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Abstract The step-growth polymerisation of a mixture of arbitrary-functional
monomers is viewed as a time-continuos random graph process with degree bounds
that are not necessarily the same for different vertices. The sequence of degree bounds
acts as the only input parameter of the model. This parameter entirely defines the
timing of the phase transition. Moreover, the size distribution of connected compo-
nents features a rich temporal dynamics that includes: switching between exponential
and algebraic asymptotes and acquiring oscillations. The results regarding the phase
transition and the expected size of a connected component are obtained in a closed
form. An exact expression for the size distribution is resolved up to the convolution
power and is computable in subquadratic time. The theoretical results are illustrated
on a few special cases, including a comparison with Monte Carlo simulations.

Keywords Random graph · Connected components · Polymerisation · Molecular
network

Mathematics Subject Classification 05C80 · 82D60

1 Introduction

The chemical graph theory is the branch of mathematical chemistry that applies graph
theory to mathematical modelling of chemical processes. This theory centres its atten-
tion on the concept of a molecular graph, which identifies atoms (or monomers)
as vertices and chemical bonds as edges. This structure, finite or infinite, is usu-
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ally defined a priori, e.g. molecular graphs describing structural isomers or Euclidian
graphs describing crystal nets [5,27]. The graph-theoretical invariants of such chemical
objects are known to be strongly correlated with physical properties of the resulting
materials. These invariants include but are not restricted to: Wiener index, average
shortest path, shape index, centric index, and connectivity index [7,21,22,26]. Not all
molecular topologies can be described by a single graph, but rather by a probability
measure over graphs [17,19]. This scope covers (hyper-)branched polymers, cross-
linked polymers,molecular networks, and gels to name a few.A branch of graph theory
that operates with probability distributions over graphs—random graph theory—has
little documented applications to chemistry at present.

Consider a chemical system where each monomer has a predefined functionality,
that is the maximum number of neighbours in the network. If the spatial positioning
of the monomers is disregarded, the monomers can be represented as vertices in a
graph model. From this perspective, the polymerisation process is a random graph
process that respects the limitations induced by the chemistry, for instance, the bound
on the vertex degree. The fact that this chemical system can be well described by graph
theory is already hinted by a broad range of analogues to graph-theoretical terminology
that exists in polymer chemistry: vertex (monomer), degree bound (functionality),
graph (polymer network), tree (branched polymer), connected component (polymer
molecule), giant component (gel), density (conversion), etc.

In this paper a random graph process is introduced to model an evolving molecular
network. The degree distribution of this random graph is defined by a time-continuous
evolution equation that mimics the chemistry of the step-growth polymerisation pro-
cess. This process starts with disconnected vertices and progresses up to the point
where no new edge can be placed. The degree of each vertex is bounded, but different
bounds may be defined for distinct vertices. Therefore, we distinguish between the
degree—actual number of incident edges, and the functionality—pre-imposed bound
on the number of incident edges.At each time step, the probability that a vertex receives
an edge is proportional to the difference between the vertex’s functionality and degree.
The share of vertices in each functionality class is pre-defined, and constitutes the only
input parameter for the random graph model.

Most of the available studies target narrow special cases of this system and pursue
results with a distinct reasoning from the graph-theoretical one. Important contribu-
tions include: Hamilton–Jacobi formalism as applied to dynamic graphs with globally
bounded degrees [1], results on the grabbing-particle system [4], open-form analytical
results for non-phase-transiting systems [11], combinatorial analysis for monomers
bearing identical groups [6], closed-form analytical [31] and numerical [17] results for
trifunctional vertices in a directed topology, analytical results for mixture of bi- and
trifunctional vertices [12], analytical results on phase transition in evolving directed
graphs [14], and stochastic simulations on molecular networks [16]. The random
graphmodel is also related tomany processes outside polymer chemistry. For instance,
Smoluchowski coagulation equationwith amultiplicative kernel governs the dynamics
of component-size distribution of the polymerisation random graph with trifunctional
vertices. Only in this special case, the analytical expression for component sizes is
available also after the phase transition, for a review on Smoluchowski coagulation
see Refs. [3,29]. In probability theory, the gambler’s ruin problem for infinite number
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of games is equivalent to finding criteria for the phase transition in the polymerisation
random graph with vertices not exceeding degree three [10].

The rest of the paper is organised as follows. First, a differential-difference equation
describing evolution of the degree distribution due to the step-growth polymerisation
process is formulated and solved in time. Then, given the time dependent degree dis-
tribution, the emergence of the giant component is analysed. This includes results
on the edge density at which the giant component appears and the criterion on the
functionality distribution that admit emergence of the giant component at finite time.
Furthermore, the size distribution of connected components is resolved and expres-
sions for the expected component size are given. Finally, the theoretical results are
discussed for a few special cases. The theory is also compared against the size distri-
butions that were generated by a Monte Carlo simulation.

2 Evolution process for the degree distribution

This paper studies infinite graphs as a model for a polymer network: a chemical
system composed of randomly interconnected identical units. In the infinite graph,
degree distribution u(n), n = 0, 1, 2, . . . is the probability that a randomly sampled
vertex has n adjacent edges [24]. Since a degree of a vertex cannot be arbitrary large
in a chemical system, each vertex is assigned a bound on its degree, m = 0, 1, 2, . . . .
To copy the chemical terminology, we refer to this bound as the functionality [28].
So that one may speak of a two-variate distribution u(n,m), n,m = 0, 1, 2, . . .
as the probability to sample a vertex with degree n and functionality m, such that
u(n,m) = 0 for n > m. We will now construct an evolutionary process for u(k) that
mimics the step-growth polymerisation of multifunctional monomers. This linking
process starts with disconnected vertexes, that is the probability to sample a vertex
of degree zero is d(0, k) = 1, and the process ends when one samples a vertex with
n = m with probability one. The precise rule of assigning a new edge is the following
conceptualisation of the step-growth polymerisation process: on each time step, one
samples two candidate vertices with probability proportional to (m − n)u(n,m) and
connects them with an edge. So that

{(n1,m1), (n2,m2)} → {(n1 + 1,m1), (n2 + 1,m2)}, n1 ≤ m1, n2 ≤ m2, (1)

where (n1,m1) and (n2,m2) are the configurations of the candidate vertices. This
linking process may be viewed as a generalisation of the linking process with constant
degree bounds (all vertices have the same functionality m) as introduced in Ref. [1],
Eq. (3). An alternative way of introducing (1) is by writing the corresponding reaction
mechanism for monomer species Mn,m :

Mn1,m1 + Mn2,m2

(m1−n1)(m2−n2)−−−−−−−−−−→ Mn1+1,m1 + Mn2+1,m2 . (2)

Both notations (1) and (2) are equivalent and correspond to the following Kolmogorov
forward equation governing the evolution of u(n,m),
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∂

∂t
u(n,m, t) =

(
(m − n + 1)u(n − 1,m, t) − (m − n)u(n,m, t)

)
×

∞∑
m=0

m∑
n=0

(
m u(n,m, t) − n u(n,m, t)

)
;

(3)

where at t = 0, u(n,m, t) satisfies the following initial conditions,

u(0,m, 0) = fm,

u(n,m, 0) = 0, n > 0.
(4)

In this equation, the probability to sample a vertex of functionality m is constant over

time,
∞∑
n=0

u(n,m, t) = fm,
∞∑

m=1
fm = 1, and fm is treated as the only parameter of the

model. The sum written in the second line of Eq. (3) represents the expected number
of unused but potentially available edges and can be viewed as a difference of two
partial moments, μ01(t) − μ10(t), where

μi j (t) =
∞∑

m=0

m∑
n=0

ni m j u(n,m, t). (5)

The edge density, c(t) ∈ [0, 1], is a ratio of expected number of edges at time t to the
expected number of edges at the end of the process:

c(t) = μ10(t)

μ01
.

It is convenient to use c(t) as an alternative measure of the progress. The differential
equation (3) falls into the class of linear population balance equations. This class of
equations frequently appears as a model for many chemical and biological problems
where it is usually approached numerically [18,20]. In the current case, it is possi-
ble to find an analytical solution of (3) by transforming the equation to the domain
of generating functions, solving the corresponding partial differential equation, and
applying the inverse transform.

Let us rewrite (3) in terms of a univariate generating function,

U(x,m, t) =
m∑

n=0

xnu(n,m, t), |x | < 1, x ∈ C.

Taking generating function transform on both sides of Eq. (3) leads to a partial differ-
ential equation (PDE),

⎧
⎨
⎩

∂

∂t
U(x,m, t) =

(
(mx − m)U(x,m, t)+(x − x2)

∂

∂x
U(x,m, t)

)
(μ01(t)−μ10(t))

U(x,m, 0) = fm, |x | < 1.
(6)
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The first partial moments appearing in (6) can be related to the generating function
U(x,m, t),

μ01(t) =
∞∑

m=0

mU(1,m, t);

μ10(t) =
∞∑

m=0

∂

∂x
U(x,m, t)|x=1;

(7)

Substituting (7) into (6) we obtain a system of ordinary differential equations for the
partial moments, {

μ′
10(t) = (

μ01(t) − μ10(t)
)2

,

μ′
01(t) = 0,

(8)

that is subject to initial conditions μ10(0) = 0, μ01(0) = μ01. Solving (8) gives

μ10(t) = μ2
01t

1 + μ01t
;

μ01(t) =μ01;
(9)

Now, having explicit expressions for μ10(t), μ01(t) at hand, allows us to write the
solution of PDE (6),

U(x,m, t) =
( 1 + μ01t

1 + μ01t x

)−m
fm, (10)

which, in turn, generates u(n,m, t),

u(n,m, t) =
(
m

n

)
(μ01t)

n(1 + μ01t)
−m fm, n ≤ m. (11)

The latter expression can be reformulated in terms of edge density c(t) instead
of time. To do this, it is enough to realise that c(t) = μ10(t)

μ01
= μ01t

1+μ01t

and (μ01t)n(1 + μ01t)−m = (μ01t)n(1 + μ01t)−n(1 + μ01t)n(1 + μ01t)−m =(
μ01t

1+μ01t

)n (
1

1+μ01t

)m−n =
(

μ01t
1+μ01t

)n (
1 − μ01t

1+μ01t

)m−n
so that Eq. (11) transforms

to

u(n,m, t) =
(
m

n

)
cn(t)

(
1 − c(t)

)m−n
fm, n ≤ m. (12)

Expressions (11), (12) satisfy the initial conditions (4), whereas in the limiting case
of t → ∞, the degree distribution and the distribution of maximal functionalities
coincide:

⎧⎨
⎩

lim
t→∞ u(n,m, t) = fm, n = m;
lim
t→∞ u(n,m, t) = 0, n < m.
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The actual degree distribution u(n), is found by summating u(n,m, t) over function-
alities m,

u(n, t) =
∞∑

m=1

u(n,m, t). (13)

Here, we employed the fact, that u(n,m, t) = 0, for n > m. Degree distribution
u(n, t) evolves form the Kronecker’s delta function, δn at t = 0 to fm in the limit of

t → ∞. The moments of the degree distribution, μi =
∞∑
n=0

niu(n, t) = μi0 can be

directly found from summation of Eq. (13). For instance the expressions for the first
three moments read,

μ1(t) = μ2
01t

1 + μ01t
,

μ2(t) = μ2
01t (1 + μ02t)

(1 + μ01t)2
,

μ3(t) = μ2
01t (1 − 3μ01t + 4μ02t)

1 + μ01t2
.

(14)

3 Global properties of the network, the giant component

Up to this point we have discussed only local properties, i.e. the way the graph can
be seen from a viewpoint of a single vertex. However, in a randomly interconnected
system, local properties, as for instance the degree distribution, play a decisive role in
defining the global properties of the graphs itself. An important finding that allows us
to connect the the two worlds is the result by Molloy and Reed on the existence of the
giant component [23]: there exists a component of the same order of magnitude as the
whole graph (the giant component) iff,

∞∑
n=1

n(n − 2)u(n, t) > 0,

while the equality is reached exactly at the phase transition point. This phase transition
condition can be rewritten in terms of moments (7),

μ20(t) − 2μ10(t) = 0. (15)

Substituting the analytical expression for moments (9) into Eq. (15) we obtain the
phase transition time (or the gelation time in the chemical terminology),

tg = 1

μ02 − 2μ01
. (16)

Similarly, the edge density at the phase transition (or gel conversion) is written out
as
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cg = μ01tg
1 + μ01tg

= μ01

μ02 − μ01
. (17)

From the last relation (17) we can see that the system features the phase transition in
a finite time only when μ02 − 2μ01 > 0. If the inequality is replaced by an equality
(μ02 = 2μ01), then the phase transition will be approached asymptotically at t → ∞.

This brings us to the following, especially important for its chemical context,

Corollary Let M monomer species of functionalities m = 1, . . . , M and fractions

f1, f2, . . . , fM ,
M∑

m=1
fm = 1 react at constant rate kp, then the system features the

phase transition in a finite time if and only if

M∑
m=1

m2 fm − 2
M∑

m=1

m fm > 0. (18)

If the phase transition occurs, then it occurs at the following time and edge density,

tg =
(
kp

M∑
m=1

(m2 − 2m) fm

)−1

,

and

cg =
(

M∑
m=1

(m2 − m) fm

)−1 M∑
m=1

m fm . (19)

As special cases of this corollary, the following statements hold true.

1. If all monomers have the same functionalitym, then the phase transition is reached
in a finite time only if m ≥ 3 (i.e. m is the smallest positive integer satisfying
m2 − 2m > 0).

2. Adding (or removing) monomers of functionality two does not affect phase tran-
sition time tg , whereas it does alter the edge density at the phase transition, cg .

3. Adding sufficient amount of f1 to any system will prevent the phase transition.
4. Consider a system that consists of two species:monomerswith functionalitym that

are present at fraction fm and monomers with functionality one, that are present
at fraction f1 = 1 − fm . The system does not go through the phase transition in
finite time if,

f1 >
m2 − 2m

m2 − 2m + 1
. (20)

5. When all monomers have functionality m, the polymerisation leads to an infinite
network at edge density

cg = m

m2 − m
= 1

m − 1
.
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The latter equation was derived by Flory [9]. Although Flory did not consider
non-constant functionality, somewhat later, he conjectured that the equation can be
generalised for a mixture of arbitrary functional monomers ifm−1 were replaced “by
the appropriate average, weighted according to the numbers of functional groups.”
(see [8], p. 353).

4 Size distribution of connected components

For the sake of brevity we drop time argument t where it leads to no confusion, and
refer to the degree distribution, as given in Eq. (13), by simply u(n) or by its generating
function,

U(x) =
∑
n

xnu(n), |x | ≤ 1, x ∈ C. (21)

We will now apply the theory from Refs. [24,25] to recover other non-local properties
of the polymer network.

When talking about a property of a randomly sampled vertex in an infinite graph it is
important to specify what is exactly the sampling rule. Up to this point, we considered
the case when every vertex has equal chances to be sampled. Consider a different
strategy to choose a vertex: suppose one samples an edge at random, so that every
edge has equal probability to be sampled. Then, one of incident to this edge vertices is
chosen and the edge itself is removed. We will refer to this vertex as the biased vertex.
Let u1(n) denotes the probability that a biased vertex has n incident edges. Then,

u1(n) = (n + 1)u(n + 1)
∞∑
n=1

nu(n)

,

and the corresponding generating function is

U1(x) = U′(x)
U′(x)|x=1

. (22)

A connected component is a subset of vertices in a graph, such that every couple
of vertices is connected with a path. Let w(n) denotes the probability that a randomly
sampled node belongs to a connected component of size n. Similarly to definition of
u1(n), let w1(n) denotes the probability that a biased vertex belongs to a connected
component of size n. Newman et al. [24] noticed that the generating functions for
u1(n) and w1(n) are related by a functional equation

W1(x) = x
∞∑
n=0

u1(n)Wn
1 (x), (23)

whereW1(x) generatesw(n) andU1(x) generates u1(n). This equation has a straight-
forward interpretation: the equation unfolds the generating function forw1(n) as a sum
over all configurations of a biased vertex. Each configuration occurs with probability

123



148 J Math Chem (2018) 56:140–157

u1(n) and involves n biased sub-components of size w1(n). Furthermore, the sum in
Eq. (23) can be in itself viewed as the definition of the generating function. So that
one may write,

W1(x) = xU1

(
W1(x)

)
. (24)

Following a similar logic to derivation of (24), the generating function for w(n) reads

W (x) = xU
(
W1(x)

)
. (25)

Due to Lagrange inversion principle [2], the system of functional equations (24), (25)
has a unique solution. Furthermore, the formal expression for w(n) can be written out
in terms of convolution powers[15],

w(n, t) =
⎧⎨
⎩

μ2
01t

(1+μ01t)(n−1)u
∗n
1 (n − 2), n > 1,

u(0) n = 1.
(26)

Here u∗n
1 (n) denotes the convolution power,

u(k)∗n = u(k)∗n−1 ∗ u(k), (27)

where

f (k) ∗ g(k) =
∑

i+ j=k

f (i)g( j), i, j, k ≥ 0.

On practice, the exact numerical values of (26) can be computed by making use if the
convolution theorem and evaluating (27) with the fast Fourier transform algorithm.
Such numerical routine results in O(n log n) multiplicative operations. If all vertices
have the same functionality m, fm = 1, then w(n) is simply given by,

w(n, t) = μ2
01t

(1 + μ01t)(n − 1)

(
n(m − 1)

n − 2

)
(1 + μ01t)

−n(m−3)(μ01t)
n−2. (28)

The restrictions imposed by chemistry of the polymerisation system guarantee that
u(n) = 0 for some n > nmax . This class of degree distributions features a defined
asymptotic behaviour of w(n) at large n 	 1, see Ref. [15]. Namely,

lim
n→∞

w(n)

w∞(n)
= 1,

where
w∞(n) = C1(t)e

−C2(t)nn−3/2, (29)
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and the coefficients are given by

C1(t) = μ2
1(t)√

2π
(
μ1(t)μ3(t) − μ2

2(t)
) = μ2

01

√
t√

2π(μ02 − μ01)(2 + 3μ01t − μ02t)
,

C2(t) =
(
μ2(t) − 2μ1(t)

)2

2
(
μ1(t)μ3(t) − μ2

2(t)
) = (1 − (μ02 − 2μ01)t)2

2t (μ02 − μ01)(2 + 3μ01t − μ02t)
.

In the latter transformation we made use of the expressions of the moments (14).
One may see that at the phase transition, when t = tg , the coefficient in the expo-

nential function in (29) vanishes and the asymptote switches to the power law decay.

5 Expected size of connected components

It is important to note, that w(n) describes only finite components. Before the phase
transition, a randomly sampled node belongs to a finite component with probability
one, therefore

∑
n=1

w(n) = W (1) = 1. After the phase transition, when t > tg, the

probability that a randomly sampled node belongs to a finite component is smaller
than one and w(n) fails to be normalised:

W (1) =
∑
n

w(n) = 1 − g f ,

where g f is the the probability that a randomly sampled vertex belongs to the giant
component (or gel fraction): g f = 0 for t < tg and g f ∈ [0, 1] for t > tg . Plugging
x = 1 into (24) one obtains,

g f = 1 − W (1) = 1 − U(r0), (30)

where r0 := W1(1) is the smallest positive fixed point of U1(x),

r0 = U1(r0). (31)

We will now derive the expression for the expected size of connected component, as
given by

Mw :=
∑
n=1

nw(n)

∑
n=1

w(n)
= W ′(1)

W (1)
.
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Let t < tg , then W (1) = W1(1) = 1 and evaluating W ′
1(1) from Eq. (24) gives,

W ′
1(1) = U(W1(1)) + U′(W1(1))W

′
1(1) = 1 + U′

1(1)W
′
1(1) = 1

1 − U′
1(1)

.

Similarly, evaluating W ′(1) from Eq. (25) gives,

Mw =W ′(1) = 1 + U′(1)W ′
1(1) = 1 + U′(1)

1 − U′
1(1)

= 1 − μ2
1(t)

μ2(t) − 2μ1(t)

=1 + μ2
01t

1 + 2μ01t − μ02t
, t < tg.

(32)

The latter transformation is made realising that U′(1) = μ1(t), U′
1(1) = (μ2(t) −

μ1(t))/μ1(t) and the moments of the degree distribution are as defined by Eqs. (14).
Let t > tg , then W1(1) = r0 �= 1 and evaluating W ′

1(1) from Eq. (24) gives the
following equality,

W ′
1(1) = U1(W1(1)) + U′

1(W1(1))W
′
1(1) = r0 + U′

1(r0)W
′
1(1), (33)

so that

W ′
1(1) = r0

1 − U′
1(r0)

.

Evaluating W ′(1) from Eq. (25), gives

W ′(1) = U(W1(1)) + U′(W1(1))W
′
1(1) = W (1) + U′(r0)

r0
1 − U′

1(r0)
.

Now, realising that according to Eq. (22), U′(r0) = U′(1)U1(r0) = μ1r0, one obtains:

Mw =W ′(1)
W (1)

=
1 − g f + μ1r20

1−U′
1(r0)

1 − g f
= 1 + μ1r20

(1 − g f )(1 − U′
1(r0))

=

=1 + μ2
01r

2
0 t

(1 + μ01t)(1 − g f )(1 − U′
1(r0))

, t > tg.

(34)

Together, Eqs. (32) and (34) define the expected component size before and after the
phase transition, that is at t ∈ [0, tg)∪(tg,∞). Precisely at the phase transition, t = tg,
the expected component size diverges, as (t − tg)−1. So that

lim
t→tg

Mw(t)

(t − tg)−1 = O(1).

This happens due to a different type of the asymptotical behaviour of the size distri-
bution at the phase transition, see Eq. (29).
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Fig. 1 Evolution of the degree distribution for f10 = 1

6 Interpretation of the results and examples

The present paper introduces a model for studying polymer networks composed of
multifunctional monomers that polymerise according to the step-growth mechanism
(2). This model associates a vertex with a monomer and an edge with a chemical
bond between two such monomers in the network. A resulting topology of the poly-
mer network is viewed as a random graph defined by its degree distribution. Initial
fractions of monomers of different functionalities fm are directly related to molar
concentrations of monomer species. The reaction kinetics is formalised by the master
equation (3) and yields an analytical expression for the degree distribution at any point
of time (11). Although the master equation (3) has a unit rate, an arbitrary reaction
rate can be modelled by simply scaling time variable t in a linear fashion. An exam-
ple of a degree distribution evolving in time is given in Fig. 1. In this example, the
initial condition of the kinetic model is chosen to be f10 = 1, that corresponds to
pure 10-functional monomers. In the given context, both, initial and terminal degree
distributions are Kronecker’s delta functions positioned correspondingly atm = 0 and
m = 10.

A deeper analysis reveals that when initial concentrations of monomers satisfy
condition (18), the random graph develops a giant component at time tg that is given
by Eq. (16). This event is related to the fact that the molecular network undergoes a
phase transition. Such phase transition is called gelation, and is a well-documented
chemical phenomenon that signifies transition from liquid-like to solid-like state in
soft matter[30,32]. Figure 2 presents two examples showing how tg is influenced by
varying fm . The figure illustrates the fact that addition of one- and two- functional
vertices may be used to control the timing of the phase transition: addition of two-
functional vertices postpones the emergence of the giant component in terms of cg,
whereas tg remains invariant; addition of one-functional vertices may entirely prevent
it.

The size distribution of connected components, as given in Eq. 26, is interpreted
as the molecular weight distribution, whereas the asymptote (29) might serve as a
good way to approximate the latter if rapid computations are required. Evolution of
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Fig. 2 The edge density at phase transition, cg, is plotted as a function of concentration in barycentric
coordinates for two sets of monomer functionalities: (left) the only non-zero concentrations are f1, f2, f3,
(right) the only non-zero concentrations are f1, f2, f6. The black area corresponds to the configurations
that does not feature the phase transition. The points (A, B,C, D) refer to special cases discussed in the
paper
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Edge density,

Fig. 3 Evolution of the size distribution of connected components for a system with f2 = 1 and various
values of the edge density The giant component emerges asymptotically at infinite time (c → 1)

the expected number of this distribution, also known in the chemical literature as
number-average molecular weight, is given by Eqs. (32), (34).

More examples of phase transitioning systems, as obtained for a few instances of
functionality distribution fm, follow below. These examples are supplemented with a
MATALB code that reproduces the size distribution and the corresponding expected
value for an arbitrary functionality distribution and the process time [13].

Example 1 We consider vertices with at most degree 2, that is f2 = 1. Graphs
generated by such a process are always linear and, according to (18), the giant compo-
nent is reachable only asymptotically at t → ∞. Furthermore, a small perturbation,
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Fig. 4 Evolution of the size distribution of connected components for: a a system with f3 = 1, phase
transition at cg = 1

2 , and b a system with f2 = 49
50 , f3 = 1

50 ), phase transition at cg = 101
104
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Fig. 5 Emergence of the giant component in a system with f3 = 1 that features phase transition at c = 1
2 .

Left probability that a randomly sampled node belongs to a finite-size connected component. Right the
expected size of connected components features a singularity at the phase transition
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f1 = ε, f2 = 1− ε, prevents emergence of the giant component even at infinite time
(see points A at barycentric plot of configurations, Fig. 2). The component-size distri-
bution is illustrated in Fig. 3. One may notice the constant “drift” (as indicated with an
arrow) of the distribution towards larger values of components sizes. The distribution
features the exponential asymptote at any t > 0.

Example 2 In this example we consider a system with f3 = 1. This random graph
consists of three-functional vertices and features the phase transition at edge density
c = 1

2 (configuration C in Fig. 2). The component-size distribution is illustrated in
Fig. 4a. Asymptotically, when n → ∞, the component-size distribution switches

a

b

Fig. 6 The size distributions of connected components for a system with f1 = 24
25 , f6 = 1

25 as predicted
by the theory. a The size distributions at a few instances of time. b A surface representing the evolution of
the size distribution during the whole time-continuous process, c ∈ [0, 1].
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between exponential decay (0 < c < 0.5), algebraic decay (c = 0.5), and back to
exponential decay again (0.5 < c < 1). Prior to the phase transition, the distribution
’drifts’ to the right (expected component size becomes larger), and swings back to
small expected component sizes at the end of the process.When edge density traverses
the critical point cg = 1

2 , the probability that a randomly sampled node belongs to
finite-size component departs from one and the expected component size features a
singularity, see Fig. 5.

As shown in Fig. 2, one may postpone the phase transition so it occurs anywhere
between 0.5 and 1 by adding vertices of functionality 2 to the system. For instance,
a mixture of vertices with functionalities two and three having fractions f2 = 49

50
and f3 = 1

50 , as denoted by point B in Fig. 2, postpones the phase transition to
cg = 101

104 ≈ 0.97. The evolution of the size distribution for this case is depicted in
Fig. 4b.

While vertices of degree two postpone the phase transition, vertices of degree one
may prevent it by “consuming” all available edges in a single connected component
and thus locking its size finite. For this reason vertices of degree one are called termina-
tion agents within the chemical context. Depending on what is the degree of the other
species, the probability of randomly selecting a component may feature regular oscil-
lations. For instance, in a dense, c = 1, mixture of m-functional and one-functional
vertices, connected components can take their sizes only from

n ∈ {2} ∪ {km − k + 2 | k = 1, 2, . . . }.

Herewe rely on the fact that non-giant components do not contain cycles[25].Whereas
when edge density c < 1, the sizes of connected components are not restricted to this
set and, as is demonstrated in the next example, the transition of the size distribution
from c < 1 to c = 1 is non-trivial.
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b
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10-4
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10-2
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100
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Monte Carlo
100 ensambles of
10   vertices6

Fig. 7 The size distribution of connected components for a systemwith f1 = 24
25 , f6 = 1

25 at edge density
c = 0.97 is obtained with two different methods: (red line) the theory; (blue line) Monte Carlo simulations
of a network with 106 vertices. The simulation data is averaged over 100 simulation runs (Color figure
online)
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Example 3 We consider a mixture of one- and six-functional vertices present with
fractions f1 = 24

25 , f6 = 1
25 . This distribution of functionalities features the phase

transition at c = 1.As illustrated in Fig. 6a, the size distribution decays monotonically
at low edge densities, but switches to oscillations as c approaches 1. The switch itself
is gradual as can be seen in Fig. 6b. In Fig. 7, the theoretical results are compared
to component-size distribution generated by Monte Carlo (MC) computations. The
theory and MC data are in a perfect agreement; however, despite extensive size of MC
computations (100 ensembles of size 106 vertices), the MC resolution in the tail of
the distributions remains poor.
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