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Preface

[...] Sic quum, compage soluta,
Saecula tot mundi suprema coegerit hora,
Anticum repetent iterum chaos omnia; mixtis
Sidera sideribus concurrent; ignea pontum
Astra petent; tellus extendere litora nolet,
Excutietque fretum [...] 1

— Lucan, De Bello Civili, i. 72-77

When children look up to the sky, they see only the brightest sources. Most of the
stars visible to the naked eye are hidden behind the ambient light pollution of cities;
or, during the daytime, by the light pollution of our nearest star.

When professional astronomers point their telescopes up to the sky, they still see only
the brightest sources. Many of the stars visible with the most sophisticated telescopes
are hidden behind the ambient light pollution of other stars.

This cosmic light pollution can be studied to learn about the sources we cannot see;
and possibly about sources the likes of which no one has ever seen before.

1A translation and commentary of this excerpt are provided in the Backmatter

v



Preface

The most likely place to find new, unexplained, and unexpected phenomena is outside
of the small corner of the universe that we have currently explored; this is true both
in the literal sense of spacetime regions far away from us by distance, and in the
figurative sense of energies very much lower or higher than those we experience in
everyday life. Two high-energy windows into physics outside our own galaxy are
currently open: gamma-ray and neutrino telescope technologies have improved to the
point where full-sky, degree-square-resolution images of the sky are or will soon be
available [1, 2, 3].

The extragalactic gamma-ray sky is a nearly isotropic, nearly di�use background. A
variety of methods exist to study its departures from isotropy and di�useness. The
most intuitive search strategy (from an astronomer’s perspective) are point source
searches, in which individual localised excess signals are sought over the di�use back-
ground. These searches yield catalogues of excess signals [4, 5], which are then com-
pared to catalogues in other wavelengths to associate them to counterpart sources.
At such high energies, the sources are mostly associated to active galactic nuclei,
powered by the relativistic hydrodynamics near supermassive black holes. However,
there are also many sources that we have seen in other wavelengths, expect to see
in gamma rays, and do not. For instance, star-forming galaxies have only recently
been detected in the data from Fermi [6, 7, 8, 4]. These sources, and others, will
be discussed in more detail in the main text; this discussion merely highlights the
experimental reality that there are signals not large enough to be picked up by source
search methods. This is the case in the high-energy neutrino sky, where to date no
source has been observed with high statistical significance.

Another intuitive search strategy is to do the opposite: sift through the signals that
are not large enough to be picked up by source search methods, looking for nonlocal
patterns of excesses over the isotropic background. The most common method – which
does not require actually isolating individual patterns – is to decompose the full-sky
into its spherical harmonics and consider the amount of excess signal in each harmonic
(the angular power spectrum). The two-point function gives a statistically averaged
measure of the amount of power in nonlocal structures of a given size. Although
this technique is quite successful in gamma rays, to date no anisotropies have been
detected with the two-point function in the high-energy neutrino sky, possibly because
(foreshadowing our discussion of one-point functions in the rest of this thesis) this
method is insensitive to di�use, statistically isotropic patterns.

Between these two polar-opposite strategies, there exists an entire spectrum of searches
(both puns intended). We can, for instance, cross-correlate source catalogues with
the gamma-ray sky (i.e. compare patterns of detected sources to nonlocal patterns in
the gamma-ray or neutrino skies). If the redshift distribution in the source catalogue
is su�ciently narrow, this is e�ectively a tomography of the sky. Another strategy,
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Preface

which blurs the distinction between real and harmonic space by working in a repre-
sentation of the data involving a tradeo� between both, is wavelet analysis. This has
been used to great e�ect in recent searches for poorly-resolved point sources near the
galactic center [9].

These search strategies mentioned above are all based on the properties of the ex-
tragalactic sky, conceived of as extended across the physical sky. Another way to
look at the universe, hinted at in the first paragraph, is to think not geometrically
(ds2 = xµx

µ

) but energetically (m2 = pµp
µ

).2 The strategies above then have direct
analogues in dimensions of energy: we can look for localised excess signals over the
smooth background (line and resonance searches), or we can study the correlations
between sources’ emissions at multiple wavelengths (e.g. spectroscopic determinations
of their chemical content and redshift).

Spatial Energetic Probabilistic
local Pt Src Resonance 1pt-fn

harmonic Angular Power Spectra —

Table 1: A possible classification of contemporary methods for studying departures
from di�useness and isotropy in astrophysical backgrounds.

Astrophysical studies are therefore sensitive to a combination of spatial and energetic
features. This collection of methods, although seemingly providing an exhaustive
palette of searches across spatial and spectral dimensions of the sky, still has a blind
spot: the somewhat abstract of dimension of probability. Indeed, physical phenomena
may be characterised not only by their spatial and energetic (‘mechanical’) properties,
but also by their banality/rarity, i.e. the frequency of their occurrence – for instance,
when one says some event is more or less likely than getting struck by lightning.
The rarest phenomena elude our physical models because we are unlikely to observe
them; the most ubiquitous phenomena elude our physical models because they are
easy to overlook. The probability of an astrophysical flux (of photons, or neutrinos,
or gravitational radiation) is then as significant an identifier as its spatial origin or
its energy content. But unlike mechanical properties, the probability of a photon or
neutrino flux cannot be instrumentally measured: it must be reconstructed from a
model, e.g. by using the frequency distribution of photon and neutrino flux data.

In this thesis, we consider a method exploiting the probability distribution of astro-
physical fluxes – as opposed (or in addition) to the spatial or energy distribution. The
method considered here is spatially and energetically local, and so it is known (by
contrast with the spatially harmonic two-point-function) as the one-point function. It

2Note the unfortunate terminology that “spectral” is taken to mean either “energetic” or “har-
monic” in various communities.
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Preface

is also known (with various but minor alterations) as P (D) analysis [10, 11], fluctua-
tion analysis [12, 11], non-Poissonian template fitting [13], etc. Although the method
is local, the harmonic representation of probabilities is, ironically enough, both widely
used and completely accidental in the field [10, 14], seen as a calculational tool rather
than a complementary, nonlocal representation of the problem in the same spirit as
the angular power spectrum.
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Another paper published by the author during the doctoral period, but not included
in this thesis, is:

Y
_______]

_______[

The “Quantum Paper”

How the Weak Variance of Momentum can turn out to be Negative
Foundations of Physics, May 2015, Volume 45, Issue 5, pp. 535-556
1503.07309

M. R. Feyereisen

Although disconnected from the use of one-point statistics in astroparticle physics and
relatively speculative, this paper has an indirect connection to the larger theme of this
work, namely the use of probability distributions to address physics questions that
averages alone are insu�cient to capture. Specifically, the Quantum Paper studies
aspects of the distribution of the momentum at any given position, P (p|x), in generic
quantum systems. Reproduced below are excerpts from the abstract and the executive
summary of the work.

Weak values are average quantities, therefore investigating their as-
sociated variance is crucial in understanding their place in quantum me-
chanics. [...]

We begin by reviewing the relation between the real parts of weak
values and the phase space formalism of quantum mechanics. The quasis-
tatistical interpretation of this formalism suggests a natural and unique
definition for the “weak variance” in terms of the Wigner function. In
Sect. 2, the embedding of configuration space formalisms into the phase
space formalism then allows the weak variance to be related to the thermo-
dynamics of the Madelung fluid, to the de Broglie–Bohm quantum poten-
tial Q, and to an experimentally measurable combination Re(

x

p̂2
Â

≠
x

p̂
Â

2)
of weak values. In Sect. 3 we discuss the titular problem, that the nega-
tivity of the Wigner function can result in a negative weak variance. [...]

Although this single-authored work is an original contribution to the field of quantum
physics, it does not warrant further discussion in this thesis.
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Part I

A Brief Overview of the Field

1





1 Astrophysical One-point
Methods

1.1 History and Overview of One-point methods

Somewhat oversimplifying the matter, the use of this methodology can historically
be correlated to instruments with a ‘poor’ angular resolution attempting to study
‘di�use backgrounds’: The one-point method was born in the late 50’s, following the
invention of the phase-switching interferometer by Sir Martin Ryle in 1951. Radio
astronomers (1960’s and 70’s) quickly exported this technology to the X-ray and In-
frared communities (1980’s, 90’s); whereas the optical astronomers, who already had
a good angular resolution, do not seem to have adopted the method. Since the turn
of the last decade, the method has been regaining popularity with the poor angu-
lar resolution of gamma-ray instruments and the di�use background they observe.
Extrapolating this trend to the future, one-point analysis methods will be particu-
larly suited to the poor angular resolving power of neutrino and gravitational wave
astronomy.

The seminal paper of the field is (Scheuer, 1957, Ref. [10]), the abstract of which
reads in part

“The observation of faint radio sources is often limited by the angular
resolving power of the radio telescope, and not by its sensitivity. [...] Any
assumed number-intensity law for radio sources can, however, be tested
[...] using the frequency distribution of deflections.” (emphasis added)

Scheuer’s argument essentially proceeds as follows: If there are multiple sources within
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1. Astrophysical One-point Methods

a beam / patch of sky / pixel of the size of the angular resolution, then the observed
deflection is the sum of the deflections due to the individual sources – but since we
are limited by the angular resolution, these cannot be individually resolved, and the
individual deflections are not known. The best we can do is to probabilistically relate
the number-intensity law (today known as the source count distribution dN/dS) to
the observed P (D) per beam (today known as the fluctuation distribution per pixel,
or the one-point function, or the source confusion noise). The sum of the deflections
(or fluxes / particle counts) of individual uncharacterised sources is essentially a sum
of random variables,

Xtot = X1 + X2 + · · · + X
n

(1.1)

and so the fluctuation distribution is given by the convolution of the distributions
associated to these random variables:

P (Xtot) = P (X1) ı P (X2) ı · · · ı P (X
n

), (1.2)

where the convolution of two functions f(x), g(x) is

[f ı g](x) =
⁄ Œ

≠Œ
f(y)g(x ≠ y)dy. (1.3)

We will discuss our approach to solving this problem in Sec. 1.3; here we only note
that depending on the features of P (X

i

), and the number n of uncharacterised sources
involved, this problem can range from being relatively simple to very di�cult.

Another important element of one-point methods highlighted in Scheuer’s analysis
is the importance of the instrumental response (denoted ‘f ’ therein) to the incident
intensity, I. In the context of radio waves measured by an interferometer sweep-
ing across the sky from a point „1 to a point „2, this is an interference pattern
f = cos(N„) (due to the antenna separation) superposed on top of the intensity
‘envelope’ I(„). In the context of high-energy astroparticles measured e.g. by their
ionisation tracks in a specifically engineered substrate, this response f will be much
more complicated. As a general rule, the understanding the instrumental response
(e.g. in terms of an e�ective area and angular resolution) is required to interpret the
raw data it provides in terms of the incident intensity. More in Chap. 3.

1.2 Flux vs. Intensity / per Source vs. per Pixel

[a finite instrument] is only capable of distinctly forming a certain
number of images [...] at the same time; if this number be exceeded, the
images will begin to be confused;
so many images [...] that they surpass the power of imagining [...] to the

4



1.2. Flux vs. Intensity / per Source vs. per Pixel

point where the mind can imagine neither slight di�erences of the singular
(such as the color and size of each one, etc.) nor their determinate number,
and imagines distinctly only what they all agree in [...]

– B. Spinoza, Ethics, II, prop. 40, schol. 1

Astronomers have a rule of thumb that images are ‘clean’ if there are fewer than one
source per thirty pixels. The objective of the one-point analysis is to characterise
sources near the detection threshold; though initially intended to improve reliability
of observations of sources just above the detection theshold [10], today one-point
methods are aimed at relating the flux of many unresolved sources (just below the
detection theshold!) to the intensity of a di�use background. This section explicites
the relation F = I · � between fluxes and intensities, as a function of the source
density in a patch of sky / pixel, to show that this method is indeed suited for this
purpose.

First consider a pixel containing exactly one pointlike source. Then the single-point-
source flux and the single-point-source flux per pixel are equal in numerical value (but
not in units, the latter being an intensity). Now imagine changing the pixel size: if
there is a single source in the pixel, then F is constant and (using F ≥ I · �) the
intensity varies in inverse proportion with the pixel size.

Now consider a pixel containing a completely di�use background of N ¥ Œ sources.
If the pixel solid angle were quadrupled then (assuming a constant source density)
it would contain N Õ = 4N sources. Now imagine again changing the pixel size; the
variations in the number of sources that contribute a flux and the variations in the
pixel size cancel out, so that now I is constant when we vary the pixel size:

I · � = N · F. (1.4)

This relation is consistent with the expectation that the intensity should be an ‘in-
tensive’ measure of brightness, when the pixellisation is coarse enough to keep the
source density Npix/�pix constant:

I1�1 + I2�2
�1 + �2

= N1F + N2F

�1 + �2
= (N1 + N2) · F

�1 + �2
= N3 · F

�3
= I3 (1.5)

In the very low source density regime, we recover the single-source analysis above
(replace e.g. �1 = �2, N1 = 1 and N2 = 0 to show inverse proportionality).

However, the relation Eqn. (1.4) between the intensity and the average flux is only
valid in the asymptotic limit N æ Œ. The following relation, valid for the sort of
di�use backgrounds produced by unresolved sources, is valid for all 0 Æ N < Œ:

I · � = F1 + · · · + F
N

= Ftot. (1.6)

5



1. Astrophysical One-point Methods

The discussion above assumes an exact isotropy of the source density. The sky patches
between resolved sources is not exactly isotropic, but to a good approximation we
can treat it as statistically isotropic.1 The number of sources per pixel fluctuates:
N = N(�pix) is Poisson-distributed if the source density is constant. As a consequence
of the varying number of sources per pixel, the intensity is really only intensive on
average. Deflections D = I ≠ ÈIÍ quantifying the fluctuations away from this average
follow some distribution P (D). More generally, we have some flux distribution

P (Ftot) = P (F1) ı P (F2) ı · · · ı P (F
N

), (1.7)

that relates to the mean intensity as ÈIÍ = ÈFtotÍ/�pix and that reproduces Eqn. (1.4)
on average, when ÈF1Í = ÈF2Í = · · · = ÈF

N

Í and when N æ Œ.

1.3 Hierarchic Model

“Confusion is not biasing the results, since it is confusion itself that is
being modeled.”

– Barcons et al., Ref. [12]

One commonly accepted principle of statistical model-building, known as the Like-
lihood Principle, is that all relevant information prior to seeing the data should be
contained in a probabilistic model of the world and the way we observe it (i.e. in the
likelihood function).2 Sadly, not all relevant information is actually available to us;
the exact number of sources per pixel, their exact fluxes, the physical processes that
produce their fluxes in the first place, etc., are unknown pieces of our model. Short
of changing the model itself, there are two ways to deal with this: one can leave these
unknowns to be determined by the data we are about to observe, or we can attempt
to model the unknowns themselves in terms of a higher-order model in which the first
model is embedded.

We adopt the latter approach for the simple reason that it easily allows us to include
more information in our model and so hopefully extract more information from the
analysis of the data (though see Sec. 1.3.2 for an extended discussion of the contrast
between these approach). The objective of our methodology is therefore to make
a probabilistic prediction P (C) of the instrumentally observed counts data, using a
variety of probabilistic models P (F ) of the incident flux from astrophysical source

1cf. Ref. [15] for a discussion of correlations.
2In the context of Bayesianism: An uninformative prior has no information, while an informa-

tive prior is (by virtue of Bayes’ Theorem) essentially just an uninformative prior multiplied by a
(multiplicatively separable) term from the likelihood that was analysed at some point in the past.

6



1.3. Hierarchic Model

populations, each using a model P1(F ) of the individual sources’ fluxes based on a
model P (◊̨) for the higher-order parameters that describe this source.

In a probabilistic model, the propagation of uncertainties is not detrimental to the
results, since it is uncertainty itself that is being modeled.

1.3.1 Marginalisation and Convolution

The operations of marginalisation and convolution of probability distributions will
appear throughout our model-building and analyses. Although we assume the reader
to be familiar with them, a few somewhat subtle tricks will turn out to play a critical
role in our approach to one-point fluctuation analysis, warranting a brief discussion.

Suppose that x and y are two unknown quantities with probability distributions P (x)
and P (y). Suppose, furthermore, that these quantities are not independent, i.e. their
joint distribution does not factorise, P (x, y) ”= P (x)P (y). The conditional probability
distribution of y given x, denoted P (y|x), is the probability distribution of y when
x is known to have a particular value. Although P (x, y) does not factorise into two
unconditional distributions, it does factorise as

P (x, y) = P (x|y)P (y) = P (y|x)P (x). (1.8)

The unconditional distributions P (x) and P (y) satisfy

P (x) = P (x) ◊ 1 = P (x) ◊
⁄

P (y|x)dy

=
⁄

[P (x)P (y|x)]dy =
⁄

P (x, y)dy

=
⁄

[P (x|y)P (y)]dy

and similarly for P (y). This trick is known as marginalisation, and in this context the
unconditional distributions P (x) and P (y) are known as the marginal distributions
of x and y. This trick can also be used over and over to create a hierarchic model
that predicts one-point fluctuation distributions from astrophysical uncertainties.

Marginalisation can also be (ab)used to enforce deterministic constraints. Let y =
f(x

i

) be some function of many parameters x
i

, and let the x
i

have a joint distribution
P (x

i

). The distribution of y is then

P (y) =
⁄

”(y ≠ f(x
i

))P (x
i

)dx
i

where ”(y ≠ f(x
i

)) is the conditional distribution P (y|x
i

). This can also be used to
show that the distribution of a sum of random variables is equal to the convolution
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1. Astrophysical One-point Methods

of their distributions: Start with the marginalisation

P (z) =
⁄⁄

P (z|x, y)P (x, y)dxdy (1.9)

and assume that x and y independent. We impose the constraint z = x + y, so:

P (z) =
⁄⁄

”(z ≠ (x + y))P (x)P (y)dxdy (1.10)

Now, we can cancel the integral over y = z ≠ x by using the delta function, so that

P (z) =
⁄

P (x)P (z ≠ x)dx. (1.11)

We recognise this integral as the convolution, so the distribution of the sum, etc.

More interestingly, the flux-luminosity relation F = L/d2 is also constraint, which
becomes P (F |L, d) = ”(F ≠ L/d2), and enables another marginalisation trick. The
delta-function satisfies a scaling property, ”(–x) = ”(x)

|–| ; when we write the flux as
F = L/d2 we have

P (F |d) =
⁄

dL ”(F ≠ L/d2)P (L) =
⁄

dL |d2|”(L ≠ Fd2)P (L). (1.12)

Since integrating over the delta function picks out the single value L(”) © Fd2, we can
add a new layer to the hierarchic model “for free” whenever such a constraint exists.

An example: One-point distribution of gravitational radiation

Consider, as a toy example to illustrate all the tricks above, a binary system with
two stars of equal mass. Let R be the orbital radius and r the distance between the
binary and the observer. Then the received frequency f and amplitude h of the GW
are [16]:

f = c

10
R

1/2
S

R3/2 , h = R2
S

rR
(1.13)

where R
S

= 2GM/c2 is a well-known, dimensionally convenient proxy for the mass,
and where r is assumed su�ciently small that the cosmological redshift of f may be
neglected (for instance, the galactic binary population targeted by ELISA [17] have
z Æ 10≠5).

If we have a model P (R
S

, R, r) for the galactic binary population, then we can write

P1(h, f) =
⁄⁄⁄

P (h, f |R
S

, R, r)P (R
S

, R, r)dR
S

dRdr. (1.14)
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1.3. Hierarchic Model

If we set P (h, f |R
S

, R, r) to a double delta function enforcing the two equations above,
then

P1(h, f) =
⁄⁄⁄

P (h, f |R
S

, R, r)P (R
S

, R, r)dR
S

dRdr

=
⁄⁄⁄

”(h ≠ R2
S

rR
)”(f ≠ c

10
R

1/2
S

R3/2 )P (R
S

, R, r)dR
S

dRdr

=
⁄⁄⁄

r

h
”(r ≠ R2

S

hR
)”(f ≠ c

10
R

1/2
S

R3/2 )P (R
S

, R, r)dR
S

dRdr

=
⁄⁄

R2
S

h2R
”(f ≠ c

10
R

1/2
S

R3/2 )P (R
S

, R, r = R2
S

hR
)dR

S

dR

=
⁄

R2
S

h2R
ı

P (R
S

, R = R
ı

, r = R2
S

hR
ı

)dR
S

where the value of R picked out by the delta-function is

R
ı

(f, R
S

) =
3

1
10

c

f


R

S

42/3
. (1.15)

Finally, the only marginalisation we need to perform is over the stars’ mass R
S

:

P1(h, f) = 10
c

f≠2/3

h2

⁄ 5
R

4/3
S

P

3
R

S

, R = R
ı

(f, R
S

), r = R2
S

hR
ı

(f, R
S

)

46
dR

S

.

The autoconvolution P1 ı P1 ı · · · can then be used to determine the distribution of
the total GW amplitude from the population of binaries. Of course, each binary will
radiate with a random polarisation and phase relative to the observer, so in practise
we’d have to marginalise over those uncertainties too; and in practise binaries need
not have stars of equal mass, their spins would a�ect the waveforms, etc.

1.3.2 Contrast to 1-pt fitting approaches

By contrast with our model-intensive approach, the unknown parameters of our model
can also be determined using the data one intends to analyse. Such one-point fitting
analyses, which are not the subject of this thesis, generically follow a recipe similar
to the following:

9



1. Astrophysical One-point Methods

Instead of solving the autoconvolution of a probability distribution directly,
(Barcons, 1994, Ref. [12]) use nice mathematical properties of its associated
cumulant generating function, to construct a parameterised analytic form P (k)
of the fluctuation distribution, where k = 0, 1, 2, · · · is the number of photons
in a given pixel. This form is related to the source count distribution by (cf.
Appendix)

P (k) = F
5
exp(F≠1

5
· · · dN

dS
· · ·

6
≠ 1)

6
(1.16)

and the best-fit values of its parameters are found by optimising its goodness
of fit to an experimental photon histogram p

k

.

Their ansatz for the source count distribution dN/dS is a broken power-law.

This approach, which extended Scheuer’s use of characteristic functions three decades
prior, is readily compared with another fitting technique we see in a di�erent waveband
two decades later:

Instead of solving the autoconvolution of a probability distribution directly,
(Malyshev and Hogg, 2011, Ref. [14]) use nice mathematical properties of its
associated probability generating function, to construct a tower of statistical
estimators x̂

m

, m = 1, 2, 3, · · · of the average number of sources per pixel
contributing exactly m photons to a given pixel. This tower is related to the
source count distribution by

x
m

=
⁄

dS
dN

dS

3
Sme≠S

m!

4
(1.17)

and to the experimental histogram of observed photons p
k

by

Œÿ

k=0
p

k

tk = exp
C Œÿ

m=1
x

m

(tm ≠ 1)
D

(1.18)

where t œ R is the free variable of the generating function.

Their ansatz for the source count distribution dN/dS is a broken power-law.

The innovation in this more recent paper is not the use of generating functions to
simplify computations, but the use of statistical estimators x̂

m

rather than explicit
fluctuation distributions P̂ (k) as the contact point between model and data. The
statistical estimators proposed by Ref. [14] rely on the assumption that sources are
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1.3. Hierarchic Model

isotropically distributed, amongst other things. Interestingly enough, a precursor
analysis to Ref. [12] includes a discussion of source clustering, claiming that “source
counts are overestimated even for moderate clustering” when fitting P (D) curves
that assume uniformly distributed sources [15]. It is unclear whether this can explain
the tensions between studies building o� of Ref. [14] when it comes to estimating
the normalisation of dN/dS.3 Our hierarchical-modeling approach is closer to the
‘traditional’ approach of Ref. [12] in the sense that we compute a P (D) as the contact
point with data; however we do not account for source clustering in the analyses
presented in this thesis.

Both the generating-function-fitting method and the distribution-modelling method in
the present study essentially require (i) an ansatz on the source count distribution,4
(ii) a model of the response of the instrument to incident flux, and (iii) a way to
transition from one to the other.

The two approaches are most obviously distinguished by this third point, particularly
by the direction of this transition (from model to prediction / from data to fit) and
by its nature (a probabilistic hierarchical network / use of a specific statistical esti-
mator). A perhaps more subtle distinction between the two methods is that one can
model the flux distribution of many source populations in many detectors, while the
specific estimator adopted in the fitting method is (at least in its current form) one-
to-one. The main text illustrates the multiplicity of source populations, with di�erent
abundances, spectral indices and redshift evolutions. And although in this study we
restrict our attention separately to gamma-ray data and neutrino data at the highest
energies, a one-point analysis can in principle be both multi-wavelength and multi-
messenger, if the model M of astrophysics and of instrument responses that gives rise
to the P (C|M) count distributions is su�ciently elaborate. What distinguishes our
approach from both Ref. [12] and Ref. [14] – besides the use of di�erent mathematical
tricks to simplify computations – is that the models for our sources are drawn from
external datasets, and typically more informative than a broken power law. Our flux
/ fluctuation distribution is predictive rather than descriptive, which opens the door
not only to formal hypothesis testing and statistical inference (in Chapters 4 and 5),
but also to forecasting (in Chapters 4 and 6).

In gamma rays, there are enough data that the choice between the two methods is
to a large extent a matter of taste. However, a generating-function analysis would
be ill-suited to the low statistics of contemporary high-energy IceCube data: such
an analysis is blind to features below the single-event sensitivity [18]. One should

3For instance, the diverging results of Refs. [18, 19] and Ref. [13] on the estimation of the fraction
of the EGB in unresolved point sources.

4In the generating-function approach, this is an ansatz on the parameterisation of dN/dF and on
the priors associated to the parameter values.
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expect that the experimental event count distribution is too poorly sampled to drive
significant fits of the source count distribution. Even if it were not, it would by design
be incapable of disentangling the subdominant source population contributions from
its unique dN/dF : any post-hoc interpretation of such a poorly-fit dN/dF would
live in a limbo of untested conjectures in wait of more data. By contrast, in the
modelling approach, various hypothetical combinations of flux distributions can be
tested against the neutrino data, e.g. in terms of a likelihood ratio. When they
fail to be rejected by the data, or when preferences between multiple models fail to
emerge significantly from the data, this occurs formally and quantifiably. On the
other hand, when a model is rejected by the data, and hypotheses for this failure are
put forward (in Chapter 5, the hypothesis that there is a contribution missing), these
are guaranteed to be testable with contemporary data (by improvement of the model
and re-analysis with the same methodology).
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2 Sources

This chapter, we review sources of the high-energy di�use backgrounds in gamma rays
and neutrinos that we have observed in other energy bands. In the analyses presented
in this thesis, we restrict our focus to extragalactic sources, which we assume to be
isotropically distributed throughout the universe, P (◊, „, z) = P (z) Ã dV/dz. We also
assume, since these sources are far away, that their extension is much smaller than that
of the angular resolution (though see our discussion of this issue in Chapter 4). Finally,
we assume that each class of sources is described by a luminosity function d2N/dzdL,
of which we might perhaps only have observational access to their distribution dN/dS.

The distribution of brightnesses of individual objects, and their density in each pixel,
are then uniquely determined by these assumptions. The one-point analysis does not
require a detailed knowledge of the astrophysics that give rise to the sources’ lumi-
nosities, and may just as well be applied to the number-intensity law of a population
of Phillips lightbulbs (we’re in the Netherlands, after all) with a power-law-like dis-
tribution of wattages in gamma rays and/or neutrinos. This is not necessarily a bad
thing, since we typically do not have a detailed knowledge of the astrophysics that
give rise to the sources’ luminosities.

Astrophysical gamma rays and neutrinos are often the products of decays of fi mesons
(pions). Charged pion decays typically produce (anti)muon + (anti)muon-neutrino
pairs, though roughly once every ten thousand decays an electron-flavoured pair is pro-
duced. Uncharged pions decay into ““ pairs, or to variants of this branch with one or
both photons replaced by e+ + e≠ pairs. The amount and ratio of charged/uncharged
pions in astrophysical sources therefore determines their total and relative “ and ‹

µ,e

fluxes. Since pions are short-lived, they must be produced by interactions of protons
with other long-lived particles, e.g. with photons (p“ interactions) or with other pro-
tons (pp interactions). The rates of these interactions are subject to astrophysical
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2. Sources

uncertainties.

2.1 Blazars

Blazars (supermassive black holes with a relativistic jet pointed towards Earth) are
amongst the most violent astrophysical phenomena observed. They are a subcategory
of active galactic nuclei (AGN), and are usually subclassified into Flat-spectrum radio
quasars (FSRQs) and BL Lacertae-like objects (BL Lacs).

Blazars have a multiwavelength emission in photons that spans the entire measurable
spectrum, from radio to gamma rays, with a flat spectrum in the radio and two peaks
in the infrared-X-ray and at MeV-TeV energies. However, their spectral energy distri-
butions (SEDs) are very uncertain and no single model – not even a phenomenological
one – can accurately explain all of the features of these SEDs. In fact, it is a common
practise to fit SEDs manually, by tweaking the parameters of simple functional forms
until they look like they go through the data. That said, these sources do appear
to form a “blazar sequence” in which parameters vary monotonically with the total
luminosity [20, 21], the origin of which may or may not be due to selection e�ects [22].
Blazars are also expected to have a neutrino emission. Since there probably is not
that much gas in the regions where the high-energy astroparticles of the blazar jet are
produced, neutrino emission is expected to be p“ rather than pp. This is basically all
that can be said with any degree of confidence, given that blazars have not actually
been resolved with neutrino telescopes.

FSRQs are brighter (in the 100 MeV–100 GeV gamma-ray band) and occur at higher
redshift than BL Lacs (though again, selection e�ects may bias against high-redshift
BL-Lacs). BL Lacs have harder spectra, and so are more relevant at higher energies
(as revealed e.g. by the relative proportions of FSRQ and BL Lac in Fermi’s 3FGL and
2FHL sources catalogues [4, 5]). More details on this matter can be found in Chapter
5. The blazar luminosity function in 0.1 ≠ 100 GeV gamma rays can be modelled
as a broken power law, multiplied by a spectral index distribution and some redshift
evolution [23]. The source count distribution dN/dS of both populations, proportional
to their single-source distributions P1(F ), may then roughly be modelled as broken
power laws, with slopes around 1.65 and 2.5 below and above the break respectively.

Blazars are variable sources, with both flaring and quiescent states. The multimessen-
ger clustering of events in time has been used e.g. to argue that the multiwavelength
blazar flux is produced inside a single small-scale region, or to associate blazar flares
to individual high-energy neutrino events [24]. Probabilistically looking at the clus-
tering in time of spatially clustered events would be a relevant new dimension to add
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to the fluctuation analysis. Ideally, we would account for this information in our
hierarchic source model: the flux distribution in each of these states is di�erent, and
there is a probability of being in either of these states to be marginalised away. It is
not impossible that the resulting flux distribution per source would be bimodal (pos-
sibly with visible e�ects on the total blazar P (F ) ¥ P1(F ), given the rarity of such
sources). In practice, however, so little is known about blazars that any modelling of
this variability would likely be highly uncertain, and so no attempt has been made to
include this e�ect in our analysis.

The low number density of blazars with respect to the other source populations con-
sidered in this thesis will turn out to be very relevant, since their total flux distribution
will be more influenced by the properties of their single-source flux distribution. In
fact, there are on average one blazar in every two degree-squared pixels on the sky, so
that the discrete poisson statistics of their presence/absence in any given pixel trans-
lates into discontinuous cusps in their P (F ). This low abundance also means that the
blazar P (F ) is very sensitive to the details of the single-source distribution to which
it reduces near the low-flux cuto� of the distribution that also happens to be its most
likely flux. The importance of improving the modelling of blazars’ gamma-ray flux
in future one-point analyses cannot be overstated – nor, sadly, can the di�culty of
doing so.

2.2 Starburst Galaxies

A starburst galaxy is a galaxy in the process of violently converting its gas into
stars (e.g. as the consequence of a galactic merger). They are a particularly luminous
subcategory of star-forming galaxies (SFG), which include not only starbursts but also
spiral (‘normal’) galaxies and various types of galaxy hosting star formation related to
the presence of an obscured or low-luminosity active galactic nucleus (SF-AGN). These
may be subclassified by whether their energy spectrum resembles starburst or normal
galaxies (though the gamma-ray spectral index of starbursts is poorly constrained);
their luminosities are dominated by star-formation and not by AGN processes.

Starbursts have a multiwavelength emission in photons. They happen to be particu-
larly dusty sources (otherwise there would be no star formation!), obscuring light in
the optical and UV bands and re-emitting it in the infrared. However, the detection
of high-redshift sources at the peak of their SED (60 ≠ 200 µm) was “not achievable
before [Herschel, 2001] due to source confusion and/or low detector sensitivity” [25].
These decades were – not unsurprisingly – those during which we see an interest
in one-point methods in the infrared community. The eventual detection of a large
number of these sources allowed the infrared community to determine the luminosity
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functions of SFG subpopulations [25]. The redshift evolution of these subpopulations
shows that spiral SFGs dominate the infrared emission of this population at z < 0.5
while SF-AGN dominate at high z.

All of this dust and gas is conducive to hadronuclear (‘pp’) interactions, which suggests
that the gamma-ray and neutrino fluxes of these sources may be directly related to
their infrared luminosity, as well as to one another (cf. Chapter 5).
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Unobserved Sources

In the previous chapter, we considered sources for which we have a rather uncertain
knowledge of the astrophysics that produce their luminosities. In this chapter, we
consider more speculative sources which have been theorised but never been observed,
and for which we have no observational knowledge about the processes involved in
making them shine in high-energy gammas and neutrinos.

Dark Matter

The current astronomical and cosmological picture suggests that 85% of the matter
of the universe is in the form of inert particles, interacting neither with one another
nor with the remaining 15% that we see as molecules, atoms, or windmills (we’re in
the Netherlands, after all). But suppose that this dark matter is not actually dark,
and that it not only self-interacts but in the course of doing so can emit radiation
that we can observe with telescopes along the way. In other words, suppose that the
dark matter particle (‰) annihilates into photons and/or neutrinos according to

‰ + ‰̄ æ “ + · · ·
‰ + ‰̄ æ ‹ + · · ·

where unknown stoichiometric factors have been suppressed. The luminosity density
of the dark matter (!) is then proportional to the square of the particle number
density, and therefore also mass density:

d3L

dxdydz
Ã n2

‰

Ã fl2
‰

.

Under these assumptions, the astronomical and cosmological observations of fl that
point towards a missing matter component are su�cient to compute the “/‹ flux
density due to dark matter annihilation (up to a proportionality constant).
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Cosmological structures form hierarchically, by gradual merger of smaller structures
into increasingly large ones. Assuming these structures reach spherical equilibria,
their characteristic size R, mass M , and average density fl̄ are related by

M = fl̄ ◊ 4fi

3 R3

More generally, the density will be a (mass-dependent) radial function fl(R), and the
luminosity of a spherical dark matter halo will be proportional to

J(M) =
⁄ Œ

0
fl2(R)d3R

Since structures form hierarchically, smaller structures continually infall into larger
structures; although they may be disrupted by gravitational tidal forces, generally
they form long-lived, dense (and luminous!) dark matter substructures on top of the
smooth fl(R). We can phenomenologically account for the presence of substructures
by considering

J æ (1 + B) ◊ J,

where the boost factor B Ø 0 is a simulation-based fudge factor that increases the
luminosity of the substructure-hosting halo, and depends on its mass M .

Once we have assumed all of the above, we have a recipe for determining the lumi-
nosity L(M) of a halo (up to a proportionality factor); but since these sources are
unresolved, we need to marginalise over a probability distribution of their masses (and
redshifts) to obtain a probability distribution of their fluxes, as discussed in Chapter
4. Furthermore, since no such sources have even been identified, it is not a priori clear
what this mass distribution should be.

Fortunately, the mass distribution of cosmological structures dn/dM is a prediction
of �CDM, which can be extracted from N-body simulations. It can also be computed
(modulo a few additional assumptions) using only the critical overdensity threshold
”(z) of linear cosmological perturbation theory, the rms deviation ‡(M) of primordial
density fluctuations, and a function f (”, ‡) encoding the gravitational collapse of
fluctuations larger than the critical overdensity threshold (as discussed in Chapter 4).

F ≠2.5 Sources

Bertrand Russell famously argued that “between the Earth and Mars there is a china
teapot revolving about the sun in an elliptical orbit”, and that “the teapot is too small
to be revealed even by our most powerful telescopes” (Russell, 1952, unpublished).
That is, a celestial teapot cannot be individually resolved. As such, nothing can be
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2.2. Starburst Galaxies

known about the teapots themselves; we do not know, for instance, whether they are
banko-yaki or delfts blauw.

However, if there were many celestial teapots, perhaps their cumulative flux might be
perceived statistically using one-point methods. If their local distribution is smooth
enough to be treated as homogeneous, then we can still use geometric properties
of optics on the background Euclidean space to study their flux distribution. The
number of celestial teapots then scales like the volume N ≥ r3, while their energy-
integrated flux S scales like S ≥ 1/r2; So the brightest sources (which contribute to
the tail of the flux distribution) have a power-law flux distribution with a slope of
d log N

d log S

= ≠3/2. This leads to a power-law tail with slope ≠2.5 in the distribution
P1(F ). Of course, this purely geometric argument holds not just teapots, but also all of
the sources studied above; this source-nonspecific behaviour is of particular interest for
dark matter, the flux distribution of which is otherwise completely unknown (modulo
what was assumed above).

The non-Euclidean features of our general relativistic spacetime can also a�ect the
flux distribution. In the cosmologically expanding spacetime suitable for the geometric
optics of extragalactic teapots, the luminosity distance and the comoving distance are
related by d

L

= (1 + z)d
C

with the comoving volume V
C

≥ d3
C

and the flux S ≥ d≠2
L

.
The same purely geometric considerations then yield a slope of ≠2.5 for the brightest
sources, while allowing departures from ≠2.5 at higher redshifts:

d log N

d log S
= d log N

d log d
C

d log d
C

d log d
L

d log d
L

d log S
= ≠3

2

5
1 ≠ d

C

d(1 + z)
d(d

L

)

6
.

More subtly, in a dynamic geometry a spatially inhomogeneous distribution of sources
not only broadens the flux distribution directly [15] but also indirectly through grav-
itational lensing (lensed sources have their intensities magnified [26]).
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3 Instruments

The layperson’s conception of a telescope as an arrangement of lenses, mirrors and
cameras, is not a particularly helpful one for one-point fluctuation analyses. This is
because the one-point function method is instrumentally nonspecific. The seminal
paper was written for phase-switching interferometers, which are sensitive not to the
incident intensity I but only to the deflection D = I ≠ ÈIÍ, but in our analyses we use
the same method to study data from a particle tracker onboard a satellite (the Fermi
LAT, [1]) and an array of photomultiplier tubes embedded deep in the Antarctic ice
(IceCube, [27]). The material and operational description of the individual telescopes,
which are contingent to individual analyses and to individual stages of technological
evolution, are therefore of less interest than a general discussion of the abstractions
used to specify them in a 1-point analysis, and the limitations inherent in these
abstractions.

The main abstractions we will discuss are the e�ective area (sensitivity/specificity)
and the resolution (precision/accuracy) of a telescope. The latter is used to determine
the instrument point-spread function (PSF) and pixel size, and obtain the number of
sources per pixel from Poisson statistics; the former is used to convert the flux into an
event rate and obtain its event count distribution P (C), also from Poisson statistics.

3.1 Fermi

Fermi-LAT [1] is a tower of silicon-and-tungsten trackers stacked onto calorimeters
onboard the Fermi satellite. Incident gamma rays are converted into e+e≠ pairs in
the tungsten, are tracked down the stack (allowing their direction to be reconstructed
to an accuracy of the order of a degree), and dump their energy into the calorimeters
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(allowing us to measure their energies to within about 15% percent between a few
tens of MeV to few hundreds of GeV).

The field of view of the instrument covers 2.4 sr (at 1 GeV) at a time, so the exposure
of any point on the sky is primarily determined by how long Fermi has been pointing at
it. Fermi’s orbit was designed such that the LAT scans the full sky roughly uniformly
roughly every three hours. The exposure is also energy dependent: it is roughly
constant (about one m2 for di�use emission) above 1 GeV, and drops rapidly for lower
energies. This accounts for the reduced e�ciency (75%) when reducing backgrounds
(cosmic rays, atmospheric gamma rays, ...) by a factor of 106 thanks to a variety of
vetos.

The angular reconstruction of events is better for events aligned with the telescope axis
than for events that are inclined with respect to it; for instance, the 68% containment
radius at 55 degrees o�-axis is 1.7 times larger than on-axis. The notion of a single
angular resolution / point-spread function for the entire sky begins to break down; this
is a problem since the number of sources contributing to P (F ) depends on the pixel
size. An analysis across multiple skymaps distinguished by the angular resolution of
their events becomes desirable; this feature will be especially important for our next
instrument (cf. also Chapter 5).

3.2 IceCube

Neutrinos are hard to detect because they interact weakly with ordinary matter (pun
intended). In order to have a su�ciently large volume of material for neutrinos to
interact with, a cubic kilometer of Antarctic ice was converted into a particle detector
by drilling an array of photomultiplier tubes (PMTs) into the ice [27]. Each PMT in
the detector has a dark count rate of 540Hz, mainly due to a background of radioactive
decays; an artificial dead time of 250µs reduces this noise rate to 286 Hz (this rate is
lognormally distributed) at the cost of decreasing the rate of signal hits in that PMT
by an e�ciency factor [28]

‘deadtime = 0.87
1 + signal rate ◊ (250µs) . (3.1)

The benefit of a PMT array is the ability to look for coincident signals across many
PMTs. The remaining background is then mainly due to atmospheric muons, with a
rate of about 16 Hz [28]. Of course, this does not mean that the detector downtime
can be neglected: Indeed, one of the HESE events is listed as a “coincidence” of
a potential signal with a muon track, because the potential signal event cannot be
individually reconstructed.
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Signal events are reconstructed into two categories based on their shape (‘topology’):
showers and tracks. Other topologies from ‹

·

have been predicted and characterised
in simulations, but never observed. The main di�erences between these two topolo-
gies are the probability that a neutrino of a given flavour would produce them (cf.
Sec. A.3.3) and the confidence with which their parameters are reconstructed: show-
ers are generally well-resolved in energy but poorly resolved in direction of incidence,
while it is the opposite for tracks. IceCube essentially produces two images of the sky
with di�erent PSFs.

Although in principle IceCube can observe the full sky, the atmospheric muon back-
ground from the southern hemisphere completely dominates the contribution of “down-
going” events at the South pole. Since the optimal background reduction cuts are
di�erent for di�erent topologies and declinations, and since these cuts determine the
e�ective area of the instrument, there are multiple e�ective areas for IceCube in com-
mon usage. These include the HESE e�ective area (relevant in Chapters 5 and 6,
and discussed in detail in Sec. A.3) and the upgoing muon e�ective area (relevant in
Chapter 6). These geometrically di�erent veto techniques also means these e�ective
areas are applicable to di�erent fields of view (4fi steradian and the northern hemi-
sphere, respectively), and result in subtly di�erent energy and angular resolutions. In
parallel to the situation above, the notion of a single exposure begins to break down;
this is a problem since the computation of the distribution of event counts P (C) from
the flux distribution P (F ) depends on the exposure. The computational technology
to address this issue is presented in Sec. A.3; but it is of course possible to work
without the abstraction of an e�ective area, and work directly in terms of the event
rates given the instrumented volume.
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Part II

Contributions to the Field
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4 Implications for Dark
Matter Annihilation

The one-point function (i.e., the isotropic flux distribution) is a complementary method
to (anisotropic) two-point correlations in searches for a gamma-ray dark matter an-
nihilation signature. Using analytical models of structure formation and dark matter
halo properties, we compute the gamma-ray flux distribution due to annihilations in
extragalactic dark matter halos, as it would be observed by the Fermi Large Area
Telescope. Combining the central limit theorem and Monte Carlo sampling, we show
that the flux distribution takes the form of a narrow Gaussian of ‘di�use’ light, with
an ‘unresolved point source’ power-law tail as a result of bright halos. We argue that
this background due to dark matter constitutes an irreducible and significant back-
ground component for point-source annihilation searches with galaxy clusters and
dwarf spheroidal galaxies, modifying the predicted signal-to-noise ratio. A study of
astrophysical backgrounds to this signal reveals that the shape of the total gamma-
ray flux distribution is very sensitive to the contribution of a dark matter component,
allowing us to forecast promising one-point upper limits on the annihilation cross
section. We show that by using the flux distribution at only one energy bin, one can
probe the canonical cross section required for explaining the relic density, for dark
matter of masses around tens of GeV.

4.1 Introduction

The Large Area Telescope (LAT) onboard the Fermi satellite [1] measured the energy
spectrum [29] and angular anisotropies [30] of the di�use extragalactic background of
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4. Implications for Dark Matter Annihilation

gamma rays. Components contributing to this background include blazars [31, 23],
star-forming and starburst galaxies [32], and misaligned active galaxies [33]. The
combination of these sources gives reasonably good fit to the spectral data [23, 34],
while the anisotropies are consistent with the blazar component alone [30, 35]. Inde-
pendently of this, dark matter has emerged as the preferred explanation of many
astrophysical and cosmological features through gravity (galactic rotation curves,
�

m

∫ �
b

, lensing by galaxy clusters, etc.). If particle dark matter produces gamma
rays (e.g., by self-annihilation) as in the case of weakly interacting massive parti-
cles (WIMPs) motivated by popular particle-physics models [36, 37], then it could
also contribute to this di�use signal (in some unknown proportion) [38]. Given that
the known astrophysical sources yield reasonable fit to the spectrum of the gamma-
ray background, the dark matter component started to be tightly constrained only
through the spectral data (e.g., [23, 34, 39]).

Recently, new analysis techniques beyond the energy spectrum and angular two-point
correlations were proposed and investigated extensively. Among them is to take cross
correlations of gamma-ray data with local galaxy catalogs [40, 41] and matter dis-
tribution through lensing data [42, 43]. Although recent measurements of the cross
correlations [44, 45, 46, 47] are consistent with the hypothesis of no dark matter signal,
they yield tight constraints thereof (e.g., [48]).

Complementary to the studies on these two-point functions, the one-point function
(i.e. the photon-count or flux distribution) would leverage the isotropic component
of the di�use signal. For example, the flux distribution of Milky-Way subhalos has
been used to constrain particle dark matter properties in light of Fermi unidentified
sources [49]. The one-point function of Fermi-LAT data has been experimentally
fit to a combination of the di�use background and blazar-like sources by Ref. [14].
Theoretically, Ref. [50] studied the one-point probability density function (PDF) of
the gamma-ray flux due to Galactic subhalos, and showed that it features power-law
tail at high-flux end (see also Refs. [51, 52]). Understanding the one-point PDF for all
the relevant sources will be important also for possible detections of dwarfs or galaxy
clusters with gamma rays (e.g., [53]).

In this chapter, we extend the theoretical framework of Ref. [50] to include the contri-
bution of dark matter annihilation in the extragalactic halos. We model the gamma-
ray flux from the population of dark matter halos using the mass and luminosity
functions predicted for the structure formation scenario in the Universe with cold
dark matter and cosmological constant (�CDM). Since there are many such halos,
the total flux observed by Fermi is predicted using ‘large N ’ statistical tools. By
combining the central limit theorem (CLT) in the low-flux regime and a Monte Carlo
method in the high-flux regime, we find that the di�erential flux distribution has a
roughly Gaussian peak, as result of the di�use emission of a large number of very
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4.2. Flux probability density function: General formalism

faint sources, but with a power-law high-flux tail due to the rare occurrence of an
exceptionally bright halo. The all-sky flux in our fiducial model lies around the sen-
sitivity limit of the Fermi, well-below the measured gamma-ray background [29], and
at roughly the same level as the dark matter flux expected from the Fornax galaxy
cluster. We find that the detectability of a dark matter signature from galaxy clusters
over the extragalactic dark matter background decreases, when the luminosity boost
due to halo substructure increases. We also illustrate how to disentangle a dark mat-
ter signal from astrophysical backgrounds in the presence of the photon shot noise,
and forecast the upper limit on the annihilation cross section one might expect to
obtain using the one-point function alone (although actually performing this analysis
with its due rigour would require mathematical machinery not presented until the
next Chapter). Given a fiducial model for the dark matter halo substructure boost,
the particle dark matter mass, etc., we find a 5‡ upper bound roughly a factor of two
above the thermal cross section.

This Chapter is organised as follows. In Sec. 4.2, we construct the model of the
flux distribution observed at the Fermi-LAT. In Sec. 4.3, we detail our specific model
choices, and in Sec. 5.5, we present our main results, including a sensitivity analysis
of our distribution to the model choices, and a probabilistic method for summing
the fluxes from a (quite literally) astronomically large number O(1022) of halos. In
Sec. 4.5, we discuss consequences of this study for indirect DM searches, by com-
paring the predicted distribution to the gamma-ray fluxes of galaxy clusters, dwarf
spheroidals, and blazars.

4.2 Flux probability density function: General for-
malism

The goal of the present work is to theoretically predict the PDF P (F ), which gives
the probability of observing a total gamma-ray flux F arising from dark matter an-
nihilation in extragalactic halos in a Fermi pixel of a particular size. In this section,
we present a formalism for constructing P (F ) given models for the cosmology, halo
properties, and annihilation process; we proceed in a completely general manner,
postponing specific choices for these models until Sec. 4.3.

We construct a hierarchical model to predict unknown gamma-ray observables from
well-constrained �CDM parameters and fitted models of N-body simulations. In this
approach, uncertainties in the parameters of probability distributions are modelled
with their own distributions (and recursively). This allows us to systematically com-
bine the uncertainties on physics at widely di�ering scales, and thereby to perform a
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4. Implications for Dark Matter Annihilation

sensitivity analysis of our model (Sec. 4.4.1).

4.2.1 PDF for the flux from individual halos

The PDF P (F ) for observing a total di�erential flux F from all of the halos in a
pixel depends on the PDF P1(F ) for observing F from any individual halo. We thus
proceed by first deriving the latter quantity.

Because the di�erential flux F from an individual halo is completely determined by
its rest-frame di�erential luminosity L = d2N

“

/dtdE and its redshift z, we can write

P1(F ) =
⁄

dL dz P (F |L, z)P (L, z)

=
⁄

dL dz ”[F ≠ F (L, z)]P (L|z)P (z) . (4.1)

Here, the usual relation for the di�erential flux,

F (E; L, z) = e≠·(E,z) (1 + z)2L[(1 + z)E]
4fid2

L

(z) , (4.2)

depends on the luminosity distance d
L

(z) and the pair-production optical depth
·(E, z) for gamma-ray photons, and also accounts for the redshift of photons emit-
ted with rest-frame energies E(1 + z) to observed energies E. We can interpret
P (L|z) = dN/dL(z) as the redshift-dependent halo di�erential-luminosity function.1
Assuming that the halos are isotropically distributed across the Universe, the number
of halos at redshift z is proportional to the comoving volume ”V (z) of the correspond-
ing redshift slice ”z, therefore we also have P (z) = dN/dz Ã dV/dz.

Alternatively, we can rewrite Eq. (4.1) in terms of the halo mass M to obtain

P1(F ) =
⁄

dL dM dz ”[F ≠ F (L, z)]P (L|M, z)P (M |z)P (z) , (4.3)

where we can similarly interpret P (M |z) = dN/dM(z) as the redshift-dependent halo
mass function.

In principle, the distribution P (L|M, z) in Eq. (4.3) captures the scatter in the relation
between the di�erential luminosity and the mass of a halo, which also depends on
redshift. This is because the halo luminosity is determined not only by the properties
of the dark matter particle and the details of the annihilation process, but also by the
density profile fl of the halo, which usually shows scatter for any given M . The halo

1Here and elsewhere, equalities between probability densities and number densities is meant
modulo a normalisation.
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4.2. Flux probability density function: General formalism

profiles can be completely characterised by some parameters ✓
h

(such as fl
s

, r
s

, rvir . . .

in the case of the NFW profile [54]) so that (for any given particle dark matter model)
we have L = L(✓

h

). If we further assume that the distribution of halo profiles can be
described by a halo model that gives P (✓

h

|M, z), we can write

P (L|M, z) =
⁄

d✓
h

P (L|✓
h

)P (✓
h

|M, z)

=
⁄

d✓
h

”[L ≠ L(✓
h

)]P (✓
h

|M, z) . (4.4)

We can then use this expression to simplify Eq. (4.1), giving

P1(F ) =
⁄

dM dz d✓
h

”[F ≠ F (✓
h

, z)]P (✓
h

|M, z)P (M |z)P (z) , (4.5)

where the flux relation is now written in terms of ✓
h

.

In order to make the numerical calculation of Eq. (4.5) more tractable, we shall
neglect the scatter in the distribution P (✓

h

|M, z) in this work. That is, we take the
distribution of the halo-profile parameters ✓

h

= {◊
h,1, . . . , ◊

h,n

} to be given by

P (✓
h

|M, z) =
nŸ

i=1
”[◊

h,i

≠ ◊̄
h,i

(M, z)] , (4.6)

where the functions ◊̄
h,i

(M, z) give the mean values for the parameters. With this
assumption, we can perform the integrals over ✓

h

and M in Eq. (4.5), leaving only
an integral over z:

P1(F ) =
⁄

dz

----
ˆF

ˆM

----
≠1

dN

dM

dV

dz
. (4.7)

Here, functions of M in the integrand are evaluated at the value of M defined im-
plicitly by the flux relation F = F (✓̄

h

(M, z), z) for the corresponding values of F and
z.

Eq. (4.7) then gives the PDF P1(F ) for the di�erential flux from individual halos.
To reiterate, this is given in terms of (i) the cosmological model, which a�ects the
di�erential flux F (✓

h

, z), the volume P (z), and the mass function P (M |z); (ii) the
halo model, which gives the mean values ✓̄

h

(M, z) of the halo-profile parameters; and
(iii) the optical depth and the details of the annihilation process, which a�ect the
normalisation of F (✓

h

, z). In Sec. 4.3, informed by observations and simulations, we
shall make specific, fiducial choices for these quantities and calculate the resulting
P1(F ). However, before doing so, we shall complete our discussion of our general
formalism by reviewing how P1(F ) can be used to find P (F ), the PDF of the total
flux F from all of the halos in a pixel.
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4. Implications for Dark Matter Annihilation

4.2.2 PDF for the total flux

The dark matter di�erential flux F arriving at any given pixel of the Fermi sky map,
is the summed flux F =

q
i

F
i

of any number of individual halo point sources [10],
where each di�erential flux F

i

is an independent and identically distributed (i.i.d.)
random variable with the distribution P1(F ). Recall that the distribution of the total
di�erential flux per pixel is the autoconvolution [50]

P
k

(F ) = P1(F ) ı P1(F ) ı · · · ı P1(F ) = (P1)ık

, (4.8)

where k is the number of halos contributing to this flux. Since furthermore we do not
know how many halos are thus stacked in a pixel, the number k of fluxes in the sum
is itself a random variable. If we assume this number k of halos per pixel is Poisson-
distributed over the sky with some mean N Õ, we can model the total di�erential flux
per pixel as

P (F ) =
⁄

dN ÕP (N Õ)
ÿ

k

P (k|N Õ) P
k

(F ) , (4.9)

where the uncertainties in k and N Õ are marginalised away. Since the numbers k and
N Õ of extragalactic halos are very large, both P (N Õ) and P (k|N Õ) are thin enough to
be approximated by delta functions, so that P (F ) = P

k¥N

Õ(F ). Thus, the only addi-
tional physical input required to compute P (F ) from P1(F ) is N Õ, which is discussed
below.

4.3 Model inputs of the flux probability density
function

4.3.1 Cosmological inputs

Number of halos per Fermi pixel

Cosmology directly determines the redshift distribution of halos (via isotropy P (z) =
dN/dz) and their mass distribution (via the gravitational collapse of inhomogeneities
that yields dN/dM). The normalisation of these number densities clearly corresponds
to the total number N of halos in the Universe. The number of halos per Fermi pixel
is then

N Õ = �pix
4fi

N = �pix
4fi

⁄
dN

dM

dV

dz
dMdz , (4.10)

where �pix is the pixel size (expressed in units of a solid angle) and the mass function
dN/dM is described in Sec. 4.3.1. The parameters of the �CDM cosmology relevant

32



4.3. Model inputs of the flux probability density function

to our model are (Planck+WMAP from [55])

{�
b

h2, �
c

h2, ��, H0, ‡8, n
S

} = {0.0221, 0.120, 0.685, 67.3, 0.83, 0.96} . (4.11)

Furthermore, the integration limits for Eq. (4.10) (and also Eq. (4.7)) are chosen
as follows: we assume that our dark matter candidate forms structures down to
10≠6M§ [56, 57, 58, 59, 60], and allow for virialised dark matter structures up to
1017M§, 100 times more massive than galaxy clusters. We assume that we can
measure luminosity from structures that form between z = 5 and 10≠5, the latter
of which corresponds to a distance of roughly 45 kpc, well outside of the baryonic
content of the Milky Way in any direction.

We model the energy-dependent angular resolution of Fermi-LAT [1] as follows:

◊(E) =
I

0.8¶ (E/GeV)≠0.68 for 0.04 < E/GeV < 20
0.1¶ for 20 < E/GeV

, (4.12)

such that ◊ ¥ 0.8¶ at our fiducial observing energy (justified in Sec. 4.4.1) of E =
1 GeV.

This is slightly larger than 0.6¶ quoted in [1], which is valid for normally incident pho-
tons only. Since we adopt this angular resolution as a size of each pixel, �pix ¥ fi◊2(E),
we entirely neglect the instrumental point-spread function. This is also justified be-
cause the number of sources per pixel is found very large (N Õ ≥ 7◊1021) and the flux
is di�use.

The largest possible mass of a point source at a given redshift MExt(z) may be deter-
mined from the critical virial radius RExt ¥ d

L

(z) tan(◊/2) that fits in a pixel. We
can use this as an integration limit in Eq. (4.10) to cross-check our assumption that
all dark matter gamma-ray sources are point-like: we find less than 0.28 extended
sources per pixel. This is much more than twenty orders of magnitude smaller than
the total number of sources, but still represents a non-negligible absolute amount
given the large number of pixels. We discuss this issue more thoroughly in Sec. 5.6.

Halo mass function

The halo mass function, first addressed heuristically by Press and Schechter [61] and
subsequently formalised in, e.g., Ref. [62], is computed as

dn

dM
= fl̄

M
f(‹) d‹

dM
, ‹ =

3
”

c

‡

42
, (4.13)

where ”
c

= 1.69/D(z) is the (linear) critical overdensity, D(z) is the linear growth
factor, and ‡(M) is the rms deviation of primordial density fluctuations, smoothed
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to scale M [62]. The functional form of ‡(M) (required to calculate d‹/dM) is deter-
mined from the literature [63] with normalisation set by the cosmological parameter
‡8 [55]. The function f(‹) is derived from the excursions of these density fluctuations
above a ‘barrier’ [62] that encodes the physics of halo collapse (including ”

c

). For an
approachable presentation of the formalism, see Ref. [64].

In addition to ellipsoidal collapse, our fiducial mass function incorporates a virialised
halo’s angular momentum and the cosmological constant into its barrier ”

c

. It has a
self-similar f(‹) well-fit by the following function (Eq. (163) in [65]):

‹f(‹) Ã
3

1 + 0.1218
(a‹)0.585 + 0.0079

(a‹)0.4

4 Ú
a‹

2fi
exp

A
≠0.4019a‹

5
1 + 0.5526

(a‹)0.585 + 0.02
(a‹)0.4

62
B

,

where a = 0.707. The resulting mass function is similar to the more common Sheth-
Tormen parameterization [66, 67] (within the resolution of existing simulations),
demonstrating that the extra physics of our barrier have very little e�ect on the
high-mass end of the mass function. However, we expect the cosmological constant
to delay the formation of large-scale structure, leaving us with a larger proportion
of halos at high redshift that are smaller than current simulations can resolve. We
find this gives roughly three times more flux than if we had used a mass function for
which the cosmological constant is ignored.

4.3.2 Halo model

The di�erential luminosity from annihilation in a dark matter halo of mass M is given
by the product of a particle physics term and an astrophysical J-factor, i.e. the line-
of-sight integral of the dark matter density squared, boosted by the annihilations in
halo substructures (cf. p. 18). The dark matter density can be parameterised using
the same profiles that fit N-body simulations well. For an NFW profile, the J factor
of a point-like source can be analytically recast as

J = (1 + B) a(cvir)fls

Mvir, (4.14)

in terms of the substructure boost B, the virial concentration cvir, the scale density
fl

s

of the profile, and the analytic function (e.g., [68])

a(c) =
3

1 ≠ 1
(1 + c)3

4 3
ln(1 + c) ≠ c

1 + c

4≠2
.

The concentration parameter c of an NFW halo is related to the background density at
the time that the halo forms: small mass halos are more concentrated than high-mass
halos because they form earlier (hierarchical halo formation). The concentration is
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also the link between scale parameters (fl
s

, r
s

) of the halo profile and the halo’s mass
content [69].2

The presence of halo substructures enhances the luminosity of the halo as a whole.
Furthermore, halo substructure is expected to be denser than a host halo of the
same mass (e.g., [68]). This higher density entails a larger number of annihilations,
further enhancing the luminosity. The boost factor B parameterises this substructure
luminosity as a proportion of the host luminosity. Since the J factor increases as the
density squared, substructure is expected to contribute between twice to twenty times
as much luminosity as host structures of mass 106 < M/M§ < 1013 [71].

There are a number of N-body fitted models for NFW concentration and substructure
boost to choose from in the literature. The models for B used in this study are listed
in Table 4.1. The optimistic model is based on fit to the numerical simulations [72],
which is well motivated for mass scales larger than the current resolution limit. For
smaller scales, on the other hand, it heavily relies on validity of the phenomenolog-
ical extrapolation. Reference [71] pointed out that such a power-law extrapolation
was unphysical, and came up with more physically motivated model by adoping the
flattening of the concentration-mass relation found for field halos.

The boost factor for our fiducial model is given as [71]:

log10B =
5ÿ

i=0
B

i

log10(M200)i, (4.15)

B
i

=
)≠0.442, 0.0796, ≠0.0025, 4.77 ◊ 10≠6, 4.77 ◊ 10≠6, ≠9.69 ◊ 10≠8*

.(4.16)

The underlying concentration model is very close to other N-body-motivated mod-
els [73, 74]. The third model represents the most conservative (but unexpected) situ-
ation in which there is no substructure boost. In this study, we consider all the boost
models in order to bracket uncertainties on subhalos, although the fiducial model is
preferred over the others.

4.3.3 The gamma-ray model

Dark matter annihilation model

The particle physics component K(E) = È‡vÍ(dN/dE)/m2
‰

of this model (L(E) =
JK(E)) is assumed to annihilate into gamma rays via bb̄. È‡vÍ is taken to be the ther-
mal cross section 3◊10≠26 cm3 s≠1, and the particle mass is taken to be m

‰

= 85 GeV.
2We convert between the virial and (· · · )

200

conventions found in the literature using the pre-
scription of Ref. [70]. This allows us to interchangeably convert between c

vir

and c
200

at a given
mass, and to convert between M

vir

and M
200

given a choice of concentration-mass relation.

35



4. Implications for Dark Matter Annihilation

Boost models [ref] Formula
No boost B = 0
Fiducial [71] Eq. (4.15)
Optimistic [72] B = 1.6 ◊ 10≠3(M200/M§)0.39

Table 4.1: Substructure boost models considered in this study, ordered from least
to most optimistic in terms of annihilation signal detection prospects. The nonzero
models are derived from fits to N-body simulations.

The adopted parameterisation of the photon number per energy per annihilating par-
ticle is [75]:

dN

dE
= 0.42 exp(≠8x)

m
‰

(x1.5 + 0.00014) , x = E

m
‰

. (4.17)

With the values quoted above, we have K = 1.3 ◊ 10≠38 cm3 s≠1 MeV≠3 at 1 GeV.
Since our method is independent of any specific particle physics model, and depends
only linearly on K, it is trivial to rescale this study’s results to accommodate other
particle physics models (as demonstrated in Sec. 5.3.3).

Gamma-ray optical depth

By restricting our analysis to small enough redshifts and energies, we do not need
to consider photoionisation or pair production [76]. We can then use a very rough
parameterisation [75] of gamma-ray absorbtion:

e≠·(E,z) = exp
C

≠ z

3.3

3
E

10GeV

40.8
D

. (4.18)

That this is very simplistic does not matter too much, since it is not a very important
e�ect at low energies and redshifts anyway — as can be justified quantitatively by a
sensitivity analysis.

4.4 Results

In this section, we calculate P1(F ) and P (F ) given the physical inputs of Sec. 4.3.
We find that P1(F ) is roughly power-law like with a log-slope of approximately ≠2
over a broad dynamic range, with some model-dependent features to which P (F ) is
sensitive. More importantly, we find that P (F ) takes the shape of a Gaussian at low
flux, connecting smoothly with a power-law tail at high flux. This power-law tail,
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which has the same slope as P1(F ), is the regime where the flux is dominated by a
singularly bright source.

4.4.1 Sensitivity analysis of P1(F )

The probability [Eq. (4.5)] that any single halo produces a di�erential flux observed
with a value F is then given by marginalising away the uncertainty in its mass and red-
shift. This marginalisation is clearly sensitive to the model choices we have presented
above. We now discuss the sensitivity of P1(F ) to the model choices.

Dominant e�ects

We find that the two most significant e�ects on P1(F ) (from amongst the e�ects we
considered; see below) are the choice of observing energy at the Fermi-LAT, and the
substructure boost model B(M). These are represented in Fig. 4.1, which illustrates
not only that P1(F ) is more complex than just a power law P1(F ) Ã F ≠2 (even in the
absence of a substructure boost), but also that the substructure drastically influences
the shape of P1(F ).

The choice of the energy at which we study our di�erential flux represents a trade-
o� between the amount of flux we expect to observe (which decreases with energy;
Fig. 4.1), and the instrumental capacity to actually observe it (which increases with
energy; Ref. [1]). The observing energy of 1 GeV adopted in this study represents the
lowest energy at which we can leverage Fermi’s best angular resolution and e�ective
area. The instrument’s energy resolution of �E/E = 9% at 1 GeV is optimum for
normally incident photons [1]. Any systematic error due to misidentified energies is
therefore minimised by this choice of energy (although we do not account for this
instrumental e�ect in our analysis).

Consequently, the e�ect of a gamma-ray optical depth (which predominantly a�ects
photons from distant sources) only a�ects the low-flux region of P1(F ). This simply
reflects the fact that at equal luminosity, distant sources produce less flux. At our
low energy of 1 GeV, the attenuation factor of a source at z = 3 is e≠· ≥ 0.86: the
net e�ect is definitely smaller than a few percent after marginalising over the nearby
halos, for which the attenuation is truly negligible. A better parameterisation than
[75] was therefore not deemed necessary for this exploratory analysis.

Since our di�erential flux is roughly F ≥ L/d2
L

, there is an extent to which ‘bright’
halos are massive and nearby, while ‘faint’ halos are light and distant. Therefore the
largest modeling factor in the high-flux tail is the choice of boost model. This is
reflected in the right panel of Fig. 4.1: the optimistic model [72] gives very large high-
flux tail, in comparison to the fiducial model. The mass scale at which the fiducial and
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optimistic boost models intersect (≥ 109M§ [71]) is present in the flux distribution.
We find that P1(F ) is less sensitive to other modeling choices.

Subleading e�ects

We have used various analytical models for the power spectrum transfer functions
T (k) [77, 78], and for cvir fits to N-body simulations [71, 74, 73]. The resulting
distributions P1(F ) were found to be robust to changes in these inputs. Indeed, the
function a(c) in the J factor [Eq. (4.14)] is very smoothly decreasing for c > 1, so
the choice of concentration model does not influence the final result much. Similarly,
‡(M) only changes by about an order of magnitude over many orders of magnitude
of halo masses, so varying models of T (k) (or even using an N-body fit [79]) does not
significantly change P1(F ) either.

Using such a simple, ‘self-similar’ mass function, is not without shortcomings: these
Markov-process models do not follow individual halo histories, and cannot account for
dynamical e�ects such as dynamical friction or tidal stripping. This, amongst other
concerns, underlines the danger of our uncontrolled extrapolation of the mass function
down to halo masses 10≠6M§. Nevertheless, mass function fits to N-body simulations
are often very good; the fits even favour ellipsoidal collapse models [66, 67] (which we
adopt in this study) over the spherical collapse models of the seminal papers. The
ellipsoidal collapse model is accurate to a few % over the large halo mass range (while
spherical collapse [61] underestimates the number of FOF halos [80]) and gives an
excellent fit in the range of 105–109M§ [81]. Ellipsoidal collapse is also suitable for
halos as small as 103M§ and as early as z = 15 [82]. We studied dependence of
the mass function on �, in addition to ellipsoidal collapse [65]. Without significantly
changing P1(F ),we find that the delayed structure formation gives a roughly three
times larger total flux (by increasing the number of halos N) than if we had used a
mass function for which the cosmological constant is ignored [66, 67].

We will need, when computing the total P (F ), to compute the first few moments of
P1(F ) at an intermediate step:

E
P

1

(F ) =
⁄

dF ÕP1(F Õ)F Õ , (4.19)

V
P

1

(F ) =
⁄

dF ÕP1(F Õ)(F Õ ≠ E
P

1

(F ))2 . (4.20)

After multiplying Eq. (4.19) by the mean number of halos [Eq. (4.10)] and dividing
by the pixel size, one obtains the mean intensity of the gamma-ray background from
dark matter annihilation [83]. Similarly the variance [Eq. (4.20)] is related to the
angular power spectrum after similar corrections [84]. These connections between the
one-point function and other methods will be studied in more detail in in Chapter 6.
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4. Implications for Dark Matter Annihilation

Since Eq. (4.7) entails an integration over redshift for each F , and since we find
P1(F ) to be relatively smooth, we calculate 250 logarithmically equidistant points
over the ≥40 orders of magnitude supporting the distribution. In order to obtain
robust estimate of the moments, we further sample 250 points within the four orders
of magnitude nearest to the maximum estimated from the low-resolution sampling.

Sources of uncertainty not studied include the cosmological parameters (4.11), in-
strumental e�ects related to Fermi-LAT, and the assumed NFW profile with exactly
determined parameters ✓̄(M, z). Of these, the largest quantifiable uncertainty is the
scatter about the concentration c200, estimated at 15% [74].

4.4.2 Computing P (F )

Monte Carlo method combined with the central limit theorem

Once P1(F ) and the number of halos per pixel N Õ is specified, the calculation of
P (F ) requires no additional physical assumptions. However, the large number of
halos per pixel k ¥ N Õ makes any exact calculation of the autoconvolution [Eq. (4.8)]
prohibitively expensive, even using Fourier methods [10, 85, 50]. One might attempt
to use the central limit theorem (CLT) to approximate P

k

(F ) by a Gaussian. But,
although the CLT guarantees convergence in distribution for k æ Œ, at finite k

there will be deviations from a Normal distribution, particularly in the tails [86].
This is especially true for power-law-like distributions such as P1(F ), since the stable
distributions of sums of power laws may be non-Gaussian [87].

For the purpose of solving the autoconvolution [Eq. (4.8)], we can choose to split P1(F )
into two physically interesting contributions: the multitude of low-mass, faint halos
contributing less than some cuto� flux Fú; and the rare, large point sources brighter
than Fú. This scheme is illustrated in Fig. 4.2 and discussed in more detail in the
Appendices to this thesis. The former will contribute an isotropic background with
Gaussian statistics, while the latter will add a power-law contribution to the high-
flux tail, which smoothly matches with P1(F ) at high fluxes (where flux is dominated
by a single source). The noise at high flux in our Monte Carlo generated P (F ) can
therefore be confidently ignored as a numerical artefact.

Despite the large value of k, our cuto� Fú may be chosen such that only a few thousand
of these high-flux sources remain in each Fermi pixel. We can model the contribution
of these sources by Monte Carlo, drawing number of these rare sources from a Poisson
distribution and their flux from P1(F ). We obtain finally the flux from k halos as the
sum of these two contributions; The flux distribution from k sources is given by the
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Figure 4.2: Schematic of the Fú cuto� of P1(F ) into high/low flux. In our computation
of the full P (F ), the central limit theorem is used to combine the fluxes from the many
sources fainter than Fú, that follow a distribution P F <Fú

1 (F ). Monte Carlo is used
above this cuto� to combine the halo fluxes drawn from P F >Fú

1 (F ).

following convolution:

P
k

(F ) = GF <Fú
CLT (F ) ı P F >Fú

MC (F ) . (4.21)

We note that when taking the convolution of our Monte Carlo result with our faint-
halo Gaussian, we care mostly about the peak of the Gaussian (since the peak is
the largest contribution to the convolution integral). The CLT thus o�ers a suitable
approximation of the P F <Fú

1 (F ) autoconvolution for this purpose, despite deviations
from a Normal distribution in tails. In fact, for practical purposes the distribution is
so thin that only the peak matters and the convolution, Eq. (4.21), is a trivial shift
of the Monte Carlo result to higher fluxes.

For a more detailed derivation of these results, see Appendix A.2.1.

Flux distribution and instrumental sensitivity

In Fig. 4.3, we show the flux PDF P (F ) for the three subhalo boost models. As
discussed above, the distributions are well represented by the ‘di�use’ component
of nearly Gaussian with a power-law tail at high-flux regime. The mean of this
distribution [Eq. (4.19)] corresponds to ≥10≠12 cm≠2 s≠1 sr≠1 MeV≠1 of the di�use
gamma-ray background, with an order-of-magnitude level dependence on the model
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Intensity F/�pix [cm≠2 s≠1sr≠1MeV≠1]
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Figure 4.3: The flux PDF P (F ) per pixel. The blue, black, and red curves represent
respectively the pessimistic, fiducial, and optimistic models of the subhalo boost.
Instrumental responses of Fermi-LAT on detecting P (F ) are schematically shown.
Vertical lines represent a flux corresponding to a single, one GeV photon per pixel,
over the course of a mission of duration 5 (10) years. The Horizontal line schematises
the angular resolution limit [Eq. (4.22)] at 1 GeV.

(see Table 4.2). This is the value used as the mean intensity in the literature, in
order to constrain the dark matter annihilation cross section from the comparison
with the spectral data [88]. However, our PDF analysis shows that the distribution is
skewed, such that the mean is not the most likely value to be observed in any given
pixel: the mode is typically lower than the mean, by a boost-dependent factor of
the order of a few percent, again summarised in Table 4.2. If one instead uses these
most likely values, then the upper limits on annihilation cross-section will accordingly
remain relatively stable: existing upper limits are thereby relatively immune to the
non-Gaussianity of the P (F ) tails. However, for accurate results, one has to perform
the data analysis by taking into account the full shape of P (F ).

Before contrasting our dark matter signature to known and well-observed astrophysi-
cal sources such as galaxy clusters and blazars in the next section, we briefly touch on
whether Fermi is sensitive enough to see it at all. A flux of a single, GeV photons per
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Boost model Mean Most Likely Di�erence Ratio EGB fraction
No boost 1.0 1.0 0.0 ◊ 1.0 0.2%
Fiducial 3.68 3.52 0.16 ◊ 1.05 0.6%
Optimistic 15.2 11.9 3.3 ◊1.3 2.5%

Table 4.2: Mean and most likely extragalactic dark matter annihilation intensities as
a function of the substructure boost model, in units of 10≠12 cm≠2 s≠1 sr≠1 MeV≠1.
The di�erence between these quantities is percent-level, securing existing constraints
on particle dark matter properties against the non-Gaussianity of P (F ). We also
provide, for interest, the value of this mean contribution of the DM as a fraction of
the unresolved EGB at 1 GeV [89].

pixel, over a 5 year mission with LAT’s e�ective area of 0.9 m2 and a field of view of 1/5
of the sky, corresponds to a di�erential flux of 6 ◊ 10≠12 cm≠2 s≠1 sr≠1 MeV≠1. The
bulk of the one-point function P (F ), with its peak of 3.5◊10≠12 cm≠2 s≠1 sr≠1 MeV≠1,
lies just below this sensitivity limit. See the vertical dashed lines in Fig. 4.3, for the
sensitivity curves for 5-year and 10-year Fermi exposure.

There will be a small fraction of the pixels that register photons from the high-flux tail.
Since the high-flux power-law tail is characterised by P1(F ), this is to some extent
equivalent to computing “the probability of seeing a dark matter point source.” The
finite angular resolution of the LAT limits the number of pixels in which we can look
for these bright outliers: we argue in Appendix A.1 and in Chapter 6 that a maximum
flux Fmax, the brightest flux one might expect in any pixel, is given by

FmaxP (Fmax) ¥ 1.5
Npix

, (4.22)

where Npix = 4fi/(fi◊2) = 2.18 ◊ 105 is the number of pixels. This equation simply
states that we are unlikely to probe the flux regime of P (F ), where odds are worse
than 1/Npix. In Fig. 4.3, we show FmaxP (Fmax) as a horizontal dashed line, and this
confirms that one is able to probe this high-flux tail with Fermi-LAT’s very good
angular resolution.

Since the fiducial model lies on the edge of detectability with Fermi, it would not
substantially contribute to the observed extragalactic background with the fiducial
choices of dark matter parameters; this is consistent with what is found in the litera-
ture (e.g., [83]). Of course, the particle physics parameter space [Eq. (4.17)] may still
allow such contributions for e.g. larger values of È‡vÍ than the thermal cross section:
in Sec. 5.3.3 we will vary È‡vÍ slightly above the fiducial value, and therefore expect a
flux of a few photons per pixel over the course of the 5-year mission. Similarly, with
an optimistic boost model, the dark matter may contribute a few photons despite
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4. Implications for Dark Matter Annihilation

using the canonical particle physics model (Fig. 4.3).

4.5 Discussion

4.5.1 Searches for clusters and dwarf spheroidal galaxies

This di�use emission due to dark matter annihilation characterised by P (F ) acts
as a background to dark matter point source searches in galaxy clusters and dwarf
spheroidal galaxies. The situation is summarised in Fig. 4.4: The flux from promising
candidate sources is superposed onto the extragalactic dark matter one-point function,
for the three boost models presented in Table 4.1. A discussion of astrophysical
backgrounds is postponed until Sec. 4.5.2: indeed, it is unlikely to find by coincidence
a bright blazar in the same pixel as a dwarf galaxy.

Clusters of galaxies

Our candidate sources in this category are the Fornax and Coma clusters [90, 91].
These targets are among those with the most promising J-factors, so that they repre-
sent the most optimistic prospects of an annihilation signal detection (or alternatively
the strongest constraints on such a signal).

The substructure of a halo lies predominantly outside the scale radius r
s

= rvir/cvir [92,
72]. In the absence of substructure boost, in contrast, almost all the luminosity is
concentrated within this scale radius and our clusters are well approximated as point
sources for Fermi-LAT:

◊
B=0 = arctan

3
r

s

d
A

4
Æ ◊pix , (4.23)

where the fiducial concentration model cvir(M, z) is used, and d
A

is the angular di-
ameter distance.

If the boost is significant, then substructure outside the scale radius of these clusters
contributes to the luminosity: light comes from the entire virial radius, and the flux
from the halo (treated as an extended source) is diluted between many adjacent pixels.
The boost factor gives the fractions of luminosity from the host and its substructure,
so a rough estimate of the cluster radius we should convert into an angular extension
is

R = r
s

+ Brvir
1 + B

. (4.24)

We clearly recover R ≥ r
s

when the contribution from substructure is negligible
(B π 1), and R ≥ rvir when B ∫ 1. The angle arctan(R/d

A

) then determines the
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number of pixels over which the flux is averaged into an intensity. This corresponds to
flux dilutions over roughly 10 pixels for Coma and 60 pixels for Fornax, explaining why
intensities from Coma and Fornax appear inverted in lower two panels of Fig. 4.4: the
total flux increases when considering substructure, but flux per solid angle decreases
more for Fornax than for Coma. The fact that the intensity from Fornax appears to
decrease from the top panel to the lower panels of Fig. 4.4 is then just a manifestation
of the di�erence between seeing Fornax as a point source in the top panel or as an
extended source in the lower panels.

For the optimistic boost model, Coma stands out in the tail of P (F ), while Fornax is
only barely more visible than if it (pessimistically) had no substructure. Although our
treatment of source extension is somewhat naive, the di�use gamma-ray background
would be a limiting factor in cluster analysis for the fiducial boost model, even if the
e�ects of extension were favourably revised by a factor of three or four (see middle
panel of Fig. 4.4).

The intrinsically poor signal-to-noise in cluster searches is also independent of the
annihilation cross section or mass: changing these particle physics parameters would
not change the signal-to-noise ratio, since both the target cluster and the gamma-ray
background are rescaled by the same factor.

Dwarf spheroidal galaxies

Dwarf spheroidal galaxies are another strategic choice for gamma-ray point-source
searches, to which dark matter annihilations in the Milky Way substructures consti-
tute a known background [53]. We now discuss the background due to extragalactic
sources.

We consider Draco and Segue 1, with J-factors from Ref. [93] since we do not ex-
pect our virialised halo model (Sec. 4.3.2) to apply to them. Again, these sources
have larger J-factors than other known dwarfs, and should thereby set the strongest
constraints on non-detection. These sources lie well above the isotropic background
component, even if we assume no relevant substructure boost for the dwarfs (B = 0).
Consequently, the more substructure boost there is in extragalactic dark matter halos,
the worse the signal-to-noise for dwarfs will be. Since we know the full distribution
P (F ) for the extragalactic background, the p-value of an excess signal at 1 GeV (due
to a dwarf spheroidal) can readily be estimated. Even though the mean intensities
yield poor signal-to-noise ratios, a pixel as bright as Segue 1 would be relatively
uncommon (though not absent from the Fermi skymap, see Fig. 4.3).
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S
min

N
blz/pix

ÈF Í/�
pix

(% EGB)
0.72 1.25 0.89 (14.8%)
0.36 1.97 0.921 (15.3%)
0.18 3.08 0.946 (15.8%)

Table 4.3: Sensitivity summary of our unresolved blazar model (with fiducial values
in the central row). The first two columns pertain to Eqn. (4.25): S

min

(in units of
10≠10 cm≠2 s≠1) is the lowest flux to which we extrapolate the source count distri-
bution, from which a number of (faint, unresolved) blazars per pixel may be derived.
The next two columns summarise the corresponding mean intensity of the blazar
P (F ), both as an absolute value in units of 10≠10 cm≠2 s≠1 sr≠1 MeV≠1, and as a
proportion of the unresolved EGB [89].

4.5.2 Astrophysical backgrounds: Blazars and other compo-
nents

In this section we consider a number of known astrophysical backgrounds that would
mask the signal of our fiducial model.

The unresolved blazar flux distribution

Following the parameterisation of the blazar source count from Ref. [31], we assume
the following power-law for P1(F ) of unresolved blazars:

d2N

dSd� = 1.4 ◊ 10≠7
3

S

cm≠2 s≠1

4≠1.64
cm2 s deg≠2 , (4.25)

P1(F ) = 2.5 ◊ 10≠10
3

F

cm≠2 s≠1 MeV≠1

4≠1.64
cm2 s MeV , (4.26)

where S is the gamma-ray flux integrated above 100 MeV. We extrapolate this relation
down to a lower flux limit of S Ø 0.36 ◊ 10≠10 cm≠2 s≠1, and perturb around this
fiducial value3 to test the model’s sensitivity to this extrapolation (see Table 4.3).
We also enforce an upper limit of S Æ 2 ◊ 10≠8 cm≠2 s≠1, in order to maintain a
low blazar detection e�ciency [31] without altering the power-law form of the blazar
P1(F ). Assuming an E≠2.4 spectrum, the corresponding range in di�erential flux at
1 GeV is then 2.0 ◊ 10≠15 Æ F/(cm≠2 s≠1 MeV≠1) Æ 1.1 ◊ 10≠12.

Using d2N/dSd�, we find ≥ 2.0 faint blazars per pixel, and draw the number of
sources per pixel from a Poisson distribution in order to predict P (F ) by Monte

3This value is ten times smaller than the ‘medium band’ from Ref. [31], corresponding to the
faintest observed source out of the mix of FSRQs and BL Lacs that contributes at 1 GeV.
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Carlo simulation. In practice, we split the blazar P (F ) into two contributions: the
delta-function of zero sources per pixel (treated analytically) and the contribution of
more than zero sources per pixel (Monte Carlo):

PBlazar(F ) =
Œÿ

k=0
P (k|2.0) P

k

(F ) = e≠2.0”(F ) +
Œÿ

k=1
P (k|2.0) P

k

(F ) . (4.27)

The (nonzero) blazar flux distribution is plotted in Fig. 4.5. Like the flux distribution
for the dark matter, it has a non-negligible skew and approximates the single-source
distribution at high fluxes. PBlazar(F ) also follows the single-source powerlaw between
the minimal intensity of a single source I

min

= F
min

/�pix and the minimal intensity
of two sources, with a discontinuous derivative at this threshold. We see from Fig. 4.5
and Table 4.3 that unresolved blazars contribute roughly 15% of the unresolved EGB
at 1 GeV, reproducing Ref. [31]: even a single blazar is at least as bright as the entire
dark matter contribution of our fiducial model, and the mean blazar flux is between
one and two orders of magnitude brighter than the dark matter, depending on the
boost model. Fortunately, using the entire distributions (instead of just their means)
allows the thin, peaked dark matter to be statistically extracted from the broad,
powerlawlike blazars (see Sec. 5.3.3).

The isotropic background

There are a number of other backgrounds to consider, such as cosmic rays or starburst
galaxies. Since we expect all contributions of the EGB to add up to the experimentally
observed flux, we must convolve the distributions above with the P (F ) of these other
isotropic backgrounds. However, a complete model of these backgrounds is beyond
the scope of this exploratory analysis. The one-point function of these other isotropic
components is (for convenience) assumed Gaussian with a small, arbitrarily chosen,
but non-negligible variance (µ/‡ ≥ 103) and mean determined by requiring that the
mean intensity due to PEGB(F ) (after adding the dark matter and blazar components)
be equal to the experimentally determined value 6◊10≠10 cm≠2 s≠1 sr≠1 MeV≠1 [89].
This Gaussian could be thought of as the central limit theorem approximation to the
flux distribution of a large number of sources, since µ/‡ scales like

Ô
N (cf. Chapter

5).

We can also consider not convolving a dark matter component into the gamma-ray
background, to study (in Sec. 5.3.3) the distinguishability of an alternate hypothesis
model with dark matter, PAlt(F ), from a null hypothesis model without dark matter
PNull(F ) (Both of these flux distributions are represented in Fig. 4.6). We then have

PEGB(F ) = PBlazar(F ) ı Grest(F ) ı PDM(F ) , (4.28)
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which can be solved using the blazar P (F ) model [Eq. (4.27)] above, as

PEGB(F ) =
#
e≠2.0”(F ) + (1 ≠ e≠2.0)P MC

Blazar(F )
$

ı Grest(F ) ı PDM(F ) , (4.29)

where the analytical factor of (1 ≠ e≠2.0) captures the normalisation of the Monte
Carlo. It shall be crucial in what follows that the mean of PEGB(F ) has been fixed
as an experimental input, rather than allowed to vary freely as a model parameter.

The combined astrophysical backgrounds

The purpose of this section is to describe the influence of modelling choices on the
shape of the flux distribution of the total unresolved EGB, as represented in Fig. 4.6.

The thin peaks and power-law-tailed peaks at low and high flux in Fig. 4.6, corre-
spond respectively to whether or not a blazar is present in the associated pixel. The
relative peak heights are determined (to a first approximation) by the number of un-
resolved blazars per pixel, via the mixture coe�cient e≠2.0. Broadening the peaks (by
convolving the astrophysical components with a dark matter component) introduces
a correction to this determination of height. The location of the mean of the low-flux
peak is set via (i) Eqn. (4.28), (ii) the (assumed) mean of the blazar flux distribution
(cf. Table 4.3), and (iii) the experimentally determined mean of the total flux dis-
tribution [89]. The di�erence between the dark matter distribution’s mean and most
probable fluxes (cf. Table 4.2) introduces an additional percent-level shift between
the locations of the low-flux peaks with and without dark matter.

The width and depth of the ‘gap’ between the high and low flux peaks is related, in
the absence of dark matter, to the lower flux limit on blazars assumed in Sec. 4.5.2.
This relation relies on the interplay between two e�ects: on one hand, extrapolating
to lower fluxes increases the mean blazar contribution, shifting the location of the
low-flux peak by an equal and opposite amount to even lower fluxes and widening
the gap. On the other hand, extrapolating the faintest blazar contribution to lower
fluxes also fills the gap with the fluxes from these faint blazars. The latter e�ect more
than compensates for the former, such that overall the gap closes as it shifts to lower
fluxes with an increasing blazar contribution.

However, the contribution of the dark matter component to this gap is just as dra-
matic. Since the distribution is skewed, it broadens both peaks preferentially to higher
fluxes; however, the location of the low-flux peak is fixed by the constraint imposed on
the mean of PEGB(F ), while the high-flux peak is free to shift under this broadening.
This widens the gap with increasing brightness of the dark matter annihilation signal.

In addition to these shifts, the slope of the flux-tail due to dark matter annihilation
(≠2.5) is quite di�erent from the one for blazars (≠1.64); if the former component
gives a significant contribution to the gamma-ray background, this will deform the
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shape of the total distribution’s tail. The e�ect of changing the variance of the
isotropic Gaussian, being of less interest than actually modelling these components,
has not been investigated in this exploratory analysis. See Sec. 5.6.

Note that all these features of the predicted gamma-ray flux distribution, both with
and without dark matter, fit just on the edge of the experimental uncertainty on this
mean value (6 ± 1 ◊ 10≠10 cm≠2 s≠1 sr≠1 MeV≠1, Ref. [89]), and may be open to
exploitation by one-point function methods.

As the sum of a di�use background and a few unresolved sources, the gamma-ray
background in Eq. (4.28) has the same origin as the dark matter background. By
adopting a wider variance for the Gaussian in Eq. (4.28), even the ‘Gaussian with a
power-law tail’ form of the dark matter component can even be reproduced, corrob-
orating our interpretation of these features of the dark matter P (F ) and justifying
our faint/bright Fú analysis. One might worry that this ‘truly di�use plus unresolved
point sources’ form also undermines the prospects of an unambiguous dark matter
detection above such a background. Indeed, model-fitting one-point techniques such
as that described in Ref. [14] cannot separate degenerate models, especially given the
angular resolution limitation (illustrated in Fig. 4.3) that prevents the dark matter
P (F ) power-law tail from contributing significantly to the observed flux. However,
one need not worry too much: the asymmetry-induced shift of the peaks of P (F ) may
be a su�ciently distinctive feature to extract a dark matter signal from the Fermi
data nonetheless.

4.5.3 The photon count distribution P (C)

The observable given by Fermi is not the gamma-ray flux F , but the discrete number
of photon counts per pixel C. Photon arrival may then be modelled as a Poisson rate
with a mean determined by the di�erential gamma-ray flux and the exposure ‘ =
(time) ◊ (detector area) ◊ (photon energy). For a five-year Fermi mission, correcting
for the field of view, we have an exposure of ‘ ¥ 2.83 ◊ 1014 cm2 s MeV sr pixel≠1.
Marginalising over the uncertain flux distribution then gives

P (C) =
⁄

PEGB(F )P (C|‘F ) dF. (4.30)

This Poisson arrival uncertainty substantially smooths away the di�erences between
the null and alternate flux models, as evidenced by Fig. 4.7. However, the percent-
level shift between the low-flux peaks due to the dark matter distribution’s skewness
survives, since a percent di�erence with C ≥ O(100) is still a few photons. There
is also a larger, opposite shift in the point-source-driven high-flux tail due to our
imposed value of the distribution’s mean.
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We can define, given our number of pixels Npix, the test statistic [50]

‰2 =
ÿ

C

A
Npix[PNull(C) ≠ PAlt(C)]

NpixPNull(C)

B2

, (4.31)

The choice of bounds for the sum over count bins is somewhat arbitrary; a formal
optimisation of this test statistic would be beyond the scope of this analysis. We
choose to focus on the peak 65 < C < 165 of the distribution, in which we anticipate
su�ciently many pixels per ‘count bin’ to trust a ‰2 test. The lower panel of Fig. 4.7
illustrates the terms of the sum in this test statistic, from which one may obtain the
p-value at which data with dark matter following PAlt(C) exactly would reject our
dark-matter-free null hypothesis.

For the fiducial dark matter model, the percent-level shift between these peaks is just
small enough that the null cannot be rejected by the data. Since the dark matter cross
section È‡vÍ enters in our model only as a proportionality factor for the dark matter
halo luminosity, we can rescale our PDM(F ) to inexpensively repeat this detectability
study for higher values of the cross section. We can then forecast for which values
of the cross section a dark matter component would become distinguishable from the
background using the one-point function alone. This is summarised in Fig. 4.8, which
shows that (given a perfect understanding of the backgrounds) the one-point function
could probe a dark matter annihilation signal with a cross section roughly a factor two
times larger than the canonical value 3 ◊ 10≠26 cm3 s≠1. Fig. 4.8 also shows that our
fiducial choice of lower blazar flux extrapolation is fortuitously close to a detectability
optimum, but our forecast does not deteriorate much upon rescaling this value.

This result, complementary to two-point function analyses, could even be strength-
ened by including the energy dependence of the di�erential flux to break the degener-
acy with the astrophysical backgrounds [53]. Such a study would remain sensitive to
(but would allow a quantitative analysis of) the assumptions and uncertainties of the
astrophysical background model. Yet, even without this spectral input, our forecasted
one-point upper limit on the cross-section is on par with the most recent (spectral)
constraints [23] based on the mean value alone.

In addition to the extragalactic dark matter flux, there will be a component due to
Galactic substructures. The one-point distribution of such a Galactic component has
been predicted [50], and similarly features a power-law high-flux tail. Due to the
energy spectrum Eq. (4.17), if the mean intensity from subhalos at the anticenter
integrated above 10 GeV is ≥ 10≠10 cm≠2 s≠2 sr≠1 [50], then the mean di�erential
intensity at 1 GeV is ÈIÍ ≥ 10≠12 cm≠2 s≠1 sr≠1 MeV≠1. This is of the same order of
magnitude as the extragalactic component discussed above, and with the same high-
flux F ≠2.5 power-law tail. Thus, including the Galactic component would further
enhance the expected signal-to-noise for potential detection. We finally note that
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4.5. Discussion

the Galactic component will show a dipole feature, with more flux from the Galactic
center than the anticenter, which can in principle be used to discriminate it from the
isotropic extragalactic component.

4.5.4 Caveats

There are a number of caveats on the results presented in this study. Firstly, a large
number of assumptions were used to simplify the hierarchical model without a proper
sensitivity analysis. We assumed there is no scatter in the halo parameters [Eq. (4.6)],
or any uncertainty on the average number N Õ of halos in each pixel. An NFW profile
was assumed for the halos despite the fact that Einasto and uncusped profiles would
probably give less flux. The uncertainty incurred by extrapolating the mass function
dN/dM and the boost models B(M) down to Mmin, is compounded by our ignorance
of the actual value of Mmin.

Secondly, we have not studied how our results depend on pixel size, particularly the
e�ects of source extension. We have merely assumed that all sources are point-like,
since there are on average only 0.28 extended dark matter sources per pixel, a negligi-
ble fraction of all N Õ = 7◊1021 halos (Sec. 4.3.1). However, extended sources must be
either massive or nearby (Sec. 4.4.1), and therefore would tend to have large fluxes,
a�ecting the distribution P F >Fú

1 (F ). Our point-source-based P1(F ) is therefore not
applicable to these objects at high flux. That this compromises the analysis should
be obvious from Fig. 4.4: the one-point functions do not account for the clusters’
extension, and the clusters’ fluxes clearly do not live in the domain of the PDF they
should be drawn from. Thus, extended sources should be dealt with in a complete
analysis. Some of the elements of such an analysis (such as an energy-dependent an-
gular resolution, a substructure-boost-dependent mass-to-solid-angle conversion, or
a redshift-dependent mass threshold MExt(z)) have been presented in this Chapter.
Note, however, that the distribution of faint and distant sources P F <Fú

1 (F ) used to
derive GF <Fú

CLT (F ) is not compromised by the extension of bright and nearby sources;
as long as the faint/bright split in the method of Sec. 4.4.2 excludes faint extended
sources (which can be guaranteed by a suitable choice of Fú), only the Monte Carlo
based on bright sources would need be revised.

Thirdly, we have not considered the energy spectrum of our dark matter annihilation
signal, besides noting that it is a very relevant quantity in Fig. 4.1 (which is clearly
insu�cient). Using di�erential fluxes throughout this study is a first step in this
direction; source spectra will be included in the following Chapter. On one hand, the
choice of the particle dark matter spectrum dN/dE is mostly unrelated to structure
formation and only contributes an energy-dependent normalisation which, from a
particle physics perspective, is almost completely arbitrary. Hence, it would not have
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4. Implications for Dark Matter Annihilation

much predictive power and matter in practice only for data fitting. On the other
hand, at higher energies the gamma-ray absorption matters, and a more sophisticated
model than Eq. (4.18) for this quantity would be required. The energy resolution of
the instrument (�E/E = 9% at 1 GeV [1]) would also need to be accounted for in
the model.

Finally, our Gaussian model for the non-blazar isotropic components of the EGB is
clearly inadequate (and even the blazar model is somewhat simplistic), since rigor-
ously accounting for all the astrophysics would require an entirely separate analysis.
Consequently the one-point functions and forecasted limits that depend on this input
must be understood as exploratory and methodologically illustrative.

4.6 Conclusions

We constructed a hierarchical model that predicts, using analytical models of �CDM
structure formation, the flux distribution of gamma rays from extragalactic dark
matter annihilation in unresolved point sources. The uncertainties on this flux subject
to the modeling choices we studied are typically percent-level; in the case of the
substructure boost function, they remain smaller than a factor of three. We then
compute, without requiring any additional physical assumptions, the flux distribution
per pixel P (F ), which has the characteristic form of an isotropic di�use Gaussian
matched at high flux to the point-source distribution with a power-law slope of ≠2.5.
This distribution is non-Gaussian and asymmetric; however the most likely flux and
the mean flux are comparable at the percent-level in all but the optimistic boost
model, salvaging previous ‘mean intensity’ constraints on the dark matter properties
from this potential systematic e�ect.

The fluxes predicted for our fiducial model lie just within the reach of the Fermi-
LAT, and should be observable by the tenth year of the mission. We also showed that
the distinctive features of the power-law-tailed Gaussian distribution all live above
Fermi’s angular resolution. Therefore, the extragalactic gamma-ray emission due to
dark matter annihilation constitutes an irreducible and significant background for
point-source annihilation searches with clusters or dwarf spheroidals. Ironically, an
optimistic boost model would be detrimental to these searches, by deteriorating the
signal-to-noise of these point sources (to unity or worse for galaxy clusters).

We also discussed the astrophysical backgrounds from which a dark matter annihi-
lation signal would need to be extracted. These include unresolved blazars (which
contribute an order of magnitude more flux than the fiducial dark matter model) and
other di�use components, which were all convolved together into a total model for
the gamma-ray background. The scarcity of unresolved blazars make this distribution
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quite rich in features; most prominently, it has two distinct peaks of most probable
fluxes, the inter-peak gap being very sensitive to the dark matter component.

Even accounting for the Poisson noise of photon arrivals that come with such low
fluxes, a contribution to the gamma-ray background of the order of a vanilla par-
ticle dark matter model may be detectable above well-characterised astrophysical
backgrounds using the flux distribution alone. Using the energy-dependence of the
flux distribution should further break the degeneracy between the components of the
gamma-ray background, and should allow one-point function methods to complement
and strengthen existing constraints set by two-point-function analyses.
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Figure 4.4: Brightnesses of promising clusters and dwarf spheroidal galaxies super-
posed on the extragalactic dark matter annihilation gamma-ray background. The
color code is the same as for previous figures. We assume that dwarf spheroidals have
no substructure boost. The fiducial model does not favour indirect searches with
clusters. The inversion of predictions for Coma and Fornax between top and bottom
panels accounts for source extension, as explained in the main text.
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Figure 4.5: One-point function P (F ) for the three dark matter models (with boosts
color-coded as previously), alongside the P (F ) of the di�use contribution of blazars
(green). The dashed red band represents the measurement of the unresolved EGB
from the Fermi data at 1 GeV [89], while the dashed green line is the mean of the
blazar PDF.
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Figure 4.6: Predicted flux distribution PEGB(F ) of the extragalactic gamma-ray back-
ground, with (black) and without (green) a contribution from dark matter annihila-
tions. The distributions have two peaks, based on whether or not a blazar is present
in the associated pixel. The mean EGB derived from Fermi [89] is represented by
the vertical line (red, dashed). A cross-section twice the canonical value was used to
visually enhance the di�erences between these distributions.
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Figure 4.7: Predicted count distributions of EBG photons with (black) and without
(green) a dark matter component. The green bands represent the Poisson errors
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labelled by the flux S
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down to which the blazar distribution is extrapolated (see
Table 4.3). Horizontal lines (blue, dashed) represent some common choices of confi-
dence level. Including the energy-dependence of the flux distributions would improve
these results, at the cost of a greater dependence on the annihilation spectrum.
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5 Implications for
Astrophysical Neutrinos

We perform the first one-point fluctuation analysis of the high-energy neutrino sky.
This method reveals itself to be especially suited to contemporary neutrino data, as it
allows to study the properties of the astrophysical components of the high-energy flux
detected by the IceCube telescope, even with low statistics and in the absence of point
source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple
model of the high-energy neutrino background by assuming two main extra-galactic
components: star-forming galaxies and blazars. By leveraging multi-wavelength data
from Herschel and Fermi, we predict the spectral and anisotropic probability distri-
butions for their expected neutrino counts in IceCube. We find that star-forming
galaxies are likely to remain a di�use background due to the poor angular resolution
of IceCube, and we determine an upper limit on the number of shower events that
can reasonably be associated to blazars. We also find that upper limits on the contri-
bution of blazars to the measured flux are unfavourably a�ected by the skewness of
the blazar flux distribution. One-point event clustering and likelihood analyses of the
IceCube HESE data suggest that this method has the potential to dramatically im-
prove over more conventional model-based analyses, especially for the next generation
of neutrino telescopes.

5.1 Introduction

In 2013, the IceCube Collaboration reported an excess of high-energy neutrinos over
the atmospheric neutrino background [94, 95, 96, 97, 98]. The spatial distribution
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of these events, consistent with isotropy and with no significant clustering, may
suggest an extragalactic origin of the detected neutrinos [99, 100, 101, 102]. Be-
sides a Galactic contribution [103, 104], various extragalactic astrophysical sources
have been suggested as factories of the IceCube neutrinos, e.g. star-forming galaxies
(SFG) [105, 106, 107, 108, 32, 109, 110, 111], active-galactic nuclei [24, 112, 113, 114,
115, 116, 117, 118, 119], galaxy clusters [120, 121], sources dim or scarcely visible in
photons [122, 123, 124, 125, 126, 127, 128] as well as more exotic dark matter de-
cays [129, 130, 131, 132]. Recent work employing accurate statistical analysis as well
as up-to-date gamma-ray data-sets places strong constraints on some of the proposed
sources [133, 134, 135, 136]. In this study we are interested in the joint contribution
of multiple source populations to the observed extragalactic neutrino flux.

Given the paucity of the high-energy neutrino data, it is important to extract as
much information as we can from them. We here aim at exploiting the full probabil-
ity distribution of the currently available neutrino data-set by employing a one-point
fluctuation analysis [137, 14, 50, 138, 18, 13]. We first model the high-energy neu-
trino sky in a simple data-driven way, by assuming that neutrinos from SFGs and
from blazars constitute the main bulk of the observed IceCube flux, other than the
atmospheric background. The IceCube HESE data are then compared directly to
our model predictions. Our one-point analyses show that the specific model of SFGs
and blazars, carefully extrapolated from Herschel and Fermi data, is insu�cient to
explain the IceCube astrophysical excess. Our likelihood analysis suggests that the
discrepancy can be explained by missing un-modelled components that are likely of
astrophysical origin.

In addition to our analysis of the HESE data, the probability distribution of the in-
dividual neutrino counts allows us to make detection forecasts of these astrophysical
populations as point sources above di�use backgrounds that they themselves gener-
ate. This extreme-value analysis suggests that a detector with the IceCube angular
resolution would not be likely to detect SFGs as point sources above the background
of blazars and of other SFGs. On the other hand, blazars are su�ciently rare sources
that they will not constitute a background to themselves. Instead, the skewness
of the blazar flux distribution biases results derived from population averages by a
non-negligible factor compared to the full distributional result, which we compute.

This Chapter is organised as follows. In Sec. 5.2, we present our data-driven modelling
of the extragalactic and atmospheric neutrino flux. In Sec. 5.3, we predict what
IceCube should observe on Earth as a consequence of the adopted astrophysical models
and characterise the flux distributions of star-forming galaxies and blazars, arguing
that they are su�ciently skewed to bias results on unresolved source contributions to
the di�use backgrounds. In Sec. 5.4 we present a few of the techniques available in
one-point analyses, and in Sec. 5.5, we apply these techniques and expose the results
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of our analyses. The systematics of this study are discussed in Sec. 5.6, and our
findings are summarised in Sec. 5.7.

5.2 Distributional models of neutrino fluxes

In this Section we describe the inputs we used to model the neutrino emission from
SFGs and blazars. We also derive the flux probability distributions of single sources
drawn randomly from these populations.

In this study we will consider the energy-di�erential particle fluxes F (in units of
cm≠2 s≠1 GeV≠1) of various sources. Specifically, we will be considering the statistics
of the flux in individual pixels, and to some extent (cf. Chapter 1) we will be treating
fluxes-per-pixel as equivalent to intensities I = F/�pix (in units of cm≠2 s≠1 sr≠1 GeV≠1).

In addition to these energy-di�erential quantities, the gamma-ray studies we use to
inform our models often work with fluxes S

“

(in units of cm≠2 s≠1) integrated over a
certain energy range [Emin, Emax]. Integrated neutrino fluxes S

‹

will also be relevant
in Sec. 5.3.3. For a di�erential flux with fixed spectral index � (i.e., F Ã E≠�), S is
related to F by

S = F ◊ E1≠�
max ≠ E1≠�

min
(1 ≠ �) E≠� . (5.1)

Hence, when the spectral index over this energy range is known, F and S are also
e�ectively interchangeable, and we can extrapolate GeV gamma-ray fluxes to their
TeV–PeV gamma-ray counterparts. From here we can further extrapolate their cor-
responding neutrino fluxes assuming pp or p“ interactions. Note that we will assume
a single injection spectral index � as representative of the whole source population
for simplicity. In Sec. 5.6.2, we will discuss the systematics incurred by employing
such an approximation. Notational preferences for F , S, or I throughout the text are
mainly to emphasise whether or not we are assuming a fixed pixel size (I), a fixed
energy range (S), or neither (F ).

5.2.1 Star-forming galaxy fluxes from the Herschel data

We now introduce our model for the neutrino emission from star-forming galaxies.
The probability distribution of their neutrino flux is also discussed.
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Flux model

In a proton-rich astrophysical environment, the neutrino emission can be directly
correlated to the gamma-ray emission (cf. Chapter 2 and Refs. [139, 99]):

1
3

6ÿ

–=1
E

‹

Q
‹,–

= Ÿ

2 E
“

Q
“

, (5.2)

where – runs over (anti)neutrino flavours, Q is the energy-di�erential emission rate
per source (in units of s≠1 GeV≠1) and Ÿ = 2 for hadro-nuclear interactions. Using
the direct relation between the neutrino and the gamma-ray energies (2E

‹

= E
“

) and
integrating over source densities on both sides of Eq. (5.2) to get the di�erential fluxes
(in units of cm≠2 s≠1 GeV≠1), we have (1/6)

q
–

F
‹,–

= (Ÿ/2)F
“

. Since neutrino
oscillations push the flavour ratio towards 1:1:1 for extragalactic sources, we can
define the all-flavour neutrino and antineutrino flux as

F
‹

©
6ÿ

–=1
F

‹,–

= 3ŸF
“

. (5.3)

Although we have a simple conversion between neutrino and gamma-ray fluxes for
hadronic sources, SFGs are barely resolved in gamma rays (cf. e.g. [6, 7, 8, 4]). Con-
sequently, their neutrino flux distribution is derived following Ref. [32]. We adopt the
Herschel infrared (IR) luminosity function, �(LIR, z) = d2N/(dV (z) d log10 LIR) [25],
defined for the intrinsic infrared luminosity LIR and redshift z. The IR luminosity
function is connected to the gamma-ray luminosity function �(L

“

, z) by an empirical
correlation [6]

�
“

(L
“

, z)d log L
“

= �IR(LIR, z)d log LIR , (5.4)

L
“

(LIR) = 10—

3
LIR

1010L§

4
–

erg s≠1 , (5.5)

where – = 1.17 ± 6% and — = 39.28 ± 0.2% and L§ is the the solar luminosity.
We will assume the best fit values of the above parameters in the following, though
more rigorously we really should be marginalising over these uncertainties. The 0.2%
uncertainty on the normalisation exponent — corresponds to an 18% systematic uncer-
tainty on the normalisation 10— . Meanwhile the uncertainty on the slope corresponds
to a . 2% uncertainty on the normalisation for the values of LIR at the edges of
the domain of �(LIR) [25], and is correlated with LIR itself. The combined system-
atic uncertainty on the extrapolation L

“

(LIR) for a single source (and so also on its
neutrino flux F

‹

= 3ŸF
“

) is then less than ≥ 20%. For a further discussion of this
systematic e�ect, see Sec. 5.6.2.

As discussed in Chap. 2, the luminosity function of IR galaxies can be decomposed into
luminosity functions for spiral (‘normal’) galaxies (NG), starburst galaxies (SB), and
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star-forming galaxies hosting an obscured or low-luminosity AGN (SF-AGN). This last
subpopulation is further divided into those having an energy spectrum resembling the
one of normal galaxies (SF-AGN (NG)) and those more similar to starburst galaxies
(SF-AGN (SB)); the redshift evolutions of SF-AGNs is given in Table 2 of Ref. [32].
Moreover, SB-like galaxies usually have a harder spectrum than NGs (�SB ƒ 2.2
vs. �NG ƒ 2.7, see Ref. [32, 135] and references therein for more details). In the
following, we will only consider SB and SF-AGN (SB) galaxies as main contributors
to the high-energy neutrino flux.

Since SF-AGNs represent the most abundant sub-class of SFGs, we also computed the
flux distribution of SF-AGN (NG) as a cross-check (�SF≠AGN(NG) = 2.7). However, we
find this subpopulation only produces about 6% of the SFG flux between 25 TeV and
5 PeV, well within systematic uncertainties, so this subpopulation has been neglected
in what follows.

We assumed the energy-dependence of the “-ray di�erential flux as an unbroken
power-law Ã E≠�

SB above 0.6 GeV [32] and do not adopt an high-energy cuto�.
We will further discuss the e�ect of uncertainties on � in Sec. 5.6.2.

Flux distribution

For an SFG population composed of exactly N =
s

(dV/dz)�(L
“

, z)d log L
“

dz sources,
the luminosity function is su�cient (under the assumption that these extragalac-
tic sources are isotropically distributed in a comoving cosmological volume element
dV/dz) to obtain the single source distribution:

P1(L
“

, z) = d2N/dzdL
“

N
= dV

dz

�
“

(L
“

, z)
N ln(10)L

“

. (5.6)

We use the same Planck+WMAP cosmology as in the previous Chapter in dV/dz

[55].

For a population with a unique, fixed spectral index � and photons observed at energy
E

“

(i.e., emitted at various energies (1+z)E
“

), the one-source gamma-ray di�erential
flux distribution is obtained by marginalising away the uncertainties on the (L

“

, z) of
the source:

P1(F
“

|E
“

, �) =
⁄⁄

dzdL P1(F
“

, L
“

, z|(1 + z)E
“

, �) =
⁄

dz

----
Lcrit
F

“

---- P1(Lcrit, z) ,(5.7)

where Lcrit(F“

, E
“

, �, z) is the L
“

value obtained by the inversion of the di�erential
flux model F

“

(L
“

, · · · ) from Ref. [32] in which any attenuation during propagation is
neglected. Inserting Eqn. (5.6) then yields

P1(F
“

|E
“

, �) = 1
|F

“

|
⁄

dz
dV

dz

�
“

(Lcrit, z)
N ln(10) , (5.8)
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where uncertainties of �SB = 2.2 are explicitly neglected. The e�ect of systematic
uncertainties of � on the mean flux in such a model has already been studied in
Ref. [32], and the systematic e�ects of statistical uncertainties on � are discussed in
Sec. 5.6.2. The SFG normalisation N is e�ectively absorbed into the normalisations

dP = 1 of this single-source probability distribution, although it remains determined
by the Herschel observations when we extrapolate this gamma-ray flux to neutrinos
using Eqn. (5.3).

For the high-flux tail, with contributions only from the nearby sources, the volume
probed is very small and we expect an Euclidean scaling F ≠2.5. The resulting P1(F

‹

)
is then a broken power-law, up to corrections due to the redshift evolution of the SFG
populations [25], as visible in Figure 5.1.

-29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17
log(F / cm²·sec·GeV)

-17.5

-15.0

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

lo
g(

F 
P(

F)
)

b = - 2 . 5

a = - 1 SB            
SF-AGN(SB)        

Figure 5.1: Probability distribution P1(F
‹

) of the di�erential neutrino flux from a sin-
gle star-forming galaxy at 100 TeV. The flux distributions of two SFG subpopulations
are shown: SB (blue) and SF-AGN (red) [32]. Constant log-slopes corresponding to
the limiting 1/|F | and the Euclidean behaviours (a and b respectively) are o�set and
quantified for convenience.
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5.2.2 Blazar fluxes from the Fermi 2FHL catalogue

The second class of extragalactic neutrino sources in our model are blazars. In what
follows we introduce our model to estimate their neutrino emission the basis of based
on their observed “-rays spectra. The probability distribution of their flux is briefly
introduced.

Gamma-ray flux model

To construct our data-driven model of blazars, we rely on the source count distribution
dN/dS

“

of the Second Catalog of Hard Fermi-LAT Sources (2FHL) [5, 140]. The
2FHL sources are mostly blazars, specifically BL Lacs. One may justify this claim
by extrapolating the observed contributions from di�erent blazar populations at high
energy (≥54% BL Lac and ≥16% other blazar sub-populations [5]) to the unassociated
and unresolved sources. However, before extrapolating this gamma-ray flux into a
neutrino flux, we must extrapolate it up to the IceCube energy range.

The 2FHL catalogue has substantially di�erent properties from 2LAC, a 2FGL-based
catalogue more commonly used in blazar-neutrino studies [141, 142]. 2LAC is of a
higher purity than 2FHL (97% of sources are blazars of various subclassifications);
however these sources are observed using gama-rays at energies 100 MeV ≠ 100 GeV,
while the 2FHL is based on data between 50 GeV ≠ 2 TeV [141, 5]. Consequently,
extrapolating the gamma-ray flux of 2LAC sources to their neutrino flux above 10
TeV is more dangerous than extrapolating the “-flux of 2FHL sources.

This is relevant because the spectrum of these sources is very di�erent in the two
catalogues. BL-Lacs in the 2LAC have � < 2.2, but appear much softer in the higher
energy range of 2FHL. For example, Fig. 10 of Ref. [5] shows the distribution of � in a
sample of BL Lacs shared between 2FHL and lower energy catalogues, with the clear
trend that these sources’ indices get softer at increasing energy, with median � > 3
in the 2FHL. This softening is observed despite the larger fraction of HSP (‘hard’) to
LISP (‘soft’) blazars in 2FHL than in catalogues at lower energies [5], which suggests
the unresolved sources we want to model are even softer. This spectral behavior
is consistent with the observation that the spectral energy distributions (SEDs) of
individual blazars are concave functions. The gamma-ray spectrum approaching PeV
energies might be expected to be even softer than those of the 2FHL.

Despite this evidence that the blazar index is � > 3 at higher energies, we nevertheless
assume a non-concave SED at high energies, using Eqn. (5.1) with �2FHL = 2.5. We
make this simplifying assumption not only since we expect the flux from a population
with uncertain � to be dominated by the hardest sources (cf. Sec. 5.6.2) and for
ease of comparison with existing studies (e.g. Refs. [142, 143]), but also because
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this harder-than-expected extrapolation will result in an optimistic estimate of the
contribution from blazars in the 2FHL (and hence in overconservative significances in
our one-point fluctuation analyses in Sec. 5.5). We will further discuss the e�ect of
uncertainties on � in Sec. 5.6.2.

Neutrino flux model

Now that we can extrapolate the gamma-ray flux between 50 GeV ≠ 2 TeV to higher
energies, we want to turn it into a neutrino flux. In this case, Eqn. (5.2) does not
apply. We adopt instead the following relation from Ref. [116, 144, 145] for the (all-
flavors) neutrino flux:

E2
‹

F
‹

(E
‹

) =
5⁄ Œ

10 GeV
E

“

F
“

dE
“

6
Y

0.9

3
E

‹

E
‹,peak

41≠s

exp
3

≠ E
‹

E
‹,peak

4
(5.9)

where E
‹,peak ¥ 10 PeV for typical 2FHL sources (z = 0.4, ‹S = 1016Hz [5]), and

where s = ≠0.35 is used to obtain the denominator factor of 0.9 in the normalisation
[116]. Y is a parameter absorbing the details of the particle physics interactions in
BL Lacs: the observed gamma-ray flux is mostly leptonic when Y < 1, and mostly
due to synchrotron emission from pfi when Y ≥ 3. The value Y = 0.8 was chosen for
ease of comparison with Ref. [116], though their discussions suggests smaller values
of Y may be more consistent with IceCube upper limits at the highest energies. This
choice of a large Y may therefore slightly overestimate the neutrino flux due to 2FHL
sources, which will again result in overconservative significances for the discrepancies
between our model and the HESE data we will dicsuss in Sec. 5.5.

We can convert the integrated energy flux above 10 GeV in Eqn. (5.9) to the integrated
particle flux in the 2FHL energy range, S

“

, using Eqn. (5.1). The term in square
brakets above becomes

#s Œ
10 GeV E

“

F
“

dE
“

$
= S

“

(1≠�)/(2≠�)[≠(10 GeV)2≠�]/[(2 TeV)1≠�≠
(50 GeV)1≠�]. Thus we have

F
‹

Ã S
“

E≠(1+s)
‹

exp(E
‹

/E
‹,peak) , (5.10)

with a predetermined proportionality constant that depends on the best-fit gamma-
ray slope �2FHL = 2.5 from Ref. [140]. The log-derivative ˆ ln F

‹

/ˆ ln E
‹

gives an
energy-dependent neutrino spectrum F

‹

Ã E
≠(1+s(E‹ ))
‹

which softens as the energy
increases, s(E

‹

) = s + E
‹

/(10 PeV). Note that the neutrino spectrum s is di�erent
from the gamma-ray spectrum � in our phenomenological model. A more accurate
modeling of the microphysics may lead to more accurate predictions for s, but this
goes beyond the demonstrative scope of our work.
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Flux distribution

These extrapolations S2FHL
“

æ F
‹

are only the first step in determining the probability
distribution P1(F

‹

|E
‹

) of the flux of any single source in the 2FHL. In terms of the
number distribution dN/dS

“

of sources resolved by Fermi in a flux range [S
“

, S
“

+
dS

“

], the single-source flux probability density is

P1(S
“

) = 1
N

dN

dS
“

. (5.11)

A Monte-Carlo incorporating the Fermi detection e�ciency was used in Ref. [140]
to obtain the intrinsic dN/dS

“

of the 2FHL (i.e., the dN/dS extrapolated below
the detection threshold). In this extrapolation the nomalisation N is implicitly de-
termined by the faintest-source flux cuto� S

“,min = 10≠13 deg≠2 cm s, chosen to
self-consitently reproduce the best-fit di�use flux observed by Fermi [140]. This flux
distribution, taking the form of a broken power-law, is a data-driven model of these
Fermi sources, without any attempt at discriminating subpopulations in the catalog
and without consideration of the physics which gives rise to these gamma rays. To
compute P1(F

‹

|E
‹

) from P1(S
“

), notice that the flux conversion Eqn. (5.10) is e�ec-
tively just a linear rescaling of the flux by a known term that depends on energies, on
the spectral indices �2FHL, s(E

‹

), and on the fixed quantities Y, E
‹,peak, s(10 PeV).

5.2.3 Atmospheric (cosmic ray) foregrounds

Before continuing our discussion of the flux distributions of extragalactic astrophys-
ical sources, we introduce the atmospheric foregrounds from which these astrophysi-
cal contributions must be extricated [95]. Atmospheric neutrinos produce an almost
isotropic foreground with a soft spectrum. Our models of the conventional and prompt
contributions are based on Ref. [146] and Ref. [147], respectively. We set the proba-
bility densities P atm(I

‹

|E
‹

) of atmospheric all-flavour di�erential neutrino intensities
I

‹

= F
‹

/� to Gaussians.1 The finesse of these distributions is chosen as µ/‡ = 10
(i.e., a 10% intrinsic variability in the atmospheric intensity), the 2‡ contours of
which are respresented as the vertical width around the mean di�erential intensities
in Figure 5.2.

The means of these distributions are determined as follows. For the conventional
contribution, the mean intensity is parameterised as

ÈI
‹

(E)Í = 2 ◊ 10≠14
3

E
‹

10 TeV

4≠�‹

cm≠2 s≠1 sr≠1 GeV≠1 , (5.12)

1This can be justified by noting that this flux is the result of a very large number of cosmic ray
interactions in the atmosphere, such that the central limit theorem may safely be assumed to hold
for P atm(I‹ |E‹).
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where the normalisation is set by the ‹
µ

flux at 10 TeV in Ref. [146] and the extra
factor of two accounts for the roughly equal flux of muon anti-neutrinos. For the
sake of simplicity, we neglect the anisotropic contributions to the atmospheric flux.
For the conventional contribution due to ‹

µ

, this is mainly a zenith dependence at
the South Pole (cf. Fig. 7 in Ref. [146]). The spectrum �

‹

is softer than the cosmic
ray primaries by �� = 1. The cosmic ray knee is shifted down to about 1 PeV for
neutrinos, such that

�
‹

(E
‹

) =
I

3.7 when E
‹

< 1 PeV
3.9 when E

‹

> 1 PeV
. (5.13)

In addition to this neutrino intensity, muon events passing the quality veto of the
HESE data (cf. Sec. 5.3.1 and [95]) were modelled by rescaling the conventional flux
by a factor of 4/3, in accordance with the benchmark event rates from the two-year
study which claimed ≥4.5 and 6 events in ‹

µ

and µ± respectively [95].

As for the prompt atmospheric contribution, we interpolate the average ‹
µ

+ ‹̄
µ

flux
from Ref. [147] as a function of the energy, and add a rescaling factor of two to
account for the roughly equal muon and electron (anti)neutrino fluxes. The enhanced
prompt contribution from the proton intrinsic charm [148, 149] is neglected given the
opposite shifts in flux from other updated QCD predictions (cf. e.g. [150]), and given
the upper limits set in Refs. [143, 98].

The count distribution is then obtained by marginalising the flux distribution into the
detector response, with each pixel, energy bin, and event topology treated indepen-
dently, as will be described in the next section. Convolving all of these independent
distributions gives the predicted distribution of the total number of detected atmo-
spheric neutrinos (and veto-passing muons). The average number of atmospheric
counts between 25 TeV and 5 PeV in this model is 27.9. This can be further decom-
posed into 5.3, 9.7 and 12.9 events from prompt neutrinos, conventional neutrinos,
and veto-passing muons, respectively, in rough agreement with an extrapolation of
the two-year benchmark rates from Ref. [95] to a four-year lifetime. Poisson shot
noise is the dominant source of uncertainty on these event counts, but since we study
the fluctuations themselves (statistically), we are in principle sensitive to the assumed
P (I

‹

) rather than just the mean ÈI
‹

Í.

5.3 Flux and count distributions of single pixels

In order to turn the above astrophysical models into predictions about the data ob-
served by IceCube, we must fold in some detector characteristics (angular resolution,
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Figure 5.2: Intensity E2
‹

I
‹

(E
‹

) of the conventional (blue) and prompt (red) atmo-
spheric contributions, as a function of energy. The 2‡ bands shown here correspond
to the intrinsic atmospheric variability P (I

‹

|E
‹

) assumed in this analysis. These
contributions are contrasted to the best-fit flux to the IceCube data from Ref. [151]
(green). In addition to these neutrino foregrounds, we also consider the veto-passing
muon background (cf. main text).
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e�ective area, etc.), which will be described in this section. We also derive the total
observed flux and count distributions.

5.3.1 Size of a single pixel

In our analysis, we try to predict (from the data-driven models discussed above)
both IceCube tracks and showers (cascades), with pixel exposures constructed from a
flavour, energy, and declination dependent e�ective area tuned to the HESE dataset [95,
96, 97]. This dataset consists of 54 events in the energy range [25 TeV, 5 PeV], with
interaction vertices contained within the detector: 39 showers, 14 tracks, and one
coincident event not used in this study. Despite the stringent quality cuts, this
neutrino dataset remains contaminated by veto-passing muons (cf. Chapter 3 and
Sec. 5.2.3), which contribute mostly but not exclusively to tracks (cf. Appendix A.3.3
and Ref. [152]).

Since we are predicting probability distributions per pixel, we will make the simplify-
ing assumption that pixel sizes are constant as a function of the energy: roughly 30
degrees for showers and 1 degree for tracks. These correspond to rough estimates of
the median angular resolution of showers [95] and contained tracks [98] at the energies
considered in this study (25–5000 TeV). These pixel sizes are used to bin the HESE
events into 48 shower pixels and 49152 track pixels, generated using HealPix [153];
these per-pixel counts will be directly compared to the predicted per-pixel count
distributions (which include the flavour, energy, and declination-dependent HESE ef-
fective area) in Sec. 5.5. Our study of probability distributions in pixels �� rather
than true one-point functions, although conceptually simpler, e�ectively ties us to this
binned representation of the data. For a further discussion of binning and Healpix,
see Sec. 5.6.1 and Appendix A.3.2.

We emphasise that it is not in principle required to assume an energy-independent
angular resolution to compute or study single-pixel fluctuation probabilities. Fur-
thermore, there is no methodological requirement to make pixels of the same scale
as the angular resolution. This choice is mostly for ease of comparison with point
source search studies in the literature [97, 98, 134, 139] and our forecasts thereof in
Sec. 5.5.1. Note that pixels must be at least as large as the point-spread function in
order to treat their fluxes as independent.

5.3.2 Obtaining the total (multi-source) flux distribution

So far, we have been considering the flux distribution of a single source drawn at
random from its population. However, in observations of abundant sources such as
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SFGs, there will be many sources in each of IceCube’s pixels. The single-source
quantity P1(F ) therefore needs to be promoted to a single-pixel quantity P (F ), using
the same Monte-Carlo method as in Chapter 4. Here we discuss some features of the
blazar and SFG populations’ per-pixel flux distributions.

By applying Eqn. (4.8) to the SFG single-source flux distribution, we plot in the
top panel of Fig. 5.3 the probability distribution P (I

‹

) of the SFGs at 100 TeV for
tracks and showers. Note that the distributions have the form of a Gaussian with a
power-law tail. These features correspond to the di�use glow of a large number of
unresolved point sources, and to the few point sources with intensities high enough
to potentially be resolved individually [137]. We postpone discussion of point-source-
detectability prospects for these populations until Sec. 5.5. Here we focus on the
physical interpretation and consequences of the features of P (F

‹

).

Although the single-source flux distribution is independent of the normalisation of the
SFG luminosity function, the total flux distribution is sensitive to this normalisation
via the average number ÈN ÕÍ of sources per pixel. The uncertainties on the normali-
sations of the SB and SF-AGN (SB) luminosity functions are not formally considered
as distributions to be marginalised away in this study. However, we discuss these
uncertainties below and in Sec. 5.6.2.

The mean and variance of P (F
‹

) are nothing other than a linear rescaling of the mean
and variance of P1(F

‹

) by a factor of ÈN ÕÍ. For example, the relative locations of
the SFG subpopulations in Fig. 5.3 are determined by the combination of two e�ects:
firstly, there are roughly (25±15)% more members of the SF-AGN (SB) subpopulation
than of the SB subpopulation in each pixel (according to the normalisations of the
Herschel luminosity functions used in Sec. 5.2.1); secondly, and more importantly,
the mean flux of an individual SF-AGN (SB) is larger than the mean flux of an SB
(consider Fig. 5.1 between 10≠25 and 10≠20 cm≠2 s≠1 GeV≠1). These two e�ects push
the typical flux per pixel from SF-AGN (SB) sources slightly above that of SB sources
in our model.

Moreover, we expect that the peak finesse increases with ÈN ÕÍ, as a consequence of
the

ÈN ÕÍ scaling of the finesse in the central limit theorem that gives a Gaussian
shape to the di�use peak [137]. This can be corroborated by looking, in Fig. 5.3 or
in Table 5.1, at the same populations in tracks and in showers: tracks have a better
angular resolution and therefore wider di�use peaks because ÈN ÕÍ drops from O(106)
to O(103) in both SB and SF-AGN (SB). A linear regression of the finesse of di�use
peaks from the four P (F ) distributions of Fig. 5.3 on their respective

ÈN ÕÍ yields a
Pearson R2 = 0.999.

The locations of the peaks of these distributions are also slightly o�set among each
other, the peak in showers is at slightly higher flux than the peak in tracks (again,
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Figure 5.3: Top: Probability distribution P (I
‹

) of the SFG intensities as observable
at 100 TeV. These distributions take the form of a Gaussian peak with a power-law
tail. Starbursts are shown in blue (showers) and cyan (tracks), while SF-AGN (SB)
are shown in red (showers) and pink (tracks). In each subpopulation, these peaks are
much thinner in showers than in tracks as a consequence of the increased number of
sources in larger pixels (cf. main text). Bottom: Probability distribution P (I

‹

) of
2FHL source intensities at 100 TeV, in showers (dark green) and tracks (light green).
These distributions are shown conditioned on there actually being a blazar in the
pixel, so the absolute and relative normalisations are not visible in this figure. The
cusp in tracks occurs at twice the minimum flux, it is the transition from one to two
sources per pixel. Above this cusp, multiple sources contribute jointly to the flux,
and a smooth bump begins to form.
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as visible in Fig. 5.3 or in Table 5.1). This is also a consequence of convergence in
the central limit theorem. Indeed, the single-source distribution is power-law like
and hence very skewed, but the more sources we have in our pixel, the less we are
dominated by the individual source properties and the closer we get to the population
mean intensity—which is a quantity dependent on the luminosity function, but in-
dependent on the angular resolution. Since showers contain more unresolved sources
than tracks, the di�use peak in showers is closer to the mean of these distributions
than the di�use peak in tracks.

The flux distribution for 2FHL sources in showers (bottom panel of Fig. 5.3) is qualita-
tively similar to the flux distributions of SFGs (top panel of the same figure), though
its power-law tail is much more prevalent; there are few enough sources per pixel
(ÈN ÕÍ = 429) that even the di�use peak is distinctly skewed. This non-Gaussianity
can, in principle, be exploited to characterise di�use backgrounds from unresolved
sources, even though source number density and source luminosity are degenerate at
the level of averages [134]. The small number of sources per pixel also means that
the 2FHL peak is much wider than the SFG peaks, by a factor exceeding an order
of magnitude (cf. Table 5.1). This further corroborates the theoretically expectedÈN ÕÍ scaling of the finesse.2

The 2FHL distribution in tracks is informed by the tiny number of sources per pixel
(ÈN ÕÍ = 0.42) and the sharp cuto� imposed at lower fluxes in the single-source dis-
tribution in Sec. 5.2.2. The cusp in the bottom panel of Fig. 5.3, located at twice
the minimum flux, corresponds to the discrete transition from one to two sources per
pixel, and below this cusp the distribution is accordingly a pure power law (corre-
sponding to a single source). Above this cusp, multiple sources contribute jointly to
the flux, and a smooth bump begins to form; this bump becomes the di�use peak
when the pixel size increases. The power-law tail sets in at higher flux when one of
the blazars dominates the flux of the others. As in the case of SFGs, the most likely
flux for tracks is still at smaller flux than for showers.

5.3.3 Obtaining the observed count distribution

The neutrino fluxes produce discrete event counts in our detector. Having a detector
model built into our pipeline means that we can compare the distributional predictions
of our astrophysical models directly to the raw event count data in terms of count
distributions P (C).

2Although this scaling is a useful tool within a single population of unresolved sources, across mul-
tiple source populations other population-specific factors come into play and the explained variance
R2 decreases.
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Formalism

At the bare minimum, a detector model consists of a pixel’s exposure and solid angle.
Having already accounted for the latter, the exposure can be constructed by multi-
plying the IceCube livetime (roughly four years with a 95% duty cycle) by its e�ective
area A, which is flavour, energy, and declination dependent [95, 96, 97]. We postpone
discussion of the flavour and declination dependence to the Appendices, and focus
here on our distributional treatment of the energy dependence.

Using Eqn. (5.1) to convert from di�erential neutrino fluxes F
‹

into integrated neu-
trino fluxes S

‹

, the distribution P (S
‹

) (integrated over an energy bin [E
‹,min, E

‹,max])
can be made into a number of counts per pixel and per energy bin, by marginalising
the flux distribution into the detector response, as

P (C) =
⁄

dµP(C|µ)P (µ), P (µ) =
⁄

”(µ ≠ S
‹

At)P (S
‹

)dS
‹

= P (S
‹

)
At

----
S‹ =µ/At

.

(5.14)
In this prescription, we first compute the distribution P (µ) of the mean number
of counts, and assume these counts are the result of a Poisson process (completely
uncorrelated) to obtain P (C).

Assuming independence between multiple energy bins, we can merge bins by convolv-
ing the distributions in each bin. Indeed, the total integrated flux S

‹

over a collection
of bins is equal to the sum of the integrated fluxes in each bin. This extensive property
of integrated fluxes/counts is useful to account for the fact that the e�ective area A

is energy-dependent: we can generate P (C) in some large number of narrow energy
sub-bins, where the e�ective area varies across sub-bins but remains constant inside
each one, and then we can convolve the P (C)’s to merge the sub-bins into a single
bin. We refer the interested reader to Appendix A.3 for further discussion of this
construction.

As a tradeo� between wanting to exploit the spectrum and hoping to circumvent the
low statistics inherent in this endeavour, we generate P (C) in three final energy bins,
with edges at [25, 100, 1000, 5000] TeV. In the real data, there are 34 events in the
20-100 TeV bin, with a relative Poisson noise of

Ô
34/34 ≥ 17% only marginally larger

than that of the full dataset (
Ô

53/53 ≥ 15%). Of the remaining 19 events, only 3
events lie in the 1-5 PeV bin [97].

Since we are working with relatively wide energy bins, we assume for simplicity that
the deposited energy and the neutrino energy are equal, even though this is a poor
approximation for tracks. We also neglect uncertainties due to the energy resolution
(cf. Sec. 5.6.1). These are ≥5% and ≥15% systematic and statistical e�ects, respec-
tively [154]. Our treatment of the anisotropy of the exposure and its dependence on
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the incident flavour ratio are discussed in Appendices A.3.2 and A.3.3.

Discussion

The count distributions P (C) for our extragalactic sources are, in first approximation,
Poisson distributions with means determined by the “di�use peak” of P (F ), and the
energy/declination-dependent e�ective area in that pixel. Given the significant tail of
P (F ), the distribution has a skew, such that the location of the peak and the location
of the mean do not coincide. When we observe the sky, our observation of event
counts is biased by this skewness, as we are more likely to observe the most probable
number of counts than the mean number. As discussed above, this bias is increasingly
prominent as the pixel size decreases or as the unresolved sources become rarer.

The skewness-induced reduction in the anticipated number of counts is automatically
accounted for by using the full P (C) of Eqn. (5.14) rather than the average ÈCÍ of
source populations. However, amongst other things, this weakens upper limits deter-
mined from the population-average contributions of these sources to the di�use flux.
Such a weakening of upper limits derived using averages has already been discussed in
the context of dark matter constraints from the di�use gamma-ray background [137].

Because SFGs are so abundant, this bias is at the percent level for these sources: the
average-derived limits on SFG contributions of, e.g., Ref. [135] are only a few percent
weaker than the limits one would derive using the full distribution — but the fact
that such studies of SFGs do not su�er from this bias could not have been known
without using their P (F ).

For 2FHL sources, on the other hand, the mean and mode of P (F ) di�er by fac-
tors of 0.4 in showers and 6.7 in tracks, significantly reducing their anticipated count
yield despite not a�ecting their mean count yield. Knowledge of the total distribu-
tion P (F ) is, however, not necessary to get a good approximation when sources are
su�ciently rare that P (F ) ¥ P1(F ). For example, Ref. [142] uses the blazar source
count distribution dN/dF Ã P1(F ) to derive its limits which (as a consequence of
ÈN ÕÍ = 0.42) is a good approximation to the full P (F ) in tracks: the 20% upper
limit on the blazar contribution derived therein is not a�ected by this skewness. Note
however that the stacking procedure in Ref. [142] increases the e�ective ÈN ÕÍ in the
stacked pixel and thereby deteriorates the quality of this approximation, see also our
discussion in Sec. 5.5.1.

Correcting for the skewness-induced bias just discussed using Eqn. (5.14), the average
number of counts ÈCÍ =

q
C

CP (C), cumulative over all energies and declinations,
in both tracks and showers, is then 2.2 events for SFGs and 3.3 events for 2FHL
sources. Notice, in the hard-spectrum blazar case, that this is approximately equal
to the number of events for 1–5 PeV in the HESE data [97]. Even after subtracting
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the 28 atmospheric events predicted by our atmospheric model from the 53 actually
observed, one expects roughly 20 of these events to remain unexplained by our fiducial
model. Hence, the expected contributions from SFG and from 2FHL models are each
about 10–15% of the astrophysical flux, well below known upper limits [135, 117, 142].
The statistical significance with which we can say our data-driven model is incomplete
(amongst other things we can learn from one-point functions) will be investigated in
the next sections.

5.4 Analysis (I): Methodology

To show that our systematic conceptual approach is very general, we present in this
study three di�erent one-point analyses: a point source detection analysis, a proba-
ble clustering analysis, and a likelihood analysis based on the count distributions of
individual pixels.

5.4.1 Resolvability of point sources

Let us consider the ideal limit of a telescope with fixed angular resolution but infi-
nite exposure. The Poisson noise in such an instrument would be negligible, it would
e�ectively be sensitive to P (F ) directly rather than P (C). Even in this idealised
situation, the finite angular size of a pixel means that not all sources can be indi-
vidually resolved: the di�use peak due to unresolved sources of a given population
is an intrinsic background to point sources of the same population. In what follows,
we argue that even an ideal detector with the IceCube angular resolution would be
extremely unlikely to detect SFGs as point sources.

A point source is basically just a localised flux observed in excess of a predetermined
threshold value F pt. The probability that such a localised excess can be found in any
single pixel is given by the exceedance (complementary cumulative) distribution of
P (F ), and the typical number of excesses we expect to see in Npix pixels is

Npt(F pt) = Npix

⁄ +Œ

F

pt

P (F )dF ¥ Npix
N(F > F pt)

NMC
, (5.15)

where the latter has been obtained by estimating the exceedance probability by
Monte-Carlo sampling from P (F ). We recall that Npix = 48 for showers and Npix ≥
5 ◊ 104 for tracks. The fluctuations around the expected number of sources are as-
sumed to be Poissonian.

An analytic approximation to the exceedance probability, valid in the high flux power-
law tail where a single source dominates the flux in the pixel, was derived in Ref. [137].
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When this approximation matches the Monte-Carlo estimation above, we can be rela-
tively confident that the localised excesses correspond to single astrophysical objects.
However, there is a region between the di�use peak and the power-law tail where
multiple bright sources jointly contribute to the flux and might be confused for a sin-
gle point source. Because of this possible confusion, the number of localised excesses
is always greater than the number of astrophysical point sources. The upper limits
for the detection of astrophysical sources we will determine using localised excesses
are therefore conservative. Also note that stacked searches [142, 134] are intrinsically
looking for localised statistical excesses rather than individual point sources.

In order to study excesses above the di�use background, we must characterise the
Gaussian peak of P (F ). To do this, we take the samples drawn from P (F ), and
censor the values above the peak of the distribution where non-Gaussianities due
to the power-law nature of the single-source distributions might arise. We then fit
the samples below the peak to a doubly truncated normal distribution using the
maximum likelihood estimators derived in Ref. [155].3 The estimated mean µ̂ and
standard deviation ‡̂ of the di�use peak of each population (reported in Table 5.1)
can then be used to define flux thresholds of localised excesses above the di�use peak
with various signal-to-noise ratios, F pt(SNR) = µ̂ + (SNR)‡̂.

Using the complementary cumulative distribution of P (F ), these thresholds can be
converted into the exceedance probabilities associated to any given signal-to-noise
ratio SNR. These are larger than for a pure Gaussian because P (F ) is skewed. Indeed
the rarer a given population of sources, the more skewed its P (F ) is (cf. Sec. 5.3.2)
and therefore the more probable its exceedances are to have high signal-to-noise ratio.

In order to see such a source from a rare population, however, it must also be brighter
than the di�use backgrounds of all other source populations combined. Treating these
P (F ) peaks as Gaussians comes with the benefit that the di�use backgrounds due
to multiple populations can easily be convolved into a single di�use and isotropic
extragalactic neutrino background with mean intensity

q
i

µ̂
i

and width
q

i

(‡̂
i

)2.
Similar thresholds Fpt(SNR) may be defined for this total background, and the ex-
ceedances of individual populations above this total background may be forecasted
(cf. Sec. 5.5.1).

Heuristically, the skewness of P (F ) is due to barely-resolvable point sources in this
infinite-exposure idealisation. Notice that decreasing the pixel size increases the skew-
ness of P (F ) (cf. Fig. 5.3), and so increases the typical signal-to-noise of excesses:

3Our truncation points are (i) the flux at which the distribution peaks, and (ii) a flux of F = 0.
We still determine µ̂ from the Monte Carlo samples for the sake of self-consistency, in case the
truncation point (derived from an interpolation of the samples) is not exactly at the distribution
peak. See Sec. 5.6 for a discussion of e�ects that contribute to producing a non-Gaussian di�use
peak.
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barely-resolvable sources (e.g. the “hot spots” of flux maps [9, 98]) may become re-
solvable to future instruments. By extension, the excess skewness of P (C), over the
skewness of a Poisson distribution in IceCube, is related to the possible improvement
in discovery potential of future point-source searches in an instrument with improved
angular resolution, such as KM3NeT (ARCA) [3] or IceCube-Gen2 [2].

5.4.2 A “Pointless” clustering analysis

The IceCube collaboration has found no evidence for clustering by looking for hot
spots consistent with point sources [97, 98]. But resolving point sources is not the
only way we might see clusters of events: in a detector with realistic exposure we can
also exploit the statistical properties of localised event clusters due to multiple bright
but unresolved sources or even shot noise fluctuations.

Given a fixed pixel size, the one-point function is the most straightforward tool to
study neutrino clustering. Indeed, we can directly consider the “average number of
clustered neutrinos per pixel” or the “rarity of a cluster of N Ø 2 or more events,”

ÈC Ø 2Í =
Œÿ

C=2
CP (C), C(N) =

Œÿ

C=N

P (C) . (5.16)

In the ideal case that the data reproduce exactly a Poisson distribution with a mean
µ, it is easy to show, e.g., that ÈC Ø 2Í = µ(1 ≠ e≠µ). However, not only the näıve
analysis above would not account for the di�erent angular resolution of tracks and
showers and the anisotropic exposure, it would also eschew distributional information
by using a single µ value rather than the full P (µ) from Eqn. (5.14). One should
expect two e�ects to emerge from the power-law tails of astrophysical contributions:
on the one hand, this tail increases the number of clustered events; on the other hand,
this tail contributes a skewness that pushes the most likely values of the distribution to
lower flux, as part of a distribution with a fixed mean, resulting (after marginalisation)
in less event clustering overall [137].

To go beyond the mean values, let us consider the following per-pixel (p) cluster-
ing statistic with a model-dependence M on the flux distributions and the detector
response from Sec. 5.3:

C(p) =
IqŒ

C=d

(p)

P (C|M) if d(p) Ø 2
1 otherwise

. (5.17)

The total amount of clustering associated to a dataset {’p, d(p)} is then quantified
by C =

r
p

C(p), and data sets with more clustering (given the same P (C|M)) will
have a larger ≠ lnC. Since we care only about directional information in this test
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statistic, we need to treat coincident neutrinos of di�erent energies as members of the
same cluster. To do so, we follow the prescription of Sec. 5.3.3 and Appendix A.3
and convolve the count distributions of di�erent energy bins to produce the P (C) of
Eqn. (5.17). The same logic applies to coincident tracks and showers: accurate track
pixels were first coarse-grained into shower-sized pixels (cf. Appendix A.3.2), and
then convolved with the shower pixel covering the same patch of sky.

A clustering analysis using C is in a sense a generalisation of the multiplet method
applied to the IceCube data in Ref. [134]. In their analysis, the average number of
sources producing C Ø 2 tracks was computed from populations of “e�ective standard
candles,” i.e., populations with a luminosity density Le�

‹µ
fixed to an e�ective value

(as a proxy for the full luminosity function). In our distributional study, the average
number of sources producing C Ø k track or shower events could easily be computed
by convolving the detector response (cf. Sec. 5.3.3) over the single-source distributions
of Sec. 5.2; but this quantity would not fully exploit the clustering statistics when
multiple sources are present in the same pixel, which are automatically included in
the test statistic C.4

5.4.3 Single-pixel Likelihood Analysis

The quantity that we have computed to be compared to the data is the anisotropic
and spectral probability distribution of event counts. Since there are very few events
in our dataset, a ‰2 analysis of count histograms would be untrustworthy. Here, we
opt to work directly with the likelihood of the data. The likelihood per pixel (L

p

)
is a function of the number of counts in a given pixel p and in a given energy range
�E

‹

[18]. Therefore, the total (binned and marginalised) likelihood of a one-point
analysis is:

L =
signalŸ

s

energy binŸ

�E‹

pixelŸ

p

P (C = d(s,�E‹ ,p)|M) , (5.18)

under the assumption that all the count data d(s,�‹ E,p) in each of the pixels, energy
bins, and signal types/topologies are mutually independent. If detectors other than
IceCube were considered in this analysis, an additional product over independent
instruments could also be considered. In order to justify the assumption that signal
topologies are indepedent, we explicitly do not consider the “coincident” event (#32)
in this analysis.

The likelihood Eqn. (5.18) allows us to assess the predictive power of a model. Indeed,
we can draw from P (C|M) to generate mock data and the exact distribution of the

4The number of sources contributing k events is the quantity estimated in one-point fitting studies,
which use probability-generating functions to disentangle numbers of clusters into numbers of sources.
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test statistic TS = ≠2 ln(L) under the null M, from which a poorness-of-fit for
the likelihood of the real data may be computed as a p-value (cf. Sec. 5.4.4). All
the isotropic components in this study (atmospheric foregrounds, SB and SF-AGN
(SB), and 2FHL) contribute to M. One feature of this likelihood is that empty pixels
(non-observations) also carry information, and that this information is statistically
exploited as we will discuss in the next paragraphs. In addition to tracks and showers,
IceCube is in principle sensitive to a number of ‹

·

-specific topologies [156]. Events
in these signal channels would almost certainly be of astrophysical origin, and the
nondetection of these topologies can set strong upper limits on the astrophysical ‹

·

flux [157]. However, these unobserved topologies were not considered in our model of
the IceCube flavour response (cf. Appendix A.3.3) and do not contribute to L.

By using P (C|M) in the likelihood rather than just a Poisson at the mean of P (F ),
we automatically account for the skewness-induced di�erence between the peak and
mean values of the flux discussed in Sec. 5.3.2. However, this skewness drives our
prediction to lower counts, and an interesting e�ect occurs when both of the following
occur:

1. M produces a count distribution per pixel of the form

P (C) : {P (0) ¥ 1 ≠ ‘ ; P (1) ¥ ‘ ; rest ¥ 0} , (5.19)

2. M is mis-specified, and produces a larger total number of counts than in the
real data.

The e�ect of this convergence of features is that the real data can (counterintuitively)
give a smaller ≠2 ln L than any of the mock data generated from M itself. This e�ect
can then be used as a diagnostic for models that overpredict the number of counts. In
the context of a one-point fluctuation analysis, this could mean either overpredicting
the peak number of counts or overpredicting the amount of clustering (e.g., due to an
excess of unresolved point sources in the model).

5.4.4 Digression on p-values

We conclude our methodological overview with a few cautionary words about sta-
tistical significances [158]: the distributions of the test statistics employed are non-
parametric, and we find empirically that they are asymmetric. Therefore we follow
the prescription in Ref. [159] and report the one-sided p-value along with the direction
it deviates from the bulk of the distribution of the test statistic. Although we do so
at times out of convenience to the reader, we recommend against converting these
directed-p-values into Gaussian ‡’s. In fact ignoring the p-value from the other tail
would artificially inflate this significance and estimating it is error-prone [159]. This
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is particularly true for the lower “tail” of our clustering statistic C (cf. Fig. 5.5), for
which no such p-value exists.

After generating mock datasets for each model, we partition the mock datasets into
five subsets to generate the sample mean and standard errors of the p statistic subject
to the limited number. Any p-values that are too small to resolve within reasonable
computational time are then quoted as upper limits. Since the uncertainties on p are
due to finite number of mock datasets rather than to interesting physics, they are not
systematically reported.

In order to extract as much information as possible, our analyses of the HESE data
will typically focus on subsets of these data. The global signficance of independent
p-values can be computed by correcting for the look-elsewhere e�ect with trial fac-
tors. Alternatively, these p-values may be combined with meta-analysis techniques.
Because the di�erence between, e.g., 2.7‡ and 2.8‡ is somewhat irrelevant to our
mock-data-limited and systematics-prone discussions (see above and Sec. 5.6), we
consider it is su�cient to correct our p-values with Bonferroni trial factors (i.e., we
multiply significances by the number of trials to estimate the post-trial significance),
and we combine p-values testing the same hypothesis on di�erent data subsets with
Fisher’s method ≠2

q
k

i

ln(p
i

) ≥ ‰2
2k

. Since the test statistics in this study are built
from the marginal likelihood P (C|M), they have no explicit dependences on unknown
parameters and there is essentially no distinction between Fisherian (‘classical’) and
Bayesian (‘predictive’) p-values.

5.5 Analysis (II): Results

In this section, we apply the statistical tools introduced in the previous sections. We
discuss upper limits on the resolvability of blazars and SFGs in IceCube, and we
perform various model-based one-point probability distribution analyses.

We have seen in Sec. 5.3.3 that our astrophysical+atmospheric models produce O(20)
neutrinos less than the HESE data. Given the limited neutrino dataset to which we’re
comparing the model, and all the caveats to be specified in Sec. 5.6, we invite the
reader to think of the following exploratory analyses first and foremost as proofs of
concept for the methods.
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5.5.1 Detectability of star-forming galaxies and blazars as
point sources

The di�use backgrounds of unresolved sources are an intrinsic and inescapable feature
of any abundant astrophysical population observed with low angular resolution, but
population self-backgrounds are not the end of the story. Indeed, sources visible
over the total astrophysical di�use flux need to be far brighter and, because flux
distribution tails are power-law-like, such bright sources are typically rather rare.

Since the angular resolution is the determining factor in this self-background e�ect,
the number of sources we expect to resolve depends on this angular resolution. Our
discussion of each source class’ resolvability prospects needs to address tracks and
showers separately. In this forecast we focus on spectral intensities at E

‹

= 100 TeV,
in order to evade the atmospheric backgrounds more prominent at lower energies,
while maintaining a reasonable SFG contribution (spectrum of � = 2.2) relative to
the blazar contribution (spectrum of 1 ≠ s ¥ 0.65). The di�use contributions of the
components are summarized in Table 5.1.

Table 5.1: Parameters of the di�use astrophysical neutrino flux peaks at 100 TeV, in
showers and in tracks and in units of 10≠20 cm≠2 s≠1 sr≠1 GeV≠1. Note that the mean
contribution µ̂ in each population is slightly larger for showers than tracks, while the
standard deviation ‡̂ in tracks is wider than showers, as discussed in Sec. 5.3. The
3‡ and 5‡ self-background exceedance probabilities per pixel for each subpopulation
are also reported.

100 TeV Showers (◊ ≥ 30¶, Npix = 48)
Population µ̂ ‡̂ > 3‡ > 5‡

2FHL 2.60 0.206 43% 32%
SF-AGN (SB) 10.61 0.024 10% 1.5%

SB 6.40 0.016 6.7% 1.1%
(All) 19.6 0.25

100 TeV Tracks (◊ ≥ 1¶, Npix ≥ 5 ◊ 104)
Population µ̂ ‡̂ > 3‡ > 5‡

SF-AGN (SB) 10.33 0.84 2.5% 0.25%
SB 6.15 0.48 4% 0.4%

(All) 16.48 0.97
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Star-forming galaxies

The expected number of SFG localised excesses resolvable above the di�use back-
ground at 100 TeV, by a detector with an infinite exposure and with the IceCube
angular resolution for tracks are illustrated in Fig 5.4. In the real data these point
sources must also be extracted from the background of other (unmodeled) extragalac-
tic contributions, and the atmospheric foregrounds, which in our model shine an order
of magnitude brighter than all SFGs combined at 100 TeV. The number of such lo-
calised excesses is Npt = 17.8 ± 4.2 for SF-AGN (SB) and Npt = 4.9 ± 2.2 for SB for a
3‡ threshold. The fact that we forecast resolving more SF-AGN (SB) than SB is re-
lated to the locations of the P (F ) distributions (cf. Sec. 5.3.2), or more precisely, the
locations of the tails of these distributions. In Fig. 5.3 we see that, above intensities
of about ≠18.75 dex cm≠2 s≠1 sr≠1 GeV≠1, the SF-AGN (SB) tail dominates over
the SB tail, and so if there are any such bright sources at all, they are more likely to
be from the SF-SGN (SB) subpopulation.

In showers, the expected number of SFG excesses over the SFG+2FHL background is
essentially negligible given the order-of-magnitude di�erence between the estimated
standard deviations of the di�use backgrounds in Table 5.1. A Monte-Carlo estimate
suggests that we might see Npt ≥ 10≠2 excesses with a negligible significance of 10≠4‡

due to SF-AGN (SB); and no excesses due to SB, which have both a smaller µ̂ and
a smaller ‡̂. We conclude that SFGs are an intrinsically di�use background with 30¶

pixels, even with an infinite exposure.

These non-detectability claims are energy and model dependent, but finite detector
exposures and discrete neutrino events would further deteriorate the point-source
detection prospects. The number of plausible associations with SFGs [160, 161] is
bounded from above: we should not expect any corroboration of claimed associations
with future data. The SFG non-detectability in IceCube should be expected also
from similar studies in gamma-rays: A one-point-fluctuation study of Monte-Carlo
simulations of unresolved blazars and SFGs in Fermi (which has an angular resolu-
tion comparable to that of IceCube tracks) finds that blazars are fitted by a di�use
unresolved point source template, while SFGs are absorbed into a di�use isotropic
template [13].

In short, our model makes two predictions for SFGs due to self-backgrounds e�ects:
firstly, SFGs constitute a di�use background in showers; secondly, the detectability
for SFGs in tracks is still very poor. We might see Npt ≥ O(25) out of the Ntot ≥
O(108) sources predicted from Herschel SB and SF-AGN (SB) luminosity functions,
and this prediction needs to be further tempered by unaccounted-for extraterrestrial
and atmospheric backgrounds and the finite IceCube exposure, especially at energies
di�erent from 100 TeV.
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Figure 5.4: Top: Point-source detection prospects (Npt vs SNR) for SB (blue) and
SF-AGN (SB) (red) in 100 TeV tracks assuming infinite exposure, IceCube angular
resolution, and no backgrounds other than the self-background from SFGs themselves.
Poisson (1‡) error bands on Npt are given. These detection prospects are thus intrinsic
and conservative upper limits. Bottom: Detection prospect upper limit for 2FHL in
100 TeV showers, assuming backgrounds from 2FHL and SFG.

84



5.5. Analysis (II): Results

In the light of these results, we draw attention to the SFG cross-correlation programme
pursued in the literature [109, 162, 160]. We have quantitatively shown that SFGs are
most probably incapable of acting as localised excesses in IceCube, even if access to
far more data than currently available were possible. A cross-correlation of IceCube
data with SFG catalogues, which relies on such excesses, is essentially guaranteed to
produce a null result (except when a significant correlation is spuriously driven by
fluctuations or non-SFG contaminations). This is consistent with the null [139, 109,
98] or statistically insignificant (p ≥ 0.3–0.5 post-trials [162]) results obtained when
attempting to correlate these high-energy events with SFGs.

Since our prediction of a null result is a function of the number of SFGs per pixel,
the only way around such negative predictions is to wait for large quantities of data
from a neutrino telescope with an angular resolution significantly better than the ≥1¶

achieved in IceCube tracks.5 Sub-degree angular resolutions for tracks, as expected,
e.g., for IceCube-Gen2 [2] and KM3NeT (ARCA) [3], may allow the nearest SFG point
sources to be detected [161]. However, the Galactic foregrounds for such a detection
in ARCA will be significant. Note also that stacking the pixels of prospective SFG
sources (as discussed in Ref. [134]) increases the e�ective pixel size, exacerbating this
self-background e�ect (as discussed for blazars above).

Blazars

As discussed in Sec. 5.3, essentially none of the 2FHL sources contribute to their
own di�use background in tracks: all of the modeled 2FHL sources are resolvable
as localised excesses in our infinite-exposure, high-resolution detector. This does
not, however, mean that they can all be resolved as individual objects given the
backgrounds and shot noise in IceCube. Also, this does not even guarantee a statistical
detection of these sources. Indeed, when stacking the 1¶ ◊ 1¶ muon tracks of ≥ 900
potential blazar sources in the 2LAC catalogue [142], the e�ective pixel size is similar
to that of a 30¶ ◊ 30¶ shower, and so the e�ective P (F ) of the stack resembles that
of a single shower pixel, the self-background e�ect becoming relevant again.

In showers, the blazar self-background e�ect does matter: at 100 TeV, only 32% of the
2FHL sources can be resolved at 5‡, even before accounting for other backgrounds.
In our model of the astrophysical di�use flux due to the combination of di�use fluxes
from SB, SF-AGN (SB), and 2FHL sources, we only expect on average Npt ≥ 1.8±1.3
excesses above the total di�use extragalactic background at 100 TeV (Fig. 5.4 suggests
this upper limit on Npt is relatively independent on the detection significance).

5Note that the point-source detection prospects forecasted in [161], in which psf-smoothed samples
of P

1

(C) ≥ ”(C ≠ L
e�

(z)ns ◊ constant exposure) for a single population of sources describing all
cosmic ray accelerators were used to approximate samples of P (C), illustrate (qualitatively) how
self-backgrounds decrease with the angular resolution also in detectors with finite exposure.
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Although this model does not necessarily rule out associations between single high-
energy showers and individual blazars [24, 163, 145, 119], it does place a strong
(albeit model-dependent) upper limit on the number of blazar associations we should
expect to corroborate by accumulating more shower data in a finite instrument such
as IceCube. This upper limit could be further strengthened by accounting for other
subpopulations not considered in our model. At energies below or above 100 TeV,
this upper limit in IceCube would be dominated by the atmospheric backgrounds or
shot noise respectively.

5.5.2 Clustering analysis

Applying Eqn. (5.17) to the 53 observed high energy events,6 we find ≠ lnC = 47.4
over the full sky. Applying C to mock data generated from P (C|M) then generates
the distribution of this test statistic under the null hypothesis, shown in Fig. 5.5. We
easily see that the model produces far less neutrino clustering than observed (typically
≠ lnC . 30).

This is not a detection of significant clustering in the data, fully consistent with the
null results in anisotropy searches [100, 101, 102]. This is due to the fact that our
model underpredicts the data by about 20 counts (cf. Sec. 5.3.3), and with less counts
per pixel overall one should also expect less random clustering of these counts to occur.
Although we are presumably recovering a discrepancy we already knew about, notice
that we are indeed exploiting the clustering properties of the Poisson shot noise of
isotropic components to see it.

Since C =
r

p

C(p) is separable, this clustering analysis can be performed on small
patches of the sky. We study the southern and northern hemispheres (” . ≠20¶, and
symmetrically in the north), plus an equatorial band (≠20¶ . ” . 20¶), where Ice-
Cube e�ective area is maximised, to study whether the observed clustering is consis-
tent with that predicted by our model. We then have ≠ lnC(N,E,S) = (13.7, 2.0, 31.6),
with three trials to account for in our look-elsewhere corrections. In the north, we
find that the typical ≠ lnC is smaller in the mock data than in the real data, i.e.,
less clustering in the mock than in the real data, but with a small one-sided p = 0.12
(≥ 0.7‡ pretrials). At the equator, we find more clustering in the mock data than in
the real ones, but again with a negligible one-sided p = 0.24 (pretrials).7

There is more clustering in the southern hemisphere of the real IceCube data than
6The coincident event (#32) has no directional information and was not used in this analysis.
7The limited number of distinct mock datasets we can generate with eight pixels in the equatorial

declination band discretises the support for the distribution of C(E). This in turn generates the
bin-height alternation in the full-sky distribution of Fig. 5.5, particularly prominent in the left-hand
tail.
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Figure 5.5: Null distribution for ≠ lnC applied to full-sky mock datasets drawn from
our model (including atmospheric foregrounds, unresolved SFG and 2FHL point
sources, and anisotropic energy-dependent exposure). The regular, discrete peaks
(most prominent at “low clustering”) are due to the finite combinatorics behind pro-
ducing small amounts of clustering in a finite number of 30¶ pixels. The value observed
in the IceCube data is ≠ lnC = 47.4.

our model could predict: our knowledge of the significance is in this case limited
by the number of Monte-Carlo realisations to the upper bound p < 3 ◊ 10≠7 (one-
sided, post-trials). This is roughly equivalent to a 4.9‡ lower limit on the significance.
This discrepancy between the discrepancies in the north and in the south is not an
observation of astrophysical anisotropy, fully consistent with null results of anisotropy
searches [100, 101, 102]. Indeed, IceCube has a higher exposure in the northern
hemisphere, so we expect a larger number of counts there than in the south. We also
expect that with the larger Poisson errors associated to this larger number of counts,
the north is more tolerant of model mis-specifications than the south (even though all
the contributions to this flux are isotropic). This interpretation is consistent with the
even less significant p-value in the equatorial band, where the exposure is maximised
and Poisson errors are largest.

The combined significance of these three discrepancies (according to Fisher’s Method)
is equivalent to 4.9‡: our data-driven model of the IceCube flux (containing only at-
mospherics, SFGs, and blazars) is rejected for having less clustering than the HESE
data, which is known to be consistent with isotropy. In order to accurately predict

87



5. Implications for Astrophysical Neutrinos

the data, one must either fine-tune the model to fit the data (by revising our ex-
trapolations from the Herschel and Fermi data) or add additional components to the
model. Since the model is still missing sources one would expect to contribute to the
flux (e.g., cf. Refs. [118, 103, 121]), we believe it is premature to attempt the former
(see also Sec. 5.6.3). Updates to the model are left to future work.

5.5.3 One-point fluctuation analysis

From Sec. 5.3.3 and the clustering analysis above, we know that the model does not
produce enough neutrino event counts (≥ 33) to explain the data (= 53). But since the
global likelihood (Eqn. (5.18)) is a product of independent single-datum-likelihoods,
we can decompose the contributions of subsets of the data to our ≠2 ln(L), to further
diagnose our model.

Results

We will study three energy bins with edges at [25, 100, 1000, 5000] TeV (cf. Sec. 5.3.3),
separately in the north and south hemispheres to fully exploit the anisotropy of the
exposure. We signal-optimise away the data in the equatorial band which, as we have
seen above, is least sensitive to model mis-specification. We will also decompose the
likelihoods into the separate contributions from tracks and showers; however there
are not enough shower data in the northern hemisphere above 100 TeV to perform
this analysis. Counting these subdivisions of the data shows there are ten trials to
account for when computing global significances.

The track prediction is dominated by conventional atmospheric neutrinos and veto-
passing muons, and is surprisingly satisfactory given how crudely we modelled the
atmospheric neutrino contribution. In the south we obtain one-sided p-values greater
than 0.3 pretrials, suggesting no discrepancy between the model and the data. In the
north, the model remains mostly consistent with the data, with a p = 0.08 deficit
below 100 TeV, a p = 0.32 excess at intermediate energies, and a p = 0.15 deficit
above 1 PeV (all pre-trials). The combined significance of these six p-values is 1‡

according to Fisher’s method. This suggests that our un-fine-tuned model can predict
the track data fairly well, though improving the atmospheric foreground models in
an attempt to extract astrophysical information out of tracks is beyond the scope
of this preliminary analysis. In what follows, only the shower data are studied to
extract astrophysical information, but tracks remain useful to the extent that they
corroborate that the detector modeling and atmospheric models are correct.

The results of a likelihood analysis of shower-data are summarised in Table 5.2. The
direction of the discrepancies encoded by these p-values confirm that we are (signif-
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icantly) underpredicting the counts. At low energies, as discussed in Sec. 5.5.2, the
apparent anisotropy in the p-values is consistent with the di�erence in exposure be-
tween the north and the south, our method being most sensitive to mismodelling in
the south. This discrepancy in southern showers below 100 TeV has a significance
≥ 3‡ when accounting for the 10 trials.

At higher energies, the discrepancy between the model and the data is less severe.
In the 100–1000 TeV range, the discrepancy is of a similar magnitude, 2.7‡ (post-
trials). At the highest energies, the hard 2FHL component is the main contribution:
it underpredicts the PeV data, but only with a marginal significance of ≥ 1.1‡ (post-
trials). Note that our SFG model does not have a spectral break at high energies [32]:
fixing this model shortcoming would decrease the anticipated counts from the model,
and increase the significance of the discrepancy. At high energies in the north, there
are not enough events to perform the analysis.

Discussion

The one-point analysis can also be used to “characterise” the discrepancy (to a first
approximation). Assuming that the analysis of tracks above has validated the detec-
tor and the atmospheric models, this discrepancy is deduced to be astrophysical. A
further study of the energy-dependence of this discrepancy in the southern hemishep-
ere (where our method is most sensitive to model mis-specifications) suggests that
the unmodelled contribution is missing for 25–1000 TeV, but not above (cf. Table
5.2). It has a soft spectrum and/or a cuto� at high energies. We can even estimate
the significance with which we need such an astrophysical component by combining
the relevant p-values.

Combining the four p-values in Table 5.2 with Fisher’s method (i.e., neglecting the
six trials in tracks, which we know to be atmospherics-dominated) yields a global
significance equivalent to ≥ 4.8‡. This is only marginally better than the evidence
that our model’s expected number of showers (ÈCÍ ¥ 19) is underpredicting the data

Table 5.2: Real/mock shower-data upper p-values (pre-trials) in the northern and
southern skies and in various energy bands. The model includes atmospheric, SFG,
and 2FHL contributions. The discrepancy between the mock and real data has a
combined ≥ 4.8‡ significance.

Energy (TeV) north south
25 – 100 0.218 ± 0.004 (7.4 ± 0.7) ◊ 10≠5

100 – 1000 N/A (1.85 ± 0.3) ◊ 10≠4

1000 – 5000 N/A 0.146 ± 0.007
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5. Implications for Astrophysical Neutrinos

(C = 39 showers) simply using a ‰2 test, (39 ≠ 19)2/19 æ 4.5‡. The one-point
analysis may not seem to add much over a standard model-based analysis, but there
are a few subtleties worth mentioning here:

1. Our computation of ÈCÍ automatically accounts for the skewness-induced bias
discussed in Sec. 5.3.2. However, this is not the case in analyses based on ÈI

‹

Í,
where the one-point skewness is ignored. Now notice that, e.g., (39≠20)2/20 æ
4.1‡. All other things equal, one-point methods based on P (I

‹

) are therefore
statistically stronger than analyses based on ÈI

‹

Í, because they intrinsically
correct for this bias.

2. Even though we are fully exploiting P (I
‹

) behind the Poisson shot noise, there
is simply not much more information to exploit given the number of events in
the HESE data. As more data becomes available, we will increasingly be able
to probe the higher moments of P (I

‹

), and the added statistical power of this
methodology should become more apparent.

3. A likelihood approach allows us to study low-count subsets of the data where
the ‰2 would be unreliable. But even then, there are currently not enough
showers above 100 TeV in the northern hemisphere to sensibly perform this
analysis. This signal region is where one anticipates the conventional atmo-
spheric background to contribute the least, so this analysis’ potential sensitivity
to a mismodelling of prompt atmospheric or astrophysical components is not
fully represented in the 4.8‡ combined significance.

In summary, our likelihood analysis reveals a ≥ 4.8‡ discrepancy between the model
prediction for IceCube showers and the HESE data, that is especially pronounced
below PeV energies. This discrepancy is insignificant (combined 1‡) in tracks, sug-
gesting it is of astrophysical (rather than atmospheric) origin in our model. The
anisotropy of the discrepancy appears to be consistent with the statistical method’s
sensitivity to the anisotropy of the instrumental exposure.

5.6 Analysis (III): Discussion of systematics

The results presented above are subject to a number of caveats and uncertainties,
which we discuss in this section. These fall into two categories: methodological
caveats, which might introduce systematic e�ects; and astrophysical uncertainties,
which translate into systematic uncertainties in our models.
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5.6.1 Methodological systematics

Inadequacies in methodology are particularly vicious, since the biases they produce
cannot be rigorously quantified using the tools that produce them. In this section,
we discuss the two main blind spots in the single-pixel analyses above.

Firstly, the e�ects of extended sources that could potentially a�ect our “single pixel”
results [137] were not studied. The instrumental point-spread function is also a rel-
evant quantity to consider [18], as is the energy resolution or the di�erence between
deposited and real energy [154], amongst others. Ideally, a one-point analysis would
account for these reconstruction uncertainties at the level of the detector model, how-
ever this is far beyond the scope of this first analysis. All of these potential systematic
e�ects are related to our binning of the data into energy bins �E and pixels ��, and
need to be addressed by (ongoing) e�orts to unbin the one-pixel functions we have
been discussing into true one-point functions. This unbinning would also avoid pix-
elising the data with Healpix (cf. Sec. 5.3.1) when performing our clustering and
likelihood analyses, freeing these analyses from pixelisation artefacts.8

Secondly, although pixel exposure is treated anisotropically, the incident flux distri-
bution was assumed isotropic. This approximation may be su�cient for studies of
unresolved extragalactic sources, but morphological, spectral, and distributional tem-
plates will be necessary in the future to consistently account for atmospheric and
Galactic contributions. Even for unresolved extragalactic sources, the assumption of
isotropy may be too strong, as these sources are only statistically isotropic. The statis-
tical clustering of unresolved sources is indeed known to a�ect the flux distributions,
and in this study failing to account for this e�ect underestimates the non-Gaussianity
of the flux distribution [15, 12].

5.6.2 Marginalisation systematics

In addition to the methodological systematics discussed above, we rely (for simplicity’s
sake) on the best-fit values of a number of uncertain parameters. This results in a
likelihood that is partially profiled and partially marginalised, and this may introduce
systematics. The flux models we have adopted for the SFG and the blazars depend
on data-driven parameters that remain somewhat uncertain, and using only their
best-fit values is clearly dangerous when extrapolating power laws. For example, one
might naively expect the ≥20% systematic uncertainty in the conversion L

“

(LIR)
(cf. Sec. 5.2.1) to shift the entire SFG distribution P (F

‹

) in Fig. 5.3, but if this
8To check that this did not influence our results, we resampled the HESE showers within their

angular uncertainties 1000 times and recomputed the clustering test statistic C of Sec. 5.4.2 and the
log-likelihood ≠2 ln L of Sec. 5.4.3. These fluctuations do not significantly weaken these results.
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uncertainty were marginalised away the distribution would also broaden while it shifts.
A similar line of reasoning holds for the uncertainties of the luminosity function itself.
There is a ≥15% uncertainty on the normalisation of the infrared LF for the SB
subpopulation [25], which does not a�ect the single-source P1(F

‹

) but does a�ect the
multi-source P (C). Even then, such ≥20% e�ects on ¥2.2 events from SFG in IceCube
(cf. Sec. 5.3.3) cannot close the ≥20 event gap between the SFG model (driven by
Herschel and Fermi data) and the HESE events, which would be inconsistent with
upper limits on the SFG contribution anyway [135].

Another very relevant example of the mixture between statistical and systematic
uncertainties in one-point methods is that the gamma-ray fluxes (and their distribu-
tions) were extrapolated to high energies using a single value of the spectral slope
� per population, rather than extrapolated with a marginalisation over the intrin-
sic scatter in � observed in each population. The uncertainties on the gamma-ray
spectrum � are expected to a�ect the analysis systematically: consider the spec-
tral flux F

“

= F
“,0(E

“

/E
“,0)≠�, with P (F

“,0|E
“,0) and P (�) independent and each

approximately Gaussian. It can then be shown that F is normal-log-normally dis-
tributed [164]. Thus, marginalisation over � generates additional skewness in P (F

“

),
which might be used in future studies as a tool for studying unresolved source dis-
tributions that would otherwise be treated as Gaussians (cf. Sec. 5.4.1). However,
in this study, keeping � as a fixed parameter represents a systematic overestimate
of the gamma-ray fluxes. It is easiest when estimating this systematic e�ect to ig-
nore distributions and look only at averages. The mean flux of P (F

“

|E
“

), assuming
� ≥ G(È�Í, ‡2

�), is

ÈF
“

Í = ÈF
“,0Í ◊

3
E

“,0
E

“

4È�Í+‡

2

�

/2
, (5.20)

in terms of the mean ÈF
“,0Í of an arbitrary P (F

“,0|E
“,0). The spectrum in our un-

marginalised analysis is therefore systematically harder than the average spectrum of
the flux by a term of order �� ≥ ‡2

�. As a consequence, the predicted contributions of
our extragalactic components (extrapolated from GeV to the TeV–PeV energies) may
be slightly overestimated. This may be particularly relevant for our phenomenological
model of 2FHL sources, where the mixture of source populations yields an instrin-
sic spread ‡� of � that compounds our choice of a harder-than-anticipated average
spectrum of È�Í = 2.5 in Sec. 5.2.2. Note that the observed spectral index uncer-
tainty of 2FHL increases with the index itself, from � = 2 ± 0.5 to � = 5 ± 2 (partly
because of the lower statistics) [5]. One might then roughly estimate the intrinsic
‡2

� ∫ 0.5. Accounting for this e�ect, or not choosing a harder-than-anticipated È�Í,
would decrease the blazar neutrino flux of the model from Sec. 5.2.2. This would pre-
sumably increase the significance of the discrepancies encountered in the fluctuation
and clustering analyses, and improve (hinder) point-source detection prospects for
SFGs (blazars). However, since the �-marginalisation would also broaden P (F

“/‹

)
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the net e�ect would come from more than just systematic shifts to the mean flux
ÈF

“/‹

Í.

5.6.3 Astrophysical model systematics

Our model adopts a simplified picture of the atmospheric foregrounds, and includes
only two extragalactic source families. Both of these extragalactic models rely on
extrapolations subject to astrophysical uncertainties (i.e, extrapolation of the neutrino
spectra from the gamma-ray ones, the LIR-L

“

correlation adopted for the modeling
of star-forming galaxies, etc.), which is inherently dangerous. Furthermore, we have
illustrated in Sec. 5.6 how astrophysical uncertainties that manifest themselves as
systematic shifts in averages-based methods typically also a�ect the shape of the one-
point function when marginalised away in our distributional framework. Arguably
one cannot address any astrophysical systematic self-consistently and distributionally,
without incorporating the uncertainty directly into the model.

In the context of this study, we should not expect the statistical intricacies of one-
point analyses to matter more than simply by changing the model to address the ≥5‡,
≥20 event mismatch between the model and the data (cf. Secs. 5.3.3 and 5.5.3). The
existence of independent upper limits on the contributions of blazars and SFGs to the
flux [135, 117, 142], that our models already saturate, suggest that it is premature to
discuss upon the systematics of these subdominant contributions [6, 25, 32, 5, 140,
116]. Since we only aimed at proving the viability of our method through a simple
modeling of the high-energy neutrino sky, other guaranteed sources of astrophysical
neutrinos that can be well characterised using multimessenger data remain absent
from the model.

In order to take into account the missing components of the neutrino flux predicted
from our model, one could also consider nearby sources. While Galactic sources are
a guaranteed contribution to the neutrino flux, they are not thought to be able to
produce PeV neutrinos. However, the likelihood analysis above suggests that may
not be necessary, and they can certainly generate neutrinos up to energies of a few
hundred TeV (see, e.g., Ref. [104] for a summary of upper limits on Galactic contribu-
tions). Amongst other contributions, a phenomenological cosmic-ray model designed
to reconcile Fermi, Milagro, and local cosmic-ray data, naturally predicts at least
10–20% of the IceCube flux [103], of the order of our count discrepancy. Whether
the addition of this cosmic-ray contribution to the model is su�cient to explain the
data, and a more systematic study of the model sensitivity to the various systematic
uncertainties, is left to future work.

93



5. Implications for Astrophysical Neutrinos

5.7 Conclusions

For the first time, we explore the power of one-point statistical analyses in the context
of neutrino astronomy. Such an analysis does not require point sources to be resolved
in order to study properties of their population statistically, and, in this sense, it is
intrinsically powerful when applied to contemporary high-energy neutrino data from
the IceCube telescope.

We relied on data-driven models of only two extragalactic components (star-forming
galaxies and blazars), besides the atmospheric neutrino flux, and compared our pre-
dictions with the IceCube detected flux [97]. The extragalactic neutrino backgrounds
have been modeled by extrapolating multi-wavelength data from Herschel for the
star-forming galaxy component [25] and from the Fermi 2FHL source catalogue for
blazars [5, 140]. This study has yielded three main results.

Firstly, we quantified to what extent unresolved star-forming galaxies and blazars
constitute their own background in dedicated IceCube point source searches. We
showed that if the neutrino flux of star-forming galaxies is well predicted from the
Herschel data, then star-forming galaxies are likely to remain a di�use, isotropic and
featureless background for IceCube: only the di�use peak of P (F ) can be probed.
Note that our conclusions would be even more drastic if relying on more conservative
estimates of the SFG neutrino contribution [135, 133]. This model-dependent claim is
unequivocally demonstrated in showers, though in tracks we only place a conservative
upper limit on the number NSFG . 25 of resolvable sources at 100 TeV (a number to
be revised in future studies due to other backgrounds and limited exposures). Our
results are in agreement with the null results of dedicated point-source searches and
cross-correlation studies [109, 162, 160, 139, 98]. The opposite is predicted for blazars:
if the neutrino flux of this source population is well described by the 2FHL source
catalogue, then these sources are rare enough that self-background e�ects are not
relevant in tracks (see also the discussion in Ref. [24]). For both source populations,
these model-dependent results are consistent with one-point fluctuation analyses in
gamma-rays [13].

Secondly, the astrophysical distributions are found to be non-Gaussian with power-law
tails. They are highly skewed, implying that IceCube observations are biased away
from the mean. For rare sources, the most likely and mean values are predicted to be
significantly di�erent, by relative factors between 0.4 (showers) and 6.7 (tracks) in our
blazar model. This weakens any upper limits on blazars based on the expected (mean)
contributions of these populations to the isotropic flux in tracks, potentially by half
an order of magnitude. The skewness of the star-forming galaxy distributions is much
smaller, due to their larger abundance, therefore this e�ect is only percent-level.
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Finally, we have applied one-point fluctuation and clustering analyses to neutrino
data. Although these analyses are model-dependent, the models we have chosen are
informed by (and otherwise consistent with) multimessenger data. We conclude in
both analyses and with a high significance that this particular model cannot explain
entirety of the IceCube neutrino events. This is not surprising, since we find (when
correctly accounting for the skewness-induced bias) that blazars, star-forming galax-
ies and atmospheric foregrounds—all modeled as statistically isotropic components—
contribute in total to less than two thirds of the HESE events. The likelihood analysis
suggests that the discrepancy comes from either systematic uncertainties on the as-
trophysical components or new source populations whose spectra do not likely extend
beyond 100 TeV. Given this result and the manifest power of these one-point meth-
ods, an extended study which takes into account more astrophysical uncertainties and
more astrophysical source populations is desirable, as it will allow convergence (even
without the need of more neutrino data) towards a multi-wavelength, data-driven,
predictive model of the high-energy neutrino sky.
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6 Implications for the
Brightest Neutrino

Source

After the discovery of extraterrestrial high-energy neutrinos, the next major goal
of neutrino telescopes will be identifying astrophysical objects that produce them.
The flux of the brightest source Fmax, however, cannot be probed by studying the
di�use neutrino intensity. We aim at constraining Fmax by adopting a broken power-
law flux distribution, a hypothesis supported by observed properties of any generic
astrophysical sources. The first estimate of Fmax comes from the fact that we can only
observe one universe, and hence, the expected number of sources above Fmax cannot be
too small compared with one. For abundant source classes such as starburst galaxies,
this one-source constraint yields a value of Fmax that is an order of magnitude lower
than the current upper limits from point-source searches. Then we derive upper limits
on Fmax assuming that the angular power spectrum is consistent with neutrino shot
noise yet. We find that the limits obtained with upgoing muon neutrinos in IceCube
can already be quite competitive, especially for rare but bright source populations
such as blazars. The limits will improve nearly quadratically with exposure, and
therefore be even more powerful for the next generation of neutrino telescopes.

6.1 Introduction

IceCube firmly detected astrophysical neutrinos, but currently, it is not possible to
identify a neutrino source and the distribution of neutrino events is consistent with
being isotropic [165, 166, 167, 168, 169, 170]. Accumulating more and more data
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of the di�use intensity will sharpen constraints on an average source flux, but the
flux of the brightest source cannot be probed directly with this approach as long
as the distribution remains consistent with isotropic. How bright can the brightest
neutrino source be? This is the next question that needs to be addressed. Searches
for point-like sources determined that the upper limit (post-trial and per neutrino
flavor) on the flux of the brightest neutrino source, Fmax, ranges from 2 ◊ 10≠12

to 3 ◊ 10≠11 TeV cm≠2 s≠1, depending on declination ” and assuming E≠2 energy
spectrum [168].

Here, we address the same question by taking a di�erent approach. In particular, we
implement a statistical distribution for the flux of neutrino sources, a more realistic
hypothesis than the single-flux population assumed in, e.g., Refs. [168, 169]. By
constraining the shape of the source flux distribution with observables such as the
intensity and anisotropies of the di�use neutrinos, we will derive constraints on Fmax.

Our approach is twofold. First, we discuss estimates on Fmax that are intrinsic to
the fact that we only have access to one universe to sample the source distribution.
If the expected number of sources at Fmax becomes much smaller than one, then it
is unlikely that one could observe larger fluxes in this universe. We show that if the
number of sources producing the di�use neutrino flux measured by IceCube is greater
than ≥103, then this one-source limit of Fmax is smaller than the upper limits from
Ref. [168]. Thus, our findings allow us to make statements for a flux regime that is
still unprobed by IceCube.

Recent analysis of the angular power spectrum found no significant clustering of
multiple events [169]. As our second approach, we set upper limits on Fmax based
on this null result, and show that they are tighter than what is inferred from the
search for point-like sources, at least for rare source populations. These constraints
on Fmax are e�ective in a regime where the one-source limit is above the point-like
source limit, showing that the two strategies followed are complementary. We find
that the method is particularly constraining even with the current IceCube exposure
if we adopt upgoing muon neutrino events [170], which would provide a critical test
for blazar interpretation as the origin of the di�use neutrino flux. We also find that
the limits obtained from the angular power spectrum improve quadratically with the
exposure. Thus, they provide an extremely powerful probe for the next generation of
neutrino telescopes, such as IceCube-Gen2 [171] and KM3NeT [3].

In this Chapter, we constrain the flux of the brightest source (rather than, e.g.,
its joint luminosity and distance), as it is the quantity that is directly relevant to
detectability of the neutrino sources—a goal yet to be achieved. Although the flux is a
phenomenological quantity, this way, we can make our discussions model independent.
Another complementary approach would be to use typical luminosity and density of
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each source. Although these are more physical quantities, the discussions tend to be
highly model dependent. We provide useful conversion formulae for a representative
case.

This Chapter is organized as follows. After introducing relevant formulation of the
flux distribution and its relation to the intensity and angular power spectrum in
Sec. 6.2, we discuss current constraints on Fmax using the one-source argument and
the angular power spectrum in Secs. 6.3 and 6.4, respectively. In Sec. 6.5, we apply
these generic discussions to several cases of known source populations. Section 6.6 is
then devoted to what is expected in the future, before briefly concluding in Sec. 6.7.

6.2 Formulation

We define N
s

as the total number of sources from all sky and N
s

= N
s

/4fi as
their surface number density. The source flux distribution function is defined as
dN

s

/dF and we also use the equivalent probability density function of the single
source P1(F ) © d ln N

s

/dF . Our hypotheses on the form of P1(F ) are rather mild:
We assume that the distribution follows a broken power-law with physically motivated
parameters. In particular, – denotes the slope of the distribution, P1(F ) Ã F ≠–,
above a characteristic flux Fú. We assume 2 < – < 3, which is compatible with
what is observed in sources detected in other wavelengths such as gamma rays, e.g.,
blazars [172, 173, 23, 174], star-forming galaxies [175, 176], and radio galaxies [33, 177].
In fact, if these sources are distributed homogeneously in a local volume where cos-
mological e�ects can be ignored (z π 1), it is well known that the flux distribution
reduces to the Euclidean limit, i.e., Ã F ≠5/2 [178]. This is expected, in particular, for
the brightest sources (since these are likely to be nearer to us than the fainter members
of their source class), and therefore, – = 2.5 will be our reference value. For fluxes
smaller than Fú, the slope of the distribution must flatten in order to avoid diver-
gences (cf. Olbers’ paradox). We assume P1(F ) Ã F ≠— for F < Fú with — < 2. The
flattening of the slope at low fluxes is, again, supported observationally [172, 173, 23].
The top panel of Fig. 6.1 schematically shows this distribution.

In a pixel with a size �pix that roughly corresponds to the angular resolution of the
detector, there are on average Npix

s

sources, with Npix
s

= N
s

�pix. Then, the flux per
pixel is given by the sum of the fluxes of Npix

s

individual sources.1 The mean and
variance of the flux distribution per pixel, P (F ), is simply given by Npix

s

times the

1In general, Npix

s is non-integer, and thus a more precise expression is given by a convolution
with a Poisson distribution.
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Figure 6.1: The source flux distribution dN
s

/dF multiplied by F (top), F 2 (middle),
and F 3 (bottom), for 2 < – < 3 and 1 < — < 2. Both horizontal and vertical axes are
in logarithmic scales. The shaded regions in the middle and bottom panels represent
that areas below these broken lines correspond to the intensity I

‹

[Eq. (6.7)] and
the Poisson angular power spectrum CP

‹

[Eq. (6.8)], respectively; i.e., I
‹

and CP

‹

are
dominated by sources near Fú and Fmax, respectively.
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mean and variance of the flux distribution per source, P1(F ):

ÈF Í = Npix
s

ÈF Í
P

1

, (6.1)
È(F ≠ ÈF Í)2Í = Npix

s

È(F ≠ ÈF Í
P

1

)2Í
P

1

, (6.2)

where È·Í and È·Í
P

1

indicate averages taken over P (F ) and P1(F ), respectively. Under
our assumptions for P1(F ), it is straightforward to show that

ÈF Í
P

1

ƒ ÷1F 2
ú P1(Fú), (6.3)

È(F ≠ ÈF Í
P

1

)2Í
P

1

ƒ ÈF 2Í
P

1

= ÷2F 3
maxP1(Fmax), (6.4)

where ÷1 = (– ≠ 2)≠1 + (2 ≠ —)≠1 and ÷2 = (3 ≠ –)≠1 are both constants of order
unity. Note that, in Eq. (6.4), instead of integrating up to infinity, we truncated at
Fmax. We define Npix

ú as the typical number of sources per pixel around flux Fú, i.e.,
Npix

ú © Npix
s

FúP1(Fú), and similarly, we define Nú and Nú corresponding to N
s

and
N

s

, respectively. Then, we obtain the following for the first two moments of the flux
distribution:

ÈF Í = ÷1Npix
ú Fú, (6.5)

È(F ≠ ÈF Í)2Í = ÷2Npix
ú F 2

max

3
Fú

Fmax

4
–≠1

. (6.6)

Equivalently, the intensity I
‹

of the neutrino flux (also often referred to as „
‹

) and
its Poisson angular power spectrum CP

‹

are, respectively,

I
‹

= ÷1NúFú, (6.7)

CP

‹

= ÷2NúF 2
max

3
Fú

Fmax

4
–≠1

. (6.8)

The middle and bottom panels of Fig. 6.1 show the flux distribution multiplied by
appropriate powers of F such that the area below the curves is proportional to I

‹

and
of CP

‹

, respectively.

In the following, expressions with an explicit index E, such as I
‹

(E) and C
‹

(E),
represent di�erential quantities with respect to energy, and those without the index
are the quantities integrated over the energy.

6.3 One-source constraint

We are limited to observe a single universe, which then limits our capability to con-
strain physical quantities. Specifically, we cannot probe arbitrarily large fluxes, be-
cause once the number of sources expected at such fluxes becomes smaller than one,

101



6. Implications for the Brightest Neutrino Source

it is unlikely to reconstruct the distribution in the region. We define the one-source
limit on the flux of the brightest neutrino source, F 1s

max, such that only with a small
probability p could we find at least one source brighter than Fmax in the entire sky.

The mean number of sources above Fmax is given by N
s

�1(> Fmax), where �1(>
Fmax) is the complementary cumulative distribution function corresponding to P1(F ).
Using the Poisson distribution with this mean, the probability 1 ≠ p of finding no
source brighter than Fmax is exp[≠N

s

�1(> Fmax)]. By solving this for a power-law
P1(F ) Ã F ≠–, we obtain

FmaxP1(Fmax) = 1 ≠ –

N
s

ln(1 ≠ p), (6.9)

which further translates into

Fmax = I
‹

÷1Nú

5
4fiNú

(1 ≠ –) ln(1 ≠ p)

61/(–≠1)
. (6.10)

In Eq. (6.9), Fmax depends only on the properties of the source distribution function.
In Eq. (6.10), on the other hand, it is recast in terms of the measured intensity I

‹

and the free parameter Nú. For the Euclidean case (– = 2.5), Fmax Ã I
‹

N ≠1/3
ú .

We assume that the intensity refers to neutrinos per flavor, and where necessary,
that flavor democracy holds, i.e., I

‹e = I
‹µ = I

‹· . For an assumed E≠2 energy
spectrum (in order to allow a direct comparison with earlier results [168]), E2I

‹

(E) =
(0.84±0.3)◊10≠11 TeV cm≠2 s≠1 sr≠1, even though a softer spectrum E≠2.58 provides
a better fit [179].

Figure 6.2 shows the one-source limits on the flux of the brightest source, F 1s
max,

as a function of Nú obtained with Eq. (6.10) for a few values of – and —. For
ease of comparison with the existing literature, these upper limits are presented at
90% confidence level (CL; p = 0.1).2 For – = 2.5 and — = 1.5, Eq. (6.10) yields
E2F 1s

max(E) = 9.0 ◊ 10≠11 TeV cm≠2 s≠1/N
1/3
ú . For comparison, we also show Fú

from Eq. (6.7) with its uncertainty from the estimated error on I
‹

(orange band),
and the upper limit from the search for point-like sources [168] (horizontal dashed
line). See also Ref. [180] for an estimate of the sensitivity when the source density is
modeled to follow the star-formation rate.

For source numbers Nú greater than around ≥103, the one-source limits reach below
the upper limit from the search for point-like sources [168]. In other words, finding a
source at the flux level close to the point-source upper limits for a source population

2Taylor expanding F 1s

max

for small p, the reader may approximately rescale these up-
per limits from a significance p(1) to any desired significance p(2) with the ratio F (2) =#
p(1)/p(2)

$
1/(–≠1)

#
1 + (p(1) ≠ p(2))/(2(– ≠ 1))

$
F (1). The upper limit clearly gets weaker when

p(2) < p(1).
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Figure 6.2: One-source upper limits (90% CL) on the neutrino flux per flavor from
the brightest neutrino source, as a function of the characteristic source number Nú,
for various values of – and —. F 1s

max is defined from Eq. (6.10) as the flux for which
there is a 90% probability of not finding any brighter source (solid and dotted). The
blue band represents the region where the brightest source is located at 90% CL for
given Nú, in the Euclidean case with (–, —) = (2.5, 1.5). The dashed horizontal line
represents the upper limit from the search for point-like source in Ref. [168] toward
the South Pole. The orange band shows the characteristic flux Fú of a single source
required for the population from which it is drawn to explain the observed intensity
I

‹

according to Eq. (6.7).
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characterized with Nú ∫ 103 (and – = 2.5 and — = 1.5) is unlikely with a chance
probability of p ¥ 0.0016(Nú/107)≠1/2.

The flux cuto� is caused by either an intrinsic cuto� of the luminosity function or
by the volume e�ect, the latter of which is the case for Euclidean sources (– = 2.5).
Then, Eq. (6.10) can be regarded as a prediction of Fmax. For a given Nú, Fmax has
to be located between the values of Eq. (6.10) evaluated with p = 0.05 and p = 0.95,
at 90% CL. This is shown as a blue band in Fig. 6.2 for (–, —) = (2.5, 1.5).

We note that it is possible for the modeled population of sources to give only a
subdominant contribution to the di�use neutrino intensity. Indeed, Refs. [135, 181,
136] suggest that neither starbursts nor blazars can explain the entirety of the observed
neutrino flux. In that case, the one-source constraints become even tighter, as I

‹

in
Eq. (6.10) should be replaced by kI

‹

, where k is the fraction of the measured intensity
explained by the source class under investigation. Having k < 1 in Eq. (6.10) will
improve these limits considerably.

6.4 Angular power spectrum

The maximum flux Fmax can also be constrained by measuring the variance of the
source flux distribution; this information is essentially equivalent to the angular power
spectrum. Indeed, if Fmax is too large, only a few of the brightest sources would be
enough to make the distribution of neutrinos highly anisotropic by yielding clustered
events, in conflict with what is measured [169].

6.4.1 Formalism

The number of neutrino counts per pixel Npix
‹

is obtained by multiplying the flux per
pixel by the exposure, i.e., the product of the e�ective area and the live time of the
telescope. Note that since the energy spectra of the astrophysical and atmospheric
neutrinos di�er, so do the corresponding exposures for each component, denoted by
E and Eatm, respectively. The probability distribution of the number of neutrinos per
pixel Npix

‹

is therefore obtained by convolving the per-pixel flux distribution P (F )
and the Poisson distribution with mean FE + FatmEatm:

P (Npix
‹

) =
⁄

P !
Npix

‹

|FE + FatmEatm
"

P (F )dF, (6.11)
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6.4. Angular power spectrum

where Fatm is the flux of the atmospheric backgrounds, which are assumed to be
isotropic. It is straightforward to obtain the moments of the distribution of Npix

‹

:

ÈNpix
‹

Í = ÈF ÍE + FatmEatm, (6.12)
È(Npix

‹

≠ ÈNpix
‹

Í)2Í = È(F ≠ ÈF Í)2ÍE2 + ÈNpix
‹

Í. (6.13)

The first term of Eq. (6.13) corresponds to the Poisson angular power spectrum that
originates from discreteness of the sources CP

‹

[Eq. (6.8)], and the second corresponds
to the shot-noise of the neutrinos,

CN

‹

© I
‹

E + Natm
E2 , (6.14)

where Natm © FatmEatm/�pix is the surface density of atmospheric background events
(see, e.g., Refs [182, 183, 184] in the case of gamma rays).

The rms error for the angular power spectrum at multipole ¸ is

”C
¸

=
Û

2
(2¸ + 1)fsky

3
CP

‹

+ CN

‹

W 2
¸

4
, (6.15)

where fsky is a fractional sky coverage and W
¸

is a beam window function correspond-
ing to the angular resolution of IceCube [182, 183, 184]. Since the purpose of this
study is to obtain a simple estimate of the current limits and future sensitivity rather
than accurate values, we assume W

¸

= exp(≠¸2◊2
psf/2). Given the null results from

the anisotropy analysis [169], we estimate the upper limits on the Poisson angular
power spectrum with

CP

‹

< ‡

A
ÿ

¸

1
”C2

¸

B≠1/2

, (6.16)

where ‡ = 1.28 (1.64) corresponds to the limits at 90% (95%) CL. By solving this as
an equality for CP

‹

, we obtain CP

‹,lim such that CP

‹

< CP

‹,lim. Then, by using Eqs. (6.7)
and (6.8), we obtain the corresponding upper limits on Fmax as

F APS
max <

I
‹

Nú

A
÷–≠1

1
÷2

NúCP

‹,lim
I2

‹

B1/(3≠–)

. (6.17)

To summarize, our estimates of F APS
max will rely on observable inputs (I

‹

, Natm), instru-
mental inputs (E , fsky, ◊psf), and theoretical inputs (–, —, Nú), which we will discuss
for di�erent source populations in Sec. 6.5. We present this analysis applied to two
of the “clean” datasets of high-energy neutrinos from IceCube.
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6. Implications for the Brightest Neutrino Source

6.4.2 High-Energy Starting Events (HESE)

Since we care about the angular power spectrum of astrophysical sources, we consider
in the first instance only the High-Energy Starting Events (HESE) dataset [179], a
relatively clean event sample consisting of showers and contained tracks at the highest
energies.

We estimate CN

‹

= N
‹

/(4fiE2) by using N
‹

= 14 (39) and four years of IceCube
exposure for the muon (electron and tau) neutrinos for the tracks (showers), a full-
sky coverage fsky = 1, the energy-dependent HESE e�ective area (from 1 TeV to
10 PeV) from Ref. [165], and the live time of the telescope (taken accordingly to be
1347 days). The expected number of neutrinos is consistent with the results of the
four-year searches from Ref. [179]: For an energy spectrum proportional to E≠2, we
find the total number of neutrinos 4fiI

‹

E = 26.1. The rest of the measured events
should be attributed to atmospheric backgrounds and statistical fluctuations. We also
adopt angular resolutions of the order of the median angular resolution of the HESE
events, namely ◊psf = 1¶ and 20¶ for tracks and showers respectively.

With these parameters, we obtain an upper limit on the Poisson angular power spec-
trum of

E4CP

‹,lim(E) = 1.7 ◊ 10≠23 TeV2 cm≠4 s≠2 sr≠1, (6.18)

for the HESE tracks and

E4CP

‹,lim(E) = 7.5 ◊ 10≠22 TeV2 cm≠4 s≠2 sr≠1, (6.19)

for the HESE showers. Since the track events provide tighter constraints by more
than one order of magnitude, in the following, we will focus only on the flux limits
due to the tracks, so the intensity I

‹

used in Eq. (6.17) is that of the muon flavor.

Figure 6.3 shows the F APS
max derived from HESE tracks, as a function of Nú and for

di�erent values of – and —. Values of F APS
max larger than the solid or dotted lines are

excluded, as the term due to the flux variance in Eq. (6.13) would have been detected
in Ref. [169]. For small values of Nú (at most below ≥50, in the case with – = 2.3 and
— = 1), the upper limits obtained here are more stringent than those by the search for
point-like sources [168], let alone the one-source constraints considered earlier. Note,
however, that this upper limit is based on the assumption that F APS

max > Fú; otherwise
the source flux distribution would be proportional to F ≠— with a truncation at Fú.

6.4.3 Upgoing muon neutrinos

It is possible to repeat the analysis above for high-energy upgoing tracks, for which
rather than requiring the interaction vertex be contained one uses the Earth itself as
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6.4. Angular power spectrum

Figure 6.3: Upper limits (90% CL) on the flux (per flavor) of the brightest source
from the angular power spectrum, F APS

max , as a function of the characteristic source
number Nú by using the HESE dataset. The color code and line style are the same
as in Fig. 6.2. Only the regions where F APS

max > Fú are valid as upper limits.
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6. Implications for the Brightest Neutrino Source

a veto against atmospheric muon backgrounds [170]. Above 300 TeV, it is possible
to estimate CN

‹

using the best-fit powerlaw models of astrophysical flux E2I
‹

=
0.7 ◊ 10≠18 GeV cm≠2 sr≠1 s≠1 [170] and the conventional atmospheric background
I

‹

Ã E≠3.7 [185]. We adopt a sky coverage of fsky ≥ 0.5, as well as the energy-
dependent e�ective area and construction-dependent livetimes of the telescope from
Ref. [170]. This corresponds to Nastro ≥ 56 and Natm ≥ 13, and is consistent with
Fig. 1 from Ref. [170] where a cursory inspection yields roughly 60 and 10 events above
300 TeV respectively. We adopt an angular resolution of ◊psf ≥ 0.5¶, better than for
the contained events of the previous section since the outermost optical modules of
IceCube are used to improve pointing rather than as a veto. With these parameters,
we obtain an upper limit on the Poisson angular power spectrum of

E4CP

‹,lim(E) = 2.1 ◊ 10≠25 TeV2 cm≠4 s≠2 sr≠1, (6.20)

from uncontained, upgoing tracks above 300 TeV.

Figure 6.4 shows the F APS
max derived from upgoing tracks. These limits are many orders

of magnitude stronger than the limits from HESE as a result of the improved angular
resolution and the much larger exposure. The “pivot point” for which the limit is
independent of – is also below the point-source searches. In addition to these upper
limits, we show the region containing the brightest sources at 90% CL derived in
Sec. 6.3. The absence of anisotropies will clearly constrain rare sources better than
point-source searches for Nú ≥< 104. Complementarily, for more abundant sources,
the point-sources searches do not cut into the brightest-source containment band, so
we should not expect (with 90% CL) to have seen them yet anyway. This is especially
true if we expect multiple source populations to contribute to this flux, since for
populations contributing fractions k < 1 of the isotropic flux this band is even lower.
Even allowing for uncertainties in (–, —), these two complemetary constraints (which
rely only on the physically-motivated assumption that source fluxes are power-law
distributed) jointly place a stronger constraint on the brightness of the brightest
high-energy neutrino source than current point-source searches.

6.5 Application to known source populations

Although we aim to make our discussion as generic as possible, such that it can be
applied even to unknown classes of astrophysical sources that may contribute at high
energies [186], it is certainly of interest to discuss known source populations in this
context. We discuss mainly two source classes commonly thought to be the origin
of the observed isotropic flux: BL Lacs [187, 188, 116, 119] and starburst galaxies
[189, 175, 190, 191, 111, 192].
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6.5. Application to known source populations

Figure 6.4: Upper limits (90% CL) on the flux (per flavor) of the brightest source from
the angular power spectrum, F APS

max , as a function of the characteristic source number
Nú by using the upgoing ‹

µ

events above 300 TeV and assuming the current IceCube
exposure [170]. The color code and line style are the same as in Fig. 6.2. Only the
regions where F APS

max > Fú are valid as upper limits. The pink bank represents the
region where the brightest source is located at 90% CL for given Nú, in the Euclidean
case with (–, —) = (2.5, 1.5). The purple square, blue diamond and green star are
located at the expected neutrino flux for Mkn 412, Cen A and M82 or NGC 253, for
values of Nú typical of blazars, radio galaxies and starburst galaxies, respectively (see
text for details).
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6. Implications for the Brightest Neutrino Source

6.5.1 Phenomenological representation

The phenomenological parameterisation of a source population we introduced in
Sec. 6.2 can be summarised by the tuple (–, —, Nú). The parameters for sources
from the second catalog of hard Fermi sources (2FHL; mostly BL Lacs) and starburst
galaxies are (–, —, Nú) ¥ (2.5, 1.7, 6 ◊ 102) [5] and (2.5, 1.0, 107) [176], respectively.
These are estimated from their gamma-ray observations (with help of infrared obser-
vations in the case of the starbursts) and assuming a linear correlation between the
gamma-ray and neutrino luminosities, L

‹

Ã L
“

. This is well supported for the case
of starbursts, which emit neutrinos through pp interaction [175, 192]. For the blazars
emitting through p“ interaction, on the other hand, the relation between the gamma-
ray and neutrino luminosities is more complicated and model dependent, but see, e.g.,
Ref. [116] for a model of linear scaling. Other cases with stronger dependence can also
be accommodated with similar parameters: e.g., (–, —, Nú) ¥ (2.5, 1.25, 4 ◊ 102) for
the BL Lacs with L

‹

Ã L2
“

scaling [193], and (2.3, 0.9, 1.5 ◊ 102) for the flat-spectrum
radio quasars with L

‹

Ã L1.5
“

[194].

With these parameters, Figs. 6.2 and 6.4 show that the 90% CL upper limits on the
flux Fmax of the brightest high-energy neutrino source, are

F BL Lac
max ≥ 10≠13 TeV cm≠2 s≠1, (6.21)

for the 2FHL sources, based on the angular power spectrum constraint, and

F starburst
max ≥ 6 ◊ 10≠13 TeV cm≠2 s≠1, (6.22)

for the starbursts, based on the one-source constraint. Recall that these upper limits
are on the flux per flavor of a population contributing a fraction k = 1 of the ob-
served astrophysical flux, assuming an E≠2 spectrum, and requiring (for the former
constraint) an absence of detectable anisotropies.

6.5.2 Physical representation

Up to this point, we considered –, — and Nú as free parameters. Another comple-
mentary representation is to use more physical quantities such as luminosity L

‹

and
density n

s

of the sources, although the discussion will be model dependent. The lat-
ter approach was taken in, e.g., Refs. [195, 180, 134], where sources were assumed to
have the same luminosity. These two representations can be converted from one to
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the other through

Fú ƒ 10≠18
3

L
‹

1040 erg s≠1

4
TeV cm≠2 s≠1, (6.23)

Nú ƒ 3 ◊ 107k
1÷1

4

2≠1
3

L
‹

1040 erg s≠1

4≠1
, (6.24)

F 1s
max ƒ 3 ◊ 10≠13

3
n

s

10≠5 Mpc≠3

42/3

◊
3

L
‹

1040 erg s≠1

4
TeV cm≠2 s≠1, (6.25)

in the case of – = 2.5. Typically (n
s

, L
‹

) = (10≠5 Mpc≠3, 2 ◊ 1040 erg s≠1) and
(10≠7 Mpc≠3, 2 ◊ 1044 erg s≠1) for the starbursts and BL Lacs, respectively [134].
However, these relations apply only to mono-luminous case as was studied in the
literature.

In Fig. 6.4 (and those that follow), we show reference fluxes of some well known
sources for each class: Mkn 421 for the BL Lac blazars and M82 or NGC 253 for
the starbursts. Mkn 421 is predicted to have a flux around 10≠12 TeV cm≠2 s≠1 in
a model of Ref. [193]. For M82 and NGC 253, we estimate the neutrino luminosity
from the gamma-ray luminosity of these sources [196], and then by converting to the
neutrino luminosity assuming pp interaction [175]. In addition, we show predicted
neutrino flux from the most promising radio galaxy, Cen A, assuming production
from pp interaction [197]. We assume that these sources are drawn from a population
of emitters with the same luminosity. Thus, the number of sources can be estimated
by Eq. (6.24) with k = 1, ÷1 = 4, and typical neutrino luminosity for this population
found in Ref. [134].

6.5.3 Discussion

All these sources fall within the 90% region of Fmax predicted with the one-source
argument with (–, —) = (2.5, 1.5) (shown as a red band in Fig. 6.4) and so a source
from any of these populations is plausibly the brightest neutrino source. A slight
tension exists for Mkn 421, but Ref. [193] predicts several more BL Lacs with similar
flux such as PKS 2155-304, and the tension might go away when using a fraction k < 1
for the blazars. The 90% containment band for Nú ¥ 107 is an order of magntidue
below the point-source constraint, suggesting it would be unlikely to identify starburst
galaxies amongst the brightest neutrino sources. This result is consistent with the
analyses in Refs. [176, 134].

The angular power spectrum is especially constraining for rare sources such as blazars.
The upper limit, Eq. (6.21), is nearly an order of magnitude lower than the 90%
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containment band for Nú ¥ 6 ◊ 102 and the predicted neutrino flux of Mkn 421.
The isotropy of the upgoing ‹

µ

flux, if confirmed with the current IceCube exposure,
will force us to abandon the assumption that they contribute a fraction k = 1 of the
high-energy neutrino flux. This not only eases the aforementioned one-source tension
for Mkn 421, but furthermore is consistent with the analysis in Ref. [181].

6.6 Prospects for the future

In this section, we forecast the prospects for studying the flux of the brightest source
with the next generation of neutrino telescopes, under the assumption that anisotropy
searches will continue to yield null results in the future.

The angular power spectrum will become much more powerful for IceCube-Gen2 [171]
and KM3NeT [3]. This is because of the strong dependence of F APS

max on CP

‹,lim from
Eq. (6.17), where CP

‹,lim improves with exposure as described by Eq. (6.15). For
Euclidean sources (– = 2.5), the upper limit improves quadratically with exposure:
F APS

max Ã E≠2. The anticipated tenfold increase in exposure expected for IceCube-
Gen2 with respect to the current IceCube [171] will yield hundredfold improvement
on F APS

max if the observed angular power spectrum remains consistent with isotropy,
before even accounting for any improvements in angular resolution.

Figures 6.5 and 6.6 summarize future prospects for upper limits on the flux of the
brightest source, drawn from a population described by – = 2.5 and — = 1.5, with
an improved track angular resolution and larger exposures than acheived today (cf.
Table 6.1). For comparison, we scale down the upper limit from the search of point-
like sources by a factor of 1/

Ô
10, assuming that these analyses are already background

limited; the value of F 1s
max from the one-source constraints remains unchanged.

In future HESE-like analyses, the limits on Fmax from the angular power spectrum
from IceCube-Gen2 and KM3NeT (summarized in Fig. 6.5) will outperform point-
source searches only if the isotropic flux is due to individually bright sources rarer
than Nú ≥< 103. In this hypothetical nondetection scenario, the parameter space
associated to blazars would not be constrained much better than it is today using
upgoing events (cf. Fig. 6.4), due to limited improvements in exposure, as well as in
angular resolution.

Constraint prospects for future analyses of upgoing (uncontained) tracks are summa-
rized in Fig. 6.6. In the pessimistic case studied here of a continued nondetection
of anisotropy or point sources, KM3NeT and IceCube-Gen2 would (independently
and with high significance) rule out a blazar contribution to the high-energy neu-
trino flux observed today. The angular power spectrum from the next generation
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Figure 6.5: Projected 90% CL upper limits from angular power spectrum (solid) and
one-source limits (dotted) as a function of Nú, for contained track events, assuming
(–, —) = (2.5, 1.5). Projections for both KM3NeT and IceCube-Gen2, being coinci-
dently the same, are shown as a solid line. The dashed horizontal line represents the
upper limit from the search for point-like sources [168] after scaled down by a factor
of 1/

Ô
10. The dotted line represents the 90% CL one-source upper limits, and the

red region shows where the flux of the brightest source is located at 90% CL in the
case of Euclidean sources.

Table 6.1: Parameters used in forecasts of F APS
max in the scenario the astrophsyical flux

remains consistent with isotropy. Exposures are shown normalized to the current Ice-
Cube searches in Refs. [165] (HESE) and [170] (upgoing ‹

µ

). The equivalent livetimes
and the angular resolutions are estimated from Refs. [171, 3].

Detector Strategy E/Etoday livetime ◊psf (tracks)
IceCube HESE 1 4 yr 1¶

upgoing ‹
µ

1 6 yr 0.5¶

IceCube-Gen2 HESE 10 8 yr 0.5¶

upgoing ‹
µ

10 12 yr 0.3¶

KM3NeT HESE 4 8 yr 0.2¶

upgoing ‹
µ

4 12 yr 0.1¶
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Figure 6.6: Projected 90% CL upper limits from angular power spectrum as a function
of Nú, if the high-energy neutrino sky remains isotropic after using detectors similar
to KM3NeT (solid) and IceCube-Gen2 (dot-dashed), assuming (–, —) = (2.5, 1.5).
The dotted is for the current IceCube configuration as in Fig. 6.4. See Table 6.1 for
detector configurations. The dashed horizontal line represents the upper limit from
the search for point-like sources [168] after scaled down by a factor of 1/

Ô
10, and the

red region shows where the flux of the brightest source is located at 90% CL in the
case of Euclidean sources.
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of neutrino telescope also has the potential to constrain radio galaxies. Indeed, the
upper limits for Nú ¥ 105 would reach down to 5 ◊ 10≠14 TeV cm≠2 s≠1 by the
time these experiments are decommisioned, well below their neutrino flux anticipated
from pp interactions [197]. In both HESE and upgoing track analyses, the one-source
constraint will still be the most stringent on the population of starburst galaxies,
suggesting that it will still be unlikely for the neutrino telescopes to detect them (see
also Refs. [176, 134]).

These forecast clearly shows that in the future, if the high-energy neutrino sky remains
consistent with isotropy, the angular power spectrum will provide much stronger upper
limits on the flux of the brightest neutrino source than point-source searches. It also
suggests (by comparison with Fig. 6.4) that if sources are not discovered individually
in the near future, they will likely be discovered statistically through the angular
power spectrum first. Indeed, due to the respective

ÔE and E2 scalings of the point-
source search and the APS, a statistical discovery becomes increasingly likely the
longer point sources are not discovered.

6.7 Conclusions

To conclude, we discussed two constraints on the flux of the brightest neutrino source
in the sky, Fmax, and how they relate to (or improve on) the null results of the current
anisotropy and point-source searches. The one-source limit on Fmax manages to reach
quite low values, more than one order of magnitude below the existing upper limits
based on the search for individual point-like sources in the case of abundant source
population such as starburst galaxies. The other approach is based on constraining
the variance of source flux distribution (or equivalently, the Poisson angular power
spectrum). These upper limits are more powerful for rare source classes, providing
complementary information in the case that no source is detected. In particular,
analysis of upgoing ‹

µ

track events with the current IceCube exposure already has a
potential to rule out the scenario of blazar-domination for the di�use neutrino flux. In
addition, the limits based on the angular power spectrum will become more powerful
for the next generation of neutrino telescopes. The combination of the two strategies
proposed here provide a very e�cient way of answering the question: “How bright
can the brightest neutrino source be?”
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Summary

This thesis has presented improvements to a methodology for predicting the probabil-
ity distribution of di�use isotropic astrophysical backgrounds, applied to high-energy
extragalactic gamma rays and neutrinos. These improvements are conceptually well-
founded, building on standard probability theoretic results in form and on multimes-
senger, multiwavelength observations in substance.

All of the data in astrophysics boils down to some telescope’s response to some incident
flux of astroparticles. Each individual particle may be characterised instrumentally
by its incidence direction, its energy, its type (photon vs. electron-neutrino vs. muon-
neutrino); but also contextually, by the likelihood that a particle with these properties
would be observed by this telescope at all, given some model of the incident flux.
This likelihood can be computed by means of a hierarchy of probabilistic models that
ultimately rests on astrophysical and cosmological inputs. To improve this hierarchy
of models, one must improve both the individual models as well as the interfaces
between them.

Assuming that sources are distributed isotropically throughout the universe, one finds
that the following hierarchy of models provides a compartmentalisation of concerns
while respecting the etiology of the problem:

astrophysics / cosmology P (◊1, ◊2, · · · ) + particle physics æ
Individual source properties P1(L, z, · · · ) + flux absorption æ

Incident flux per source P1(F ) + Poisson(Nsrc/pix) æ
Total incident flux P (F ) + detector response æ

Likelihood of datum P (C)

Chapter (5) focuses on the earliest levels of the hierarchy, deriving a non-parametric
P1(L, z) for an annihilating WIMP dark matter model from cosmological structure
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formation and a P1(F ) encompassing both substructure boosts and gamma-ray ab-
sorption. Chapter 6 focuses on the later levels, including a treatment of IceCube’s
probabilistic response to the incident P (F ) across various pixels, energy bins, and
event topologies (i.e. across each of the characteristics of individual particles). The
interfaces between models was also subject of investigation, particularly the (compu-
tationally demanding) transitions from P1(F ) to P (F ) (in Chapter 5) and from P (F )
to P (C) (in Chapter 6).

This thesis is also about the physical investigations that were conducted by means of
these models. The main results of our analyses are as follow:

1. We show that the unresolved-source P (F ) is generically skewed, so that mea-
surements of di�use backgrounds are biased. The bias is largest for the rarest
sources (up to half an order of magnitude in our blazar P (F

‹

)!), and acts as
a systematic e�ect on analyses relying on the average intensities of the back-
grounds. Note that this bias on the di�use background is distinct from the
Eddington and Malquist biases familiar to astronomers, which are selection ef-
fects for detectable sources. The use of statistical methods based on P (C)
automatically accounts for this skewness-induced bias.

2. We compute, based on cosmological structure formation, the flux distribution of
the gamma-ray background due to dark matter annihilation, with three di�erent
models for the substructure boost. The fluxes predicted for our fiducial model lie
just within the reach of the Fermi–LAT, and forecast their discovery potential
(based on the one-point function). We show that an annihilation signal at
roughly the thermal cross-section can be distinguished from a probabilistically
characterised EGB with high statistical significance, with contemporary data,
even accounting for shot noise and without exploiting spectral properties of the
flux (which would improve discrimination of various components of this di�use
background).

3. We argue that this di�use flux constitutes an irreducible and significant back-
ground component for point-source searches with galaxy clusters and dwarf
spheroidal galaxies, modifying the predicted signal-to-noise ratio of their anni-
hilation signals. Ironically, increasingly optimistic boost models for the back-
ground are increasingly detrimental to these searches in substructureless dwarf
galaxies.

4. Unresolved blazars and star-forming galaxies in IceCube also constitute an in-
trinsic background to observations of blazars and star-forming galaxies as neu-
trino point-sources. We forecast that no more than 25 SFGs will be resolved
by neutrino telescopes with angular resolutions comparable to IceCube’s (even
without any other backgrounds and with an infinite exposure).
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5. Using a clustering statistic built from P (C), our data-driven model of the Ice-
Cube flux (containing only atmospherics, SFGs, and blazars) is rejected at ≥ 5‡.
A likelihood analysis based on P (C) shows that this discrepancy is insignificant
(1‡) in tracks, suggesting it is of astrophysical (rather than atmospheric) origin
in our model, and most prominent at energies below 1 PeV.
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Samenvatting

Dit proefschrift gaat over verbetering van de methodologie voor het opstellen van de
kansverdelingen van de di�use isotropische astrofysische achtergrondstraling. Deze
wordt toegepast op extragalactische gammastraling en neutrinos. De verbeteringen
zijn conceptueel gegrond; de methode is gebaseerd op op standaard resultaten uit
de kansrekening welke worden toegepast op de zogenaamde “multimessenger en mul-
tiwavelength” – d.w.z. – de studie van meerdere soorten kosmische straling en de
astronomie van verschillende golflengtes.

Alle data in de astrofysica is in essentie de respons van een telescoop op een invallende
stroom astrodeeltjes. Elk individueel deeltje wordt aan de ene kant instrumenteel
gekarakteriseerd door zijn invalshoek, energy en type (foton vs. elektronneutrino
vs. muonneutrino) en aan de andere kant contextueel door de waarschijnlijkheid dat
een deeltje met bovengenoemde eigenschappen überhaupt wordt gedetecteerd door
een telescoop, gegeven een model van de verwachte flux. Deze waarschijnlijkheid kan
worden bepaald door een aaneenschakeling van kansmodellen welke uiteindelijk af-
hankelijk zijn van input vanuit de astrofysica en kosmologie. Om deze opeenstapeling
van modellen te verbeteren moet men zowel elk individueel model alsook de interactie
tussen modellen verbeteren.

De volgende aaneenschakeling is een goede onderverdeling van verschillende overwe-
gingen, die voldoet aan de etiologie van het probleem, wanneer men aanneemt dat
astrofysische bronnen isotroop verdeeld zijn in het universum:

astrofysica / kosmologie P (◊1, ◊2, · · · ) + deeltjesfysica æ
Eigenschappen van individuele bronnen P1(L, z, · · · ) + flux absorptie æ

Invallende flux per bron P1(F ) + Poisson(Nbronnen/pix) æ
Totale invallende flux P (F ) + detector respons æ

Waarschijnlijkheid van het gegevene P (C)
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Hoofdstuk 5 houdt zich bezig met de bovenste lagen van deze aaneenschakeling. Hierin
wordt een niet-parametrische kansverdeling P1(L, z) voor modellen van annihilerende
WIMP donkere materie in kosmologische structuurformatie afgeleid en een kansverde-
ling P1(F ), welke zowel de boost van substructuren en absorptie van gammastraling
omvat. Hoofdstuk 6 gaat over de lagere niveaus en bevat een discussie van IceCube’s
probabilistische response op de invallende P (F ) over meerdere pixels, energieklassen
en topologieën van de meting (d.w.z. alle eigenschappen van de individuele deeltjes).
De interface tussen modellen is ook onderwerp van discussie, in het bijzonder de tran-
sitie van P1(F ) naar P (F ) (in Hoofdstuk 5) and van P (F ) naar P (C) (in Hoofdstuk
6) (dit vereist veel rekenkracht).

Dit proefschrift gaat ook over de onderliggende natuurkundige onderzoeken welke
werden uitgevoerd met deze modellen. Hier volgen de belangrijkste resultaten van
onze analyses:

1. We laten zien dat de P (F ) voor niet-individueel-waarneembare puntbronnen in
het algemeen scheef is. Hierdoor zijn metingen van de di�use achtergronden
onzuiver. Deze onzuiverheid is het grootst voor de zeldzaamste bronnen (tot
een halve orde van grootte in onze blazar P (F

‹

)!), en is een systematisch e�ect
op analysis welke afhankelijk zijn van de gemiddelde intensiteit van de achter-
gronden. We merken op dat deze onzuiverheid in de di�use achtergronden zich
onderscheidt van de Eddington en Malquist onzuiverheden welke bekend zijn
bij astronomen, en welke selectie-e�ecten zijn voor detecteerbare bronnen. Het
gebruik van een statistische methode gebaseerd op P (C) houdt automatisch
rekening met deze door scheefheid gëınduceerde onzuiverheid.

2. We berekenen, gebaseerd op kosmologische structuurformatie, de flux verdeling
van de gammastraling achtergrond voortkomende uit de annihilatie van don-
kere materie, met drie verschillende modellen voor de substructuurboost. De
voorspelde flux in ons referentiemodel ligt binnen de het bereik van de Fermi–
LAT, en we maken een prognose voor de mogelijkheid tot een ontdekking. We
demonstreren dat huidige data donkere materie met een thermische werkzame
doorsnede kan onderscheiden van een extragalactische achtergrond met hoge
statistische significantie, zelfs wanneer we hagelruis in beschouwing nemen en
we het spectrum van de flux negeren (het spectrum maakt het eenvoudiger om
verschillende componenten van de di�use achtergrond te onderscheiden).

3. We betogen dat de di�use flux een onherleidbare en significante achtergrond is
voor zoektochten naar clusters en dwergsterrenstels, aangezien zij de voorspelde
signaal-ruisverhouding van de annihilatie-signalen wijzigen. Ironisch genoeg:
hoe optimistischer het boostmodel voor de achtergrond, hoe nadeliger het e�ect
op op de zoektocht naar dwergstelsels zonder substructuur.
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4. Blazers en ster-vormende stelsels (SFGs) die met de huidige resolutie niet waar-
neembaar zijn als individuele bronnen vormen ook een achtergrond voor de
observaties van blazars en SFGs als neutrino puntbronnen met de IceCube te-
lescoop. We voorspellen dat een telescoop met een resolutie vergelijkbaar met
IceCube niet meer dan 25 SFGs zal zien (zelfs zonder enige andere achtergrond
en met een oneindige belichting).

5. Gebruik makende van een clusteranalyse uit P (C), kunnen we ons gegevens-
gestuurde model voor de Icecube flux (welke alleen neutrinos uit de atmosfeer,
van SFGs en blazars bevat) verwerpen met ≥ 5‡. Een aannemelijkheidschatting
gebaseerd op P (C) laat zien dat deze tegenstrijdigheid het meest prominent is
voor energiën minder dan 1 PeV en niet significant (1‡) voor sporen. Dit sug-
gereert dat het een astrofysische (in plaats van atmosferische) oorsprong heeft
in ons model.

Vertaald door Richard Bartels en Djoeke Schoonenberg.
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A Appendix: Edifying
Mathematical Trickery

As a wise mathematician once taught that “any trick, used more than once, becomes
a method”. These appendices include some tricks that have been used at most twice
over the course of the work presented in this thesis, but which are essential to ensure
its reproducibility. They also contain tricks that have not been used to their full
advantage and may assist in this work’s future evolution.

A.1 Angular resolution limit

We can compute the probability of seeing a signal above a given flux, by looking at
the exceedance (complementary cumulative) distribution �(F ) associated to P (F ):

�(Fmax) =
⁄ Œ

F

max

P (F )dF.

The probability of not realising this high flux tail in Npixel trials is then given by the
binomial distribution, and we want to solve the following for Fmax:

B(0|Npixel, �(Fmax)) Æ – , – = {0.05, 0.01, 0.001} . (A.1)

For k = 0 successes and p = �(Fmax) π 1, we can expand this in a binomial series
that we can truncate at first order when �(Fmax) π N≠1

pixel:

1 ≠ Npixel�(Fmax) + O(Npixel�(Fmax))2 Æ –. (A.2)

When Fmax lies in the power-law tail of P (F ), we can use the high-flux-tail equivalence
of P (F ) and P1(F ) to find, approximately,

⁄ Œ

F

max

P1(F )dF Æ 1 ≠ –

Npixel
. (A.3)
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For a power-law-like P1(F ) ¥ AF “ , “ < 0 this integration yields
⁄ Œ

F

max

AF “dF = ≠A(Fmax)“+1/(“ + 1) = ≠FmaxP1(Fmax)/(“ + 1). (A.4)

In the limit that (–, “) æ (0, ≠2.5) we reproduce Eq. (4.22) from the main text. More
generally, for – æ 0 and “ = ≠2.5 + ”“, we have

FmaxP1(Fmax) Æ 1.5
Npixel

≠ ”“

Npixel
. (A.5)

Since (as visible in Fig 4.1) the highest fluxes in the tail of P1(F ) have a steeper
log-slope than ≠2.5 (i.e. ”“ < 0), the angular resolution limit of Eq. (4.22) is actually
more optimistic than would be warranted by a more precise calculation.

A.2 Autoconvolution Tricks

We typically need the distributions we are convolving to be identical and indepen-
dently distributed (i.i.d.) to have any worthwhile tricks. The best trick to solve the
problem then depends on the number of identical but independent sources in the con-
volution. The “Central Limit Theorem + Monte Carlo” trick for very large numbers
of sources will be derived in detail; followed by some comments on other tricks in the
field, both time-proven and speculative.

A.2.1 Our method

The deviations from Gaussianity in the sum P
k

of random variables are bounded
by the Berry-Esseen (BE) theorem [87, 86], which relates the Kolmogorov-Smirnov
distance (the largest deviation at any point), to the ‘absolute skewness’1 of P1(F )
and the large but finite number of dark matter halos k:

sup
F

|CDF
k

(F ) ≠ �(F )| Æ Cfl1Ô
k

, fl1 = E(|X ≠ µ1|3)
‡3

1
, (A.6)

where C ≥ 0.5, and where CDF
k

and �(F ) are the cumulative distribution for P
k

and the Normal distribution, respectively. We note that the absolute value in fl1
distinguishes it from the conventional skewness “1, and gives the inequality fl1 Ø “1.
For our power-law-like P1(F ), the skewness is huge and the BE bound Cfl1k≠1/2 is
uninformative: the Kolmogorov-Smirnov distance (a quantity definitionally less than

1Formally, fl
1

is the sum of the partial skewnesses above and below the mean. We simply call fl
1

the skewness.
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one), is ‘constrained’ by the first few moments of our fiducial P1(F ) to be less that
about 108.

This perspective suggests splitting P1(F ) into low-flux and high-flux contributions,
to reduce the skewness of each contribution. In the following, we (i) derive and (ii)
cross-check the Monte Carlo method presented in the main text.

We derive the behaviour for P
k

as follows: marginalise P1(F ) into high and low flux
contributions,

P1(F ) = (1 ≠ ‘)P F <Fú
1 (F ) + ‘P F >Fú

1 (F ) , (A.7)

where P F <Fú,F >Fú
1 (F ) are the normalised distributions of fluxes below and above the

truncation flux Fú (see Fig. 4.2 of the main text), and the fraction of high-flux sources,

‘ = ‘(Fú) =
⁄ Œ

Fú

P1(F )dF , (A.8)

is the relative normalisation of these two distributions. Clearly the smaller we choose
Fú, the larger ‘ becomes. The number of faint sources kú is then simply k(1 ≠ ‘).

P
k

is the k-autoconvolution of the sum above: we may then write P
k

as the sum

P
k

=
kÿ

i=0

k!
i!(k ≠ i)! (1 ≠ ‘)k≠i

‘i

Ë
P F <Fú

k≠i

ı P F >Fú
i

È
. (A.9)

This can easily be shown by induction or by using the binomial theorem on the
associated characteristic function

„
k

= („1)k = ((1 ≠ ‘)„F <Fú
1 + ‘„F >Fú

1 )k . (A.10)

Unless k ∫ i, the contribution of the ith term is vanishingly small. Physically,
this reflects the low probability of having many sources from the high-flux tail of
the ‘power-law’ P1(F ). The low-flux autoconvolution P F <Fú

k≠i

is very nearly Gaussian
when Fú is small (i.e. when the variance of P F <Fú

1 is small). Each term of the sum is
then an isotropic background Gaussian, convolved with high fluxes from point sources
(drawn from P F >Fú

1 ). But, since k ∫ i the low-flux contribution P F <Fú
k∫i

factorizes
(see Eqn. (A.12) below).

How many terms do we need to consider for the gargantuan sum [Eq. (A.9)] to con-
verge? We expect a number k‘ of high flux sources on average. In other words,
the number i of high flux sources in a pixel is drawn from the Poisson distribution
P (i|k‘). This is reflected by the binomial expansion: for 1 ∫ ‘ (which also implies
k ∫ i) we have

k!
i!(k ≠ i)! (1 ≠ ‘)k≠i

‘i ¥ (k‘)i

i! = ek‘ P (i|k‘) , (A.11)
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such that (reassembling all the elements of the discussion above)

P
k

¥ P F <Fú
k

ı ek‘

C
kÿ

i=0
P (i|k‘) P F >Fú

i

D
. (A.12)

Therefore, the physically relevant terms in the sum are those in the 5‡ band k‘ ≠
5
Ô

k‘ < i < k‘ + 5
Ô

k‘ of the distribution P (i|k‘).

The bracketed sum, even with its large number k of terms, can be evaluated by Monte
Carlo: for each realisation, draw i from a Poisson distribution, then draw that many
fluxes from P F >Fú

1 , and sum over the fluxes. The histogram of F F >Fú
tot over many

realisations then approximates the bracketed term (i is marginalised automatically by
the algorithm). We then rescale by a constant ek‘ (absorbed into the normalisation
of P

k

(F )) and convolve with the isotropic background of low-flux sources (just a thin
delta-function in practice) to get P

k

.

We should, of course, check that our choice of Fú is physically sensible. If we want to
split P

k

(F ) into an isotropic background and candidate point sources, we must verify
that our faint sources do not contribute more than zero or one photons each.The value
of Fú can also be chosen algorithmically, e.g. such that the BE bound for P F <Fú(F )
be Cflk≠1/2 = 0.005.

A.2.2 Fourier Space Methods

The easiest way to deal with convolutions is to work in Fourier space, where the
convolution algebra is mapped into a multiplicative algebra. This realisation is as old
as one-point fluctuation analysis itself [10]. However as discussed in the preface this
harmonic representation of the problem has never been seen as an object of study
in itself (unlike the energy or angular spectrum). Here we discuss the use of Fourier
space in the context of one-point fluctuation analysis, with an eye towards its possible
future as a stand-alone result with physical interpretation in addition to its use as an
intermediate trick.

The characteristic function „ is the Fourier transform of the probability density func-
tion; the latter is fully specified by „. Indeed, its moments may be generated by
di�erentiation (and if centered moments are desired, linear superposition). The char-
acteristic function is therefore the (uncentered) moment generating function. The
logarithm of „ is known as the cumulant-generating function (CGF). The cumulants
are a more convenient series of numbers than the moments, since they have nice
properties under various properties of shifts and scalings, and are linearly additive for
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statistically independent random variables:

ˆn

#
ln(„(X+Y ))

$
= ˆn [ln(„

X

◊ „
Y

)] (A.13)
= ˆn [ln „

X

+ ln „
Y

]
= ˆn [ln „

X

] + ˆn [ln „
Y

] .

The first two cumulants happen to be the mean and variance of the distribution, so
that ease of interpretation is not lost when dealing with these most common statistical
estimates. Here, and below, combinatoric and root-of-unity factors are suppressed
for clarity. The moment generating function and probability generating function
are similar to the CGF, however the series of numbers they generate are less easily
manipulated than the cumulants. The only obvious benefit of these other generative
functions is that they do not require one to use complex numbers.

In general, the number of sources over which we must marginalise is not known.
Ref. [10] gives a simple expression for the characteristic function of a flux per pixel,
marginalised over an uncertain number of sources in that pixel:

„ =
Œÿ

k=0

e≠µµk

k! „k

1 (A.14)

= e≠µ

Œÿ

k=0

(µ„1)k

k!

= eµ(„

1

≠1)

where on average there are µ sources, and where we have recognised the power series
expansion of the exponential function. The CGF associated to „ is then simply
µ(„1 ≠ 1), which shows that the cumulants associated to „ are just linear rescalings
of the (raw, uncentered) moments associated to „1:

ˆn(ln „) = µˆn(„1 ≠ 1) = µˆn(„1) (A.15)

This connection between the series generated by „1 and „ can be exploited in two
directions. One might estimate the the raw moments of P1(F ) from the cumulants
of an observational histogram P (F ) using k-statistics (the unbiased and minimum-
variance estimators of the cumulants). One might also write P (F ) as a Gram-Charlier-
Edgeworth expansion with cumulants directly determined from the raw momentss

F nP1(F )dF , without numerically passing through Fourier space. This second strat-
egy also yields the exceedance distribution of P (F ), relevant for determining point
source thresholds, via the Cornish-Fisher expansion. These expansions will fail to
reproduce the behaviour in the tails with high accuracy, but they could enable a
“series-expansion + MC” treatment of the computational transition from P1(F ) to
P (F ).
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In addition to these computational properties, notice that the characteristic function
„ of a random variable X, in analogy to the use of angular power spectra, can be
thought of as the complex square root of the what might be called the ‘chance spec-
tral density’ �

XX

= |„
X

|2. The function �
XX

(t) then quantifies the nonlocality of
features of X in the dimension of probability. For instance, the broadness or non-
gaussianity the peak of our flux probability distributions are nonlocal features that we
can use to characterise di�use backgrounds. The power-law behaviour of the tail and
the transition from peak to power-law tail (which may be the most astrophysically
distinctive feature of all!) are other “nonlocal” properties of potential interest.

Since characteristic functions are multiplicative for sums of random variables, we have
a similar multiplicative algebra for chance spectral densities:

� = �
XX

�
Y Y

· · · �
ZZ

(A.16)

The cross-spectral density �
XY

= „
X

„̄
Y

may be similarly defined to study whether
the probabilistically nonlocal features of two astrophysical fluxes are similar.

A.2.3 New Method: Free monoids generated by autoconvo-
lution

Despite the fancy maths needed to show this trick rigorously, the insight behind this
trick is very simple. Assume that all terms are i.i.d. with distribution P1. Notice
that

P4 = P2 ı P2 = (P1 ı P1) ı (same thing) (A.17)

so that computing P4 actually only requires two convolutions. Similarly, P8 and P16
and P32 and P(2N ) are cheap to compute if we compute them recursively. We can
compute a generic P

n

inexpensively by writing n as a binary numeral (say 667 =
10100110112) and then

P667 = P29 ı P27 ı P16 ı P8 ı P2 ı P1 (only 5 + 9 = 14 convolutions) (A.18)

If each binary digit of a generic number n has equal probability of being 0 or 1, then
with this trick there are of order 3/2 log2(n) convolutions to perform.

With this insight, it is easy to see that the trick relies on the representation theory
of the free monoid generated by P1 under convolution; namely that all free monoids
of rank one are isomorphic.2 The algorithmic implementation of this trick is then

2The use of a binary numeral system to accelerate the computation is then manifestly independent
of the actual trick, and may be replaced e.g. by numeral systems with a higher radix, if this could
be shown to improve the computation e�ciency.
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both very general and relatively concise; the complete Clojure implementation used
in Chapter 5 is given below.

(defn generate-free-monoidally [generator binary-op N]

; all free monoids of rank one are isomorphic to

; integers under addition, so we can use a binary

; radix representation to accelerate computations.

(let [

BN (Integer/toBinaryString N)

d (count BN) ; the number of digits

bootstrap (take d (iterate #(binary-op % %) generator))

nums (map #(Character/getNumericValue %) BN)

alist (map vector nums (reverse bootstrap))

temps (map second (filter #(= 1 (first %)) alist))

]

(reduce binary-op temps)))

; example usage

(generate-free-monoidally 2 + 3) ; -> 2+2+2 = 2 * 3

(generate-free-monoidally 2 * 3) ; -> 2*2*2 = 2 ˆ 3

; practically used as

(generate-free-monoidally P_1 convolution N)

Unfortunately, this trick is not well-suited to computing P
k

(F ), since we must marginalise
over the uncertainty on k; unless we have such a large number of sources that this
uncertainty is e�ectively negligible (cf. Chapter 4). It is useful, however, for adding
the flux distributions of many small pixels together, e.g. when coarse-graining or
stacking them.

Since this trick makes coarse-graining pixels relatively easy (especially after the flux
distribution has been discretised into a count distribution), it seems natural to ag-
gressively oversample the sky into tiny pixels, that can be merged at will later. This
can be relevant to instruments one wishes to describe as having variable pixel sizes
(for instance: PSFs which vary with energy), or when studying multiple instruments
simultaneously, each with a di�erent PSF. Oversampling with respect to the pSF by a
factor 2n decreases the typical number of sources per pixel by 4n, since Nper pix Ã ◊2

pix;
a thousandfold oversampling (210) yields a millionfold (220) decrease in the number of
sources per pixel we need to autoconvolve (by Monte-Carlo, Fourier space tricks, or
otherwise), with an overhead cost of the order of 3

2 log2(210) = 15 autoconvolutions
to coarse-grain them later. Of course, there is a fundamental limit beyond which
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this trick cannot be used: with su�ciently small pixels, we are no longer justified in
treating our sources as pointlike with respect to the pSF, and so the flux in each pixel
is no longer independent of the flux in neighbouring pixels.

A.3 Modeling of the IceCube e�ective area

We want to compute (distributionally) the counts registered in a pixel due to a neu-
trino intensity I

‹

= F
‹

/�pix incident on the detector. Given the distribution P (I
‹

|E
‹

)
of the energy-di�erential intensity I

‹

(E
‹

), and an energy-dependent e�ective area
A(E

‹

), we want to find the distribution P (µ
‹

) of the mean number of counts per
pixel,

µ
‹,per pix =

⁄
E‹,max

E‹,min

I
‹

(E
‹

) �pix A(E
‹

) t dE
‹

. (A.19)

In what follows, subscripts ‹ are suppressed for notational intelligibility.

A.3.1 Convolutive integration and neutrino fluxes

We can write the integral above as a Riemann sum, i.e.

µ = lim
NæŒ

N≠1ÿ

i=0
I(E + i�E)A(E + i�E)t� �E , (A.20)

where �E = (Emax ≠ Emin)/N . We see that µ is a normalised sum µ = (X0 + X1 +
· · · + X

N≠1)/N of an infinite number of random variables X ≥ IA�t, for which we
might expect the central limit theorem (CLT) to hold. These X

i

are not identically
distributed (so the “classical” CLT does not work) but they are independent, so
we might be able to use the Lyapunov CLT [87]. However it is easy to show that
this extended CLT does not apply either (the Lyapunov Condition is violated for
our power-law tailed distributions P (I|E)), i.e. that P (µ) need not to be Gaussian.
Heuristically, if our Riemann sum is µ ≥ (X0 +X1 + · · ·+X

N≠1) then the distribution
of this infinite sum is the infinite convolution

P (µ) ≥ lim
NæŒ

N≠1
F
i=0

P (X
i

) , (A.21)

where we recall that P (· · · ) denotes a probability density function. See Figure A.1
for a schematic of this convolution with N = 4.

Less informally, let µ =
s

(X|E)dE denote an integrated conditional random variable
(the “primitive function” or “antiderivative” of the conditional variable X|E œ R+
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Figure A.1: Schematic of the integration of a conditional random variable. Specif-
ically, this illustrates the computation of the mean-count distribution P (µ), where
µ =

s
F

‹

ATdE
‹

with T constant and F
‹

= I
‹

�. Since integrals look like sums, the
probability distribution of an integrated quantity is the convolution of the distribu-
tions of the integrand as a function of the variable of integration.
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with respect to the random variable E). For our purposes, the probability distribution
function of E need not be specified beyond the fact that two fixed limits of integration
Emin and Emax live within the support of P (E). We can then express the distribution
function P (µ) as

P (µ|Emin Æ E < Emax) = lim
NæŒ

N≠1
F
i=0

S

U”

Q

aµ ≠
N≠1ÿ

j=0
X

j

R

b P (X
i

| E = Emin + i�E)

T

V ,

(A.22)
where �E = (Emax ≠Emin)/N and where ”(µ≠q

X) enforces the Riemann sum on the
independent summands X

i

. This expression of course follows from the marginalisation
of

P (µ, X0, · · · , X
N≠1) = P (µ|X0, · · · , X

N≠1)P (X0) · · · P (X
N≠1), (A.23)

with P (µ|X’s) = ”(µ ≠ q
X) and N æ Œ. A formal definition and study of this

operation (presumably in terms of the Itô-Stratonovic stochastic integral [198]) is left
to future work, in what follows we adopt physically motivated assumptions in order
to compute it. Also, it will be clearer to condense this limit of many convolutions
into the notation

P (µ|Emin Æ E < Emax) ©
E

max

F
⁄

E
min

P (X|E)dE . (A.24)

Although this quantity is mathematically interesting, in practice we can not compute
a number N æ Œ of convolutions. Since convolution is associative, convolutive
integration is composable in its boundaries:

c

F
⁄

a

P (F |E)dE =

Q

a
b

F
⁄

a

P (F |E)dE

R

bF

Q

a
c

F
⁄

b

P (F |E)dE

R

b . (A.25)

Using this property and working with integrated fluxes S =
s

FdE, we can approx-
imate the convolutive integral of di�erential fluxes as the convolution of integrated
fluxes:

F
⁄

�E

P (F |E)dE ¥
N≠1
F
i=0

P (S|”E
i

) . (A.26)

This distributionally reproduces the insight (conveyed in the main text) that the flux
S is an extensive quantity (with respect to E), so that the flux over a sum of bins is
the sum of the fluxes in each bin S(�E) =

q
i

S(”E
i

). With this understanding, we
can finally compute

P (µ|�E) ¥
N≠1
F
i=0

P (S
i

◊ A
i

◊ t | ”E
i

) , (A.27)
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where the number of convolutions is chosen large enough that A(E) can be treated
as a constant A

i

in each subbin ”E
i

.

A.3.2 Declination dependence

In addition to this energy-dependence, note that the e�ective area is also declination
dependent. In our analysis we simply use the central declination of each pixel to com-
pute A(E). For showers, HealPix [153] generates pixels at seven di�erent latitudes,
calling for seven computations of P (C) for each source class, for each of the two event
topologies, and for each of the three energy bins. For tracks, HealPix generates 255
di�erent latitudes. To facilitate comparisons we compute P (C) at the same seven
latitudes as for showers and use whichever declination is closest. This is particularly
relevant for our discussion of clustering in Sec. 5.4.2, where the distributions in tracks
were coarse-grained to the scale of showers by autoconvolution. This shortcut can
only be exploited if we restrict ourselves to components with at most iso-latitudinal
variations such as (to a good approximation) the atmospheric component [146]. A
dedicated analysis of truly anisotropic components, such as the neutrino contribution
of the Galactic plane [103], is left to future work.

A.3.3 Flavour dependence

IceCube provides a separate estimation of the e�ective area for each of the three
flavours, which we interpolate in declination and energy in order to use the formalism
above. However, the e�ective area for tracks and showers depends on the probability
p

e/µ/·

T/S

that a neutrino of a given flavour (sampled randomly from the total neutrino
flux) produces a charged or a neutral current interaction in the ice. We use the
approximation [152]

{pµ

T

= 0.8, pµ

S

= 0.2, p
e/·

S

= 1, p
e/·

T

= 0} (A.28)

to write
A

T/S

= 2
ÿ

fœ{e,µ,·}

pf

T/S

◊ Af ◊ ÷f , (A.29)

where Af is the flavour-energy-and-declination dependent quantity given by IceCube
[95] and ÷f is the fraction of neutrinos of a given flavour (÷ = 1/3 for a 1 : 1 : 1
flavour ratio). We multiply the e�ective area by 2 since the sum does not run over
antineutrinos, e�ectively setting equal neutrino and antineutrino fluxes. We employ
a 1 : 1 : 1 ratio for all extragalactic components, a 0 : 1 : 0 flavour ratio for the
conventional atmospheric flux, and a 1 : 1 : 0 ratio for the prompt atmospheric flux
[147]. Percent-level atmospheric contributions from ‹

e

and ‹
·

fluxes (respectively)
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[146, 147] are neglected, as are the neutrino-antineutrino ratios, although the fully
detailed (even energy-dependent) flavour ratios can manifestly be accounted for in
this type of analysis.

A.4 Power-law Tricks

A.4.1 Sampling from a Broken Power-law

This is a trick for inexpensively sampling from a probability distribution described by
a broken power-law. Suppose we have the following bounded (x œ [x0, x

max

]) broken
(slopes ≠–

i

above breaks x
i

) power-law:

f(x) = A(x/x0)≠–

0 if x0 < x < x1 (A.30)
= A(x1/x0)≠–

0(x/x1)≠–

1 if x1 < x < x2

· · ·
= A

C
nŸ

i=1
(x

i

/x
i≠1)≠–i≠1

D
(x/x

n

)≠–n if x
n

< x < x
n+1

where n is the number of breaks and A is the normalisation constant required for the
distribution to be normalised as

s
f(x)dx = 1:

A≠1 =
nÿ

j=0
�(x

j

< x < x
j+1)

Ÿ

i<j

3
x

i

x
i≠1

4≠–i

x
+–j

j

C
x

1≠–j

j+1
1 ≠ –

j

≠ x
1≠–j

j

1 ≠ –
j

D
(A.31)

The CDF of this distribution is then easy to obtain recursively, as:

CDF (x Æ x0) = 0

CDF (x0 < x Æ x1) = A

1 ≠ –0

3
x1≠–

0

x≠–

0

0
≠ x0

4

CDF (x
n

< x Æ x
n+1) = CDF (x

n

) + A

1 ≠ –
n

A
x1≠–n

x≠–n
n≠1

≠ x
n

B
nŸ

i=1

3
x

i

x
i≠1

4≠–i

CDF (x
max

< x) = 1

Furthermore, this CDF is itself a broken power-law; so an inverse CDF can be obtained
piecewise... The first segment is the inversion of

„(x) = A

1 ≠ –0

3
x1≠–

0

x≠–

0

0
≠ x0

4
, 0 < „ < CDF (x1)
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into

x(„) = x
≠–

0

1≠–
0

0

3
1 ≠ –0

A
„ + x0

4 1

1≠–
0

Meanwhile, any other segment inverts into

x(„) = x
≠–n

1≠–n
n

AC
1 ≠ –

n

A
(„ ≠ CDF (x

n

))
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i=1

3
x

i≠1
x

i

4≠–i
D

+ x
n

B 1

1≠–n

,

where „ is drawn from the subset CDF (x
n

) < „ < CDF (x
n+1) of the interval [0, 1].

The following implementation of this strategy is proposed: save all the tuples {CDF (x
n

), n}
as an ordered list. Draw „ from [0,1] and determine which segment n we have drawn
using comparions „ < CDF (x

n

). Use n as an index to get x
n

and –
n

quantities,
and „ to call the formula. This was used to draw from the singly-broken power-law
P1(S) Ã dN/dS of blazars in Chapter 5, to cheaply compute the total P (S). Note,
however, that any function is a piecewise broken power-law: this could just as easily
be applied to other P1(F ) distributions, amongst other applications.

A.4.2 Systematically Harder Mean due to Uncertain Slopes

In chapter 5, it is stated without proof that the average of a distribution with a
spectral power-law of uncertain slope is biased according to

ÈF Í = ÈF0Í ◊
3

E0
E

4È�Í+‡

2

�

/2
. (A.32)

What follows is the derivation of this result.

Consider the flux parameterised as

F = F0 ◊
3

E

E0

4≠�

where � is Normally distributed. The distribution of this product of (assumed inde-
pendent) random variables is then

P (F ) =
⁄

P (F0) ◊ P

3
F

F0

4
dF0
|F0| ,

F

F0
=

3
E

E0

4≠�
. (A.33)

For a di�use background, the distribution of F0 will be roughly Gaussian with a
power-law tail as studied previously; The distribution of the spectral term will be
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lognormal:

� ≥ N (È�Í, ‡2
�)

ln(E0/E)� ≥ N (ln(E0/E)È�Í, ln(E0/E)‡2
�)

(E/E0)≠� ≥ LN (ln(E0/E)È�Í, ln(E0/E)‡2
�)

where LN (x|µ, ‡) = 1
x

Ô
2fi‡2

exp
5
≠ (ln x ≠ µ)2

2‡2

6

The mean, median, and mode of a lognormal LN (µ, ‡2) are exp(µ+‡2/2), exp(µ), and
exp(µ ≠ ‡2) respectively. The spectra we work with are (usually) the mean spectra,
so consider computing the mean of P (F ) with special attention to the consequences
of this lognormal.

The mean flux at energy E is ÈF Í =
s

FP (F )dF . We can exchange this integral and
the one from Eqn. (A.33) to write

ÈF Í =
⁄

dF0

5
P (F0)
|F0| ◊

⁄
dFFP

3
F

F0

46
(A.34)

One may change variables as dF = F0d

51
E

E

0

2≠�
6

to simplify this innermost integral.
We have

⁄
dFFP

3
F

F0

4
= F 2

0

⁄
d

C3
E

E0

4≠�
D 3

E

E0

4≠�
P

A3
E

E0

4≠�
B

(A.35)

With these variables, we can easily recognise this as the mean exp(µ + ‡2/2) of the
lognormal distribution given above. We then have

ÈF Í =
⁄

dF0|F0|P (F0) ◊ exp
!
ln(E0/E)È�Í + ln(E0/E)‡2

�/2
"

where the factors of F 2
0 and |F0|≠1 combine into |F0|. This rightmost term benefits

from the simplification exp(ln(a) ◊ b) = ab; it is also independent of F0, and can be
taken outside the integral. Recognising the mean ÈF0Í =

s
dF0F0P (F0) for F0 > 0 at

the energy E0, we finally write

ÈF Í = ÈF0Í ◊
3

E0
E

4È�Í+‡

2

�

/2
(A.36)
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About the Epigraph

The epigraph may be translated as follows:

[...] Thus at that time, when bindings unbind, (72)
when the so many centuries of the world will have brought together the last hour,
everything will fall back down, once more into the first emptiness; when intermixed
the stars with stars will collide; fiery into the sea (75)
stars will crash down; the earth will not contain the shores
and the turbulent sea will spread [...] (77)

This passage was included primarily for the phrase mixtis sidera sideribus concurrent,
which in the context is understood to refer to cataclysmic astrophysical collisions,
but can also be (not too liberally) translated as “The stars will assemble together in
multitudes and be mixed with other stars”. In other words, they will form a di�use
background of confused sources, the exact problem that the one-point method is
meant to solve.

In a broader context, the eschatological tone of the passage is appropriate given that
a thesis marks the end of one’s doctoral studies, the oral defense being a literal
suprema hora. The threat of sudden changes to the shoreline as seas flood inland is
also a relevant theme (We’re in the Netherlands, after all!).

The poetry itself is also rather beautiful, although di�cult to capture in translation.
Lucan uses inflection to express each grammatical element in an ABAB scheme, struc-
turally complementing the imagery of violent mixing of the heavens, the earth and
the sea. These grammatical elements initially follow the versification (73); but grad-
ually enjambs across verses, eventually creating double enjambments in which each
grammatical pairing is torn across two lines (75-76, 76-77); this again structurally
complements the violent chaos of the imagery. This chaos is also reflected in the
constantly-changing lexical redundancy structure of each grammatical element.
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