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Weighted Guttman Errors: Handling Ties
and Two-Level Data

Letty Koopman, Bonne J. H. Zijlstra, and L. Andries van der Ark

Abstract We provide an introduction to weighted Guttman errors and discuss two
problems in computing weighted Guttman errors that are currently not handled cor-
rectly by all software: Handling ties—that is, computing weighted Guttman errors
when two items have the same estimated popularity—and computing weighted
Guttman errors when the data have a two-level structure. Handling ties can be
incorporated easily in existing software. For computing weighted Guttman errors
for two-level data, we provide an R function.

Keywords Guttman errors • Item ordering • Mokken scale analysis • Multilevel
test data • Nonparametric item response theory

1 Introduction

For a pair of dichotomous items in descending order of popularity, a Guttman error
(Guttman 1950) occurs if a respondent answers negatively to the first (more popular
or easier) item and positively to the second (less popular or more difficult) item.
Hence, if item 1 is more popular than item 2, the item-score vector (0, 1) constitutes
a Guttman error, whereas (0, 0), (1, 0), and (1, 1) are admissible item-score vectors.
Guttman errors are violations of the deterministic Guttman (1950) scale. Guttman
errors are used for detecting outliers (e.g., Zijlstra et al. 2007) and aberrant response
patterns (e.g., Meijer 1994 Karabatsos 2003) and for computing Mokken’s (1971)
scalability coefficients in Mokken scale analysis (Sijtsma and Molenaar 2002; also
see Sijtsma and Van der Ark 2017; Snijders 2001a). For a pair of polytomous
items, multiple item-score vectors can constitute a Guttman error, making both the
calculation and the interpretation of Guttman errors more complicated. Molenaar
(1991) proposed to weight the Guttman errors to acknowledge that the degree
in which item-score vectors are aberrant may differ. For example, consider two
polytomous items, each having ordered answer categories 0 , 1 , 2 , 3 , 4. Suppose
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item 1 is more popular than item 2, then item-score vector (0, 4) is more aberrant
than item-score vector (0, 1).

In recent work on deriving standard errors for two-level scalability coefficients
(Koopman 2016), we encountered two problems in estimating the weights of
Guttman errors: Estimated weights depend on the value of a random seed when two
or more estimated item popularities are equal, and estimated weights may be biased
for two-level data. In this chapter, we first introduce weighted Guttman errors, then
we discuss the two problems and offer a solution for each problem, and finally we
discuss some additional features of (two-level) weight computations.

2 Weighted Guttman Errors

2.1 Theory

Let a test consist of J items with m C 1 ordered response categories indexed
by x (x D 0 , 1 , : : : , m). Let Xj denote the item score of item j. Each item
score consists of m item steps (Molenaar 1983), binary variables denoted Zjx

(j D 1 , : : : , J ; x D 1 , : : : , m). Zjx D 1 if Xj � x (the item step was passed) and
Zjx D 0 if Xj < x (the item step was failed). It follows that Zj , x � 1 � Zjx and
Xj D P

xZjx. For example, if Xj D 1 and m D 3, then Zj1 D 1, Zj2 D 0, and Zj3 D 0.
Let the popularity of item step Zjx be the probability of having a score of at least x
on item j: P(Zjx) � P(Xj � x). Note that by definition, P(Xj � 0) D 1. Let znjx denote
the realization of Zjx for person n, then, in a sample of N respondents, P(Xj � x) is
estimated by

bP
�
Xj � x

� D 1

N

NX

nD1

znjx: (1)

Item pair (i, j) has 2m item steps: Zi1 , : : : , Zim , Zj1 , : : : , Zjm. For the purpose of
determining weighted Guttman errors, the 2m item steps are put in descending order
of their popularity. For example, Table 1 shows J D 2 items with m C 1 D 3 ordered
response categories, for which P(Zi1) > P(Zj1) > P(Zi2) > P(Zj2). Hence, the order of
the item steps is

Zi1; Zj1; Zi2; Zj2: (2)

Table 1 Probabilities of item
scores Xi and Xj, with
m C 1 D 3 ordered answer
categories

Xj

Xi 0 1 2 P .Xi D x/ P
�
Xj � x

�

0 0.08 0.16 0.00 0.24 1.00
1 0.04 0.04 0.24 0.32 0.76
2 0.36 0.08 0.00 0.44 0.44
P .Xi D x/ 0.48 0.028 0.24
P

�
Xj � x

�
1.00 0.52 0.24
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For notational convenience the subscripts jx in the item steps may be replaced
by subscripts (1) , (2) , : : : , (2m) indicating the order of the item steps in an
item pair. In this notation, Eq. (2) equals Z(1) , Z(2) , Z(3) , Z(4). For each item
pair, item-score pattern (x, y) corresponds a specific realization of the ordered
item steps. For example, for Eq. (2), item-score pattern (0,2) corresponds to
Zi1 D 0 , Zj1 D 1 , Zi2 D 0 , Zj2 D 1. In a Guttman scale, the ordered item steps are
strictly nonincreasing: Once a more popular item step is failed, a less popular item
step cannot be passed. For example, in a Guttman scale, admissible values for Eq.
(2) are 0,0,0,0; 1,0,0,0; 1,1,0,0; 1,1,1,0; and 1,1,1,1, which correspond to item-score
patterns (0,0), (1,0), (1,1), (2,1), and (2,2), respectively. A Guttman error occurs
if a less popular item step is passed while a more popular item step is failed. For
Eq. (2), realizations 0,1,0,0 ; 0,1,0,1 ; 1,1,0,1; and 1,0,1,0 which correspond to item-
score patterns (0, 1), (0, 2), (1, 2), and (2, 0), respectively—are Guttman errors.

The weight of a Guttman error, denoted wxy
ij , indicates the degree of deviation

from the perfect Guttman scale (Molenaar 1991). Let zxy
.h/ denote the realization of

the hth (1 � h � 2m) item step corresponding to the item-score pattern (x, y). The
weight is computed as

wxy
ij D

2mX

hD2

8
<

:
zxy
.h/

2

4
h�1X

gD1

�
1 � zxy

.g/

�
3

5

9
=

;
(3)

(see, e.g., Kuijpers et al. 2013). Note that Eq. (3) counts the number of times a more
difficult item step was passed, while an easier item step was failed. For admissible
item-score patterns, the corresponding weights are zero, whereas for Guttman
errors, the weights are positive. For example, assuming the order of the item steps
in Eq. (2) is correct, for item-score pattern (0, 2), z02

.1/ D 0, z02
.2/ D 1, z02

.3/ D 0, and

z02
.4/ D 1. Hence, following Eq. (3), w02

ij D 1�Œ1�C0�Œ1 C 0�C1�Œ1 C 0 C 1� D 3.
Also note that for dichotomous items, the only item-score pattern that constitutes a
Guttman error (i.e., either (0 , 1) or (1,0)) receives a weight 1 by definition. Hence,
for dichotomous items weighting the Guttman errors has no effect.

In samples, weights wxy
ij are estimated from the order of the item steps in the

sample with Eq. (1) and denoted bwxy
ij . Typically, wxy

ij and bwxy
ij are the same, but when

the sample is small or when the popularities of two item steps are close, wxy
ij and bwxy

ij
may differ (for more information on this topic, we refer to Kuijpers et al. 2016).

2.2 Applications

Weighted Guttman errors are used to compute scalability coefficients in Mokken
scale analysis. Mokken (1971) discussed scalability coefficients for dichotomous
items, Molenaar (1983, 1991, 1997) generalized the scalability coefficients to
polytomous items, and Snijders (2001a, also, see Crisan et al. 2016) general-
ized the scalability coefficients to two-level data. The scalability coefficients are
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implemented in several software packages, including the stand-alone package MSP
(Molenaar and Sijtsma 2000) and the R package mokken (Van der Ark 2012).
Mokken’s (1971) item-pair scalability coefficient Hij can be written as a function
of the Guttman weights and the univariate and bivariate item probabilities:

Hij D 1 �
P

x

P
ywxy

ij P
�
Xi D x; Xj D y

�

P
x

P
ywxy

ij P .Xi D x/ P
�
Xj D y

� : (4)

Note that if unweighted Guttman errors were used, weights wxy
ij only take on

the values 0 and 1. By using weighted Guttman errors, Hij equals the ratio of the
inter-item correlation and the maximum inter-item correlation given the marginal
distributions of the two items (Molenaar 1991).

In a sample of size N, the item-pair scalability coefficient is estimated by
replacing the weights in Eq. (4) by the estimated weights and replacing the
probabilities by the sample proportions, that is,

bHij D 1 �
P

x

P
y bwxy

ij
bP

�
Xi D x; Xj D y

�

P
x

P
y bwxy

ij
bP .Xi D x/bP

�
Xj D y

� D 1 � Fij

Eij
: (5)

Fij D N
P

x

P
y bwxy

ij
bP

�
Xi D x; Xj D y

�
expresses the weighted sum of observed

Guttman errors, and Eij D N
P

x

P
y bwxy

ij
bP .Xi D x/bP

�
Xj D y

�
the weighted sum of

Guttman errors expected when the two items are marginally independent.
Weighted Guttman errors are also used as an index to detect outliers and as a

person-fit statistic. In these applications, the total of estimated Guttman weights
within a response pattern is used. Let xni denote the observed score of person n on
item i, and let ynj denote the observed score of person n on item j. Using the notation
of Zijlstra et al. (2007), index GC for respondent n equals

GnC D
X X

i<j
bw

xniynj

ij : (6)

The function check.errors() in the R package mokken provides weighted
Guttman errors for each observation.

3 Computational Problems

3.1 Problem 1: Ties

Estimating Guttman weights can be problematic if two estimated item steps have the
same popularity. If the estimated item steps pertain to the same item, bP

�
Xj � x

� D
bP

�
Xj � x C 1

�
, it means that no one in the sample had score x on item j. The

ordering of the estimated item steps is not affected because item steps have a fixed
order within an item, and estimating Guttman errors is not problematic. However, if
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Table 2 Cross-classification
of item scores Xi and Xj, with
m C 1 D 3 ordered answer
categories, for N D 15
respondents

Xj

Xi 0 1 2 Total bP .Xi � x/

0 2 4 0 6 1.00
1 1 1 0 2 0.60
2 3 2 2 7 0.47
Total 6 7 2 15
bP

�
Xj � y

�
1.00 0.60 0.13

Table 3 Observed and expected frequencies, Guttman weights under two possible item-step
orderings, and their mean, for each response pattern in Table 2

Item-score vector
00 01 02 10 11 12 20 21 22

N � bP
�
Xi D x; Xj D y

�
2 4 0 1 1 0 3 2 2

N � bP .Xi D x/bP
�
Xj D y

�
2.40 2.80 0.80 0.80 0.93 0.27 2.80 3.27 0.93

wxy
ij 1 0 1 3 0 0 1 1 0 0

wxy
ij 2 0 0 2 1 0 1 2 0 0

Nwxy
ij 0 0.5 2.5 0.5 0 1 1.5 0 0

For details, see text

the equally popular estimated item steps pertain to two different items, bP .Xi � x/ D
bP

�
Xj � y

�
, the item-step ordering cannot be determined. As an example, Table

2 shows the frequencies of the response patterns of N D 15 respondents, for two
polytomous items with three response categories. For these data, bP .Xi � 1/ D
bP

�
Xj � 1

� D 0:6, so the order of the item steps is either Zi1 , Zj1 , Zi2 , Zj2 or
Zj1 , Zi1 , Zi2 , Zj2.

Currently, the software program mokken (Van der Ark 2012) adds a small
random value to the estimated popularities to avoid equal item steps. There are two
downsides to this approach. First, one item step is randomly assigned to be more
popular than the other item step without theoretical justification. Second, analyzing
the same data twice may result in different weights and, thus, different scalability
coefficients.

Molenaar (1991) suggested computing the weights for all combinations of
equivalent item-step orderings. For each item-score vector in Table 2, Table 3 shows
the observed frequencies (N � bP

�
Xi D x; Xj D y

�
), the expected frequencies under

marginal independence (N � bP .Xi D x/bP
�
Xj D y

�
), the resulting weights given

item-step ordering Zi1 , Zj1 , Zi2 , Zj2 (bwxy
ij 1), the resulting weights given item-step

ordering Zj1 , Zi1 , Zi2 , Zj2 (bwxy
ij 2), and the average of the two weights. For both

item-step orderings, the weighted sum of Guttman errors results in Fij D 7 and
Eij D 8.27 (yielding bHij � 0:15). Therefore, for scalability coefficients, the item-step
order does not affect the outcome (Molenaar 1991). However, for individual-level
statistics, such as the person-fit index GC (Eq. (6)), the item-step order matters. For
example, a person with item-score vector (0,2) has value GC D 3 for the first item-
step ordering and GC D 2 for the second item-step ordering. Because both item-step
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orderings are equally likely in the population, the average weight (Table 3, last row)
is considered more appropriate as opposed to randomly favouring one ordering over
the other, and results in a value of GC D 2.5.

3.2 Problem 2: Estimating the Item Ordering for Two-Level
Test Data

In Mokken scale analysis for two-level data, Xsrj denotes the response of subject s
(s D 1, : : : , S) to item j (j D 1, : : : J) scored by rater (r D 1, : : : , Rs). As with one-
level data, item step Zjx D 1 if X � x, and Zjx D 0, otherwise. The problem is that the
order of the item steps, and hence the value of the Guttman weights, depends on the
estimation method for P(Xj � x). P(Xj � x) can be estimated in two ways (Snijders
2001a), possibly yielding different estimates. Let Zsrjx, with realization zsrjx, be a
binary variable that takes on the value one if Xsrj � x, and zero otherwise. First,
P(Xj � x) can be estimated by averaging the relative frequencies for all subjects,
that is,

bP
�
Xj � x

� D 1

S

SX

sD1

1

Rs

RsX

rD1

zsrjx; (7)

and, second, P(Xj � 1) can be estimated by averaging the absolute frequencies for
all subjects, that is,

bP
�
Xj � x

� D 1
PS

sD1 Rs

SX

sD1

RsX

rD1

zsrjx: (8)

The example in Table 4 (last two rows) shows that the estimation methods do
not only result in different estimates but also in different ordering of item steps.
When averaging the relative frequencies of all subjects in Eq. (7), the ordering of
the item steps is Zi1 , Zj1 , Zi2 , Zj2, and when averaging the absolute frequencies of

Table 4 Values of
PRs

rD1zsrjx for J D 2 items, each having three ordered response categories,
S D 3 subjects who are rated by Rs D 10 , 3 , 10 raters, respectively, and the values of bP

�
Xj � x

�

using Eqs. (7) and (8), respectively

Xi Xj

s x � 0 x � 1 x � 2 x � 0 x � 1 x � 2 Rs

1 10 4 2 10 3 3 10
2 3 2 2 3 3 2 3
3 10 4 2 10 3 3 10
Equation (7) 1.00 0.49 0.36 1.00 0.43 0.26
Equation (8) 1.00 0.53 0.42 1.00 0.39 0.35
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all subjects in Eq. (8), the ordering of the item steps is Zi1 , Zi2 , Zj1 , Zj2. Snijders
(2001a) argued that averaging the relative frequencies in Eq. (7) is the preferred
method, as averaging the absolute frequencies is biased under certain conditions.

4 Discussion

Two problems with the weighted Guttman errors have been addressed and described
in this chapter. The solution to the problem of ties can be incorporated in the
software easily. The software program MSP prints a warning when ties are present.
As far as we know, the DOS program TWOMOK (Snijders 2001b) is the only
software for two-level scalability coefficients. Because it pertains to dichotomous
items only, weighted Guttman errors are not an issue. A new R function to
compute weighted Guttman errors for dichotomous and polytomous two-level item
scores is called MLweight().The function is described in Koopman (2016). The
main goal of MLweight() is to allow the computation of Mokken’s scalability
coefficients for two-level data in the function MLcoefH(). Both functions have
been implemented in the R package mokken.
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