

J (x, α) =
∫ ∞

0
�(yx (t), α(t))e−ρtdt,

which is to be maximized; here the control function α(t) is a member of A, which
is the set of measurable functions α : [0,∞[ → A, and yx (t) is the solution of
ẏ(t) = f (y(t), α(t)) with y(0) = x .

Assumption D.4 ρ > 0; � is continuous; and there are a constant B > 0 and a
modulus ω such that |�(x, a)| ≤ B and |�(x, a) − �(y, a)| ≤ ω(|x − y|) for all
x ∈ R

n and all a ∈ A.

The value function of this problem is

v(x) = sup
α∈A

J (x, α).
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Theorem D.1 Assume D.1–D.4. Let the Hamilton function H be given as

H(x, λ) = sup
a∈A

{�(x, a) + λ f (x, a)} .

Then the value function v is the unique viscosity solution of the Hamilton–Jacobi
equation ρv = H(x, Dv).

Proof The assumptions imply assumptions A0–A4 in Chapter III of Bardi and
Capuzzo-Dolcetta [54]. When formulating the problem as a minimization problem, �
is replaced by −�, v by −v and λ by −λ; this shows that the definition of Hamiltonian
in statement of the theorem is equivalent to that in equation (2.9) in Chapter III of
Bardi and Capuzzo-Dolcetta. The result follows then from their Theorem III.2.12. �

D.2.4 Finishing the Proof

To apply the theorem, introduce the set U = [0, M], where M > 0 is a positive
constant, and the functions f : R ×U → R and � : R ×U → R by

f (c, u) =
{
c(1 − u), c ≥ 0,

0, c < 0,

and

�(c, u) =
{
4ρμ(1 − c)2χ(c) − u2, c ≥ 0,

4ρμ − u2, c < 0.

It is easy to see that assumptions D.1–D.4 are satisfied. The theorem then implies for
everyM > 0 that the value function of the optimization problem is the unique viscosity
solution of the Hamilton–Jacobi equation (53). Choose M such that uf(c) < M for
all c: this is possible since uf(c) = 0 if c is sufficiently large. We extend the policy
function to R by setting uf(c) = 0 if c < 0. If c(t) is a trajectory of the system
dynamics

ċ = f (c, uf(c)), c(0) = c0,

then, by construction, u(t) = uf(c(t)) is a control such that

V (c0) =
∫ ∞

0
�(c(t), u(t))e−ρtdt.

As uf(c) < M , this control is admissible. We have already shown that the function
V (c) is a viscosity solution of the Hamilton–Jacobi equation; it therefore coincides
with the value function, which by the theorem is the unique viscosity solution. But
that implies that the controls generated by the policy function are optimal. �
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Appendix E: Proof of Proposition 5.1

This can be read off the optimization problem (30)–(31) obtained after the second
scaling (29).

Let α1 = 1/9 and α2 = 1/8 be the respective partial and full collusion values of
α. Assume that there is a bifurcation in the partial collusion system at ρ = ρ∗ and
K−1 = φ(1 + β) = φ∗

1 (1 + β∗
1 ) = (K ∗

1 )−1. The equivalent scaled system (30)–(31),
which only depends on the parameters ρ andμ, will then exhibit a bifurcation atμ∗ =
α1/(4ρ∗(K ∗

1 )2). Consequently, if K2 takes a value such that μ∗ = α2/(4ρ∗(K ∗
2 )2),

then the full collusion system will exhibit a bifurcation as well.
This implies

(K ∗
1 )2 = α1

4ρ∗μ∗ <
α2

4ρ∗μ∗ = (K ∗
2 )2,

and consequently
φ∗
1 (1 + β∗

1 ) > φ∗
2 (1 + β∗

2 ). (55)

As a consequence, all full collusion bifurcation curves are lower than their partial
collusion counterparts. This implies all inclusions stated in the theorem. This proves
the proposition. �

Appendix F: Proof of Propositions 5.2 and 5.3

We want to compare, for a given parameter combination, the full collusion situation
α = 1

8 , and the partial collusion situation α = 1
9 . Performing the scaling to (c, u)

variables and (μ, ρ) parameters, this reduces to comparing the partial collusion sit-
uation (μ1, ρ) with the full collusion situation (μ2, ρ), where the μi are related as
μ2 = (9/8)μ1.

Denote by uif(c), i = 1, 2 the corresponding policy functions, and recall that their
graphs are locally equal to a portion of a trajectory of (36), with u replaced by u1 or
u2, depending on whether μ = μ1 or μ = μ2. Invoking the chain rule as in (52), we
can derive a differential equation for ui = uif as follows:

dui
dc

= u̇i
ċ

= ρ (ui − 4μc(1 − c)χ)

c(1 − ui )
;

here, we have written χ = χ(c) for brevity. This is a first-order non-autonomous
differential equation, with singularities at c = 0 and ui = 1.

Writing�μ = μ2−μ1 and�u = u2−u1, the difference�u satisfies the following
differential relation:

d�u

dc
=ρ (u2 − 4μ2c(1 − c)χ)

c(1 − u2)
− ρ (u1 − 4μ1c(1 − c)χ)

c(1 − u1)

=ρ(1 − u1) (u2 − 4μ2c(1 − c)χ)

c(1 − u1)(1 − u2)
− ρ(1 − u2) (u1 − 4μ1c(1 − c)χ)

c(1 − u1)(1 − u2)
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=ρ (u2 − u1u2 − 4c(1 − c)χ(μ2 − u1μ2))

c(1 − u1)(1 − u2)

− ρ (u1 − u1u2 − 4c(1 − c)χ(μ1 − u2μ1))

c(1 − u1)(1 − u2)

=ρ (�u − 4c(1 − c)χ(�μ + u2μ2 − u1μ2 − u2μ2 + u2μ1))

c(1 − u1)(1 − u2)

=ρ (�u − 4c(1 − c)χ(�μ + μ2�u − u2�μ))

c(1 − u1)(1 − u2)

=ρ (1 − 4μ2c(1 − c)χ)

c(1 − u1)(1 − u2)
�u − 4ρ(1 − c)χ

1 − u1
�μ

Replace now ui by uif for i = 1, 2 and introduce

a(c) = ρ (1 − 4μ2c(1 − c)χ(c))

c(1 − u1f (c))(1 − u2f (c))
, b(c) = −4ρ(1 − c)χ(c)

1 − u1f (c)
�μ.

The differential equation for �u(c) is of the form

d�u

dc
= a(c)�u + b(c),

where a and b are known functions. The variations of constants formula for the solution
reads as

�u(c) = �u(c0)e
∫ c
c0

a(x)dx + e
∫ c
c0

a(x)dx
∫ c

c0
b(x)e− ∫ x

c0
a(y)dydx . (56)

F.1 Proof of Proposition 5.2

Consider first the situation that there is a value 0 ≤ c̄ ≤ 1 such that for all c ∈ ]c̄, 1] the
optimal trajectories for both the partial and the full collusion case leave the production
region through e1. We know that trajectories through e1 can be optimal only if they
have not crossed the line u = 1 yet: this is a consequence of the argument given in
Sect. D.1.7. The term b of (56) therefore satisfies

b(c) = −4ρ(1 − c)χ(c)

1 − u1f (c)
�μ < 0

for c̄ < c < 1. If c0 = 1, then �u(c0) = 0, and the first term in (56) vanishes. Then
b(c) ≤ 0 implies that �u(c) is decreasing. This implies for values of c smaller than 1
that �u(c) is positive, in particular �u(c) > 0 for all c̄ < c ≤ 1. Hence, R&D effort
under full collusion is always larger than R&D effort under partial collusion if both
lead to eventually leaving the market.

Next, we consider the situation that there is some c̄ > 0, such that for all c ∈ ]0, c̄[,
the optimal trajectories for both the partial and the full collusion case converge to their
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respective steady states e1− = (c1−, 1) and e2− = (c2−, 1). As μ2 > μ1, it follows that
0 < c2− < c1− ≤ 1/2. The stable manifold tending to e2− can only leave the region
bounded by the parabola u = μ2c(1− c) and the lines u = 1 and c = 1/2 through the
line segment connecting the points (1/2, 1) with (1/2, μ2). It follows that necessarily
u2(c1−) > u1(c1−), or, equivalently, that �u(c1−) > 0.

We have already established that trajectories tending to either e1− or e2− can only be
optimal if they do not cross the line u = 1. Therefore

b(c) = 4ρ(1 − c)χ

u1 − 1
�μ > 0,

if 0 < c < c̄, and the variations of constants formula implies �u(c) > 0 for all c1− ≤
c < c̄. Moreover u1(c) < 1 if 0 < c < c1−, implying that b(c) < 0 there. Again using
the variations of constants formula, we obtain �u(c) > 0 for all 0 < c ≤ c1− as well.

Finally, if the optimal trajectory of the full collusion case converges to e2−, whereas
the optimal trajectory of the partial collusion case exits the production region through
e1, we have that the former satisfies u ≥ 1 and the latter u ≤ 1.

This proves Proposition 5.2. �

F.2 Proof of Proposition 5.3

To prove Proposition 5.3, we again use the fact that the value of the integral Π over a
trajectory starting at a point (c, u) equals

Π(c, u) = 1

ρ
Hcontrol(c, u) = 1

ρ

(
4ρμ(1 − c)2χ − 1+(u − 1)2

)
= h(c)+C(u−1)2.

(57)

If c = ĉ is an indifference point, there are values û(1) < û(2) such that the trajectories
starting at (ĉ, û(i)), for i = 1, 2, are both optimal and have both the same value. Note
that the trajectory through (ĉ, û(1)) goes to the right, and that through (ĉ, û(2)) goes
to the left. As

Π
(
ĉ, û(1)

)
= Π

(
ĉ, û(2)

)
,

it follows that ∣∣
∣û(1) − 1

∣∣
∣ =

∣∣
∣û(2) − 1

∣∣
∣ .

Consider a fixed value of ρ and two values μ1, μ2 of μ such that μ2 = (9/8)μ1; that
is, (μ1, ρ) describes a partial collusion situation, and (μ2, ρ) is the corresponding full
collusion situation.

Assume first that there is an indifference point in the partial collusion problem;
denote this point as ĉ1, and the corresponding values of u as û(i)

1 , i = 1, 2. Then

û(1)
1 < û(2)

1 and
∣∣∣û(1)

1 − 1
∣∣∣ =

∣∣∣û(2)
1 − 1

∣∣∣ . (58)
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We have seen in the proof of Proposition 5.2 that if a partial collusion and a full
collusion trajectory either go both to e1 or to e1− and e2−, respectively, the full collusion
trajectory intersects a line c = constant at a larger u-value than the partial collusion
one. Denote the intersection of the full collusion trajectory going to e2− with the line

c = ĉ1 by (ĉ1, û
(2)
2 ). We have that û(2)

2 > û(2)
1 , and therefore also

∣
∣∣û(2)

2 − 1
∣
∣∣ >

∣
∣∣û(2)

1 − 1
∣
∣∣ . (59)

We argue by contradiction. Assume that the threshold ĉ2 in the full collusion case
exists and is below the threshold in the partial collusion case, then the full collusion
trajectory going right, that is, to e1, has to intersect the line c = ĉ1 in a point (ĉ1, û

(1)
2 ).

Moreover, this trajectory has to be optimal at ĉ1. Using (57), this implies that

∣
∣∣û(1)

2 − 1
∣
∣∣ >

∣
∣∣û(2)

2 − 1
∣
∣∣ . (60)

Finally, the full collusion trajectory has to be above the partial collusion trajectory
going to e1, implying ∣∣∣û(1)

2 − 1
∣∣∣ <

∣∣∣û(1)
1 − 1

∣∣∣ . (61)

Combining inequalities (58)–(61) implies

∣∣
∣û(2)

2 − 1
∣∣
∣ >

∣∣
∣û(2)

1 − 1
∣∣
∣ =

∣∣
∣û(1)

1 − 1
∣∣
∣ >

∣∣
∣û(1)

2 − 1
∣∣
∣ >

∣∣
∣û(2)

2 − 1
∣∣
∣ .

But this is a contradiction. The proof in situation that the threshold is a repeller is
similar and will be omitted. �
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