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The effect of high versus low guidance
structured tasks on mathematical creativity

Sonia Palha, Jaap Schuitema, Carla van Boxtel and Thea Peetsma

University of Amsterdam, Research Institute of Child Development and Education, Amsterdam, The Netherlands,
S.AbrantesGarcezPalha@uva.nl, J.A.Schuitema@uva.nl, C.A.MvanBoxtel@uva.nl, TT.D.Peetsma@uva.nl

To engage in challenging tasks, students need to feel
some autonomy and competence. Providing structure
within the task can help to meet these needs. This study
investigates the influence of structure within a mod-
elling task on mathematical creativity among 79 elev-
enth-grade groups of students. Two versions of the task
were developed and the groups were randomly assigned
within their classroom to one of these. The analysis ex-
plored: (i) the level of mathematical creativity in groups
solutions and (ii) if they were dependent on the amount
of structure. The results were not statistically significant
and, therefore, the question remains open. Additional
results and implication of this study to mathematics
education are further discussed.

Keywords: Integral calculus, creativity, modelling,

collaborative learning, structure.

INTRODUCTION

Researchers express different views with regard to
creativity and its connection with the learning en-
vironment. Some claim that creativity can be seen
as a disposition towards mathematical activity and
therefore it can be fostered through specific instruc-
tion, such as problem-solving (Silver, 1997). Others see
creativity as characteristic of extraordinary individu-
als (Weisberg, 1988) and thus, not likely to be strongly
influenced by the learning environment. Also, sev-
eral researchers connect creativity to self-regulated
learning (Feldhusen & Goh, 1995) and psychological
characteristics such as task commitment and moti-
vation (Renzulli, 1978). In our research we share the
view that mathematical creativity can be fostered by
adequate instruction and we study the relationship
between aspects of the learning environment (e.g.,
task characteristics) and mathematical creativity.

CERME?9 (2015) - TWG07

This study is part of a longitudinal intervention re-
search in which we investigate how aspects of the
learning environment influences students’ motiva-
tion, self-regulation and academic performance in
mathematics. We developed a learning arrangement
in which we used differentiated tasks with a deeper
and broader content and method to create a more au-
thentic and challenging learning context. The partic-
ipants are 16/17 years old students in pre-university
education in The Netherlands. Part of our research is
to investigate which amount of structure is optimal
for the students. We developed two versions of the
same learning arrangement. One version consists
of low-structured (LS) tasks and provides more open
tasks, more choice and initiative for students. The oth-
er version contains more high-structured (HS) tasks,
which still provide some choice but also hints, more
sub-questions and guidance.

In this paper we discuss our findings with regard toa
modelling-task: the parachute jump (Figure 1), which
was used within the topic Introduction to Integral
Calculus. Modelling-tasks as problem-posing tasks
have been seen by several researchers as excellent
opportunities for mathematical creativity (Kim &
Kim, 2010; Chamberlin & Moon, 2005). The research
questions that guided our study were:

— What can we say about the mathematical creativ-
ity of students’ productions with regard to the
parachute jump task?

— In which way does variation in the amount of

structure in the parachute jump task influences
students’ mathematical creativity?
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THEORETICAL FRAMEWORK

Mathematical reasoning and creativity
Mathematical creativity can be seen as the ability of
students to create useful and original solutions in
authentic problem-solving situations (Chamberlin &
Moon, 2005). The core activity of the parachute task is
to build a model that can be applied in the particular
example and other situations. The students’ products
can then be evaluated in terms of mathematical cre-
ativity. In the literature, mathematical creativity is
often defined in terms of three components: flexibility,
fluency and originality (Silver, 1997, Yuan & Sriraman,
2001). Flexibility can be seen as the ability to generate
multiple solutions to a given problem. Fluency can be
seen as the ability to use several relevant ideas to solve
the task and, in problem-situation tasks it is connected
to many interpretations, methods, or answers Silver
(1997). Originality concerns different solutions or
innovative ways to approach a problem.

Measurement of mathematical creativity remains
critical. Onereason is the absence of a universal defini-
tion applicable in different academic domains (Leikin
& Lev, 2013; Kattou, Christou, & Pitta-Pantazi, 2015).
Another reasonis that one person’s creativity can only
be assessed indirectly (Piffer, 2012). The ability of pos-
ing problems given one mathematical scenario have
been linked by several researchers to mathematical
creativity (Silver, 1997; Yuan & Sriraman, 2001). Also,
over the past years, researchers (Leikin & Lev, 2013)
developed an analytical framework that can be used
to evaluate creativity in students’ productions using
the components fluency, flexibility and originality.
Mathematical creativity with regard to modelling ac-
tivities often includes a fourth component: usefulness,
which concerns the degree of relevance, adaptability
and generality of solutions with regard to real world
situations (Chamberlin & Moon, 2005). The criterion
of usefulness has been contested by some authors.
Sriraman (as cited in Yuan & Sriraman, 2001) argues
that mathematics creative work might not be useful in
terms of its applicability in the real world. Chamberlin
and Moon (2005) propose the Quality Assurance Guide
as a reliable instrument to evaluate creativity in stu-
dents’ products on modelling tasks. Each solution is
scored within one of five levels. Level 1- requires redi-
rection- the product is on the wrong track and work-
ingharder or longer will not improve it. At level 2, the
product requires major extensions or refinements,
the product is a good start towards meeting the goal

of the task. At level 3, the product is nearly ready to
be used; it is useful for the specific data or sharable
or reusable. At level 4, no changes are needed and at
level 5, others can use it as tool in similar situations.

High- and Low-structured

tasks (HS and LS- tasks)

According to Silver (1997) problem-oriented instruc-
tion can assist students to develop more creative ap-
proaches to mathematics by increasing their capacity
with respect to the core dimensions of creativity: flu-
ency, flexibility, and originality. For instance, ill-struc-
tured problems require problem posing and conjec-
turing, which can foster the generation of novel con-
jectures. Silver (1997) stated: “It is in this interplay of
formulating, attempting to solve, reformulating, and
eventually solving a problem that one sees creative ac-
tivity” (p.76). However, engaging in problem-solving
activity also requires certain ability and disposition
to deal with uncertainty and challenge. Aspects of
the learning environment that have been found to
support the development of such disposition are au-
tonomy support and structure provision (Deci & Ryan,
2000). According to these authors, in autonomy sup-
portive environments students are allowed to make
own decisions and are encouraged to solve problems.
This can be achieved by providing authentic tasks and
opportunities for taking initiative and minimize the
use of controlling behaviour. Also, the provisions of
structure contributes for students’ feeling of com-
petence and therefore is important for motivation.
Providing structure involves communicating clear
expectations, set limits to students’ behaviour and
provide help.

Task arrangement

We investigate the relationship between structure
provision and mathematical creativity in a prob-
lem-oriented arrangement that consisted of the ‘par-
achute jump’ task (Figure 1) and small group work.
Working together may enhance feelings of related-
ness and a sense of autonomy (Schuitema, Peetsma,
& Van der Veen, 2011). And, during students’ collab-
oration there is an unpredictable flow of ideas and
actions that emerge from the elements of the group
while responding to each other. Levenson (2011) states:
“Together, the group tries out various strategies and
possibly produces solutions based on different math-
ematical properties or different representations” (p.
230). This is tied to mathematical creativity in the
sense that participants must be flexible, establish
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(both versions A and B)

Task 25 parachute jump

But first an example of a parachute jump is presented.

Example.

on the ground at this velocity.

Dynamical processes, like a train ride, a traveling car and other speed-time processes can be described using a
mathematical model. A mathematical model may include tables, graphs, formulas or any combination of these
representations. These mathematical models can then be used to investigate (and solve) problems through
calculations and reasoning or to invent better models to attack the stated problem. In a group of three students,
you will create a mathematical model in which the distance travelled against time for a parachutist is described.
You also prepare a demonstration (Powerpoint, poster or video clip) of your group's work as a homework task.

Imagine the following situation: A parachutist jumps from an airplane. The first five seconds
she makes a free fall. Then she opens the parachute and because of that her fall velocity
decreases linearly down until after 6 seconds she achieves a fall velocity of 4 meters per
second. From this moment on the velocity remains constant during 70 seconds and she lands

{only version A)

In the example, time is called t {in seconds), with t = 0 at the jump
from the plane. For the free fall the velocity is given by v(t) =9,8 t
with v in meter per second. The total jump, until reaching the
ground, was 561.5 meters. A mathematical model for this example
could be a formula {or some collection of formulas), a graph or
table in which the falling process is described and that may help to
solve the stated problem.

The process for another parachutist will be comparable although
different in the three phases of the process.

{only version B)

The process for another parachutist will be comparable, although
different in the three phases of the process. That process may be
described using a mathematical model. It is usual to start such a
model with a concrete example and after that you try to design a
more general model or representation. In this class period you will
develop a mathematical model that describes the distance
traveled against elapsed time for a parachutist. There are guiding
questions describing an example that will help you to understand
what is going on (questions a-d) and after that you are asked to
design your own model (question ).

In the example, time is called t (in seconds), with t = 0 at the jump
from the plane. For the free fall the velocity is given by v(t) =9,8 t
with v in meter per second.

a. What distance does the parachutist cover during the free
fall?

b.  What is the total distance covered from start to landing??

a. (versionA) c. (version B)

Watch the Youtube video of a parachutist jump: http://www.youtube.com/watch?v=STDIEFhIPrw. Which similarities and

differences do you notice, compared to the situation of the example?

d. Re-watch the video and try to collect data to design the
model that describes the parachute jump (describe the data
with use of tables/graphs or both).

e. (Can you find a relationship between distance covered and
time, based on the data you collected fom the video?

b.  (versionA) e. (version B)

- the mathematical model is presented;
- you give a justification of the choices made;

- a critical reflection on the model.

Create a mathematical model that describes the distance covered during the total parachute jump against time.
After that, you preare a group presentation (powerpoint, poster or video for a 2-5 minutes presentation) in which:

- show some examples of situations in which the chosen model will work;

Figure 1: Parachute jump task

mathematical relations and approach the task in dis-

tinct or novel ways.

The ‘parachute jump’ task was entailed to provide
challenge and authentic experiences, as these are

important elements of autonomy supportive tasks. It

was designed according to the following four criteria.
Appealing and accessible to all students. The context

of a parachute jump and the YouTube video make the
task interesting to the students. And, the task becomes
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more accessible by providing an initial example with
concrete values and asking to compare it with the
one in the video. The pre-knowledge needed to start
working on the task was known from previous year
(functions, graphs and derivatives).

Authentic. By providing students with an authentic
task, and enough freedom of choice we expect that
students will be willing to spend thinking effort onit.

Foster mathematical reasoning and creativity. The ac-
complishment of the task requires the use of mathe-
matical understanding and high-level reasoning. The
students must produce at least one representation of
the integral function (table, formula, graph, words)
and describe its variation at the different instances
of the jump. This involves high-level reasoning, as
the students must imagine the total accumulating
distance varying over time (Thompson & Silverman,
2008).

Suitable for collaborative learning. The task is complex
and it can be approached at several levels of under-
standing. Moreover, the students were encouraged
todiscuss their ideas and communicate their findings
within the group.

Solving the task takes about two lessons of 50 minutes
each and some homework time. We agreed with the
teachers that the students would work in small groups
during one lesson on the task and that they should
finish it in their own time (not more than one week).
The final product would have the format of a Power
Point or a short video-film and would be delivered to
the teacher, who would send it to us.

METHOD

Participants and data collection

Seventy-nine groups of 3 students (16/17 years old)
from 10 classrooms in 5 schools participated in the
study. The data was collected in the spring 2014 and
consists of delivered groups products and lesson ob-
servations. The groups were formed based on a cog-
nitive ability test. The 40 groups in the LS condition
and the 39 groups at the HS condition were, in each
classroom, random assigned to one of the conditions.

Instrument used for the evaluation

of mathematical creativity

The instrument that we used to evaluate the students’
solutions to the parachute jump is based on three of
the four components discussed in the theoretical sec-
tion (we excluded originality because of the difficulty
on assessing it in our data).

Usefulness regards the creation of a model that is use-
ful to describe a parachute jump. For each written
solution, we decided whether the model was incor-
rect (level 1), was in the good way but needed major
improvements (level 2) or it was ready to be used but
needed editing (level 3). Levels 4 and 5 were not ob-
served in our data.

Fluency was seen as the ability to use several mathe-
matical relevant ideas to solve the task. In the context
of the parachute task it should be connected to the
mathematical concept of the integral function, which
is here treated as the total accumulating distance.
Based on our theoretical framework, we define mathe-
matical fluency as the ability to (i) link integration and
differentiation as inverse processes; (ii) represent the
total accumulated distance as a process (operational
concept) and as an object (object oriented concept)
within at least one functional representation (analyt-
ical, graphical, by words or numerical in a table); (iii)
Indicate parameters that influence the model and to
explain choices made.

Flexibility refers to the ability to setup amodel and to
use values that go beyond the information provided
in the examples.

Analysis

To investigate the first research question we oper-
ationalized mathematical creativity in terms of the
three components and explored the frequencies
found in the students solutions. To investigate the
second research question we gave scores to the 3com-
ponents and sub-components. Each student solution
was then scored within 1-3 for usefulness, 0-2 for
each subcategories of fluency, 0-2 for flexibility. We
used the Mann-Whitney test, which is indicated
for data at ordinal level of measurement, to explore
whether the products of the two conditions differed
from each other.
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RESULTS

Fifty-two of the 79 groups that worked on the task in
classroom handed in their final product to the teach-
er. In the following of this section we report on these
products.

Students’ creativity in terms of

usefulness, fluency and flexibility

The first research question concerned the mathemat-
ical creativity of student productions. Table 1 shows
that the majority of the groups solutions (36) were
at level 1 and therefore, not useful to model the par-
achute jump. Only 16 groups produced models that
could be used.

Usefulness Groups solutions (N=52)
Level 1 36 (45,6%)

Level 2 15 (19%)

Level 3 1 (1,3%)

Table 1: Results on usefulness

The results on fluency are shown in Table 2. Almost
half of the groups (22) explicitly established the link
between integration and differentiation. For instance,
one group draw both graphs, with the text differenti-
ation and integration and two arrows pointing oppo-
site directions. Most of the solutions (37) presented
traces of an operational- oriented conception of total
distance. This means that students can draw a total

distance graph, use formulas to calculate single values

but have difficulty to conceptualize the total distance

as amathematical object on which operations can be

performed (Sfard, 1991). Very few groups (7) showed
tohave an object-oriented conception of total distance.
Anexample of a student explanation that we consider
exemplary of object-oriented conception is: “The dis-
tance increases at the beginning very fast, during the

free fall. After 36 second, when the parachute opens

the velocity becomes more or less constant and the

distance increaseslinearly (...)”. In contrast, students

who would have no functional concept would not re-
fer to distance in their explanations but describe the

changes along the jump in terms of velocity, slope of
line graphs (the line goes up or down) or in phenom-
enological terms. Most of the groups (34) did not con-
sider parameters or provided choices.

The results on flexibility are summarized in Table 3.
The majority of the groups (35) used only the values
from the example. Few groups (14) refer to the values
of the video and only 3 groups went beyond the in-
formation given in the task setting. Figure 2 contrast
one of these solutions (right column) with a solution
of the major group.

Influence of HS and LS task on

mathematical creativity

The second research question investigates wheth-
er the amount of structure in the task has effect on

Fluency Criteria Groups solutions (N=52)
link between integration and Not visible 24 (30,4%)
differentiation Unclear 6 (7,6%)

Explicit 22 (27,8%)
Conceptions of accumulating No functional concept 8 (10,1%)
distance function Operational concept 37 (46,8%)

Object oriented concept 7 (8,9%)
Parameters and choices No parameters nor choices 34 (43%)

Parameters or choices 11 (13,9%)

Both 7 (8,9%)

Table 2: Results on fluency

Flexibility

Groups solutions (N=52)

Confined to example or undefined
Beyond example and confined to film
Beyond video and example

35 (44,3%)
14 17,7%)
3 (3,8%)

Table 3: Results on flexibility

1043



The effect of high versus low guidance structured tasks on mathematical creativity (Sonia Palha, Jaap Schuitema, Carla van Boxtel, and Thea Peetsma)

Beyond the example and the film

“Imagine that you want to make a parachute jump. You want
to make a free fall of 7 seconds. After opening the parachute

you have a constant velocity of 3 m/s. Opening the parachute

Confined to the example
interval afstandsgrafiek invullen
(0-5) s(x)=4,9x"2 5(5)=122,5
(5-11)  s(x)=-3,75x"2 + 86,5x — 338,75 s(11)=159
(11-81)  s(x)=4x-44 5(81)=280
561,5m

takes 4 seconds. After opening it you want to stay 3 minutes
in the sky . How high must be the jump?”

Figure 2: Examples of two levels of flexibility

student’s mathematical creativity. Table 4 shows the
results on usefulness, fluency, and flexibility in both
conditions. A Mann-Whitney test indicated that there
was no statistically significant difference between
the two conditions for all components and sub-com-
ponents of mathematical creativity.

DISCUSSION

In this paper we explored the influence of task struc-
ture on the mathematical creativity in students’ pro-
ductions in the context of a modelling task. Next we
discuss our results in the light of the two research
questions.

What can we say about the mathematical creativity
of students’ productions with regard to the parachute
jump task? Overall the student solutions attained low
scores with regard to the three components of math-
ematical creativity. Only 52 out 79 groups delivered
their final product, none of the groups created a gen-
eral and reusable solution (levels 4 and 5) and only
16 out of 52 groups have created a model with level
2 or 3. Most students’ use of mathematical functions
involved thinking in operational views rather than
object-oriented. Also, most groups failed in consider-
ing relevant side conditions (wind, gravity, etc.) and
parameters that are necessary to present a realistic
model for the parachute jump. These difficulties sug-
gest that the task as we presented to the students was
too challenging for most of them. Several researchers
(Silver, 1997; Lithner, 2008) suggest that relationships

between creativity and problem solving might be the
product of previous instructional patterns. Therefore
it is possible that students’ previous experiences
with mathematical tasks (note that the students are
not used to problem-oriented instruction) may have
limited their searching process. For instance, only few
students tried to go beyond the given examples, as it
can be seen by the low levels of usefulness and flexi-
bility. Or, they have tried to explain their choices and
present different parameters, as most of the students
scored very low on these subcomponents of fluency.
Therefore, one suggestion to improve the task is to
provide additional information on side conditions
thatare not part of the mandatory curriculum or pro-
vide explicitly directions to look for them. Other sug-
gestion involve the improvement of students’ prob-
lem-solving activity. The teacher should encourage
more the students during the solving process, e.g., to
explore different paths, to look for other examples
and not to give up too easily. Other aspects that we
did not discuss here but also should be taken into con-
sideration are the amount of time available to solve
the task in the classroom, the specific directions to be
provided by the teachers and assessment practices.

In which way does variation in the amount of struc-
ture in the parachute jump task influences students’
mathematical creativity? The products created by
the groups of students in the two conditions are not
statistically significant different with regard to math-
ematical creativity. Therefore, the question whether
providing more/less guidance in the mathematical

HS-task (N=27) LS-task (N=25) Mann-Whitney U test

Median Range Median Range (two tailed)
Usefulness (scores 1-3) 1 2 1 1 U=257.000, p=.066
Fluency (scores 0-2)
integration-differentiation 1 2 1 2 U=308.500, p=.559
concept accumulating distance 1 2 1 2 U=304.000, p=.441
parameters and choices 0 2 0 2 U=333.000, p=.992
Flexibility (scores 0-2) 0 2 0 1 U=272.000, p=.144

Table 4: Results on mathematical creativity within high- and low-structured tasks
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tasks have impact on students’ mathematical creativi-
tyremains open. In this paper we studied the effect of
task structure on the groups products without refer
to the solution process. However the way students ap-
proachthe tasks and reasoning processes might reveal

mathematical creativity aspects of the students not

revealed in the final product (Karakok, Milos, Tang,
& El1 Turkey, 2015). This is one question that deserves

further investigation. Another interesting question

to be further investigated regards the collective cre-
ativity process. In our research the students work in

small groups, thus the intrapersonal creativity of one

student produces a creative product which is then

appropriated by others. In this case it is difficult to

determine to what extend the final creative ideas and

solutions are the product of particular students or

from the collective (Levenson, 2011). An interesting
question therefore is: in what extend this collective

process is mediated by the amount of structure pro-
vision in the task?

Concluding, although our study could not provide
a conclusive answer to the question whether the
amount of structure in the task influences students’
mathematical creativity, it contributes to the field of
research and teacher education in two ways. It ex-
tends previous research on mathematical creativity
by accounting the relationship between the learning
environment and creativity and, by providing a way
to operationalize fluency and flexibility in concep-
tual mathematical terms. And it provides a practical
example (the parachute task) with potential to engage
students in problem-solving and concrete suggestions
for its implementation. The use of this kind of tasks
in the classroom and in teacher education can help
teacherstorecognize mathematical creativity in their
lessons and therefore to better support it.
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