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that optimizes the reliability of the scale. We show that for 
the two scales different sets of items are selected and that a 
scale constructed to meet the one goal does not show optimal 
performance with reference to the other goal.
Discussion The answers are as follows: (1) Because meas-
urement-based methods tend to maximize inter-item cor-
relations by which predictive validity reduces. (2) Through 
selecting items that correlate highly with the criterion and 
lowly with the remaining items. (3) Yes, these methods may 
lead to different item selections. (4) For a single question-
naire: Yes, but it is problematic because reliability cannot 
be estimated accurately. For a test battery: Yes, but it is very 
costly. Implications for the construction of patient-reported 
outcome questionnaires are discussed.

Keywords Test construction methods · Measurement · 
Prediction · Predictive validity

Introduction

Both in medical research and clinical practice, Patient-
Reported Outcomes (PROs) are increasingly used to obtain 
information about the physical, mental, and social well-
being as experienced by patients. PRO questionnaires may 
be used for two goals: measurement and prediction. Most 
often, clinicians and researchers are interested in measure-
ment; that is, the patients’ sum scores accurately represent 
the patients’ attributes. For example, the KIDSCREEN [4] is 
a popular questionnaire that is used for assessing and moni-
toring Health-Related Quality of Life (HRQoL) in children 
and adolescents. For measurement purposes, the reliability 
of the sum score is key, because a higher reliability implies 
more precise measurement. Sometimes, questionnaires are 
used for predictive purposes; that is, the patients’ sum score 

Abstract 
Background Two important goals when using question-
naires are (a) measurement: the questionnaire is constructed 
to assign numerical values that accurately represent the test 
taker’s attribute, and (b) prediction: the questionnaire is con-
structed to give an accurate forecast of an external criterion. 
Construction methods aimed at measurement prescribe that 
items should be reliable. In practice, this leads to question-
naires with high inter-item correlations. By contrast, con-
struction methods aimed at prediction typically prescribe 
that items have a high correlation with the criterion and low 
inter-item correlations. The latter approach has often been 
said to produce a paradox concerning the relation between 
reliability and validity [1–3], because it is often assumed 
that good measurement is a prerequisite of good prediction.
Objective To answer four questions: (1) Why are meas-
urement-based methods suboptimal for questionnaires that 
are used for prediction? (2) How should one construct a 
questionnaire that is used for prediction? (3) Do question-
naire-construction methods that optimize measurement and 
prediction lead to the selection of different items in the ques-
tionnaire? (4) Is it possible to construct a questionnaire that 
can be used for both measurement and prediction?
Illustrative example An empirical data set consisting of 
scores of 242 respondents on questionnaire items measur-
ing mental health is used to select items by means of two 
methods: a method that optimizes the predictive value of 
the scale (i.e., forecast a clinical diagnosis), and a method 
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is employed to provide a forecast of an external outcome. 
This outcome may be a future state or behavior that is clini-
cally relevant [5], but may also be the gold standard (i.e., the 
best measure available [6]) of the concept the questionnaire 
aims to measure [7]. For example, Foster et al. [8] devel-
oped an inventory to assess patients’ need for a functional 
assessment and used it to predict future utilization of medi-
cal services. For prediction purposes, the predictive validity 
of the sum score is key because a higher predictive validity 
implies more accurate prediction.

Whether a PRO questionnaire is primarily used for meas-
urement or prediction seldom affects the choice of method 
to construct the questionnaire (see, e.g., [9–11]). There is 
an array of construction methods, henceforth called popu-
lar construction methods, that are used for the construction 
of all types of questionnaires: Classical Test Theory (CTT, 
[1–3]), which includes popular methods such as investigat-
ing descriptive item statistics, Cronbach’s alpha (e.g., [12]), 
and the corrected item-total correlations; exploratory and 
confirmatory factor analysis [13], which include the inves-
tigation of the dimensionality of the item scores and the par-
ticular item loadings; and item response theory [14] which 
includes the investigation of item discrimination, item dif-
ficulty, and item bias. For example, for the construction of 
PRO questionnaires, which are primarily used for measure-
ment, the guidelines of the PROMIS initiative [15] prescribe 
the use of CTT, factor analysis, or item response theory for 
item selection. The same methods are also used for con-
structing PRO questionnaires that are used for prediction 
(e.g., [8]).

From the theoretical work of Lord and Novick [2], we 
know that the popular construction models are appropriate 
for constructing questionnaires that are used for measure-
ment, and we know that the popular construction models 
are suboptimal for constructing questionnaires that are used 
for prediction.1 This seems paradoxical because most of us 
have learned that good measurement is a prerequisite for 
good prediction. Some authors proved this assumption to 
be false empirically. For example, for the construction of 
the short version of the Screener and Opioid Assessment 
for Patients with Pain-Revised, Finkelman et al. [18] used 
construction methods to optimize prediction. They showed 
that focusing on predictive validity resulted in a substan-
tially lower reliability but equal predictive validity. Simi-
larly, the short version of the Mood and Anxiety Symptoms 
Questionnaire [19] retained its predictive validity in spite 
of a drop in reliability. Still, the need for different construc-
tion methods for prediction and measurement seems to go 
unnoticed, leading to the following four questions: (1) Why 

are the popular construction methods suboptimal for ques-
tionnaires that are used for prediction? (2) How should one 
construct a questionnaire that is used for prediction? (3) Do 
questionnaire-construction methods that optimize measure-
ment and prediction lead to the selection of different items in 
the questionnaire? (4) Is it possible to construct a question-
naire that can be used for both measurement and prediction?

In this paper, we first explain why popular construction 
methods are appropriate for questionnaires that are used for 
measurement but suboptimal for questionnaires that are used 
for prediction. Second, we present a method for constructing 
questionnaires that are used for prediction. By means of an 
empirical example, we show that the type of construction 
methods matters. Finally, we discuss the issue whether a 
questionnaire can be good at both prediction and measure-
ment. In the discussion, we also explain the paradoxical 
situation that, on the one hand, we intuitively feel that good 
measurement is a prerequisite of good prediction, whereas 
on the other hand we apparently need construction methods 
for both goals that produce different questionnaires.

Why are the popular construction methods 
suboptimal for questionnaires that are used 
for prediction?

This question is answered in three steps. First, we explain the 
concept of reliability, which is important for precise meas-
urement. Then, we explain the concept of predictive valid-
ity, which is important for prediction. Finally, we show the 
effect of popular construction methods on the estimates of 
reliability and predictive validity.

Reliability

In CTT, sum score X consists of a true score T  and measure-
ment error E:

X, T , and E are conceived in a thought experiment in 
which for a fixed respondent measurement X is replicated a 
large number of times (assuming independent trials, identi-
cal settings, and no change in the attribute over time), T  is 
the average of this sequence, and random variable E is the 
error of measurement on an arbitrary measurement occasion 
[2, pp. 29–30]. In practice, replications under these circum-
stances are impossible. Therefore, T  and E are unobservable 
and we typically have only one sum score X per respondent. 
In this context, reliability is defined as the consistency (or 
reproducibility) of the sum score over replications [20, p. 
105]; reliability is high when E is typically small compared 
to T .

(1)X = T + E.

1 Also, see Guttman’s theoretical work on scale construction for pre-
diction [16, 17].



1675Qual Life Res (2018) 27:1673–1682 

1 3

Primarily, test theory is concerned with individual dif-
ferences, and therefore the reliability of a test is deter-
mined for a population of respondents rather than a single 
respondent. Equation (1) is therefore generalized towards 
a population in which T  varies among individuals and 
reliability is defined as the squared correlation between 
the sum score and true score. Let �XT  be the correlation 
between the sum score X and true score T , and let �2

T
 and 

�2

X
 be the variance of the true score and sum score, respec-

tively; then the reliability is

Because true scores are unobservable, Eq.  (2) is a 
theoretical definition of reliability [21]. Another step is 
needed to estimate reliability in practice. CTT introduces 
an additional measurement X′, which is parallel to meas-
urement X, meaning that they have identical true scores 
T = T � and variances. It can be shown [2, p. 58] that the 
squared correlation presented in Eq. (2) is equal to the 
correlation between these two measurements:

Estimation of reliability therefore reduces to obtaining 
parallel measurements and calculating correlations among 
them. The most popular estimator of reliability, Cron-
bach’s alpha (�), consists of a similar approach in situa-
tions with more than two parallel measurements; usually 
item scores Xi (i = 1, 2,… , n). Hence, every item is con-
sidered a measurement. Let �2

i
 and �i be the variance and 

standard deviation of item score i, respectively, and let �ij 
be the correlation between item i and item j. Cronbach’s 
alpha is defined as

(cf. [2, par. 15.3]). Note that in Eq. (4) the unobservable 
variables have disappeared, and Cronbach’s alpha can be 
readily computed. If all items are parallel measures, Cron-
bach’s alpha equals the reliability [21]. If items are not par-
allel, which is the case in practice, then Cronbach’s alpha is 
less than the reliability. Equation (4) shows that, all other 
things being equal, the reliability estimated by Cronbach’s 
alpha is high when the inter-item correlations are high. In 
test construction, reliability is therefore optimized by select-
ing items that show high inter-item correlations. As a result 
of this approach, the final set of items usually “measure the 
same thing” [2, p. 95], and the sum score is therefore gener-
ally meaningful and interpretable.

(2)�
2

XT
=

�2

T

�2

X

.

(3)�
2

XT
= �XX� .

(4)� =
n

n − 1
×

�

1 −

∑n

i=1
�2

i
∑n

i=1

∑n

j=1
�i�j�ij

�

Predictive validity

When constructing a test with a prediction goal, one is inter-
ested in the predictive validity of the sum score; that is, the 
correlation between the sum score and a criterion Y . Let �iY 
be the correlation between the score of item i and criterion 
Y; then the predictive validity equals

(cf. [2, Eq. 15.4.4]). The numerator in Eq. (5) shows that, 
all other things being equal, the predictive validity increases 
as the item-criterion correlation increases. The denomina-
tor in Eq. (5) shows that, all other things being equal, the 
predictive validity increases as the inter-item correlations 
decrease. Predictive validity is therefore optimized by select-
ing items into the questionnaire that correlate highly with 
the criterion but lowly with the other items (also see, [22, p. 
645]). It may be noted that in multiple regression analysis, 
the same requirements hold: the predictors (a.k.a. independ-
ent variables) should be highly correlated with the criterion 
(a.k.a. dependent variable), and each predictor should have 
low correlations with other predictors (e.g., [3, chap. 8]). 
Because this approach results in a final set of items possibly 
having little relationship among them, the sum score may 
lack meaningfulness and interpretability [20].

Effect of popular construction methods 
on the reliability and predictive validity

Equations (4) and (5) show that measurement and prediction 
goals have different requirements for inter-item correlations: 
For measurement, they should be high, and for prediction 
they should be low. All popular construction methods tend 
to select items that are highly correlated with the other items 
in the questionnaire. So all popular construction methods 
optimize the estimated reliability of the sum score and 
therefore favor measurement over prediction. For example, 
if Cronbach’s alpha itself is used as a construction method, 
then items are selected into the questionnaire that produce 
the highest value for Cronbach’s alpha. Equation (4) shows 
that maximizing alpha tends to maximize the inter-item cor-
relations as well and therefore tends to reduce the predictive 
validity (Eq.  5). From a measurement perspective, maximiz-
ing inter-item correlations seems reasonable: If the items 
that have already been selected to measure the attribute of 
interest, then an item that correlates highly with the selected 
items is more likely to measure the attribute than an item 
that has low correlations with the selected items. For predic-
tion, other construction methods are required.

(5)�XY =

∑n

i=1
�i�iY

�

∑n

i=1

∑n

j=1
�i�j�ij
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How should one construct a questionnaire that can 
be used for prediction?

Irrespective of the goal of the questionnaire, the construc-
tion of the questionnaire, ideally, consists of the following 
first steps (e.g., [20]). First, the test constructor writes many 
items for which he or she believes that the item response 
is indicative for the attribute that the questionnaire should 
measure. Several conceptual frameworks have been pro-
posed for item writing (e.g., [21, chap. 3]). For example, 
one can use an explicit theory about the construct [23], or 
one can use the intuitive knowledge of experts and patients 
as a basis [24]; what framework is chosen depends on the 
availability of theories about the construct. Second, in a pilot 
study, the items are reviewed by a panel of experts and a 
small sample of respondents, so as to remove the items that 
are deemed to be of low quality (e.g., when item wording is 
incomprehensible or offensive). Third, the remaining items, 
henceforth called the pretest items, are administered to a 
large sample of respondents. The final selection of items, 
henceforth called the final items, is based on the respond-
ents’ item scores, so as to separate the items of high quality 
from the items of poor quality. Here is when the purpose-
specific construction methods come in.

The selection of the final items from the pretest items is 
a complex task, both for measurement and prediction pur-
poses. First, if the number of pretest items becomes large, 
the number of potential combinations of final items, 
∑n

i=1

�

n

i

�

, can be huge. For example, for n = 10 pretest 

items, there are 1023 possible combinations of one or more 
final items; for n = 20, this number has increased to 
1,048,575, and for n = 40 to a number that exceeds one tril-
lion (1012). For ten pretest items, all subsets of final items 
can be evaluated, but for more pretest items it becomes 
unfeasible. Second, the number of automatic subset selection 
methods, such as forward or backward search algorithms, is 
large [25]. Third, this huge number of possibilities often 
exceeds the sample size and may lead to chance capitaliza-
tion [26].

Therefore, robust and straightforward test construction 
methods are needed. For measurement purposes, a quick 
search on Google Scholar shows that many authors use 
alpha if item deleted (�−i) (for a discussion see, Raykov [27, 
28]): for each item, Cronbach’s alpha is computed with the 
item removed. Alpha if item deleted can be used in a step-
wise backward selection procedure. In the first step, the item 
with the highest �−i is removed. Next, �−i is computed on 
the remaining items, and the item with the highest �−i is 
removed. These steps continue until the desired number of 
final items has been reached, or earlier, if Cronbach’s alpha 
has reached the minimal value that is deemed sufficiently 

high (although various popular heuristic rules of thumb 
for alpha exist, such as [26], there is no single generally 
accepted rule; for an overview of suggested rules, see Oost-
erwijk et al. [29]).

A construction method for selecting final items from a set 
of pretest items for prediction may follow the same ration-
ale, and the estimated predictive validity can be used in a 
backward selection procedure:2 for each item, the predictive 
validity with the item removed �X−iY

 is estimated, and the 
pretest item with the highest estimated �X−iY

 is removed. This 
continues similarly to the backward selection procedure for 
Cronbach’s alpha. The procedure stops if the desired number 
of items has been reached, or earlier, if the estimated predic-
tive validity has reached the minimal value that is deemed 
sufficient for good prediction (there are no widely accepted 
heuristic rules of thumb for predictive validity; requirements 
depend on the clinical domain [30], other information avail-
able to the tester, and the utility of the outcomes [31]).

Equation (5) shows that for a good predictive validity the 
final items should correlate highly with the criterion and 
lowly with the remaining final items in the questionnaire. 
This means that items probably measure different aspects 
of the attribute of interest or even more than one attribute.

Do questionnaire‑construction methods 
that optimize measurement and prediction 
lead to the selection of different items 
in the questionnaire?

This question is answered by an empirical example. The 
data consist of the responses of 242 patients on 10 Likert 
scale items from the questionnaire Center of Epidemiologi-
cal Studies-Depression (CES-D, [32]), a self-report inven-
tory consisting in a total of twenty items with a four-point 
Likert scale which aims to measure depression severity. All 
respondents also had a criterion score: A binary depression 
diagnosis on the basis of the Mini International Neuropsy-
chiatric Interview (MINI, [33]), which is often employed 
as the gold standard. For a more detailed description of the 
data, the reader is referred to Smits et al. [34]. To keep the 
illustration general, the CES-D inventory and MINI diagno-
sis are referred to as ‘questionnaire’ and ‘criterion,’ respec-
tively; the questionnaire items were randomly ordered and 
are referred to as Item 1, Item 2, et cetera. The full version 
of the questionnaire had a reliability (estimated using Cron-
bach’s alpha) of 0.93 and a predictive validity (i.e., the cor-
relation between the sum score and criterion) of 0.40.

2 Finkelman et  al. [18] used a similar method for item selection: 
absolute shrinkage and selection operator (lasso) regression. For a 
discussion of lasso, see Hastie et al. [25, chap. 3].
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The main goal of the illustration is to imitate a test con-
struction situation in which the constructor is faced with a 
starting set of items, which has previously been administered 
in a field test or a pilot study, preliminarily to the construc-
tion of the final version of the test. The starting set contains 
more items than can be administered during testing; there-
fore, a subset of items should be selected. For illustrative 
purposes, ten items rather than the full set of twenty CES-D 
items were used. The ten items were selected in such a way 
that the final set of items showed sufficient variability in the 
statistics associated with prediction and measurement, which 
was required for a proper imitation of a pretest situation.

From the pool of ten pretest items, five final items were 
selected in two conditions. In the first condition, which cor-
responds to constructing a questionnaire for measurement 
purposes, the five final items maximized Cronbach’s alpha. 
In the second condition, which corresponds to constructing 
a questionnaire for prediction purposes, the five final items 
maximized the correlation between the sum score and the 
external criterion. In both conditions, a stepwise backward 
search procedure, as described in the previous section, was 
applied for item selection.

Table 1 provides several item statistics for a first inspec-
tion of the pool of ten items. Pearson’s inter-item correla-
tions (Table 1, columns 1–9) ranged between .10 and .57, 
and showed substantial variability. In practice, the pool of 
items will be larger than 10, and for larger number of items 
it may be arduous to inspect all inter-item correlations. The 

corrected item-total correlation, the correlation of an item 
score with the sum score of the remaining items, may be 
used instead. The corrected item-total correlations conveni-
ently summarize the inter-item correlations into one statistic 
per item. The corrected item-total correlations (Table 1, col-
umn 10) ranged between .28 and .68, and also showed con-
siderable variability. Items 2, 3, 5, 8, and 10 had the highest 
corrected item-total correlations. At first glance, these items 
seem suitable candidate items for a questionnaire that is used 
for measurement.

The item-criterion correlation (Table 1, last column) 
ranged between .13 and .35, and showed less variability 
than the corrected item-total correlations. Items 3, 4, 7, 8, 
and 10 had the highest item-criterion correlations, but the 
item-criterion correlations cannot be used directly to assess 
predictive validity because the inter-item correlations and 
standard deviations should also be taken into account.

Table 2 (left) shows the five items selected for each condi-
tion. For the measurement-based questionnaire, items 2, 3, 
5, 8, and 10 were selected; these are the items that showed 
high item-rest correlations in Table 1. For the prediction-
based questionnaire, items 4, 6, 7, 9, and 10 were selected. 
A salient result is that item 9 was selected for the scale, 
although item 9 had the lowest corrected item-total correla-
tion and the lowest item-criterion correlation. Apparently, 
this item explained additional variance of the external crite-
rion. Turning to the comparison of the questionnaires: The 
two questionnaires consisted of very different final items; 

Table 1  Pearson correlation 
matrix of ten questionnaire 
items and a criterion

a The sum score of all items except the item in the row; this column provides corrected item-total correla-
tions

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Corrected 
item-totala

Criterion

Item 1 0.45 0.22
Item 2 0.32 0.59 0.21
Item 3 0.27 0.50 0.56 0.23
Item 4 0.41 0.31 0.31 0.51 0.28
Item 5 0.27 0.32 0.38 0.34 0.53 0.20
Item 6 0.15 0.42 0.36 0.15 0.30 0.40 0.22
Item 7 0.22 0.38 0.27 0.29 0.31 0.28 0.47 0.26
Item 8 0.36 0.42 0.44 0.42 0.49 0.28 0.44 0.67 0.25
Item 9 0.19 0.19 0.18 0.10 0.20 0.10 0.14 0.33 0.28 0.13
Item 10 0.42 0.46 0.44 0.57 0.41 0.27 0.35 0.55 0.26 0.68 0.35

Table 2  Results of the 
measurement-based and 
prediction-based item subset 
selection

Scale Items selected Coefficient � Predic-
tive 
validity

Measurement-based Item 2 Item 3 Item 5 Item 8 Item 10 0.80 0.33
Prediction-based Item 4 Item 6 Item 7 Item 9 Item 10 0.63 0.40
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only a single item (Item 10) was selected in both question-
naires. The third column of Table 2 shows the estimated 
reliability of both questionnaires. Both reliabilities are lower 
than the reliability of the full version of the questionnaire, 
an outcome in line with the Spearman–Brown prophecy for-
mula (e.g., [2, Eq. 5.1.1]) which states that if a test is split up 
into parallel subtests, the reliability of each subtest will be 
lower than that of the full test. Cronbach’s alpha was higher 
for the measurement-based scale (.80) than for the predic-
tion-based scale (.63); according to some standards (e.g., 
[35]), the former scale would be a ‘good’ scale, the latter an 
‘inadequate’ scale (but neither would be recommended for 
making high-stakes decisions). The fourth column of Table 2 
shows the estimated predictive validity, which was higher for 
the prediction-based scale (.40) than for the measurement-
based scale (.33). It depends on the clinical context how this 
difference is evaluated; if the test contributes much to utility, 
even a drop of five percent points in predictive power may 
mean a large loss [31].

To evaluate the size of differences in outcomes between 
the two scales, it may be informative to relate them to the 
outcomes of the full version of the questionnaire: com-
pared to selecting items for a measurement-based scale, 
selecting items for a prediction-based scale yields a larger 
reduction of Cronbach’s alpha: (1 − .63∕.93) × 100 = 32% 
versus (1 − .80∕.93) × 100 = 14%, but a smaller reduc-
tion of predictive validity (1 − .40∕.40) × 100 = 0% versus 
(1 − .33∕.40) × 100 = 18%.

This empirical example illustrates that construction meth-
ods for measurement-based questionnaires and prediction-
based questionnaires may result in different sets of final 
items, and that a trade-off between measurement and pre-
diction properties of a scale exists. It also illustrates that for 
optimizing predictive validity a high value of Cronbach’s 
alpha is no prerequisite.

Is it possible to construct a questionnaire that can 
be used for both measurement and prediction?

What would be the merit of a questionnaire with both high 
measurement and prediction qualities? It would mean that 
a questionnaire is not only useful for forecasting purposes, 
but also that its sum scores are meaningful and interpretable, 
which has at least three advantages. First, such a question-
naire more easily gains acceptance among test users because 
it can be used for all purposes. Second, predictions based 
on such tests are more easily communicated to test takers. 
Third, it allows for studying the mechanisms underlying the 
relationship between test and criterion, which in turn may 
allow for refinement of the test.

There are two answers to the question as to whether it is 
possible to construct a questionnaire that can be used for 

both measurement and prediction. Both answers indicate 
that it is possible to construct a questionnaire that can be 
used for both measurement and prediction, and both answers 
stress that there is no such thing as a free lunch. The answers 
require the introduction and the explanation of a paradox.

The paradox

On the one hand, Eqs. (4) and (5) show that measurement 
goals require high inter-item correlations, whereas predic-
tion goals require low inter-item correlations. This suggests 
that questionnaires cannot be used for both measurement and 
prediction. On the other hand, it can be proven mathemati-
cally [2, p. 72] that the predictive validity of the sum score 
can never be higher than the square root of the sum-score 
reliability; that is,

Only if criterion Y  equals the true score of X, the predic-
tive validity equals the square root of the reliability. In prac-
tice, the predictive validity can be expected to be much lower 
than the square root of the reliability. Equation (6) suggests 
that a high reliability is a prerequisite of predictive valid-
ity. So, we have a paradox: According to Eqs. (4) and (5), 
predictive validity and reliability do not go well together, 
and according to Equation 6 they must go together. Sev-
eral authors have noted this paradox (e.g., [1], pp. 380–381; 
[2], pp. 332–333, [3], p. 243).

The paradox can be explained by the fact that Cronbach’s 
alpha (Eq. 4) is an estimate of the reliability and not the 
reliability itself. Cronbach’s alpha is a lower bound: For 
all practical applications, Cronbach’s alpha is smaller than 
the reliability [2].3 The crucial part is that the difference 
between the true reliability and the reliability estimated by 
Cronbach’s alpha becomes larger as the inter-item corre-
lations decrease. As a result, for questionnaires with low 
inter-item correlations, Cronbach’s alpha is a poor estimate 
of the reliability. The Appendix shows that if the reliability 
equals .8, Cronbach’s alpha can be as low as zero. Hence, the 
paradox exists because one of the premises uses estimated 
reliability (Eq. 4), whereas the other premise uses true reli-
ability (Eq. 6).

(6)�XY ≤ �XT =
√

�XX� .

3 Only if the item scores are essentially tau-equivalent [36], Cron-
bach’s alpha equals the reliability. Essential tau-equivalence requires 
that for all patients and all items, the difference between two item true 
scores is constant across patients. Although the assumption of essen-
tially tau-equivalence is slightly less restrictive than the assumption 
of parallel items discussed earlier, it will never hold in practice.
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The two answers

The first answer pertains to a single questionnaire. The 
answer is yes, in principle a single test can have a high pre-
dictive validity and a high reliability, but in practice it may 
be problematic. For good predictive validity, a construc-
tion procedure may be used that optimizes the predictive 
validity. These construction procedures tend to select items 
with low inter-item correlations (Eq. 5), and low inter-item 
correlations will generally produce low values of the reli-
ability estimated by Cronbach’s alpha (Eq. 4). However, the 
explanation of the paradox indicated that for questionnaires 
with low inter-item correlations, Cronbach’s alpha is a poor 
estimate of the reliability. As a result, the questionnaire may 
or may not have an adequate reliability.

The major problem is that the reliability cannot be esti-
mated accurately using Cronbach’s alpha or other internal 
consistency methods, such as Guttman’s lambda coefficients 
[37]. Alternatives for reliability estimates include the test-
retest correlation (e.g., [7]) and reliability estimates that 
work well for multidimensional data. The test-retest cor-
relation has the advantage that it does not depend on inter-
item correlations, but it has the disadvantage that the condi-
tions in the test and retest are assumed to be equivalent [22, 
38] (e.g., for the retest, it is assumed that patients do not 
remember what they answered in the first administration). 
A violation of the assumption renders the test-retest corre-
lation useless as a reliability estimate: It may overestimate 
the true reliability (e.g., because patients remembered the 
answers) or it may underestimate the true reliability (e.g., 
because the physical conditions in the two administrations 
were not identical). Reliability estimates that can be used 
for multidimensional data may be more accurate than Cron-
bach’s alpha. Examples include reliability estimates based 
on multiple-factor models [39] or latent-class models [40].

The second answer is also yes, but is it rather costly and 
time consuming. It requires a test battery rather than a single 
questionnaire: A test battery is a collection of tests and/or 
questionnaires which typically measure different variables 
but which have a common objective [41]. On the one hand, 
each test and questionnaire is constructed to be a reliable 
measurement of the attribute it intends to measure. On the 
other hand, the scores on tests and questionnaires have 
low correlations, making them suitable for prediction. For 
example, Perrine and colleagues [42] used the Quality of 
Life in Epilepsy-89 inventory in combination with intelli-
gence tests and mood questionnaires to study HRQoL in 
epilepsy. Test batteries have the great advantage that each 
predictor is carefully constructed. Given that these predic-
tors are selected based on a clear theoretical framework, 
one does not only predict well, but it is more likely that one 
understands the prediction as well. (Evidently, the predictive 
power and interpretability of the battery depend on what is 

being measured and predicted, and the quality of test items.) 
Test batteries, however, have the great disadvantage that they 
are expensive and time consuming with respect to both con-
struction and administration.

Discussion

We answered four questions:

(1) Why are the popular construction methods suboptimal 
for questionnaires that are used for prediction? Popular 
construction methods optimize the estimated reliability 
of the sum score by selecting items that have high inter-
item correlations, and we showed that for predictive 
validity inter-item correlations should be low. In addi-
tion, this result indicates that, instead of a property of a 
questionnaire that can be evaluated after test construc-
tion (see, e.g., [9–11]), predictive validity is a property 
that can be optimized in the construction phase itself; if 
prediction is the goal, appropriate construction methods 
should be used.

  Although under item response theory models sum-
score reliability may be obtained [43], the concept of 
internal consistency is replaced by that of item and test 
information [14]. Information quantifies the measure-
ment precision a test or an item provides as a function 
of the latent trait (higher information implies more reli-
ability). Therefore, it may seem as if employing this 
theory secures from the measurement–prediction trade-
off. However, this is incorrect because item information 
is known to be higher for items with high discrimina-
tion parameter values [44], and that in practice discrim-
ination parameters are highly correlated with corrected 
item-total correlations [45]. As a result, item selection 
optimizing test information is expected to result in item 
sets similar to those resulting from item selection based 
on optimizing internal consistency.

(2) How should one construct a questionnaire that is used 
for prediction? This is a question for which we do 
not have a definite answer. We discussed a stepwise 
backward selection algorithm for item selection that 
optimizes the estimated predictive validity: the sum 
score-criterion correlation. However, this study is no 
plea for pushing the optimal approach for prediction 
to the extreme. Evidently, a questionnaire consisting 
of items that correlate highly with an external crite-
rion, but have little relationship with each other, may 
lack meaningfulness and interpretability [20, 46]. In 
contrast, the message is that homogeneous items usu-
ally explain the same part of the criterion’s variance, 
and that by selecting items that have less in common, a 
larger part of the criterion’s variance may be explained. 
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Moreover, there are limits to this approach, because it 
follows from Eq. (5) that it is mathematically impos-
sible to find a large set of items with zero correlations 
among them [2, p.333]. Similarly, in multiple regres-
sion analysis, the number of meaningful predictors is 
usually not more than four or five [2, p. 274].

  In the non-clinical literature on test construction, 
it has been advised not to construct prediction-based 
scales because a single well-defined criterion in a 
specific setting is hardly, if ever, available (e.g., [20, 
p.323]). Also, for general HRQoL measures, such as 
the Short Form Health Survey (SF-36) [47], typically 
no single criterion is available. However, for clinical 
measures that assess disease-specific patient-reported 
outcomes well-defined criterion measures are much 
more common. For example, questionnaires have been 
constructed to serve as a first assessment in two-stage 
testing (e.g., [31, 48]). The second test consists of an 
extensive examination of the individual, often referred 
to as the gold standard, which results in a classification 
like ‘healthy’ or ‘diseased.’ The first test, often referred 
to as ‘screener,’ is a cheap indicator of illness, and only 
when it gives a positive outcome, the more expensive 
examination is performed. Examples of such screeners 
are the Patient Health Questionnaire-Depression (PHQ-
9, [49]), Generalized Anxiety Disorder Assessment 
(GAD-7, [50]), and Pain Numeric Rating Scale (NRS, 
[51]). Note that in this situation it would be inappro-
priate to evaluate the questionnaire using Cronbach’s 
alpha. In contrast, the quality of a screener should be 
primarily evaluated on the basis of its diagnostic accu-
racy (including sensitivity, specificity, and predictive 
values) in the target population [7], and its reliabil-
ity should be assessed using a method that does not 
severely underestimate reliability in case of low inter-
item correlations. We have argued that these tests are 
less suited for measurement (also, see [52]).

(3) Do questionnaire-construction methods that optimize 
measurement and prediction lead to the selection of dif-
ferent items in the questionnaire? We showed they do. 
As a result, there seems to be a trade-off between meas-
urement goals and prediction goals. This trade-off bears 
a close resemblance to the relationship between homo-
geneity and breadth of attribute [53–55]. The homoge-
neity of a questionnaire may be maximized by selecting 
items that are similar in content, but this usually means 
a loss of generality of the attribute, that is, a decrease 
in content validity [56]. Selecting homogeneous items 
may have a negative effect on both predictive validity 
and construct validity. Whereas predictive validity is 
concerned with the relationship with a single criterion, 
construct validity is concerned with the relationship 
with a diversity of criteria. Therefore, too much empha-

sis on homogeneity may be detrimental to a multitude 
of relationships. For example, Devine and colleagues 
[57] constructed an item bank for measuring depres-
sion using item response theory. Items associated with 
physical aspects, such as loss of appetite, did not fit the 
measurement model and were excluded from the item 
bank. Hence, the homogeneity of the items increased 
but the breadth of the attribute decreased. Devine et al. 
compared the sensitivity to clinical change between the 
questionnaire that used items from the item bank and 
several legacy instruments that were based on expert 
knowledge. They found that the legacy instruments 
were more sensitive to clinical change. Apparently, the 
increase in homogeneity also affected the predictive 
validity. A related issue is imbalance of item content: 
If some subdomains are over-represented in the pretest 
items, pursuing homogeneity may lead to a final item 
set that misses important aspects of the attribute. For a 
discussion, we refer to [34, 58].

(4) Is it possible to construct a questionnaire that can be 
used for both measurement and prediction? It is pos-
sible to have the cake and eat it, but at a price. A sin-
gle test, constructed for prediction, may possibly have 
a sufficient sum-score reliability. Unfortunately, we 
would not know because the estimates are too far off, 
and for the same token, the sum-score reliability may 
be poor. Measuring and predicting at the same time 
requires questionnaire batteries (also see [53]). Test 
batteries are far from the efficiency that is customary 
in HRQoL. As a final note, we believe it is important 
that test constructors, editors, and reviewers of scien-
tific journals know that it is hard for a questionnaire 
to excel on all properties. Moreover, it is important to 
provide as much information as possible on as many 
test qualities as possible, but the questionnaire should 
be mostly evaluated on properties which are associated 
with the goal for which it was constructed.
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Appendix

Let �2

Ti
 be the variance of the true score of item i. Because 

the true scores are unobservable, �2

Ti
 is also unobservable. 

Reliability (Eq. 3) can be written as

(cf. [2, Eqs. 4.3.7 and 4.3.8]). Let �̄� =
∑∑

i≠j 𝜎i𝜎j𝜌ij

n(n−1)
 be the 

mean inter-item covariance. Cronbach’s alpha can be rewrit-
ten as

Eqs. (A.1) and (A.2) show that the unobservable part of the 
reliability, �2

Ti
, is replaced by the mean inter-item covariance, 

�̄�, to obtain �. Other than that, Eqs. (A.1) and (A.2) are the 
same. Table 3 (rows 1–3) shows, for two three-item ques-
tionnaires, the population values of the item variances, the 
inter-item correlations, and the item true score variances. 
Using Eqs. (A.1) and (A.2), the reliability and Cronbach’s 
alpha are computed (Table 3, rows 4–9). For questionnaire 
1, the inter-item correlations are high, whereas for question-
naire 2 the items are uncorrelated. For both questionnaires, 
the sum-score reliability equals �XX� = .8. For questionnaire 
1, the reliability is estimated with � = .75. Although alpha 
is a lower bound, the difference is relatively small. For ques-
tionnaire 2, the reliability is estimated with � = 0. Hence � 
greatly underestimates the sum-score reliability.

(A.1)�XX� =

∑∑

i≠j �i�j�ij +
∑

i �
2

Ti
∑

i

∑

j �i�j�ij

,

(A.2)𝛼 =

∑∑

i≠j 𝜎i𝜎j𝜌ij +
∑

i �̄�
∑

i

∑

j 𝜎i𝜎j𝜌ij

.
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