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Abstract

Background

Brain training is currently widely used in an attempt to improve cognitive functioning. Com-

puter-based training can be performed at home and could therefore be an effective add-on

to available rehabilitation programs aimed at improving cognitive functioning. Several stud-

ies have reported cognitive improvements after computer training, but most lacked proper

active and passive control conditions.

Objective

Our aim was to investigate whether computer-based cognitive flexibility training improves

executive functioning after stroke. We also conducted within-group analyses similar to those

used in previous studies, to assess inferences about transfer effects when comparisons to

proper control groups are missing.

Methods

We conducted a randomized controlled, double blind trial. Adults (30–80 years old) who had

suffered a stroke within the last 5 years were assigned to either an intervention group (n = 38),

active control group (i.e., mock training; n = 35), or waiting list control group (n = 24). The inter-

vention and mock training consisted of 58 half-hour sessions within a 12-week period. Cogni-

tive functioning was assessed using several paper-and-pencil and computerized
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neuropsychological tasks before the training, immediately after training, and 4 weeks after

training completion.

Results and conclusions

Both training groups improved on training tasks, and all groups improved on several transfer

tasks (three executive functioning tasks, attention, reasoning, and psychomotor speed).

Improvements remained 4 weeks after training completion. However, the amount of

improvement in executive and general cognitive functioning in the intervention group was

similar to that of both control groups (active control and waiting list). Therefore, this improve-

ment was likely due to training-unspecific effects. Our results stress the importance to

include both active and passive control conditions in the study design and analyses. Results

from studies without proper control conditions should be interpreted with care.

Introduction

Approximately 60% of stroke survivors show cognitive impairments which often persist in the

chronic phase after stroke [1,2]. Executive impairments, in particular, have a large impact on

everyday life and may predict poor cognitive recovery after stroke [3,4], making efforts to

improve these functions highly relevant. Computer-based training approaches may comple-

ment existing rehabilitation programs. They have the advantage that they can be exercised at

home, thus facilitating intense and repeated practice, a key element for restitution-based reha-

bilitation. The aim of restitution training is not to master compensational strategies, but resto-

ration of impaired functions through stimulation. It is very difficult, if not impossible, to

distinguish whether improvements in cognitive functioning are due to restitution of the func-

tion or to the use of implicitly learned strategies. Still, it is important to evaluate whether mere

retraining of cognitive functions can result in improved cognitive functioning, because restitu-

tion-based therapy has been effective in the domains of motor function, language, and vision

(e.g., [5,6]).

So far, the evidence for the effectiveness of computer-based training in improving executive

functioning after acquired brain injury is inconclusive. Several studies have reported improve-

ments in tasks similar to the training (near transfer effects) as well as improvements in tasks

that differ from the training (far transfer effects). Most of these studies, however, suffered from

methodological limitations [7]. First, most studies lacked a control condition or included only

passive (non-treated) control conditions. In studies that included active control (i.e. mock

training) groups, computer-based training failed to outperform mock training [8,9]. Without

an active control condition, positive training effects may well result from nonspecific elements

such as spontaneous recovery, test-retest effects, or the Hawthorne effect (i.e., the effect of

merely participating in a scientific study, entailing expectancy, personal attention, motivation,

et cetera; [10,11]). Without a waiting list control condition, improvement in both training

groups could be due either to both programs being effective or to nonspecific elements. Thus,

both an active control condition and a waiting list control condition should be included to

control for all training-unspecific effects. Second, most studies did not adjust statistically for

multiple testing despite including a large number of outcome measures, and are, therefore,

prone to type 1 error (i.e., report of positive results where there are none). However, there are

some studies with healthy individuals that did correct for multiple testing (e.g., [12]). Third,

the relation between study outcomes and training task progression was often not investigated,
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so it remains unclear to what extent functional improvements were related to the training. Fur-

thermore, training duration was generally short (median = 15.6 hours), and sample sizes were

relatively small (median = 16; [7]).

A further methodological issue is that previous training studies may not have targeted rele-

vant and/or process-pure cognitive functions or their underlying neural mechanisms. Three

major components of executive functions have been discerned: (1) control of one’s behavior,

including inhibition of strong but inappropriate responses, (2) mental set shifting (i.e., chang-

ing from one set of task rules to another), and (3) information updating [13]. Training studies

that did reveal reliable far transfer in healthy elderly commonly involved rapid task switching

as a key ingredient of training [14], thereby targeting mental set shifting, which is at the core of

executive functioning.

The aim of the current study was to test the hypothesis that three months of computer-

based, commercially available, cognitive flexibility training improves executive functioning

after stroke, while accounting for the above-reviewed methodological issues. We additionally

conducted within-group analyses similar to those used in previous studies, to assess inferences

about transfer effects when comparisons to proper control groups are missing. Participants

trained five times per week half an hour for 12 weeks, which we expected to suffice to trigger

restitution-based recovery of executive functions. The intervention training included rapid

task switching. Difficulty of tasks was adapted individually to the performance of participants

[14]. An active control group (i.e. mock training) and a waiting list group were included to

control for nonspecific effects. We expected that the cognitive flexibility training would result

in more pronounced transfer effects on executive functioning compared to the mock training,

and that the performance of the waiting list group would not change over time.

Materials and methods

A detailed description of the design, training tasks, and outcome measures of this study has

been published previously [15].

Participants

Participants were recruited from six Dutch rehabilitation centers and patient societies (April

2013—March 2015; last follow-up measurement in November 2015). They were included

when they had had a stroke 3 months to 5 years ago, were between 30 and 80 years old, and

(had) received rehabilitation therapy as inpatient or outpatient. Participants were required to

have cognitive impairments after stroke (as testified by medical records), with cognitive com-
plaints still present at study entry. Finally, participants were required to be able to work with

the computer and have daily access to a computer with Internet connection.

Exclusion criteria were presence of neurodegenerative disease; epilepsy; serious psychiatric

illness; any disease other than stroke that results in severe cognitive impairments; drug or alco-

hol dependency; severe color blindness, aphasia, neglect, or computer fear; disabling vision or

auditory problems; and diagnosed learning disability. Furthermore, participants who were not

mentally or physically fit enough to be able to complete 12 weeks of training were excluded.

Finally, those who were not able to understand the training instructions or who could not exe-

cute the training due to any other unforeseen reason, after instructions or after the first train-

ing week, were excluded.

A priori sample size calculations were based on our aim to detect at least large group effects

[16] between two groups with one outcome measure. With a power of .80 and an alpha of .05

(one-tailed), this effect would be revealed in univariate analyses with a minimal sample size of

20 per group. As a switch training in healthy elderly resulted in an effect size d = 0.40 [17] we
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aimed to maximally include 138 participants, resulting in 3 x 40 while taking into account a

15% attrition rate. Inclusion would stop at this number or when the recruitment period was

over. A schematic overview of the participant flow can be found in Fig 1.

Fig 1. Consolidated Standards of Reporting Trials (CONSORT) flow diagram. T2 = post-training; T3 = 4 weeks after training

completion.

doi:10.1371/journal.pone.0172993.g001
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Experimental design

The study was a prospective multicenter, double-blind, randomized controlled study (RCT).

Participants were assigned randomly to the intervention group, the active control group, or to

the waiting list group by randomization software (Minimpy; [18]). This assured minimal dif-

ferences between groups in time since stroke (post-acute versus chronic), level of computer

experience (<0.5, 0.5–4,>4 hours), age (30–49, 50–59, 60–69, 70–80), education (primary or

lower secondary, middle secondary, higher, university), cognitive screening scores (Telephone

Interview for Cognitive Status, TICS [19]:<33, 33–37, >37), and sex (male, female). Partici-

pants were not informed that one of the training programs was a mock training. Instead they

were told that the study aimed to compare two types of computer-based cognitive training

programs. The groups were coded by the research coordinator such that the assessors were

blind to which training condition the participant was assigned. The waiting list group was

added during the course of the study (see S1 File). At that moment, 25 participants were

included in the intervention group and 28 in the active control group.

Computer tasks were administered online at baseline (T0), after 6 weeks of training or wait-

ing (T1), after training completion or after 12 weeks of waiting (T2), and (for the training

groups) 4 weeks after training completion (T3). Conventional neuropsychological tasks tap-

ping several cognitive domains were administered at T0 and T2. In addition, brain MRI scans

were obtained at T0 and T2 in a subset of the sample and several questionnaires were adminis-

tered at all time-points, results of which will be presented elsewhere.

The study was approved by the ethical review board of the University of Amsterdam (i.e.,

Commissie Ethiek voor de Afdeling Psychologie; approved December 2012) and by the medi-

cal ethical review board of the VU University Medical Center, Amsterdam (i.e., the Medisch

Ethische Toetsingscommissie Vrije Universiteit Medisch Centrum; approved July 2013,

amendment approved May 2014). The study is registered before study commencement as

Training Project Amsterdam Seniors and Stroke (TAPASS) with the Central Committee on

Research Involving Human Subjects Register NL4468502913 (www.toetsingonline.nl). Addi-

tionally, to fulfill the World Health Organization Registry criteria it was also registered with

the Netherlands National Trial Register NTR5174. The authors confirm that all ongoing and

related trials for this intervention are registered.

Procedures

Whenever participants indicated that they wanted to participate in the study, they were asked

to sign an online informed consent form and complete an online screening questionnaire and

a cognitive screening by phone (TICS) to assess inclusion and exclusion criteria. After ran-

domization (T0), participants gave written informed consent and performed neuropsychologi-

cal and computer tasks administered by two junior psychologists trained and supervised by a

neuropsychologist at the University of Amsterdam. The assessor of neuropsychological tasks

was blind to the training allocation of the participant. After task administration, he/ she regis-

tered which training condition they thought (i.e., guessed) the participant was in, to check

whether they were truly blind. Note that the person administrating the computer tasks and

training instructions was not blind to training allocation. In addition, participants performed

several computer tasks online at home (see [15] for a detailed description).

Participants in the training groups trained at home five times per week during half an hour

for 12 weeks. The training program consisted of 58 training sessions (29 hours of training). A

daily log was completed before and after each training session. A trained student contacted the

participant by phone to ask about their training progression and an automatic training

reminder was sent by e-mail whenever participants did not train for two days that week. The

Computer-based cognitive training after stroke
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waiting list group received care as usual which most often meant they did not receive any treat-

ment; they were not contacted by phone. After 12 weeks of either training or waiting (T2), par-

ticipants came back to the university to perform the same tasks as before (T0). After

completing these tasks, the waiting list group started the intervention training.

The online tasks were also administered after 6 weeks of waiting or training (T1). Four

weeks after training completion (T3), the online tasks were repeated among training groups to

measure long-term effects of the training.

Intervention materials

Both computer training programs were carried out at home via a preexisting brain training

website, www.braingymmer.com. The training tasks (games) were professionally programmed

to be stimulating. Based on a pilot study, we adjusted elements such as the time allowed to

complete a task to stroke survivors and to the elderly population. Individual feedback was

given after each task based on a three-star rating scale and at the end of each session. During

the workout, the next task was automatically selected and presented to the participant. Partici-

pants were thus not free to navigate the website and select their own tasks. They were, however,

able to select the level of difficulty where a higher level became available as soon as one out of

three stars was achieved. The training duration of 12 weeks with five half-hour sessions per

week was based on previous training studies from which we concluded that a minimum train-

ing period of three months was required. Moreover, we asked stroke survivors and healthy

elderly what they thought was an achievable time investment in addition to their everyday life

activities.

Cognitive flexibility training. The intervention training consisted of nine tasks in the

cognitive domains of working memory, attention, and reasoning. To stimulate cognitive flexi-

bility, tasks from the same cognitive domain were never performed successively. In the first

week, each task was performed for 10 minutes in order to get to know the task (i.e., three tasks

per session). After that, sessions included 10 tasks of 3 minutes each to challenge cognitive flex-

ibility. The degree of difficulty of the task was adapted to the participant’s performance; they

were asked to continue to the next level as soon as they received two or three out of three stars.

All tasks consisted of 20 levels.

Mock training. The mock training consisted of four tasks that were not expected to train

executive functions because they did not involve updating, set shifting, or inhibition. Each ses-

sion consisted of three tasks. Thus, participants only switched to the next task after 10 minutes.

The tasks were not adaptive; participants were asked to train at the same level for one or two

weeks before they were allowed to go to the next level. The instructors asked participants not

to train beyond level nine. However, some participants disregarded this and trained at higher

levels anyway.

Outcome measures

Primary outcomes. For the primary analyses, executive functioning was measured with

several neuropsychological tasks and one computer task (see Table 1 for outcome measures

used per task). These included the number-letter switching condition of the Trail Making Test

(TMT) from the Delis-Kaplan Executive Function System (D-Kefs; [20]), category fluency [21]

and letter fluency tasks [22], an online version of the Tower of London (ToL, based on [23]),

and Letter-Number Sequencing (LNS, Wechsler Adult Intelligence Scale III-NL; [24]). Raw

scores were corrected for demographics at baseline assessment based on norm scores where

available. None of the outcome measures was used in the training program, thus all measured

transfer effects.

Computer-based cognitive training after stroke
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Secondary outcomes. Objective cognitive functioning was assessed for the following

domains: cognitive flexibility, attention, verbal memory, working memory, reasoning, psycho-

motor speed, and inhibition. Most domains consisted of multiple tasks (see Table 1 for tasks

Table 1. Tasks used for the cognitive domains.

Cognitive domain Task Outcome measure

Primary outcome measures

Executive

functioning

- D-Kefs TMT number-letter switching condition [20] Age-corrected z-scores of time to completion

- Category fluency [21] Number of words mentioned within one minute (average of two

categories)

- Letter fluency [22] Education-corrected z-score of number of words mentioned within

one minute (three different starting letters)

- Tower of London* [23] Number of moves—minimal required moves to solve the ToL‡. N.

B. Maximal possible moves score per item was 20 and unsolved

items were scored with 20

- Letter-Number Sequencing [24] Age-corrected z-scores of total number of correct items

Secondary outcome measures

Cognitive flexibility - Switch-task [25] 1) Switch cost RT: RT on switch—no switch trials in ms‡

2) Switch cost accuracy: accuracy on no switch—switch trials‡

- Dual-task 1) Dual cost RT: RT on speeded response of the dual trials—no

switch trials in ms‡

2) Dual cost accuracy: accuracy on no switch—speeded trials‡

- Category fluency switch condition Average number of words mentioned in two no-switch categories

minus words mentioned in switch condition: switch cost =

(category 1 + category 2)/2—switch category)‡

- TMT B*† (NeuroTask BV) Time taken to complete TMT B in sec (connecting letters and

numbers in alternating order) ‡

Attention - TMT A*† (NeuroTask BV) Time taken to complete TMT A in sec (connecting numbers) ‡

- Paced Auditory Serial Addition Task (PASAT; [26]) Percentage correct on condition 2.8 and 3.2

- Digit-Symbol-Coding (DSC; [24] and NeuroTask BV*) For T0 and T2 analyses: items correct within two minutes of the

paper version

For T0 and T3 analyses: items correct within two minutes of the

online version

Memory - Rey’s Auditory Verbal Learning Test (RAVLT; [27]) 1) Direct: sex-, age- & education-corrected z-scores of total

amount of words remembered on 5 trials

2) Delayed: sex-, age- & education-corrected z-scores of total

amount of words remembered during delayed recall corrected for

direct total score

Working Memory - N-back† [28] Percentage correct on the 2 back—percentage correct on 0 back

- Blokkenreeksen (NeuroTask BV); online modified version of

Corsi task*†

The longest correctly reproduced array

Reasoning - Raven Progressive Matrices* [29] Total number of correct responses on 20 items

- Shipley Institute of Living Scale-2* [30] Total number of correct responses

Psychomotor speed - D-Kefs TMT motor speed condition [20] Age-corrected z-scores of time to completion

- Mouse skills tasks*† (NeuroTask BV) 1) Drag and drop skill: average RT for all moves in sec‡

2) Drag skill grid: total time spent on task from first click until last

drop in sec‡

3) Click skill: total time from first click to till last click in sec‡

Inhibition - Stop-signal task † SSRT (i.e., average time needed to inhibit a go response on stop

trials) in ms‡

Note. D-Kefs = Delis-Kaplan Executive Function System; TMT = Trail Making Test

* = Online measure

† = See van de Ven (2015) for a task description,

‡ = Recoded such that higher scores represent better performance (e.g., multiplied by -1).

doi:10.1371/journal.pone.0172993.t001
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and outcome measures used per domain). The operation span task was not used for analyses,

because online task presentation became unreliable due to changes in the Flash plugin in the

most used internet browser. All scores were recoded in such a way that higher scores represent

better performance. For details about data preparation of the primary and secondary out-

comes, see S1 File.

Training performance. For both experimental groups, training performance was assessed

based on task level and highest score obtained per level. Per task, the obtained high-scores for

each level were converted into a percentage of the maximal possible score and added up to a

total task score. The intervention training consisted of three domains and the domain score

was based on the average task score of the tasks within that domain. Finally, a total score was

calculated by taking the average of the three domain scores (i.e., the average score of all tasks).

The mock training consisted of four tasks and the total score was based on the average of these

tasks. Scores could range from 0 to 2000 (i.e., maximum 100 per level).

Statistical analysis

Primary analyses of transfer effects were performed with one repeated-measures MANOVA.

The dependent variables were time to completion on the switch condition of the D-Kefs TMT,

number of words mentioned during the category fluency and the letter fluency tasks, square

root transformation of the number of steps of the ToL, and score on LNS. The independent

variable was group (intervention, mock training, and waiting list control group). Time-points

in this model were before (T0) and after training or waiting period (T2). Post-hoc univariate

ANOVAs were performed when the time effect of the MANOVA was significant. P-values that

do not survive Bonferroni-Holm correction are reported.

Secondary analyses were performed in a similar way, i.e. by a single repeated-measures

MANOVA, with inhibition and composite scores of cognitive flexibility, attention, verbal mem-

ory, working memory, reasoning, and psychomotor speed as dependent variables. A composite

score was calculated per domain by calculating the average z-score based on the mean and stan-

dard deviation of all participants at T0. However, if norm scores were available, demographi-

cally-corrected z-scores were used instead. Both primary and secondary analyses were repeated

with age, education, and time since stroke as covariates to explore the influence of these vari-

ables on training effects. We performed these analyses because they were originally planned.

Due to absent correlations between the covariates and the outcome measures and a lack of sta-

tistical power, the outcomes are not statistically reliable (results can be found in S1 File).

Whenever the training resulted in a significant improvement of the dependent variables

that were additionally measured at T1 (after 6 weeks of training) and T3 (follow-up 4 weeks

after training completion), the time-points T1 and T3 were added to the model. This was done

to determine whether the training was already effective after 6 weeks of training, and to assess

whether training effects would persist after the training.

Blinding for training assignment of assessors and participants was checked with a binomial

test. Training performance differences between groups were analyzed with Mann-Whitney

tests because the training scores were not normally distributed. The dependent variable was

the difference score, which was calculated by subtracting the average training score after the

first time each task was performed (10 minutes per task; at T0) from the final average training

score (at T2). The independent variable was group (intervention and mock training). The rela-

tion between training improvement and performance change on outcome measures was

examined with Pearson’s correlation (statistically tested one-tailed).

Exploratory Student paired t-tests were performed in both the training groups and the wait-

ing list group with all outcome measures at T0 and T2 as dependent variables in order to
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compare our results with previous training studies. In addition, Bayesian independent samples t-

test was performed with JASP (Version 0.7.5.5; Computer software) to explore whether the evi-

dence was in favor of H0 (data are from the same group) or H1 (data come from two groups;

training groups 6¼ waiting list group). Finally, to examine whether the training had an effect on

overall cognition, a repeated-measures ANOVA was conducted with a composite score of all out-

come measures as the dependent variable and group (intervention, mock training, and waiting list

control group) as independent variable. Norm-corrected z-scores were used where available. For

the remaining tasks, z-scores were calculated based on the mean and standard deviation at T0.

All analyses were performed as intention-to-treat analysis, including all participants who

started the study. Additionally, analyses were rerun as per-protocol analysis. In these latter

analyses, only participants who completed the training according to protocol (e.g., completed

at least 50 sessions) and who performed the tasks at T2, were included in the analyses.

Outliers in the (transformed) raw data were detected by Grubbs’ Extreme Studentized Devi-

ation test [31] and were replaced with the closest value of the other participants. Missing values

that were due to the participant (e.g., too tired to complete the task, or incidentally incapable

of performing the task altogether) were substituted with the lowest observation of the group at

that time-point for that task, or for the D-Kefs TMT with z = -3 as this is the lowest score possi-

ble for that task. Data that were missing but not due to the participant (e.g., caused by technical

problems) were substituted based on the last observation carried forward. In cases where the

baseline score was missing, last observation carried backwards was used, such that the data

from the closest time-point after baseline was used. If both time-points were missing, the aver-

age of the group was used. Note that in this way substituted data were conservative. The results,

therefore, more likely reflect an underestimation than an overestimation. Multivariate outliers

were only replaced if an explanation could be found for the extreme values. Analyses were run

with and without outliers. All reported results are without univariate outliers and with multi-

variate outliers, but if results differed, both analyses were reported.

Normality was checked with Shapiro-Wilk test and by evaluating skewness and kurtosis.

SPSS version 19 (IBM; Armonck, USA) or a later version was used. P-values of .05 or lower

(two-tailed if not mentioned otherwise) were considered significant.

Results

Pre-training

Out of 223 potential participants who were screened, 97 passed all in- and exclusion criteria

and were included in the final analyses (see Fig 1 for participant flowchart including drop-out

reasons). Prior to training, the three groups did not differ in age, educational level, sex, time

since stroke, or baseline cognitive functioning except for attention (see Table 2 for scores and

statistics). The intervention group had significantly higher baseline scores on the attention

composite (p< .01) and reported significantly higher levels of fatigue (p< .01) than the active

control group, but not waiting list group.

The blinding for training assignment was confirmed. Assessors of the neuropsychological

tasks did not guess the training condition significantly better than chance at baseline (T0: 30%;

p = .30) and after training or waiting (T2: 42%; p = .11). The active control group was not

informed about the existence of a mock training. More than half (66%) of the active control

group thought they had received an intervention training compared to 89% of the intervention

group. Moreover, the training groups did not significantly differ with respect to motivation dur-

ing training, perceived difficulty of or interest in the training, number of workouts completed,

or drop-out rate. This suggests that the active control group did perceive their training similarly

to the intervention group.
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Training tasks

Thirty-six participants started the intervention training and 33 started the mock training. The

average number of training sessions completed was 48.4, which equals 24.2 hours. This did not

differ significantly between the intervention training group and the active control group (t(71) =

.44, p = .66). From the participants who completed the post-training assessment (T2; nintervention =

29, nactive control = 30), the average number of sessions completed was 56.8 (i.e., 28.4 hours). Both

training groups improved on the training tasks (see S1 Fig) and improvement per task did not dif-

fer significantly between groups (Mann–Whitney U = 628.5, nintervention = 36, nactive control = 33,

p = .68).

The intervention training was intended to be more adaptive than the mock training. How-

ever, the degree of adaptiveness was compromised in 83% of the active control group and 17%

of the intervention group participants. First, even though the active control group had been

Table 2. Mean (standard deviation) of demographic variables and baseline (T0) outcome measures.

Intervention group Active control group Waiting list group

(n = 38) (n = 35) (n = 24) Sign.

Age (M/median (SD)) 57.0/55.0 (9.1) 60.9/ 62.0 (7.5) 61.2/ 60.5 (9.0) .08

Education (M/median (SD, range)) 5.6/6 (1.1, 2–7) 5.6/6 (1.1, 2–7) 5.5/6 (1.3, 2–7) .95

Sex (% male) 63 66 79 .39 d

Time since stroke (in months; M/median (SD, range)) 28.3/28.0 (16.4, 4.6–59.3) 28.3/29.0 (14.4, 4.1–51.5) 29.1/27.3 (17.0, 5.4–61.1) .98

TICS (M/median (SD, range)) 34.6/35 (2.1) 34.1/34 (2.8) 34.2/35 (2.4) .63

Cogn. Rehab. during study (% yes) 5 14 12 .42 d

Non cogn. rehab. During study (% yes) 34 40 24 .50 d

Baseline scores of primary outcome measures

- D-Kefs TMT (number-letter switching) 0.1 (1.1) -0.6 (1.3) -0.3 (1.2) .08

- Letter Number Sequencing 0.1 (1.1) 0.0 (1.2) -0.3 (1.2) .52

- Letter fluency -0.4 (1.2) -0.7 (1.2) -0.8 (1.0) .22

- Category fluency 20.1 (6.0) 18.8 (7.4) 17.6 (3.7) .29

- Tower of London -5.5 (1.8) -5.3 (2.4) -5.5 (2.0) .94

Baseline scores of secondary outcome measures

- Cognitive flexibility composite 0.0 (0.4) 0.0 (0.6) 0.0 (0.4) .72

- Attention composite 0.1 (0.8) -0.5 (0.8) -0.3 (0.7) .01

- Verbal memory composite 47.9 (9.7) 48.3 (9.3) 48.4 (9.9) .98

- Working memory composite 0.1 (0.8) -0.1 (0.8) 0.1 (0.8) .54

- Reasoning composite 0.0 (0.8) 0.0 (0.9) -0.1 (1.0) .90

- Psychomotor speed composite 0.1 (0.6) 0.0 (0.8) 0.0 (0.7) .56

- Inhibition -298 (43) -291 (68) -289 (81) .83

CIS-F 39.4 (11.7) 30.9 (12.5)a 34.3 (12.5) .01

HADS D 6.1 (3.8) 5.3 (3.6)b 5.3 (2.7)c .58

Note. All scores are z-scores except for semantic fluency (words mentioned), Tower of London (reversed score of extra moves required), and inhibition

(ms). P-values are based on ANOVA (if not mentioned otherwise). Bold values are considered significant. Education was based on a 7-point scale (from

1 = unfinished primary school to 7 = university). Sign. = significance; TICS = Telephone Interview for Cognitive Status; Cogn. Rehab. = cognitive

rehabilitation; D-Kefs TMT = Delis-Kaplan Executive Function System Trail Making Test; CIS-F = Checklist Individual Strength- Fatigue subscale; HADS

D = Hospital Anxiety Depression Scale—Depression
a = n = 34
b = n = 33
c = n = 20
d = p-value based on χ2.

doi:10.1371/journal.pone.0172993.t002
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instructed to stay below level 10, 83% of the active control participants continued at levels

higher than nine. They did so in on average 10% of their training time compared to 14% in the

intervention group, which was allowed to train until level 20. Thus, the mock training was more

adaptive than originally planned, which may mitigate the difference between intervention and

mock training. However, because the intervention training included rapid task switches and

tasks were focused on executive functions it was still believed to be superior to the mock train-

ing. Second, in the intervention group, five participants (17%) were slightly less challenged in

the last weeks of the training because they reached the highest level and score possible on one of
the nine tasks. Though not likely, this may have yielded a small ceiling in training effects.

Transfer effect of training

Executive functioning measures (primary outcome measures). In the repeated-mea-

sures MANOVA with the five main executive functioning outcome measures (see statistical

analysis section), all three groups improved significantly over time (F(5,90) = 7.85, p< .001,

with partial eta squared effect size (ɳp
2) = .30), but there was no group�time interaction (F

(10,182) = 0.78, p = .65, ɳp
2 = .04; see Table 3). Time effects were shown for the D-Kefs TMT

(p< .001, ɳp
2 = .20), LNS (p< .01, ɳp

2 = .07), and ToL (p< .01, ɳp
2 = .08), but the intervention

training did not result in larger improvements compared to either of the control groups. Sev-

eral active control participants trained at higher levels than was allowed and five intervention

group participants reached highest levels for two training tasks. Results did not change when

these participants were left out.

Cognitive flexibility and other cognitive domains (secondary outcome measures). In

the repeated-measures MANOVA with the secondary composite measures, the performance

of all three groups increased significantly over time (F(7,88) = 8.89, p< .001, ɳp
2 = .41), but

there was no group�time interaction (F(14,178) = 0.77, p = .69, ɳp
2 = .06; see Table 3). Univari-

ate repeated-measures ANOVAs revealed improvements over time (T2-T0) for attention (p<
.001, ɳp

2 = .30), reasoning (p = .03, ɳp
2 = .05) and psychomotor speed (p< .001, ɳp

2 = .30), but

the intervention training did not result in larger improvement compared to either of the con-

trol groups. The time effect for reasoning did not survive adjustment for multiple compari-

sons. Results were similar when analyses were repeated with univariate outliers, except for the

time effect of reasoning which obtained trend-wise significance (p = .06, ɳp
2 = .04). As with the

primary analyses, results did not change when analyses were run without participants for

whom adaptiveness of the training was compromised.

Relation between improvement on training task and outcome measures. The improve-

ment on training tasks did not correlate significantly with improvement on primary transfer

tasks (r ranging from -.13 to .31). The only significant correlation was between the attention

domain score of the intervention training and the improvement on the ToL (r(34) = .31, p = .03).

For the secondary outcome measures the correlations were also low to moderate (r ranging from

-.19 to .45). Significant correlations in the intervention group were found between improvements

in attention training tasks and reasoning composite (r(34) = .31, p = .03); memory training tasks

and attention composite (r(34) = .33, p = .02); and improvement of reasoning training tasks cor-

related with improvements in the attention composite, reasoning composite, and psychomotor

speed composite (r = .35, p = .02; r = .32, p = .03; r = .28, p = .05; respectively). Mock training

improvement only correlated significantly with attention composite improvement (r(31) = .45,

p< .01).

Planned explorative analyses. We performed a repeated-measures ANOVA to examine

the training and waiting effect on overall cognition based on a composite score of all outcome

measures, and obtained results similar to those above. There was a significant time effect

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 12 / 20



(F(1, 94) = 20.8, p< .001, ɳp
2 = .18), indicating that the performance of all three groups im-

proved. However, the group�time interaction effect was not significant (F(2, 94) = 0.74, p =

.48, ɳp
2 = .02, see Fig 2), thus there was no group difference in improvement. Because the aver-

age overall z-score was close to 0, indicating participants were not severely impaired, we reran

the analyses (post-hoc) including only participants who were impaired (i.e., z-score lower than

-1.65) on at least one of the outcome measures at baseline, again obtaining similar results as

for the primary and secondary analyses mentioned before.

Comparison with statistical methods from previous studies. Previous studies typically

only performed analyses in the intervention group without direct statistical comparison with a

control group or without correcting for multiple testing. To investigate how our results com-

pare to these from previous studies, we also performed within-group analyses (even though we

consider these analyses less appropriate, because between-group analyses are required to con-

trol for training-unspecific effects). Paired Student t-tests of the 26 outcome measures in the

intervention group revealed 10 significant improvements (and 2 trends towards improve-

ment), 3 of which would survive adjustment for multiple comparisons (see Table 4). The wait-

ing list group improved significantly on four outcome measures, none of which would survive

multiple comparison adjustment. Thus, without direct statistical comparison of all three

groups within the same analyses we would have concluded that brain training results in cogni-

tive improvement.

However, as mentioned above, based on repeated-measures MANOVAs when the three

groups are compared directly, these group differences are not significant. Lack of statistical

power is an unlikely explanation for the absence of group differences, because univariate

Fig 2. Overall cognitive improvement on all outcome measures combined into one composite

measure. nactive control = 35, nintervention = 38, nwaiting list = 24. ** = The time effect was significant (p < .001)

without correcting for covariates. Groups did not differ significantly at baseline nor was there a significant

group*time interaction. Error bars represent standard errors.

doi:10.1371/journal.pone.0172993.g002
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Table 4. Mean (standard deviation) and paired Student’s t-test of the difference between before and after study period for all outcome measures in

the intervention group and the waiting list group.

Intervention group (n = 38) Waiting list group (n = 24)

Measure Pre-training Post-training da p—valuea Pre-waiting Post-waiting da p—valuea

Primary

D-Kefs TMT (switch; z) 0.1 (1.1) 0.2 (1.0) 0.2 .09 -0.3 (1.2) -0.1 (1.2) 0.2 .03

Letter Number Seq. (z) 0.1 (1.1) 0.2 (1.1) 0.1 .26 -0.3 (1.2) 0.0 (1.1) 0.2 .11

Phonetic fluency (z) -0.4 (1.2) -0.2 (1.3) 0.1 .01 -0.8 (1.0) -0.8 (0.8) 0.0 1.00

Semantic fluency (words) 20.1 (6.0) 19.9 (6.4) 0.0 .81 17.6 (3.7) 18.3 (4.2) 0.2 .29

ToL (optimal—moves) -33.4 (22.9) -25.6 (15.6) 0.4 .02 -34.2 (19.8) -27.6 (14.4) 0.3 .24

Secondary

Cognitive Flexibility

Fluency Switch (words) -3.5 (4.2) -3.3 (4.1) 0.0 .82 -1.6 (2.7) -2.5 (3.1) -0.3 .15

Switch RT (ms) -407 (245) -357 (222) 0.2 .07 -433 (228) -461 (241) -0.1 .44

Switch Acc (trials) -3.0 (4.0) -3.0 (3.5) 0.0 1.00 -3.3 (4.0) -4.3 (4.1) -0.3 .22

Dual RT (ms)c -390 (368) -451 (292) -0.2 .11 -334 (263) -426 (239) -0.4 .02

Dual Acc (trials)c 1.2 (7.6) 0.5 (7.3) -0.1 .31 -1.3 (4.6) -0.5 (5.0) 0.1 .29

TMT B online (sec)b 85.3 (39.4) 75.5 (31.5) 0.3 .01 98.1 (48.9) 87.6 (45.5) 0.3 .05

Attention

TMT A online (sec)b 47.8 (21.8) 41.6 (15.7) 0.3 .01 52.7 (23.5) 49.3 (23.6) 0.2 .10

PASAT (%) 73.4 (17.3) 76.2 (18.1) 0.2 .05 63.2 (22.5) 67.4 (22.4) 0.3 .03

DSC online (correct) 35.6 (8.4) 37.9 (8.7) 0.3 < .001* 34.7 (6.5) 35.2 (7.9) 0.1 .40

DSC paper (z) -0.3 (1.2) -0.1 (1.2) 0.1 .06 -0.6 (1.0) -0.5 (1.0) 0.1 .43

Verbal memory

RAVLT direct (z) -0.2 (1.4) 0.0 (1.3) 0.1 .25 -0.3 (1.5) -0.2 (1.4) 0.1 .65

RAVLT delayed (z) -0.2 (1.1) -0.3 (1.0) -0.1 .69 -0.1 (1.3) 0.1 (1.2) 0.1 .67

Working memory

Corsi (span) 7.1 (1.2) 7.0 (1.1) -0.1 .58 7.0 (1.2) 6.8 (1.4) -0.1 .61

N-back (%: 2back-0back) -15.5 (12.0) -13.3 (9.9) 0.2 .11 -13.9 (10.1) -12.7 (8.7) 0.1 .60

Reasoning

Raven PM (correct) 17.4 (2.2) 17.4 (2.2) 0.0 1.00 17.0 (2.7) 17.1 (2.6) 0.1 .82

Shipley (correct) 14.7 (2.9) 14.9 (3.2) 0.4 .02 14.8 (3.7) 14.8 (3.2) 0.3 < .01

Psychomotor speed

Click (sec)b 31.5 (11.0) 29.1 (14.0) 0.3 .01 44.8 (42.3) 38.6 (33.9) 0.1 .65

Drag (sec)b 3.1 (1.8) 2.4 (1.1) 0.5 < .01* 2.7 (1.3) 2.4 (0.9) 0.3 .17

Peg (sec)b 73.9 (24.7) 66.7 (20.8) 0.4 < .01* 78.3 (21.1) 75.0 (22.2) 0.2 .24

D-Kefs TMT (motor; z) 0.3 (0.7) 0.3 (0.6) 0.0 .70 0.2 (0.7) 0.2 (0.7) 0.1 .55

Inhibition

Stop (ms) -298 (43) -285 (64) 0.2 .13 -289 (81) -277 (56) 0.2 .38

Note. These statistics are only to compare with previous studies and are not based on analyses that we consider appropriate. Bold values are considered

significant.

* = remains significant after Bonferroni-Holm adjustment

d = Cohen’s d (effect size of the difference score, positive values represent improvements)
a = based on the transformed values if variables were transformed for statistical analyses
b = lower values represent better performance
c = before data analyses this tasks was seen as unsuitable for univariate analyses and should only be used in combination with the switch task within a

composite score

D-Kefs = Delis-Kaplan Executive Function System; TMT = Trail Making Test; Seq. = Sequencing; ToL = Tower of London; Acc = accuracy; PASAT = Paced

Auditory Serial Addition Task; DSST = Digit-Symbol-Coding; PM = Progressive Matrices.

doi:10.1371/journal.pone.0172993.t004

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 14 / 20



ANOVAs did also not show significant differences between the three groups (results not

reported but available upon request), not even when both training groups were pooled and

compared with the waiting list group. Results from Bayesian analyses were also in favor of the

H0 (i.e., evidence that the data was more likely to originate from one group, see S1 Table) for

the outcome measures that showed no group differences based on the ANOVAs.

Per-protocol analyses. The main repeated-measures MANOVAs were repeated for partic-

ipants who completed the training according to the protocol. Compared to the intention-to-

treat analyses, 20 participants were excluded (18 drop-outs, 2 completed< 50 training sessions).

Thus, analyses were based on 77 participants (nintervention = 28, nactive control = 29, nwaiting list =

20). At baseline (T0), participants who did not follow the protocol had significantly lower mem-

ory scores (t(95) = 2.70, p< .01), D-Kefs TMT scores (t(23.7) = 2.21, p = .04), and there was a

trend for lower attention scores (t(23.7) = 1.88, p = .06) than participants who followed the pro-

tocol. They did not differ significantly on the other baseline variables nor on the rehabilitation

received during the study.

Results of the training did not differ from the intention-to-treat analyses. Participants

improved on training tasks, but there were no transfer effects of the training to the primary

outcomes (F(10,136) = 0.70, p = .73, ɳp
2 = .05) nor to the secondary outcomes (F(14,132) =

0.73, p = .74, ɳp
2 = .07).

Follow-up. As there was no training effect, T1 was not evaluated. Results for the training

groups at follow-up were analyzed with a repeated-measures MANOVA with T0 and T3 as

time-points, followed by the same analysis with T2 and T3 as time-points. Long-term training

effects could not be compared to a passive control group, because the waiting list group did

not perform T3 after waiting.

From the 10 outcome measures that were repeated 4 weeks after training completion, 8

showed a significant increase from baseline (T0) to follow-up (T3; F(10, 62) = 9.86, p< .001,

ɳp
2 = .61). Improvements were seen on the TMT A and B, the three mouse tasks, DSST, ToL,

and one of the two switch task outcomes (see S2 Table). However, there was no group�time

interaction (F(10, 62) = 0.59, p = .82, ɳp
2 = .09); thus, both groups increased equally over time.

The time effects disappeared after correcting for education, age and time since stroke (F(10,

59) = 0.74, p =. 69, ɳp
2 = .11).

Between T2 and T3, only TMT B and one of the two switch task outcomes improved signifi-

cantly (p< .01, ɳp
2 = .14 and p = .04, ɳp

2 = .06, respectively) and one of the mouse tasks

reached significance (p = .06, ɳp
2 = .05). The rest of the tasks scores remained stable between

T2 and T3. Again, there were no group differences (F(10, 62) = 1.67, p = .11, ɳp
2 = .21).

Discussion

The aim of the current study was to evaluate whether a commercially available computer-based

brain training improves executive functioning after stroke. We included training elements that

had been reported in previous studies to enhance the effects of training. With this training pro-

gram, we found that participants improved on training tasks and on several outcome tasks, with

improvements persisting even 4 weeks after training completion. However, when groups were

compared, the intervention group did not improve significantly more than the active and wait-

ing list control groups. This implies that the transfer effects of training were small and may be

explained largely by variables unrelated to the training, such as the Hawthorne effect.

Our second aim was to evaluate whether studies without proper control groups can draw

conclusions about transfer effects. The improvements over time we found do corroborate most

findings of previous brain training studies for patients with acquired brain injury [8,9,32–39].

Therefore, without comparing the result of the intervention group to those of the waiting list
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and active control group, we would also have—unjustifiably—concluded that the intervention

training was effective. The current study shows that a positive within-group effect (i.e., time

effect) does not necessarily imply an effect of training because the time effect may not differ

significantly from the one seen in groups that did not train. Our results underscore the impor-

tance of including control conditions in the study design and analyses.

For the main executive functioning outcomes, the time effect disappeared after correcting

for education. This also replicates previous results [8]. The time effect of the secondary out-

come measures was not affected by these corrections. In the current study, education did not

correlate strongly with the outcome measures and the effect of each education level differed

per outcome measure, which suggests that education resulted in non-systematic variation. It is

therefore unlikely that education accounted for the training effect and it is more likely that the

time effect disappeared due to covariation with non-systematic, noise-like patterns.

With the same outcome measures as used in the current study, two studies did report trans-

fer effects of training to executive functioning, verbal memory [38], and to attention [34].

Compared with our study, their participants were more severely impaired, suggesting that

training programs may be more effective for these patients. A limitation is that an active con-

trol group was not included, so their results may be training-unspecific. Another limitation is

that only a small number of tasks per cognitive domain was used. It is important, however, to

use multiple outcome measures per cognitive domain because an improvement in a small

selection of outcome measures taxing the same function is less convincing than improvement

on several outcome measures within a function [40]. With the use of composite scores, as we

did in our study, only training effects that consistently improve a given domain will be

revealed, not merely the skills for one particular task. This would be strong evidence that the

training indeed improved the underlying cognitive functioning measured by that set of tasks.

There were several limitations in our study. First, our sample consisted of stroke patients

who were relatively high functioning with an average z-score of -0.6. Only 63% of the partici-

pants had scores that suggest impairment (z < -1.65) at least in one outcome measure. This

may have been due to a selection bias, because participants needed to be able to use a computer

and endure the workload of this study. Nevertheless, the training results did not change when

we only included these more severely impaired patients.

Second, similar to what was found in two large studies with healthy elderly adults [41,42],

the effect size of improvement on outcome measures was small, on average ɳp
2 = .20 (which

corresponds to d = 0.29). To reveal these effects with a power of 0.8 and alpha of .05 (one

sided), 444 participants (3x 148) would be needed. However, an intervention with such a small

effect size is hardly clinically relevant.

Third, the adaptiveness of the training was somewhat compromised in both training groups.

As a result, the active control training was more challenging than we had planned, and five inter-

vention group participants were slightly less stimulated because they reached the ceiling in one of
the nine training tasks during the last phase of their training. This may explain the absence of dif-

ference in transfer effects between the intervention and the mock training. However, results with-

out these participants did not differ from those including them, thus rendering the compromised

adaptiveness of the training an unlikely candidate to explain the absence of training effects.

Fourth, we expected that training five times per week during half an hour per day for a total

of 29 hours would be sufficient to induce restitution-based recovery. Possibly, this still was not

sufficient and more time or a higher frequency of training is needed [42,43]. Even though par-

ticipants were coached during the entire training period and could contact us whenever they

ran into problems, they might have benefited from additional face-to-face contact and support

[44]. It is also possible that the training was not sufficiently tailored to improve cognitive func-

tioning in patients.
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Fifth, a general limitation of executive functioning tasks pertains to learning effects during

repeated performance. Yet, no parallel versions were available for the tasks that improved over

time. Training effects may thus have been absorbed by these retest effects.

Our study was designed to maximize the likelihood of uncovering training effects on

executive functions. Despite our efforts, we did not find any evidence in favor of the

notion that computer-based training helps to improve executive functioning. The efforts

included the following: Our study had sufficient statistical power to reveal clinically rele-

vant effect sizes. The training included important aspects of a training program that are

thought to be essential, and used professionally programmed tasks. These were stimulat-

ing and tapped into three cognitive domains. The gaming platform was tailored to our

research and allowed control over many aspects of the training, including (forced) task

order. The training included rapid task switches and was spread over a long period with a

high frequency per week. Participants were coached and motivated to train. Finally, our

replication of time effects found by previous studies, and all time effects showing improve-

ments rather than deterioration, indicate that the lack of training transfer is not due to

measurement errors.

We recommend that future studies adjust their training to the specific needs of each patient

and provide more face-to-face coaching, especially at the beginning of the training. It is impor-

tant to control essential training elements (e.g., level selection should be done by the program

and not by the participant) in order to ensure compliance to study protocol. Finally, studies

should include proper control conditions, multiple outcome measures per cognitive domain,

and large sample sizes.

Our study showed that a high-potential cognitive flexibility training did not convinc-

ingly result in improvements on several cognitive outcome measures. We did find

improvements over time, but improvements were similar in all three groups, including

in the waiting list group. The lack of training results in this study does not imply that

computer training programs in general are ineffective. However, caution is needed when

interpreting positive results of previous training studies, because most of them did not

include adequate control groups. Based on our results, we cannot recommend general

brain training programs that are now commercially available when performed five times

per week during three months. A training protocol as used in our study is unlikely to

yield clinically relevant benefits for the rehabilitation of cognitive impairments after

stroke. It remains possible, however, that training programs with a much higher training

dose, or programs tailored to the specific needs of individual patients, will be effective

and clinically relevant.

Supporting information

S1 File. Details of data preparation.

(PDF)

S1 Fig. Improvement on training tasks of the intervention group (n = 36) and the active

control group (n = 33). Scores are the average of all training tasks performed (max is 2000, for

active control group max should be 900). Error bars represent standard errors. The lines are

offset horizontally to reveal both lines.

(PDF)

S1 Table. Results from Bayesian independent samples t-test with training groups com-

bined versus waiting list group.

(PDF)

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s003


S2 Table. Mean (standard deviation) and repeated-measures MANOVA of the outcome

measures at follow-up.

(PDF)

S2 File. Protocol approved by Medical Ethical committee.

(PDF)

S3 File. CONSORT 2010 checklist_TAPASS.

(PDF)

S4 File. TAPASS_minimal SPSS dataset without demographical information_CVA.

(SAV)

Acknowledgments

The authors would like to thank all the participants and their relatives for participating in the

study; the students for collecting the data and coaching the participants; Mart van de Ven,

Bruno Boutin, Nick Daems, and Sam Prinssen for programming the online tasks; Dezzel

media for making Braingymmer available for our study; and the mental health care institutions

for helping with patient recruitment (Heliomare Wijk aan Zee, Reade Amsterdam, De Hoog-

straat Revalidatie Utrecht, De Trappenberg Huizen, Adelante Zorggroep Hoensbroek, Revant

Lindenhof Goes, and Academic Medical Center Amsterdam, The Netherlands).

Author Contributions

Conceptualization: RvdV BS JM CvB JA.

Data curation: RvdV JB.

Formal analysis: RvdV.

Funding acquisition: JM.

Investigation: RvdV JB.

Methodology: RvdV BS JM JB.

Project administration: RvdV.

Resources: RvdV BS JM JB KRR DV JA TN SKD CvB SR.

Software: RvdV JB.

Supervision: JM BS.

Validation: RvdV JB.

Visualization: RvdV.

Writing – original draft: RvdV BS JM DV.

Writing – review & editing: RvdV BS JM JB KRR DV JA TN SKD CvB SR.

References
1. Maaijwee NAMM, Schaapsmeerders P, Rutten-Jacobs LCA, Arntz RM, Schoonderwaldt HC, et al.

(2014) Subjective cognitive failures after stroke in young adults: Prevalent but not related to cognitive

impairment. J Neurol 261(7): 1300–1308. doi: 10.1007/s00415-014-7346-3 PMID: 24740819

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172993.s007
http://dx.doi.org/10.1007/s00415-014-7346-3
http://www.ncbi.nlm.nih.gov/pubmed/24740819


2. Middleton LE, Lam B, Fahmi H, Black SE, McIlroy WE, et al. (2014) Frequency of domain-specific cog-

nitive impairment in sub-acute and chronic stroke. Neurorehabilitation 34(2): 305–312. doi: 10.3233/

NRE-131030 PMID: 24401826

3. Lesniak M, Bak T, Czepiel W, Seniow J, Czlonkowska A. (2008) Frequency and prognostic value of

cognitive disorders in stroke patients. Dement Geriatr Cogn Disord 26(4): 356–363. doi: 10.1159/

000162262 PMID: 18852488

4. Nys GMS, van Zandvoort MJE, van der Worp HB, de Haan EHF, de Kort PLM, et al. (2006) Early cogni-

tive impairment predicts long-term depressive symptoms and quality of life after stroke. J Neurol Sci

247(2): 149–156. doi: 10.1016/j.jns.2006.04.005 PMID: 16716359

5. Kurland J, Baldwin K, Tauer C. (2010) Treatment-induced neuroplasticity following intensive naming

therapy in a case of chronic wernicke’s aphasia. Aphasiology 24: 737–751.

6. Thrane G, Friborg O, Anke A, Indredayik B. (2014) A meta-analysis of constraint-induced movement

therapy after stroke. J Rehabil Med 46(9): 833–842. doi: 10.2340/16501977-1859 PMID: 25182341

7. van de Ven RM, Murre JMJ, Veltman DJ, Schmand BA. (2016) Computer-based cognitive training for

executive functions after stroke: A systematic review. Frontiers in Human Neuroscience 10(150).

8. Gray JM, Robertson I, Pentland B, Anderson S. (1992) Microcomputer-based attentional retraining

after brain damage: A randomised group controlled trial. Neuropsychological Rehabilitation 2(2): 97–

115.

9. Spikman JM, Boelen DHE, Lamberts KF, Brouwer WH, Fasotti L. (2010) Effects of a multifaceted treat-

ment program for executive dysfunction after acquired brain injury on indications of executive function-

ing in daily life. Journal of the International Neuropsychological Society 16(1): 118–129. doi: 10.1017/

S1355617709991020 PMID: 19900348

10. Mayo E. (1933) The human problems of an industrial civilization, New York: Macmillan Co.

11. Roethlisberger FJ, Dickson WJ. (1939) Management and the worker: An account of a research program

conducted by the western electric company, Hawthorne works, Chicago. Cambridge, Mass.: Harvard

University Press.

12. Glass BD, Maddox WT, Love BC. (2013) Real-time strategy game training: Emergence of a cognitive

flexibility trait. PLoS ONE [Electronic Resource] 8(8): e70350.

13. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, et al. (2000) The unity and diversity of

executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis.

Cognit Psychol 41(1): 49–100. doi: 10.1006/cogp.1999.0734 PMID: 10945922

14. Buitenweg JIV, Murre JMJ, Ridderinkhof KR. (2012) Brain training in progress: A review of trainability in

healthy seniors. Front Hum Neurosci 6: 183. doi: 10.3389/fnhum.2012.00183 PMID: 22737115

15. van de Ven RM, Schmand BA, Groet E, Veltman DJ, Murre JMJ. (2015) The effect of computer-based

cognitive flexibility training on recovery of executive function after stroke: Rationale, design and meth-

ods of the TAPASS study. BMC Neurology 15(144).

16. Cohen J. (1988) Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Ear-

lbaum Associates.

17. Karbach J, Kray J. (2009) How useful is executive control training? Age differences in near and far

transfer of task-switching training. Developmental Science 12(6): 978–990. doi: 10.1111/j.1467-7687.

2009.00846.x PMID: 19840052

18. Saghaei M, Saghaei S. (2011) Implementation of an open-source customizable minimization program

for allocation of patients to parallel groups in clinical trials. Journal of Biomedical Science and Engineer-

ing 4: 734–739.

19. Brandt J, Spencer M, Folstein M. (1988) The telephone interview for cognitive status. Neuropsychiatry

Neuropsychol Behav Neurol 1(2): 111–7.

20. Delis DC, Kaplan E, Kramer J. (2001) Delis–Kaplan executive function system. San Antonio, TX: Psy-

chological Corporation.

21. Thurnstone LL. (1938) Primary mental abilities. Chicago: University of Chicago press.

22. Benton AL, Hamsher K. (1989) Multilingual aphasia examination. Iowa City: AJA associates.

23. Culbertson W, Zillmer E. (2005) Tower of London Drexel University. Chicago: Multi-Health Systems.

24. Wechsler D. (2000) Wechsler adult intelligence scale (WAIS-III) Nederlandstalige bewerking. Tech-

nische handleiding. Lisse: Swets & Zeitlinger.

25. Rogers RD, Monsell S. (1995) Costs of a predictable switch between simple cognitive tasks. Journal of

Experimental Psychology-General 124(2).

26. Gronwall DMA. (1977) Paced auditory serial-addition task: Measure of recovery from concussion. Per-

cept Mot Skills 44(2): 367–373. doi: 10.2466/pms.1977.44.2.367 PMID: 866038

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 19 / 20

http://dx.doi.org/10.3233/NRE-131030
http://dx.doi.org/10.3233/NRE-131030
http://www.ncbi.nlm.nih.gov/pubmed/24401826
http://dx.doi.org/10.1159/000162262
http://dx.doi.org/10.1159/000162262
http://www.ncbi.nlm.nih.gov/pubmed/18852488
http://dx.doi.org/10.1016/j.jns.2006.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16716359
http://dx.doi.org/10.2340/16501977-1859
http://www.ncbi.nlm.nih.gov/pubmed/25182341
http://dx.doi.org/10.1017/S1355617709991020
http://dx.doi.org/10.1017/S1355617709991020
http://www.ncbi.nlm.nih.gov/pubmed/19900348
http://dx.doi.org/10.1006/cogp.1999.0734
http://www.ncbi.nlm.nih.gov/pubmed/10945922
http://dx.doi.org/10.3389/fnhum.2012.00183
http://www.ncbi.nlm.nih.gov/pubmed/22737115
http://dx.doi.org/10.1111/j.1467-7687.2009.00846.x
http://dx.doi.org/10.1111/j.1467-7687.2009.00846.x
http://www.ncbi.nlm.nih.gov/pubmed/19840052
http://dx.doi.org/10.2466/pms.1977.44.2.367
http://www.ncbi.nlm.nih.gov/pubmed/866038


27. Saan R, Deelman B. (1986) De 15-woordentest A en B. (een voorlopige handleiding). Groningen:

Afdeling Neuropsychologie, AZG (international publication).

28. Lever AG, Werkle-Bergner M, Brandmaier AM, Ridderinkhof KR, Geurts HM. (2015) Atypical working

memory decline across the adult lifespan in autism spectrum disorder? J Abnorm Psychol 124(4):

1014–1026. doi: 10.1037/abn0000108 PMID: 26595478

29. Raven J, Raven JC, Court JH. (1998) Manual for raven’s progressive matrices and vocabulary scales—

section 3: Standard progressive matrices. Oxford: Oxford Psychologists Press.

30. Zachary RA. (1991) Shipley institute of living scale: Revised manual. Los Angeles: Western Psycho-

logical Services.

31. Grubbs FE. (1950) Sample criteria for testing outlying observations. Annals of Mathematical Statistics

21: 27–58.

32. Lundqvist A, Grundstrom K, Samuelsson K, Ronnberg J. (2010) Computerized training of working

memory in a group of patients suffering from acquired brain injury. Brain Injury 24(10): 1173–1183. doi:

10.3109/02699052.2010.498007 PMID: 20715888

33. Akerlund E, Esbjornsson E, Sunnerhagen KS, Bjorkdahl A. (2013) Can computerized working memory

training improve impaired working memory, cognition and psychological health? Brain Injury 27(13–

14): 1649–1657. doi: 10.3109/02699052.2013.830195 PMID: 24087909

34. Westerberg H, Jacobaeus H, Hirvikoski T, Clevberger P, Ostensson ML, et al. (2007) Computerized

working memory training after stroke—A pilot study. Brain Injury 21(1): 21–29. doi: 10.1080/

02699050601148726 PMID: 17364516

35. van Vleet TM, Chen A, Vernon A, Novakovic-Agopian T, D’Esposito MT. (2015) Tonic and phasic alert-

ness training: A novel treatment for executive control dysfunction following mild traumatic brain injury.

Neurocase 21(4): 489–498. doi: 10.1080/13554794.2014.928329 PMID: 24984231

36. Ruff RM, Mahaffey R, Engel J, Farrow C, Cox D, et al. (1994) Efficacy study of THINKable in the atten-

tion and memory retraining of traumatically head-injured patients. Brain Injury 8(1): 3–14. PMID:

8124315

37. Chen SH, Thomas JD, Glueckauf RL, Bracy OL. (1997) The effectiveness of computer-assisted cogni-

tive rehabilitation for persons with traumatic brain injury. Brain Injury 11(3): 197–209. PMID: 9058001

38. De Luca R, Calabro RS, Gervasi G, De Salvo S, Bonanno L, et al. (2014) Is computer-assisted training

effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study.

Disability and Health Journal 7(3): 356–360. doi: 10.1016/j.dhjo.2014.04.003 PMID: 24947578

39. Lin Z, Tao J, Gao Y, Yin D, Chen A, et al. (2014) Analysis of central mechanism of cognitive training on

cognitive impairment after stroke: Resting-state functional magnetic resonance imaging study. J Int

Med Res 42(3): 659–668. doi: 10.1177/0300060513505809 PMID: 24722262

40. Slagter HA. (2012) Conventional working memory training may not improve intelligence. Trends Cogn

Sci (Regul Ed) 16(12): 582–583.

41. Corbett A, Owen A, Hampshire A, Grahn J, Stenton R, et al. (2015) The effect of an online cognitive

training package in healthy older adults: An online randomized controlled trial. Journal of the American

Medical Directors Association 16(11): 990–997. doi: 10.1016/j.jamda.2015.06.014 PMID: 26543007

42. Hardy JL, Nelson RA, Thomason ME, Sternberg DA, Katovich K, et al. (2015) Enhancing cognitive abili-

ties with comprehensive training: A large, online, randomized, active-controlled trial. Plos One 10(9):

e0134467. doi: 10.1371/journal.pone.0134467 PMID: 26333022

43. Bhogal SK, Teasell R, Speechley M. (2003) Intensity of aphasia therapy, impact on recovery. Stroke 34

(4): 987–993.

44. Lampit A, Hallock H, Valenzuela M. (2014) Computerized cognitive training in cognitively healthy older

adults: A systematic review and meta-analysis of effect modifiers. Plos Medicine 11(11): e1001756.

doi: 10.1371/journal.pmed.1001756 PMID: 25405755

Computer-based cognitive training after stroke

PLOS ONE | DOI:10.1371/journal.pone.0172993 March 3, 2017 20 / 20

http://dx.doi.org/10.1037/abn0000108
http://www.ncbi.nlm.nih.gov/pubmed/26595478
http://dx.doi.org/10.3109/02699052.2010.498007
http://www.ncbi.nlm.nih.gov/pubmed/20715888
http://dx.doi.org/10.3109/02699052.2013.830195
http://www.ncbi.nlm.nih.gov/pubmed/24087909
http://dx.doi.org/10.1080/02699050601148726
http://dx.doi.org/10.1080/02699050601148726
http://www.ncbi.nlm.nih.gov/pubmed/17364516
http://dx.doi.org/10.1080/13554794.2014.928329
http://www.ncbi.nlm.nih.gov/pubmed/24984231
http://www.ncbi.nlm.nih.gov/pubmed/8124315
http://www.ncbi.nlm.nih.gov/pubmed/9058001
http://dx.doi.org/10.1016/j.dhjo.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24947578
http://dx.doi.org/10.1177/0300060513505809
http://www.ncbi.nlm.nih.gov/pubmed/24722262
http://dx.doi.org/10.1016/j.jamda.2015.06.014
http://www.ncbi.nlm.nih.gov/pubmed/26543007
http://dx.doi.org/10.1371/journal.pone.0134467
http://www.ncbi.nlm.nih.gov/pubmed/26333022
http://dx.doi.org/10.1371/journal.pmed.1001756
http://www.ncbi.nlm.nih.gov/pubmed/25405755

