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When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at
a time while the other stimulus is invisible due to interocular suppression. When both
stimuli are equally potent in competing for awareness, perception alternates spontaneously
between the two stimuli, a phenomenon called binocular rivalry. However, when one
stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can
be suppressed for prolonged periods of time. A technique that has recently become
very popular for the investigation of unconscious visual processing is continuous flash
suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-
contrast stimulus shown to the other eye invisible for up to minutes. Studies using
CFS have produced new insights but also controversies regarding the types of visual
information that can be processed unconsciously as well as the neural sites and the
relevance of such unconscious processing. Here, we review the current state of knowledge
in regard to neural processing of interocularly suppressed information. Focusing on recent
neuroimaging findings, we discuss whether and to what degree such suppressed visual
information is processed at early and more advanced levels of the visual processing
hierarchy. We review controversial findings related to the influence of attention on early
visual processing under interocular suppression, the putative differential roles of dorsal
and ventral areas in unconscious object processing, and evidence suggesting privileged
unconscious processing of emotional and other socially relevant information. On a more
general note, we discuss methodological and conceptual issues, from practical issues of
how unawareness of a stimulus is assessed to the overarching question of what constitutes
an adequate operational definition of unawareness. Finally, we propose approaches for
future research to resolve current controversies in this exciting research area.
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INTRODUCTION
When two conflicting images are presented to the two eyes, they
usually do not merge into a mixture, but rather tend to rival for
exclusive perceptual dominance. When both stimuli are equally
potent in competing for dominance, such binocular rivalry typ-
ically results in perceptual alternations between the two images
every few seconds, similar to other bistable perceptual phenom-
ena that occur during viewing of ambiguous visual stimuli such
as the Necker cube or ambiguous motion stimuli (Blake and
Logothetis, 2002; Sterzer et al., 2009b). Whenever one of the two
rivaling images dominates conscious perception, the other respec-
tive image is suppressed from conscious awareness for several
seconds. This interocular suppression of visual stimuli through
binocular rivalry offers a unique opportunity to study neural
responses to visual stimuli in the absence of conscious awareness.
However, the assessment of awareness during binocular rivalry
in its traditional form is complicated by the fact that it relies
entirely on the observers’ reports about their subjective visual
experience. Moreover, dominance of one image and suppression
of the other image are not always complete (piecemeal rivalry) and

transitions between perceptual states occur largely stochastically
and are thus unpredictable to both the observer and the experi-
menter (Blake and Logothetis, 2002). It is therefore, on the basis of
subjective reports of perceptual states during conventional binoc-
ular rivalry, difficult to reliably determine at which time exactly
an image is suppressed and whether it is fully suppressed from
awareness.

One variant of binocular rivalry that allows the experimenter
to control perceptual dominance at least for brief periods of time
is a technique called flash suppression (Wolfe, 1984): when one
of the two rivaling images is presented first monocularly, fol-
lowed by binocular presentation of the two images, the image
presented first is likely to be suppressed from awareness at the
beginning of binocular presentation. A further modification of
this technique, continuous flash suppression (CFS), can be used
to reliably suppress an image for several seconds or even min-
utes. For CFS, dynamic high-contrast Mondrian-like patterns
(also referred to as CFS masks) are flashed to one eye, render-
ing lower-contrast stimuli presented to the other eye invisible
for extended periods of time (Tsuchiya and Koch, 2005). It
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should be mentioned that it is not yet clear whether CFS should
be regarded as a variant of binocular rivalry that induces par-
ticularly strong suppression (Shimaoka and Kaneko, 2011), or
whether CFS is supported by mechanisms distinct from binocular
rivalry (Tsuchiya et al., 2006).

In the following, we critically review research that exam-
ined the neural fate of stimulus information that is suppressed
from awareness through interocular suppression, with a focus
on the neuroimaging literature. In the first section of this arti-
cle, we discuss methodological problems in the neuroscientific
study of unconscious information processing that pose challenges
for the interpretation of the neural signals measured in response
to suppressed visual stimuli. The second section reviews stud-
ies that investigated the processing of suppressed stimuli in early
visual cortex and, in particular, the relationship of awareness
and attention in early visual processing. The final part of this
article is concerned with the processing of suppressed stimuli
in higher-level visual areas, highlighting a recent controversy in
regard to dissociable roles of ventral and dorsal stream areas in
unconscious information processing. We will close by pointing
out possible approaches that we think might help to tackle the
methodological problems and heterogeneity of findings in future
research.

OBJECTIVE VS. SUBJECTIVE MEASURES OF
(UN-)AWARENESS
When conducting research on the neural correlates of visual infor-
mation processing outside awareness, the experimenter has no
direct access to the participant’s subjective visual experience of
the presented stimuli (Malach, 2008; Seth et al., 2008). Thus,
the desired correlation between specific conscious contents (e.g.,
stimulus seen or not seen) and neuronal activity cannot be
directly measured. Ultimately, only correlations between behav-
ioral indications of conscious contents (e.g., verbal reports, button
presses) and measures of brain states [e.g., functional magnetic
resonance imaging (fMRI), electroencephalography (EEG), mag-
netoencephalography (MEG)] can be investigated (Overgaard,
2006). As a consequence, activity related to conscious contents
needs to be disentangled from response-related and all other unre-
lated neuronal activity (Aru et al., 2012; de Graaf et al., 2012;
Frassle et al., 2014). At a more fundamental level, the question
of which type of behavioral report classifies as a valid measure
of awareness needs to be answered. Not surprisingly, the debate
on the optimal measure of conscious vs. unconscious perception
has been a long-standing one in the cognitive sciences (Rein-
gold and Merikle, 1990; Merikle and Reingold, 1998; Kunimoto
et al., 2001). An important conceptual and methodological aspect
of studies investigating visual processing under interocular sup-
pression concerns the assessment of unawareness of a stimulus
(Snodgrass, 2004; Pessoa, 2005). The fundamental problem with
observers’ introspective reports regarding their unawareness of a
stimulus is that their report critically depends on subjective cri-
teria. Accordingly, the major criticism of introspection has been
that subjective reports are generally susceptible to influences of
response bias (Eriksen, 1960; Holender, 1986). Especially in the
face of weak or noisy signals, observers might show systemati-
cally low confidence in a visual discrimination task, which could

be falsely interpreted as an absence of awareness even though a
trace of awareness was present but not reported (Bjorkman et al.,
1993).

In contrast to such subjective measures of unawareness, an
observer can be regarded as objectively unaware when perfor-
mance in a “forced-choice” task is at chance level. For instance,
when participants have to report in which of two successive inter-
vals a target stimulus was presented, or whether the stimulus
belonged to category A or B, above chance level performance
indicates awareness of the stimulus, whereas performance not
significantly different from chance level indicates the absence of
awareness. In the examples given above, chance level in the two-
alternative forced-choice tasks would be expressed as 50%, or as
d′ = 0, with d′ representing the perceptual sensitivity measure
within the mathematical framework of signal detection theory
widely used in psychophysics (Green and Swets, 1966; Macmillan
and Creelman, 1991). A challenge to the purely objective crite-
rion is the conceivable situation in which participants perform
above chance in one task, whereas their performance is at chance
level in another task related to the same stimulus. For instance,
observers can be at chance level in discriminating the orientation
of a pattern while being significantly above chance level in dis-
criminating its location (Zadbood et al., 2011; see also Hong and
Blake, 2009). When measuring neural signals associated with the
presentation of stimuli outside awareness, it is thus important to
precisely define which aspects of the stimuli observers are unaware
of. Here we argue that chance level performance has to be demon-
strated for the same discrimination that constitutes the dimension
of interest in concurrent brain activity recordings. For example,
when brain responses to supposedly invisible fearful vs. neutral
faces are recorded, participants should be at chance in discrimi-
nating between fearful and neutral faces (and not in discriminating
between, e.g., intact and scrambled faces).

A critical point concerning objective measures of unawareness
is the statistical method that is used to prove that performance is
“at chance level.” For the objective criterion, one needs to assure
that the null hypothesis is true. In this case classical statistics –
which test how likely it is for the observed data to occur if the
null hypothesis were true – are insufficient (Merikle and Dane-
man, 2000; Schmidt and Vorberg, 2006). If testing the data against
0, using for example a t-test, a p-value smaller than 0.05 implies
that the null hypothesis can be rejected with an error probabil-
ity smaller than 5%. However, a p-value >0.05 does not imply
that the null hypothesis is true. In that case the test just has no
result, that is, the evidence is not sufficient to support a conclu-
sion (Dienes, 2011). Other statistical methods are therefore needed
when our goal is to state evidence for the null hypothesis, which
is the case when we want to establish chance-level performance as
a proof of objective unawareness. Possible solutions are the use of
power analyses (Faul et al., 2007), equivalence confidence intervals
(Berger and Hsu, 1996; Overgaard et al., 2013), or Bayesian statis-
tics. In Bayesian statistics, the posterior probability of a hypothesis
is tested conditional on the observed data and a prior probability.
It is thus possible to directly test two hypotheses against each other
and – more importantly – compute a probability value for each of
these hypotheses, also if one of them is the null hypothesis. For
Bayesian statistics, the two hypotheses need to be defined in terms
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of prior probability distributions, or “priors.” The null hypothesis
can be defined as a Dirac delta function, i.e., a function in which
every x-value is 0 except at 0. The alternative hypothesis should be
modeled according to prior empirical or theoretical knowledge,
e.g., as a uniform, normal or half-normal distribution (Dienes,
in press). The upper and lower bound or the mean and standard
deviation of the respective distribution can be inferred from, e.g.,
a supraliminal experimental condition or previous research. In
order to evaluate chance performance individually for each par-
ticipant, Rouder et al. (2007) suggest to use a “mass-at-chance
model,” which is based on Bayesian analyses and gives an – albeit
conservative – estimation of the probability that a participant’s
performance is truly at chance level. Irrespective of the appli-
cation of this model, one of its virtues is that it demonstrates
the importance of having enough power for claims of chance
performance.

The assessment of unawareness on the basis of objective crite-
ria alone may be overly conservative as it disregards the observer’s
introspective account and may overestimate conscious perception
in cases where forced-choice tasks are contaminated by uncon-
scious processes. In other words, an observer may be erroneously
classified as consciously aware of a stimulus in a situation where
motor reports are influenced by some unconscious process, result-
ing in above chance performance despite phenomenal absence of
awareness. Above chance performance in a particular task may
thus simply show that stimulus information was processed and
had an influence on behavior under conditions in which stimulus
processing was not accompanied by awareness (Merikle and Dane-
man, 2000). Dissociations between introspective reports of visual
awareness and objective measures of performance (“blindsight”)
are well-known to occur in cortically lesioned patients (Stoerig,
2006) but can also be observed in neurologically intact partic-
ipants (Meeres and Graves, 1990; Lau and Passingham, 2006;
Schwiedrzik et al., 2011). It may thus be helpful to complement
the objective assessment of unawareness with the concomitant
use of subjective measures, especially because subjective reports
can provide a trial-by-trial measure of awareness while objective
measures indicate observer’s overall performance in a particu-
lar task. One frequently used subjective behavioral report is to
let participants directly rate the visibility of the stimulus on a
larger (Sergent and Dehaene, 2004) or smaller scale (Ramsoy and
Overgaard, 2004). Characteristic of the latter, the 4-point per-
ceptual awareness scale, is its lack of symmetry, because there
is only one “invisible” rating as opposed to three different “visi-
ble” ratings, ranging from “weak glimpse” and “almost clear” to
“absolutely clear.” An alternative and widely applied approach
to measure awareness is based on metacognitive (second-order)
judgments in the form of confidence ratings. Participants have
to indicate their confidence about how accurate their first-order
perceptual judgment was (Dienes et al., 1995). For example, par-
ticipants may be instructed to provide confidence ratings about
how well they performed in a preceding stimulus localization task
(Rothkirch et al., 2012). Another recently introduced variation
on confidence ratings is post-decision wagering, in which con-
fidence levels are expressed in terms of the amount of money
the participants are willing bet on their judgments. Presum-
ably, this leads to a higher motivation to reveal all conscious

knowledge for the sake of cash rewards (Persaud et al., 2007).
However, this approach has also sparked criticism, since wager-
ing behavior is likely biased by subjects’ propensity to avoid losses
(Schurger and Sher, 2008; Fleming and Dolan, 2010). Although
many current researchers would agree that participants’ introspec-
tive phenomenal reports need to be taken seriously by any study
of consciousness (Dehaene and Naccache, 2001), the question of
which subjective measure is best suited for a given experimen-
tal situation remains a matter of ongoing research and debate
(Dienes and Seth, 2010; Sandberg et al., 2010; Szczepanowski
et al., 2013). One way to overcome the potential confounding
factor of response bias is the implementation of signal detec-
tion theory in the analysis of subjective reports by calculating
a measure of second-order sensitivity (“type-2” d′ as opposed
to “type-1” d′ based on first-order reports), which is inde-
pendent of response bias or of where participants place their
criterion for making high- and low-confidence judgments (Kuni-
moto et al., 2001; Szczepanowski and Pessoa, 2007; Kanai et al.,
2010).

PROCESSING OF SUPPRESSED VISUAL STIMULI IN EARLY
VISUAL CORTEX
Human primary visual cortex (V1) constitutes the first corti-
cal processing stage for the largest part of visual signals from
the retina. fMRI studies have consistently shown a tight link
between stimulus awareness during binocular rivalry and blood-
oxygen level dependent (BOLD) activity levels in V1, with invisible
stimuli resulting in much reduced activity levels (Polonsky et al.,
2000; Tong and Engel, 2001; Haynes et al., 2005; Lee et al.,
2005; Wunderlich et al., 2005). However, this set of findings
has recently been challenged by a study that aimed to sepa-
rate the effects of top-down attention and visual awareness on
the BOLD signal in human V1 (Watanabe et al., 2011). Based
on the notion that attention and awareness are two dissocia-
ble processes supporting distinct functions in the visual system
(Lamme, 2003; Koch and Tsuchiya, 2007; van Boxtel et al., 2010,
but see Cohen et al., 2012), the authors modulated awareness
and attention independently of each other in a 2 × 2 facto-
rial design. They used a variant of CFS in which the mask
and the target stimulus overlapped only partially, allowing them
to isolate target- from mask-related fMRI-BOLD activity in
retinotopic V1. Awareness was modulated by presenting mask
and target either to the same eye (visible) or to the two eyes
separately (invisible). At the same time, visual attention was
manipulated by having participants either report the visibility
of the target (attended) or perform a demanding letter detec-
tion task at fixation (unattended). Replicating a well-established
finding from previous work, the authors found stronger target-
related V1 responses when the target stimulus was attended in
comparison to the unattended condition (Gandhi et al., 1999;
Kastner et al., 1999; Martinez et al., 1999), independent of visi-
bility (also see Bahrami et al., 2007, for the effect of attentional
load under CFS). In sharp contrast to earlier fMRI results, how-
ever, the authors failed to detect stronger V1 activity to visible
than to invisible targets (Figure 1). Watanabe et al. (2011) con-
cluded that the previously reported awareness modulation on
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FIGURE 1 | Modulation of fMRI-BOLD activation in primary visual cortex

(V1) by attention and visibility. Data from Watanabe et al. (2011):
Disc-shaped moving target gratings were rendered invisible by
non-overlapping CFS masks. Plotted are time courses of averaged BOLD
responses (% change) and 95% confidence intervals in the targeted

monocular region from four subjects. The data show a modulation by attention
(as operationalized by task at fixation), but no modulation by visibility (cyan:
invisible attended; magenta: visible attended; blue: invisible unattended; red:
visible unattended). Modified with permission from Watanabe et al. (2011;
copyright 2011 The American Association for the Advancement of Science).

the BOLD signal in V1 might be an artifact caused by the con-
current attentional modulation, and that this could also explain
the discrepancy between fMRI studies and single-unit record-
ings that did not find robust awareness-related changes in firing
rates of V1 neurons (Leopold and Logothetis, 1996; Wilke et al.,
2006).

A recently published study casts doubt on this interpretation.
Using a very similar stimulus design and attentional manipulation,
but with substantially greater statistical power, Yuval-Greenberg
and Heeger (2013) did find a significant modulation of target-
evoked V1 activity by CFS. When the mask and target were
presented dichoptically and the target was suppressed from aware-
ness, V1 activity was at the same level as during presentation of
the CFS mask alone; presentation of mask and target to the same
eye, however, resulted in target visibility and was associated with
significantly greater BOLD activity levels in V1 (Figure 2). Inter-
estingly, a similar difference between presentation to same and
different eyes of mask and target was also observed for targets
with higher contrast that were not fully suppressed from aware-
ness by CFS. The authors concluded that the presence of the CFS
mask may suppress neural activity in V1 similar to other forms of
visual masking, suggesting that CFS impacts awareness by modu-
lating the gain of neural responses to the target at an early stage
of visual processing. Why did Watanabe et al. (2011) in their ear-
lier study using a similar stimulus design fail to find a modulation
of V1 BOLD responses by CFS? As Yuval-Greenberg and Heeger
(2013) argue, the study by Watanabe et al. (2011) may have been
“underpowered,” as they performed only 6–9 experimental runs

with just one single trial of 16 s duration per condition in each
run, which by current standards in fMRI research is a surpris-
ingly small number of trials indeed. Moreover, the awareness
assessment during scanning, in which participants had to dis-
tinguish between visible and invisible targets, does not rule out
residual visibility even in the “invisible” condition. Participants
may have adopted the strategy to label clearly visible targets as
visible and less clearly visible targets as invisible, so there is no
sufficient proof of target unawareness in the “invisible” condi-
tion. (Note that Yuval-Greenberg and Heeger (2013) avoided this
issue by including “CFS mask only” trials.) Finally, there were
two visible stimulus presentations interspersed in each invisible
block (and vice versa). These “catch trials” could have attenuated
possible BOLD activity differences between visible and invisible
blocks.

Given these methodological limitations, the null result regard-
ing V1 activity modulation by CFS reported by Watanabe et al.
(2011) cannot be taken as conclusive evidence for the absence of
interocular suppression effects in early visual cortex. This conclu-
sion is supported by Yuval-Greenberg and Heeger’s (2013) recent
study that provided convincing evidence for a V1 BOLD activ-
ity modulation by CFS. However, it is still noteworthy that this
modulation is relatively subtle, not only relative to the attention-
related modulation observed by Watanabe et al. (2011), but also
when compared across studies to the strong CFS-related mod-
ulation of BOLD responses to object stimuli in higher-level
cortex that are discussed in detail in the next section of this
article (Fang and He, 2005; Sterzer et al., 2008; Hesselmann

Frontiers in Psychology | Consciousness Research May 2014 | Volume 5 | Article 453 | 4

http://www.frontiersin.org/Consciousness_Research/
http://www.frontiersin.org/Consciousness_Research/archive


Sterzer et al. Visual processing under interocular suppression

FIGURE 2 | Modulation of fMRI-BOLD activation in primary visual

cortex (V1) by contrast and visibility under inattention. Data from
Yuval-Greenberg and Heeger (2013): Disc-shaped moving target gratings were
rendered invisible by non-overlapping CFS masks. Plotted are average BOLD
responses (% change) from four subjects. Gray bars indicate trials with target
and masks presented to different eyes, black bars indicate trials with target

and masks presented to the same eye. The white bar indicates trials with no
target (“CFS mask only”). At low target contrast, interocular suppression
(different eyes) rendered targets invisible. The data show a modulation by
visibility and contrast, even though subjects were engaged in a task at
fixation. Modified with permission from Yuval-Greenberg and Heeger (2013;
copyright 2013 Society for Neuroscience).

and Malach, 2011; Hesselmann et al., 2011). This observation is
relevant for the discrepancy between electrophysiological record-
ings in monkeys and human fMRI studies that differed in their
conclusions regarding the effects of interocular suppression in
low-level visual areas (for an in depth discussion see, Tong
et al., 2006; Maier et al., 2008). Single unit recordings showed
percept-related changes in firing rates in only ∼20% of V1/V2
neurons (Leopold and Logothetis, 1996; Keliris et al., 2010). In
contrast fMRI studies found much stronger percept-related V1
BOLD signal modulations during binocular rivalry (Polonsky
et al., 2000), sometimes even equivalent to those evoke by stim-
ulus changes (Tong and Engel, 2001; Wunderlich et al., 2005,
but see Haynes et al., 2005 who found that BOLD signal mod-
ulation during rivalry amounted to only 28% of that evoked
by stimulus changes). It is indeed possible that the strong
rivalry-related BOLD signal modulations reported in these stud-
ies are in large part due to concurrent attentional modulation,
as suggested by Watanabe et al. (2011). Alternatively, the dis-
crepancy between monkey neurophysiology and human fMRI
studies may simply reflect differences in the nature of the mea-
sured signals, with V1 spiking activity being less indicative of
conscious perception under interocular suppression than V1 low-
frequency local-field potentials (Wilke et al., 2006) and V1 BOLD
signals (Maier et al., 2008).

THE FATE OF SUPPRESSED VISUAL INFORMATION BEYOND
EARLY VISUAL CORTEX
Early neuroimaging work showed that in high-level extrastri-
ate visual areas the amplitudes of percept-related fMRI signal
fluctuations during binocular rivalry are similar to those dur-
ing actual stimulus alternations (Tong et al., 1998). This finding
was initially interpreted as evidence for a resolution of rivalry at
early levels through competitive interactions between monocu-
lar channels in lateral geniculate nucleus (LGN) and V1, with no
maintained representation of the suppressed stimulus at higher
levels of the visual processing hierarchy. However, behaviorally

the involvement of perceptual (rather than purely interocular)
mechanisms is shown by persistence of rivalry when the monoc-
ular images are rapidly swapped between the eyes, preventing
interocular competition (Logothetis et al., 1996). An influence
of perceptual mechanisms is also suggested by the observation
that complementary patchworks of intermingled images presented
to each eye can drive rivalry (Kovacs et al., 1996). Moreover,
binocular rivalry is affected by complex information, such as
object category, contained in suppressed stimuli (e.g., Andrews
and Blakemore, 1999; Alais and Parker, 2006; see also Blake and
Logothetis, 2002; Tong et al., 2006, for reviews), indicating that
information from interocularly suppressed stimuli is still pro-
cessed at sufficiently advanced levels where this information can
be extracted and represented.

Recent neuroimaging work has explicitly asked whether com-
plex stimulus information is still represented at advanced stages of
the visual processing hierarchy during binocular rivalry suppres-
sion, focusing mainly on two questions: first, is visual information
that is of special behavioral relevance still processed under inte-
rocular suppression? This question is based on the assumption
that stimuli of special behavioral relevance, e.g., emotional infor-
mation (for reviews, see Pessoa, 2005; Vuilleumier, 2005), may
undergo preferential and automatic processing in the absence
of attention and even awareness. Second, is complex stimulus
information such as object category, no matter whether it is
of particular behavioral relevance, represented in functionally
specialized high-level visual areas during suppression? And in par-
ticular, are there differences between such high-level visual areas,
e.g., ventral and dorsal stream areas, regarding the degree to which
suppressed information is processed?

PROCESSING OF EMOTIONALLY AND SOCIALLY RELEVANT
INFORMATION UNDER INTEROCULAR SUPPRESSION
With regard to the question whether emotional information is
processed during interocular suppression, results from fMRI stud-
ies consistently indicate enhanced processing of emotional facial
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expressions. Williams et al. (2004) presented either faces with neu-
tral, happy, or fearful expressions to one eye and houses to the other
eye. Stimuli were presented only for a short, fixed duration and the
contrast and hue of the rivalrous images was manipulated so that
just one image class was reliably perceived while the other image
was suppressed. Activation in the fusiform face area (FFA) and
parahippocampal place area (PPA) was increased for perceptually
dominant versus suppressed faces and houses. In contrast, amyg-
dala activation was increased in response to fearful versus neutral
faces regardless of whether the face was dominant or suppressed,
in line with the view that detection of emotional information pro-
ceeds automatically and does not require awareness (Vuilleumier,
2005). Similarly, during rivalry between a fearful face or a chair
stimulus shown to one eye and a house stimulus (that was moving
in order to ensure its dominance) to the other eye, activity in the
amygdala was greater in response to suppressed fearful faces com-
pared to chairs (Pasley et al., 2004). No such response difference
was observed in ventral visual cortex in this study, from which
the authors concluded that a high-level cortical representation is
not required for the discrimination of certain behaviorally rele-
vant stimuli in the amygdala. However, a more recent study in
which fearful faces or houses were suppressed by moving checker-
boards found stronger responses to fearful faces than to houses
not only in the left amygdala, but also in left FFA (Troiani et al.,
2012, but see Troiani and Schultz, 2013 for a failure to repli-
cate these findings using CFS with high-contrast Mondrian-like
masks).

It should be noted, however, that in the binocular rivalry stud-
ies mentioned above unawareness of the suppressed image was
assessed either by using a one-back task that required participants
to report repetitions of identical face or house stimuli (Williams
et al., 2004), or by instructing participants to press a button if at
any point they perceived anything else but the dominant house,
checkerboard, or Mondrian-like stimulus (Pasley et al., 2004). As
such methods do not reliably ensure objective unawareness of
the suppressed stimuli, it cannot be ruled out that the observed
response differences for suppressed faces might have been at least
in part due to residual traces of stimulus awareness that went
undetected by the tasks used.

In another fMRI study, CFS was used to render faces with fear-
ful or neutral expressions invisible (Jiang and He, 2006). Here,
a forced-choice task was used at least in behavioral pre- and
post-scan sessions and showed that observers were unable to dis-
criminate between suppressed intact and scrambled face stimuli,
in addition to a subjective awareness assessment during fMRI
scanning. Responses to invisible face stimuli in the FFA were
strongly reduced relative to visible faces, but did not show dif-
ferences between neutral and fearful expressions. In contrast,
greater responses to fearful than to neutral faces were observed
in the amygdala and in the superior temporal sulcus (see also
Vizueta et al., 2012), a region previously implicated in the pro-
cessing of changeable facial features such as expression or eye
gaze (Haxby et al., 2000). In a subsequent EEG study from the
same group (Jiang et al., 2009), the amplitude of the N170, a
face-specific signal thought to reflect face processing in ven-
tral occipitotemporal cortex, was not significantly different for
fearful and neutral faces. In contrast, a later signal along the

superior temporal sulcus was specific for fearful expressions. Fur-
ther support for the notion that changeable facial features of
particular social relevance might be processed without awareness
along specialized neural pathways comes from a recent EEG study
that found larger negative deflections at parietofrontal electrodes
to suppressed faces with direct gaze compared to suppressed
faces with averted gaze (Yokoyama et al., 2013). Although still
exploratory, this finding is in line with behavioral evidence of
unconscious processing of eye gaze under interocular suppres-
sion (Stein et al., 2011b, 2012; Xu et al., 2011; Chen and Yeh,
2012).

Together, neuroimaging studies of emotional face process-
ing provide little evidence for processing of the category or the
emotional information of suppressed object stimuli in high-level
ventral visual areas such as the FFA. In contrast, both the amygdala
and superior temporal sulcus show differential responses to sup-
pressed fearful and neutral face stimuli. This is consistent with
the notion of automatic processing of threat-signaling stimuli
(Vuilleumier, 2005), which has been suggested to bypass the visual
processing stages at which binocular conflict is resolved, possi-
bly via subcortical pathways (LeDoux, 2000). Indeed, some fMRI
studies provided indirect support for a role of subcortical pathways
in driving amygdala activity to suppressed fearful faces by show-
ing covarying activity between the amygdala and other visually
responsive subcortical structures such as the superior colliculus
(Pasley et al., 2004) and the pulvinar (Troiani et al., 2012; Troiani
and Schultz, 2013). However, recent recordings from a depth elec-
trode implanted in a patient’s amygdala revealed that responses to
fearful faces rendered invisible through CFS occur only relatively
late, after about 140 ms, and are driven by both low and high
spatial frequencies in the facial stimuli (Willenbockel et al., 2012).
These findings are inconsistent with the notion of a direct feed-
forward connection between the superior colliculus, pulvinar, and
the amygdala, as this pathway is assumed to be particularly fast and
to rely exclusively on low spatial frequency information. Similarly,
a recent behavioral study has shown that privileged processing of
threat-signaling visual stimuli does not rely on low spatial frequen-
cies (Stein et al., 2014), again challenging the idea of a subcortical
fast track for emotionally relevant visual information (for an in-
depth discussion, see Pessoa and Adolphs, 2010). Clearly, more
work is needed to pinpoint the neural networks underlying uncon-
scious processing of emotionally charged and socially significant
stimuli under rivalry suppression.

OBJECT- AND CATEGORY-SPECIFIC PROCESSING IN HIGH-LEVEL
AREAS OF THE DORSAL AND THE VENTRAL STREAM
The other question that has been addressed by a number of recent
neuroimaging studies is whether complex stimulus information
regarding object identity or category can also survive suppression
at early stages and be retained at advanced stages of visual process-
ing. Importantly, just the absence of evidence for category-specific
processing in specialized ventral visual areas during suppression
(Pasley et al., 2004; Williams et al., 2004) cannot be taken as def-
inite proof for the absence of such processing, as weak residual
neural signals evoked by suppressed stimuli may have gone unde-
tected by the neuroimaging methods used. Fang and He (2005)
investigated neural responses to object stimuli suppressed by CFS
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in high-level areas pertaining to the ventral and dorsal streams of
visual processing, respectively. Their stimuli included images of
faces, which evoke mostly ventral activity, and images of tools, for
which a dorsal preference has been shown. Similar to the above-
mentioned studies (Pasley et al., 2004; Williams et al., 2004), they
did not observe any category-specific fMRI responses to invisible
images of faces or tools in ventral visual areas. In contrast, dorsal
regions did show responses to suppressed stimuli that were much
less reduced in amplitude relative to visible stimuli (Figure 3),
but exclusively for images of tools. The authors concluded that
indeed substantial information from the suppressed eye could
escape competitive interactions at early processing levels and reach
dorsal visual areas, but not ventral areas. In line with previous evi-
dence from lesion studies in humans and from animal studies
(Milner and Goodale, 1995, 2006), they interpreted these find-
ings as support for a fundamental specialization of the visual
system into a dorsal vision-for-action stream and a ventral vision-
for-perception stream. According to this theory, dorsal areas form
action-relevant representations for selected types of visual objects,
e.g., tools and other man-made manipulable objects, even in the
absence of awareness, while there are no such representations in
ventral visual areas.

Findings from subsequent neuroimaging studies have provided
partly diverging evidence that has questioned these conclusions.
Using high-resolution fMRI study and multi-voxel pattern analysis
to increase the sensitivity for distributed fMRI signals (Haynes and
Rees, 2006; Norman et al., 2006) the fine-grained spatial activity
patterns within the ventral areas FFA and PPA were shown to still

FIGURE 3 | fMRI-BOLD activation to visual stimuli suppressed by CFS.

Data from Fang and He (2005): Plotted are BOLD signals (% change) in
dorsal and ventral stream to visible and invisible images of tools and faces.
The ventral stream shows a strong reduction of activity under CFS, while
the dorsal stream shows much less reduction when images are tools.
Shown are data from five participants. Reproduced from Fang and He
(2005; copyright 2005 Nature Publishing Group).

contain information about the category of face and house stimuli
even when the average BOLD signal was drastically reduced and
stimuli were reliably suppressed from conscious perception, as
evidenced by a rigorous objective awareness assessment during
fMRI scanning (Figures 4A,B; Sterzer et al., 2008). Thus, the fine-
grained spatial pattern of activity measured with fMRI in ventral
visual areas encodes information about the identity of suppressed
object stimuli. Similarly, face-specific electromagnetic responses
to interocularly suppressed stimuli are reduced in amplitude but
still present in the human ventral visual pathway (Sterzer et al.,
2009a). These results are consistent with more general findings
of high-level processing for stimuli outside awareness in other
paradigms (e.g., see Kouider and Dehaene, 2007; Rees, 2007). Such
unconscious high-level processing could provide a neural basis
for how complex stimulus features contribute to the resolution of
perceptual conflict even when suppressed (e.g., by high-level adap-
tation). The processing of suppressed stimuli, however, does not
seem to extend to semantic information (i.e., semantic congruency
between lexical units), as a recent EEG study found signals related
to the semantic mismatch between two words (the N400) to be
absent when participants could not discriminate the meaning of
suppressed words (Kang et al., 2011).

A recently published study also questioned the distinction
between dorsal and ventral visual areas in the processing of
suppressed object stimuli (Hesselmann and Malach, 2011). In
this study participants had to detect, during CFS, images of
tools. Despite their substantial difference in connectivity and
neuroanatomical specialization, both ventral and dorsal stream
areas revealed a similarly tight link to perceptual awareness, that
is, strong fMRI signals for visible tools but a significant reduc-
tion of activity in the invisible condition (Figure 4C). In other
words, this study failed to replicate the previous finding (Fang
and He, 2005) that specifically dorsal areas contain representa-
tions of manipulable objects during binocular rivalry suppression.
Another interesting observation from this study is that CFS did
not lead to a complete abolition of category-specific activity in
response to invisible stimuli, as object category could still be
decoded from fMRI signal patterns in lateral occipital cortex with
multi-voxel pattern analyses (Figure 4D), in line with the above-
mentioned previous work (Sterzer et al., 2008). The divergent
findings between the studies by Fang and He (2005) and Hes-
selmann and Malach (2011) may be explained by differences in
study design, especially with respect to the behavioral assessment
of unawareness. In the experiments of Fang and He (2005), par-
ticipants were asked to report whether they perceived any shape or
object after prolonged blocks of fMRI scanning while their task was
to detect occasional size changes of the fixation point. Only a subset
of participants performed a trial-wise forced-choice task in sepa-
rate control experiments (“offline”) to establish objective absence
of awareness. In contrast, Hesselmann and Malach (2011) used a
trial-by-trial forced-choice task during the main fMRI experiment
(“online”), which constitutes a more direct and arguably more
sensitive test for visibility. As high-order visual areas specialized
on object processing are very sensitive even to poorly visible low
contrast images or object parts (Avidan et al., 2002; Lerner et al.,
2002), it cannot be excluded, because of the comparably insensi-
tive assessment of unawareness, that responses to invisible tools
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in the study by Fang and He (2005) were at least in part due to
occasional traces of residual target visibility. However, against this
argument of residual but unreported visibility seems to speak the
fact that only dorsal but not ventral stream areas showed preserved
activity under CFS.

In a further study that focused on the relationship between
report type, subjective versus objective, and fMRI responses
to face or tool stimuli during CFS, Hesselmann et al. (2011)
replicated their previous finding of similar fMRI signal reduc-
tions in both ventral and dorsal visual areas when stim-
uli were invisible. In addition, they showed a dissociation
between type of report and low- vs. high-level visual areas:
Activity in high-level visual areas was enhanced when sub-
jects reported higher levels of subjective visibility, even when
objective performance was constant. In contrast, with con-
stant subjective performance, these areas showed no activity
differences between trials with objectively correct or incorrect
responses. On the other hand, objective behavioral performance
was linked to the accuracy of multivariate pattern classification

mainly in early visual areas, thus suggesting that subjective
and objective reports tap cortical signals of different loca-
tion and amplitude within the visual cortex (Hesselmann et al.,
2011).

In summary, neuroimaging studies investigating the processing
of visual information during interocular suppression have shown
repeatedly that object- or category-specific neural activity in high-
level visual areas of the ventral stream is strongly reduced, but can
be retrieved when sufficiently sensitive methods of data analysis
are used, such as multi-voxel pattern analysis of fMRI data. It
will be an important challenge for future research to determine
to what degree such residual traces of object-related neural activ-
ity are relevant behaviorally, e.g., in that they influence the access
of object information to awareness (see below). Research into a
putative dissociation of ventral and dorsal stream areas in the pro-
cessing of object information has not provided conclusive results
yet. Possibly, dorsal areas are more sensitive than ventral areas
to the presence of weak or noisy information, but responses in
dorsal and ventral areas seem to be reduced to a similar degree

FIGURE 4 | Univariate and multivariate analysis of FMRI-BOLD activation

to visual stimuli suppressed by CFS. (A) Sterzer et al. (2008): The fusiform
face area (FFA) and the parahippocampal place area (PPA) in inferior temporal
cortex showed significantly reduced BOLD activity levels whenever images of
faces or houses were rendered invisible. (B) Sterzer et al. (2008):
Performance of support-vector-machine (SVM) classifiers for pairwise
classification of face and house presentations from FFA and PPA. Filled
circles: visible trials; open circles: invisible trials. (C) Hesselmann and Malach
(2011): BOLD signals (parameter estimates in arbitrary units) to images of
tools in dorsal and ventral visual areas show stream-invariant reduction

whenever stimuli were rendered invisible (LO = lateral occipital area,
pFS = posterior fusiform gyrus, IPS = intra-parietal sulcus). (D) Hesselmann
and Malach (2011): Performance of SVM classifiers in left hemisphere (LH)
and right hemisphere (RH) dorsal and ventral visual areas. Prediction
accuracies in visible trials (filled squares) were significant in all
regions-of-interest; in invisible trials (open squares), area LO showed
classification performance significantly above chance level (*p < 0.01;
**p < 0.001). (A,B) Reproduced from Sterzer et al. (2008; copyright 2008
Association for Research in Vision and Ophthalmology). (C,D) Modified from
Hesselmann and Malach (2011; copyright 2011 Oxford University Press).
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when object stimuli are fully and objectively suppressed from
awareness.

CURRENT CHALLENGES AND FUTURE DIRECTIONS
As outlined in this review, neuroimaging studies of interocular
suppression have provided important new insights into uncon-
scious visual information processing, but also generated new
controversies. When trying to draw a coherent picture of the neu-
ral events that are related to the processing of visual information
under interocular suppression, one of the major challenges at the
current stage is the heterogeneity of findings. This is the case both
when we ask whether a given neural structure is involved in pro-
cessing of suppressed stimuli at all, but also when it comes to the
question of feature- or category-specific processing in the absence
of awareness. At least some of the inconsistencies between studies
may be related to differences in the depth of interocular suppres-
sion. There are in principle two scenarios that could account for
heterogeneous findings on the basis of suppression depth: In the
first scenario, suppression is not deep enough and the stimulus
breaks through and is partially or even fully visible, at least from
time to time. If awareness is not assessed stringently on a trial-
to-trial basis, this could result in false-positive findings and the
erroneous conclusion that neural processing is preserved in the
absence of awareness in cases where in fact it is not. In the second
scenario, suppression could be too deep, thereby fully abolishing
neural responses that could in principle still occur in the absence
of awareness. Such a scenario could result in false-negative conclu-
sions. Future studies should aim at avoiding both these scenarios
by taking great care in defining those conditions under which neu-
ral processing of a stimulus is not unnecessarily deadened despite
reliable suppression from awareness. Promising approaches could
be to systematically vary the properties of the mask and/or the
target stimulus that are most relevant for the depth of interocular
suppression, such as stimulus contrast and spatial frequency (Yang
and Blake, 2012), or to adjust the suppression threshold individ-
ually to a point where stimulus power is as high as possible but
as low as necessary (for suppression to work). As discussed above,
careful assessment and documentation of unawareness will be of
key importance to any study concerned with neural processing
under interocular suppression, as this will help the interpreta-
tion of each study’s findings as well as the comparison of findings
between studies.

A point that has received little attention to date concerns the
functional relevance of neural signals that are recorded under con-
ditions of interocular suppression. Are preserved neural responses
to suppressed stimuli relevant for behavior, or could they be
entirely irrelevant and thus just “epiphenomenal?” To assess the
functional relevance of unconscious visual information process-
ing under interocular suppression, many studies have measured
how invisible stimuli modulate behavioral responses to a succeed-
ing visible stimulus, adopting priming, adaptation aftereffects,
or attentional cueing paradigms (Moradi et al., 2005; Jiang et al.,
2006; Almeida et al., 2008, 2013; Stein and Sterzer, 2011; Ander-
son et al., 2012; Faivre et al., 2012). By using stimuli and tasks of
different complexity, such behavioral methods have been used to
indirectly infer unconscious neural processing at different levels
of the visual hierarchy. What is lacking to date however, are

neuroimaging studies that use such behavioral measures concur-
rently to directly establish the functional relevance of brain signals
measured under interocular suppression.

One limitation of the behavioral measures of unconscious pro-
cessing discussed so far is that they assess effects of suppressed
stimuli after they have been presented outside awareness. They are
therefore limited by the potentially short-lived nature of uncon-
scious effects (Greenwald et al., 1996) and constrained by specific
task requirements. So far, only few studies have measured behav-
ioral effects of interocularly suppressed stimuli on-line, that is,
during the presentation of stimuli outside awareness. One way
to do so is to monitor motor behavior related to the invisible
stimulus during presentation. A recent study analyzed grasping
movements to stimuli that were suppressed from awareness by
CFS (Roseboom and Arnold, 2011). The authors found that par-
ticipants learned to adjust the orientation of their hand to the
stimulus orientation over the course of the experiment. In con-
trast, applying a more rigorous control of stimulus visibility across
sessions, another study (Ludwig et al., 2013) failed to find evidence
for the use of unconscious stimulus information by the visuomo-
tor system: Participants neither learned to adjust the size of their
grip aperture nor the orientation of their hand to invisible stim-
uli. Thus, whether grasping movements are indeed a useful way
of measuring the behavioral effects of unconscious visual pro-
cessing under interocular suppression awaits further clarification.
Possibly, the monitoring of eye movements may prove a more
useful approach: Using eye movements as a behavioral response
measure, it was recently demonstrated that observers spend more
time looking at suppressed stimuli despite being unable to cor-
rectly guess the stimulus location in a manual forced-choice task
(Rothkirch et al., 2012). Eye movement recordings thus seem to
be a promising technique to determine the functional relevance of
neural signals recorded during interocular suppression (see also
Spering et al., 2011; Spering and Carrasco, 2012, for a dissociation
of eye movements and reported perception).

Another technique that has recently become very popular is
“breaking-CFS” (b-CFS), which measures the time it takes until a
stimulus breaks into awareness after initial suppression through
CFS, thus supposedly indicating the strength of neural processing
while the stimulus is still suppressed (Jiang et al., 2007). However,
whether b-CFS actually reflects unconscious processing is cur-
rently a matter of debate (Stein et al., 2011a; Stein and Sterzer,
2014). Neuroimaging studies could help resolving this debate
by demonstrating a tight coupling between neural responses to
the initially invisible stimulus and the duration of perceptual
suppression (Yamashiro et al., 2013). If brain signals during full
suppression predicted subsequent breakthrough into awareness
on a trial-by-trial basis, this would provide direct evidence for
the functional relevance of unconscious neural processing in
mediating access to awareness.

Since evidence for functional relevance of neural signals in
response to interoculary suppressed stimuli is still sparse, fur-
ther research is warranted to provide a better understanding of
how such unconscious visual information can modulate behavior,
and which neural processes might mediate such effects. This is a
challenging task, as it requires observers to be unaware of the asso-
ciation between a suppressed stimulus and their own behavior. It
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also seems crucial to learn more about which behavioral measures
are best suited to study behavioral responses under interocular
suppression. For instance, continuous behavioral measures might
capture neural activity related to suppressed stimuli that is not
reflected in discrete measures, such as manual button presses
(Fahle et al., 2011; Naber et al., 2011). It remains an intriguing
challenge for future research to establish experimental approaches
that allow us to explore the functional relevance of neural sig-
nals measured in response to visual stimuli during interocular
suppression.
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