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General expression for the component size distribution in infinite configuration networks
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(Received 16 December 2016; published 2 May 2017)

In the infinite configuration network the links between nodes are assigned randomly with the only restriction
that the degree distribution has to match a predefined function. This work presents a simple equation that gives
for an arbitrary degree distribution the corresponding size distribution of connected components. This equation
is suitable for fast and stable numerical computations up to the machine precision. The analytical analysis reveals
that the asymptote of the component size distribution is completely defined by only a few parameters of the
degree distribution: the first three moments, scale, and exponent (if applicable). When the degree distribution
features a heavy tail, multiple asymptotic modes are observed in the component size distribution that, in turn,
may or may not feature a heavy tail.

DOI: 10.1103/PhysRevE.95.052303

I. INTRODUCTION

Random graphs provide models for complex networks,
and in many cases, real-world networks has been accurately
described by such models [1–4]. Within the scope of random
graph models one finds: Erdős-Rényi model, Barabási-Albert
model [1], node copying model [5], small-world network [6],
configuration network [7,8], and many others. In the config-
uration network, N nodes are assigned predefined degrees.
The edges connecting these nodes are then considered to be
random, and every distinct configuration of edges that satisfies
the given degree sequence is treated as a new instance of the
network in the sense of random graphs. Interesting properties
emerge when the number of nodes, N, approaches infinity,
or at the so-called thermodynamic limit [9,10]. In this case,
the infinite degree sequence, which provides the only input
information for the model, is equivalent to the frequency
distribution of degrees, u(k), k = 1,2, . . . , i.e., the probability
that a randomly chosen node has degree k.

Component-size distribution, w(n), denotes probability that
a randomly chosen node is part of a connected component of
finite size n. Connected components in the infinite configu-
ration network can be of finite or infinite size. Molloy and
Reed [11] showed that if an infinite component exists, then it
is the only infinite component with probability 1. Hence, the
infinite component is referred to as the giant component.

Depending upon a specific context behind the network,
the component size distribution may summarize an important
feature of the modeled system. In polymer chemistry, for
example, the infinite configuration network is used as a toy
model for hyper-branched and cross-linked polymers. In this
context, the component size distribution predicts viscoelastic
properties of the material while the emergence of the giant
component is interpreted as a phase transition from liquid
to solid state of the soft matter [4,12]. Since connected
components are closely related to clusters in bond percolation
processes, the distribution of component sizes can be used to
model outbreaks for SIR epidemiological processes [2]. In lin-
guistics, component size distribution of the sentence similarity
graph is an important tool when studying structure of natural
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languages [13]. This brief list of application cases is far from
being exhaustive. Despite the vast applications, the empirical
component size distribution is hard to measure precisely unless
the whole topology of the network is known. On another hand,
empirical observations on the degree distribution, u(k), are
much easier to perform.

Reference [11] provides an elegant criterion that connects
moments of u(k) to the fact that the network contains the
giant component. A somewhat deeper question further in this
direction reads: providing u(k) is given, what is the component
size distribution, w(n)? In Ref. [14], Newman et al. showed
that the component size distribution can be recovered by a
numerical algorithm that involves solving a fixed-point prob-
lem followed by an inversion of a generation function. Such
algorithm demonstrates that indeed u(k) and w(n) can be put
into a correspondence; however, it becomes computationally
infeasible for large values of n. This numerical issue aries due
to ill-posedness of the numerical generating function inversion.

On another hand, the component size distribution has been
analytically resolved only for a limited number of partial cases
of u(k) [15]. Within the scope of analytically solvable cases,
only the Yule-Simon degree distribution features a heavy tail,
that is to say it decays proportionally to an algebraic function,
n−β, β > 0 at large n. At the same time, the heavy-tailed
(or scale-free) distributions are commonly observed in the
empirical data collected from many real-world networks
[16–19]. Empirically observed exponents vary in a broad
range. Some studies report degree exponents that are as small
as β = 0.81 in the case of the Internet topology [20] and β = 1
in social networks [21]. On the opposite side of this spectrum,
one finds exponent β = 5 in the generalization of preferential
attachment model [22].

The only asymptotic analysis available for component size
distribution in the configuration network states that for large
n, w(n) is either proportional to n−3/2 or to e−Cn, where C > 0
is a constant [14]. The current paper uncovers new asymptotic
modes for w(n) that emerge only when the degree distribution
features a heavy tail. The paper shows that for an arbitrary
u(k), w(n) can be expressed as a finite sum. In practice, this
sum can be stably computed up to the machine precision
in the cost of O(n2) multiplicative operations. Finally, the
paper discusses how a finite cutoff introduced in the degree
distribution reflects on the distribution of component sizes.
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II. COMPONENT-SIZE DISTRIBUTION BY
LAGRANGE INVERSION

It has been noticed that all components in the infinite
configuration model are locally tree-like. Using this fact as
a departure point, Newman et al. [14] showed that the degree
distribution can be put into a correspondence to the component
size distribution by applying the generation-function (GF)
formalism. Here, by a GF of u(k),

∑∞
k=0 u(k) = 1, we refer

to the series,

U (x) =
∞∑

k=0

u(k)xk, x ∈ C, |x| � 1. (1)

According to the approach presented in Ref. [14], the generat-
ing function for the component size distribution, W (x) is found
as a solution of the following system of functional equations:

W (x) = xU [W1(x)], (2)

W1(x) = xU1[W1(x)], (2′)

where U (x) is the GF of u(k), and U1(x) is the GF for the
excess degree distribution,

u1(k) = k + 1

μ1
u(k + 1), (3)

where μ1 = ∑∞
k=1 ku(k). Similar to combinatorial tree-

counting problems, Eq. (2) can be solved by applying the La-
grange inversion formula [23]. The original formulation of the
Lagrange inversion principle is as follows. Suppose A(x),R(x)
are such formal power series that A(x) = xR[A(x)], then for
an arbitrary formal power series F (x), the coefficient of power
series F [A(x)] at xn reads as

[xn]F [A(x)] = 1

n
[tn−1]F ′(t)Rn(t), n > 0. (4)

Here [tn−1], as being the inverse operation to the GF transform
Eq. (1), refers to the coefficient at tn−1 of the corresponding
power series. By substituting A(x) = W1(x), F (x) = U (x),
and applying Eq. (2), one transforms the left-hand side
of Eq. (4), [xn]F [A(x)] = [xn]U [W1(x)] = [xn+1]W (x) =
w(n + 1). Further on, the right-hand side of Eq. (4) is
transformed by substituting R(x) = U1(x) and realizing that,
according to the definition Eq. (3), U

′
(x) = μ1U1(x). Now,

we are ready to write an expression for w(n), even though
we have no explicit expression for generating function W (x)
itself,

w(n) = 1

n − 1
[tn−2]U

′
(x)U1(x)n−1

= μ1

n − 1
[tn−2]U1(x)n, n > 1. (5)

A similar equation was also derived in Ref. [15] by means
of different reasoning. In principle, Eq. (5) provides enough
information to analytically recover the component size distri-
bution for a few special cases of the degree distribution [15]. In
practice, however, the main difficulty when applying Eq. (5)
is that the equation employs the inverse GF transform, [tn],
which limits the choices one has when searching for an exact
solution or performing numerical computations. With this in

mind, one may rewrite Eq. (5) so that the new expression
does not involve the GF concept at all. It turns out that the
only reason why Eq. (5) utilizes the GF formalism is that it
provides means for convolution power.

The convolution of two distributions, f (k) ∗ g(k), k > 0 is
defined as a binary multiplicative operation,

f (k) ∗ g(k) =
∑

i+j=k

f (i)g(j ),

where the summation is performed over all nonnegative
ordered couples i,j that sum up to k. This sum contains exactly
k + 1 of such couples. In this paper, the order of operations is
chosen in such a way that the pointwise multiplication precedes
convolution, for instance, f (k) ∗ kg(k) = f (k) ∗ [kg(k)]. The
convolution can be inductively extended to the n-fold convo-
lution, or the convolution power,

f (k)∗n = f (k)∗n−1 ∗ f (k), (6)

where f (k)∗0 ≡ 1 by definition. It can be shown that the
convolution power can be expanded into a sum of products,

f (k)∗n =
∑

k1+···+kn=k

ki�0

n∏
i=1

f (ki). (7)

The convolution has a peculiar property in respect to the
GF transform. If F (x),G(x),U (x) are GFs for f (k),g(k),
and u(k) = f (k) ∗ g(k), then U (x) = F (x)G(x). Furthermore,
if U (x) is GF for u(k), then U (x)n generates u(k)∗n. By
exploiting this relation one immediately reduces Eq. (5) to

w(n) =
{

μ1

n−1u∗n
1 (n − 2), n > 1,

u(0) n = 1.
(8)

Here, the value of w(0) is derived directly from the formulation
of the problem: nodes with degree zero are also components
of size one. This simple equation is ready to be used: by
combining Eq. (8) and the definition Eqs. (3) and (7), one may
directly express the values of the component size distribution
in terms of u(k) for n > 1,

w(n) = [ku(k)]∗n(2n − 2)

(n − 1)μn−1
1

, n > 1. (9)

For example, the first five values of w(n) read as,

w(1) =u(0),

w(2) = 1

μ1
u(1)2,

w(3) = 3

μ2
1

u(1)2u(2),

w(4) = 4

μ3
1

u(1)2[2u(2)2 + u(1)u(3)],

w(5) = 5

μ4
1

u(1)2[4u(2)3 + 6u(1)u(2)u(3) + u(1)2u(4)].

The number of terms in this expansion increases rapidly
with n. That said, Eq. (8) can be easily readjusted for
numerical computations. Namely, one can use Fast Fourier
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TABLE I. Exact expressions for component size distributions in
configuration network as evaluated with Eq. (8) via Z transform.

Degree Distribution Component-Size Distribution

Exponential distribution

Ce−λk (1−e−λ)2n−1

eλ(n−1)
�(3n−2)
�(n)�(2n)

Geometric distribution
(1 − p)k−1p (1 − p)n−2p2n−1 �(3n−2)

�(n)�(2n)

Binomial distribution(
kmax

k

)
(1 − c)kmax−kck 1

n−1

(
nkmax−n

n−2

)
×(1 − c)nkmax−2n−2cn−2

Transform (FFT) to compute the convolution powers, u∗n
1 (k) =

F−1[F[u1(k)]n]. In this case, O(N2) multiplicative operations
is sufficient to compute all values of w(n),n � N . Alterna-
tively, if w(n − 1) is known, then w(n) can be found in the
cost of O(n log n). Besides FFT, there are algorithms that are
specifically designed for fast approximation of convolution
powers, such as projection onto basis functions that are
invariant under convolution [24].

Analytic formulas for convolution powers (sometimes also
referred to as compositas [25]), were covered by literature
for many elementary functions [26,27]. Convolution powers
of u1(k) can also be found analytically by applying discrete
functional transforms, for instance, Z transform and discrete
Fourier transform. A few examples of such results are given
in Table I. Focusing on one of them, the first curve in Fig. 1
demonstrates that both analytical and numerical results for the
exponential degree distribution coincide.

FIG. 1. Examples of component size distributions (solid lines)
that feature fast (1) and slow (2) convergence to their asymptotes
(dashed lines). Both asymptotes are covered by Case A, Table II.
(1) u(k) = Ce−1.05k, all three: the analytical expression (see Table I),
numerical values [according to Eq. (8)] and the asymptote practically
coincide. (2) u(k) is nonzero in three points u(1) = 0.97, u(2) =
0.015, u(10) = 0.015; the component size distribution features os-
cillations before it converges to the asymptote.

III. ASYMPTOTIC ANALYSIS

The format of Eq. (8) naturally suggests a straightforward
way to perform an asymptotic analysis for n → ∞. One may
view u(k) as a probability mass function PMF (or alternatively
discrete probability density function) of some discrete random
variables ki. Recall the following property of convolution
powers: if i.i.d. random variables ki have PMF u1(k), then
u∗n

1 (k) gives the PMF for the sum k1 + k2 + · · · + kn. The
central limit theorem (CLT) gives an estimate for this sum as
n → ∞, and the idea is now to obtain the asymptotes of w(n)
by applying CLT to the definition Eq. (8).

A. Light-tailed degree distributions

First, let us assume that distribution u(k) decays faster than
algebraically, that is

u(k) = o(k−β), β > 2, k → ∞, (10)

which is also equivalent to u1(k) = o(k−β+1). Then, ac-
cording to CLT, u∗n

1 (k) approaches the normal distribution,

u∗n
1 (k)

d→ (
√

nσ )−1N ( k−nM√
nσ

,0,1), when n → ∞, where M =∑∞
k=1 ku1(k) and σ 2 = ∑∞

k=1 k(k − M)2u1(k) < ∞ denote
the mean value and variance of u1(k). The normal distribution
can now replace u∗n

1 (k) in Eq. (8), which yields the asymptote
for the component size distribution,

w(n) ∼ μ1e
− (n(1−M)−2)2

2nσ2

(n − 1)
√

2πnσ 2
, as n → ∞. (11)

Quantities M,σ 2 are directly expressible in terms of moments
of degree distribution u(k),

M =
∞∑

k=1

ku1(k) = 1

μ1

∞∑
k=1

(k2 − k)u(k) = μ2 − μ1

μ1
,

σ 2 =
∞∑

k=1

k(k − M)2u1(k) (12)

= 1

μ1

∞∑
k=0

k(k − M − 1)2u(k) = μ3μ1 − μ2
2

μ2
1

,

where

μi = E[ki] =
∞∑

k=1

kiu(k), i = 1,2, . . .

Finally, substituting Eqs. (12) into Eq. (11) gives the final
version of the asymptote,

w(n) ∼ μ2
1n

−3/2e
− (μ2−2μ1)2

2(μ1μ3−μ2
2)

n√
2π (μ1μ3 − μ2

2)
, as n → ∞. (13)

Two examples of component size distributions that converge
with various rates to their asymptotes are given in Fig. 1.
Peculiarly, the only information on u(k) that is contained
in the asymptote definition Eq. (13) is the first three mo-
ments μ1,μ2,μ3. Furthermore, depending upon the value of
θ = μ2 − 2μ1, the asymptotic expression Eq. (13) switches
between the two modes: it either decays exponentially as
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O(e−An), when θ 
= 0, or it decays as an algebraic function,
O(n−3/2), when θ = 0 (see also Table II, Case A). The last
equality is the well-known giant component criterion,

μ2 − 2μ1 = 0. (14)

The criterion Eq. (14) was obtained by Molloy and Reed [11]
by means of a different reasoning. In Ref. [11], the authors
prove that θ > 0 implies existence of the giant component
in the configuration network, whereas θ < 0 implies nonexis-
tence of this component. In Ref. [14], it was hypothesized that
the −3/2 exponent is universal and must hold for all degree
distributions at the critical point θ = 0. We will see now that
when the condition Eq. (10) fails to hold, distinct from −3/2
exponents may also appear in the asymptotic of w(n).

B. Heavy-tailed degree distributions

Suppose that, contrary to the condition Eq. (10), degree
distribution u(k) features a heavy tail,

u(k) ∼ sk−β, β > 2, k → ∞, (15)

which is equivalent to u1(k) ∼ sk−α−1, α = β − 2 > 0, k →
∞. It turns out that exponent α and the scale s, together
with the moments μ1,μ2,μ3, provide enough information to
generalize the asymptote Eq. (13) for the case of heavy-tailed
degree distributions. Suppose 0 < α � 2. In terms of u(k)
moments, this condition casts out as μ3 = ∞. As follows from
Gnedenko and Kolmogorov’s generalization of CLT [28], the
mass density distribution for u∗n

1 (k) approaches the stable law,

u∗n
1 (k)

d→ 1

γ (n)
GA

(
k − μ(n)

γ (n)
,α,1

)
, n → ∞. (16)

Here, we use the notation of Uchaikin and Zolotarev [29],
which includes exponent parameter α, the location parameter,

μ(n) =
⎧⎨
⎩

n
μ2−μ1

μ1
, α > 1,

sn ln n, α = 1,

0, 0 < α < 1,

(17)

and the scale parameter,

γ (n) =
⎧⎨
⎩

√
sn ln n, α = 2,√
πs[2�(α) sin απ

2 ]−1/αn1/α, α ∈ (0,1) ∪ (1,2)
πns

2 , α = 1.

.

(18)
No general analytical expression is known for GA(x,α,1), and
the stable law is defined via its Fourier transform,

F[GA(x,α,1)] =
{
e−xα−i tan πα

2 , α ∈ (0,1) ∪ (1,2],
e−xα+i 2α

π , α = 1.
(19)

Consider the case when 1 < α < 2. According to Eq. (16),
the point in which the stable law is evaluated, x(n) = n−μ(n)

γ (n) ,
approaches positive or negative infinities depending upon the
sign of θ = μ2 − 2μ1. Indeed, as n → ∞,

x(n) →
⎧⎨
⎩

+∞, θ < 0,

0, θ = 0,

−∞, θ > 0.

(20)

For these values of α, function GA(x,α,1) is nonzero on
(−∞, + ∞). If x(n) → ∞, the function features an algebraic
decay, whereas if x(n) → −∞, the decay is exponential.

FIG. 2. Component-size distributions (solid lines) and their
asymptotes (dashed lines) as obtained for degree distributions with
exponent β = 3.5 (α = 1.5) and various values of scale parameter.
Three distinct asymptotic modes are illustrated: (1) s = 0.066 : θ <

0, η = 5
2 ; (2) s = 0.644 : θ ≈ 0, η = 5

3 ; (3) s = 0.8 : θ > 0.

Therefore, the limiting value switching that takes place in
Eq. (20) may reflect on the asymptotic behavior of u∗n

1 (n). To
give a precise answer one has to consider series expansions of
GA(x,α,1) around the points of interest, x ∈ {−∞,0, + ∞}.
We use here the leading terms of these series [29],

GA(x,α,1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(1+ 1
α ) sin π

α

π
+ O(x), x → 0

�(α+1)x−α−1

�(2−α)�(α−1) + O(x−2α−1), x → ∞,

e−(α−1)( x
α )

α
α−1 ( x

α )
1
2 ( 1

α−1 −1)
√

2πα(α−1)
[1 + O(x− α−1

α )], x → −∞.

(21)

By replacing the expression for the limiting distribution
Eq. (16) with the leading terms given in Eq. (21), one obtains
the asymptotes for Eq. (8). This time, the asymptote has three
modes: depending upon the value of θ, it either features a
heavy tail with exponent −α − 1, a heavy tail with exponent
− 1

α
− 1, or an exponential decay, as shown in Table II, Case D.

A few examples of such asymptotic modes for a heavy-tailed
degree distribution,

u(k) =
{
C k = 1,

s(β − 2)k−β k > 1,
(22)

are given in Fig. 2. The degree distribution Eq. (22) is defined
by two parameters: exponent β and scale s; whereas the
constant C is such that the total probability is normalized,∑

k u(k) = 1.
When α = 2, the behavior of n−μ(n)

γ (n) , n → ∞ is identical to
Eq. (20), but the expression for γ (n) is different and the series
expansions Eq. (21) lead to somewhat different asymptotes;
see Table II, Case C.

According to the definition Eq. (17), the location parameter
vanishes, μ(n) ≡ 0, when α < 1. In this case, x(n) = n

γ (n) →
0 as n → ∞, and only one asymptotic mode is possible for
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TABLE II. Asymptotic behavior of component sizes w(n), in terms of degree distribution parameters: the first three
moments μ1,μ2,μ3, scale parameter s and exponent β. Supporting source code available in Ref. [32].

Finite moments of u(k) u(k), k → ∞ θ = μ2 − 2μ1 Asymptote of w(n)

θ 
= 0 C1e
−C2nn−3/2

A. o(k−β ), β > 4
θ = 0 C1n

−3/2

μ3 < ∞ θ < 0 C3n
−α−1

B. O(k−β ), β > 4 θ = 0 C1n
−3/2

θ > 0 C1e
−C2nn−3/2

θ < 0 C3n
−α−1

C. O(k−β ), β = 4 θ = 0 C ′
1

n−3/2√
log n

θ > 0 C ′
1

n−3/2√
log n

e
−C′

2
n

log n

μ3 = ∞, μ2 < ∞
θ < 0 C3n

−α−1

D. O(k−β ), 3 < β < 4 θ = 0 C4n
− 1

α −1

θ > 0 C5e
−C6nn−3/2

E. O(k−β ), β = 3 θ > 0 C7e
−C8−C9n

2
π
n

1
π −2

μ2 = ∞
F. O(k−β ), 2 < β < 3 θ > 0 C10e

−C11nn−3/2

C1 = μ2
1√

2π (μ1μ3−μ2
2)

, C ′
1 = μ1√

2πs
, C7 =

√
2μ1

π3/2s
,

C2 = (μ2−2μ1)2

2(μ1μ3−μ2
2)

, C ′
2 = (μ2−2μ1)2

2sμ2
1

, C8 = 1
πs

+ 1
2 ,

C3 = sμα+2
1 �(α+1)

(2μ1−μ2)α+1�(α)
, C9 = e−1− 2

πs ,

C4 = μ1�
(
1 + 1

α

)
sin π

α

( 2�(α) sin πα
2

πα+1s

)1/α
, C10 = μ1√

2−2α

(√
2�(α) sin πα

2
απαs

) 1
2α−2 ,

C5 = μ1√
α−1

( 22−α
(

μ2
μ1

−2
)2−α

�(α) sin πα
2

απαs

) 1
2α−2, C11 = (1 − α)(

√
2�(α) sin πα

2
πααs

)
1

α−1 ,

C6 = (1 − α)
( 2

(
μ2
μ1

−2
)α

�(α) sin πα
2

ααπs

) 1
α−1 , α = β − 2

w(n). Stable law GA(x,α,1) is supported on (0,∞), and we
make use of the series expansion around x → 0+,

GA(x,α,1)

= e−(1−α)( α
x )

α
1−α

(
α
x

) 1
2 (1+ 1

1−α )
√

2πα(1 − α)
[1 + O(x

1−α
α )], x → 0+,

(23)

which when plugged into Eq. (16) yields faster then algebraic
decay of the component-size distribution; see Table II, Case F.
Due to the parametrization scheme for the stable law, the point
α = 1 needs to be considered separately. In this case, n−μ(n)

γ (n) →
∞ when n → ∞, and we utilize the leading term of the series
expansion,

GA(x,α,1) = 1√
2π

e
x−1

2 −ex−1
[1 + O(e1−x)], x → ∞, (24)

which admits one subalgebraic asymptotic mode for w(n)
as shown in Table II, Case E. This case is special in that
the stable law GA(x,α,1) is supported on x ∈ (−∞,∞), but
asymptotically, 1

γ (n)G
A( n−μ(n)

γ (n) ,α,1) always tends to −∞ for

large n. At the same time, if for small n the point x(n) = n−μ(n)
γ (n)

stays on the positive half-axis where Eq. (24) does not
provide correct description for GA(x,α,1), the convergence
to the asymptote will be slow. In other words, there is an
intermediate asymptote that the component size distribution
can be approximated with, before it eventually switches to

Eq. (24). This switching point is given by such n0 that x(n)
changes the sign from “+” to “−”, i.e., when n becomes
greater then n0. By solving x(n0) = 0, one obtains n0 = e

1
s ,

which means that, in principle, the switching between the
intermediate and the final asymptotes may be indefinitely
postponed if s is small enough. The intermediate asymptote
itself is deduced from the leading term of the stable law
expansion at ∞, that is, GA(x,1,1) = 2

π
x−2 + O(x−3). After

the substitutions, one obtains

w(n)  μ1s

(s log n − 1)2
n−2,

1

s
� 0, n < e

1
s , α = 1.

As illustrated in Fig. 3, similar considerations are also valid
for the case 0 < α < 1, where

w(n)  μ1s
�(α + 1)

�(α)
n−α−1,

1

s
� 0, 0 < α < 1.

When this occurs, such switching has a practical importance
when dealing with empirically observed component size data.
Indeed, it may happen that one observes only the intermediate
asymptote and not the final one due to a small number of
samples at the tail of the component size distribution. For
instance, the second curve in Fig. 3 does feature an exponential
decay at infinity, but if one limits the data points to n < 106,

the component size distribution will seem to be a heavy-tailed
one.
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FIG. 3. Component-size distributions (solid line) corresponding
to degree distributions with exponent β = 2.6 (α = 0.6). In this
case, the component size distributions cannot feature a heavy tail;
however, depending upon the scale parameter s a transient asymptote
with exponent −1.6 (dashed line) emerges: (1) s = 8.3 × 10−2, fast
convergence to the exponential asymptote. (2) s = 8.3 × 10−5, the
distribution transiently follows what seems to be a heavy tail for
n < 106, whereas for larger n the theory predicts no heavy tail.

Finally, we consider the case when the condition Eq. (15)
holds for β > 4 : even though u1(k) has finite mean M

and variance σ 2 it also features a heavy tail. Again, as
n → ∞, x(n) = n−μ(n)

σ (n) features the limiting values that are
defined by the sign of θ ; see Eq. (20). One would expect that
since σ 2 is finite, this case should be also well approximated
with Eq. (13). This is indeed the case for x(n) ≈ 0. However,
large deviations from zero x(n) � 0 do not follow Gaussian
statistics [30,31], and we approximate u∗n

1 (k) with the Pareto
stable law u∗n

1 (k) → 1
σ (n)G

P ( k−μ(n)
σ (n) ,α), n → ∞. It turns out

that GP (x,α) behaves as the normal distribution for x < C,

where C is a finite positive constant but features a heavy
tail with the same exponent as u1(k) when x → ∞; see
Ref. [30]. Thus, when θ � 0 the component size distribution
features asymptotic modes as in Eq. (13), while when θ < 0
it features a heavy tail with exponent −α − 1; see Table II,
Case B. Interestingly, when θ is a small negative number,
w(n) transiently follows one asymptote and then switches
to the other as demonstrated in Fig. 4. If there is a process
that continuously changes the degree distribution so that θ

progresses from being negative to positive, the exponent of
the associated component size distribution will jump from the
subcritical branch, at θ < 0, to the critical one at θ = 0. An
example of such a transition between two power-law modes is
given in Fig. 4, where a component size distribution switches
between power laws with exponents η = 3 and η = 1.5.

IV. DISCUSSION AND CONCLUSIONS

The broad generality of the results obtained in the previous
section is achieved due to the fact that the configuration
networks are locally treelike and have vanishing probability
of clustering in the thermodynamic limit, which allows one
to benefit from the available in analytic combinatorics tools.

FIG. 4. Examples of component size distributions (solid lines)
that are associated with heavy-tailed degree distributions with β = 6
(α = 4). The dashed lines represent the asymptotes in accordance
with Case B in Table II. Depending on the sign of θ, three asymptotic
modes are distinguished: (1) s = 1.93 : θ = −0.8, (1a) s = 9.42 :
θ = −0.027, (2) s = 9.69 : θ = 1.6 × 10−7, (3) s = 10.05 : θ =
0.038. When θ is a small negative number (curve 1a), w(n) first
decays as n−3/2 but eventually switches to asymptote n−α−1 = n−5.

Equation (8), which was analyzed in the previous section,
connects the degree distribution in a configuration network
to the distribution of sizes for connected components. The
main conclusion one may draw from this equation is that
the convolution power provides a smoothing effect. This
means that all points of u(k), k = 1, . . . ,∞ have a significant
contribution to the definition of w(n), but as n increases, the
system “forgets” the exact shape of the degree distribution and
the component size distribution tends to the asymptote, which
is defined by only a few parameters. The only information
that is still preserved at the limit n → ∞ is the first three
moments of the degree distribution if such does not feature
a heavy tail; see, for example, Fig. 1. If u(k) does feature
a heavy tail then the information that characterizes the tail
becomes also important, which is the scale parameter s and the
exponent β. Depending upon the values of these parameters,
many asymptotical modes exist.

The expression for the asymptote is framed in terms of
small deviation statistics for a sum of random variables and
in some cases can be used as a good approximation for the
component size distribution. Table II contains the analytical
expressions for the asymptotes. Additionally, supporting code
computing the component size distribution and the correspond-
ing asymptotes is provided [32]. When using the asymptotical
expressions to approximate w(n), one should pay attention to
two factors that follow from central limits: first, n should be
large; second, the approximation is best for θ close to zero.
Finally, small deviations or a cutoff in a heavy-tailed degree
distribution can trigger considerable and nontrivial changes in
w(n), for instance, the change of the asymptotical mode of the
latter.

A. Degree distributions with a cutoff

In practice, no empirical degree distribution is a heavy-
tailed one. Most of the “real-world” degree distributions
feature a cutoff, u(k) = 0, k > kcut, and therefore fail to be
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FIG. 5. The effect of a cutoff imposed on a heavy-tailed degree
distribution with β = 3.3 (α = 1.3) and s = 7.73. The solid curves
correspond to component size distributions with: (1) no cutoff, θ > 0;
(2) cutoff at k = 1000, θ = 0; (3) cutoff at k = 100, θ < 0. The
asymptote for 1 is covered by Case D, Table II; while due to the
cutoffs, the asymptotes for 2 and 3 are covered by Case A.

heavy-tailed in the strict sense of the definition Eq. (15). It
turns out that if a cutoff is featured at large enough kcut,

the above-provided asymptotic analysis still has a relevant
meaning. This situation can be compared to how we commonly
attribute the fractal dimension to real-world geometric objects
that fail to be fractals on infinitesimal scales.

Suppose one applies a cutoff at kcut to a degree distribution,
u(k), that features a heavy tail. Since u(k) has a finite
support, the asymptote of associated w(n) is covered by
Case A (Table II); however, if kcut is large, w(n) may
also transiently follow the original asymptote. Instead of
an analytical investigation, we demonstrate the influence of
the cutoff with numerical examples obtained by computing
Eq. (8). This influence strongly depends on how the sign of θ

is affected by the introduction of the cutoff. For example, if
θ > 0 even after the cutoff, the cutoff will cause more nodes to
appear in finite-size components, and thus the component size
distribution will shift toward larger sizes. The opposite case is
valid when θ � 0 before (and after) the cutoff, then the cutoff
causes the component size distribution to shift toward smaller
sizes. The third option is when the cutoff changes the sign of θ

form “+” to “−”. In this case, both shifts are possible. Figure 5
shows how a component size distribution that corresponds to
degree exponent β = 3.3 is affected by a cutoff with various
vales of kcut.

B. Excess degree distribution with no mean value

In principle, the excess degree distributions that do not
have a mean value, i.e., β < 2, do not fall within any of
the above categories. However, if one introduces a cutoff,
u(k) will feature finite moments including, μ3 < ∞, hence
this case should be treated according to Case A of Table II.
Figure 6 shows how cutoffs at k = kcut influence an instance
of component size distribution with β = 1. Unlike as in the
previous example, in which u(k) with no cutoff generates
a valid w(n), here the increase of kcut results in vanishing

FIG. 6. The effect of a cutoff imposed on a heavy-tailed degree
distribution with exponent β = 1 (α = −1) and s = −2 × 10−4.
The following values of the cutoff are considered: (1) kcut = 80,
corresponds to θ < 0; (2) kcut = 100, corresponds to θ ≈ 0; (3) kcut =
150 corresponds to θ > 0, (4) kcut = 103; (5) kcut = 105.

probability of finding a finite-size component at all: for
any n, w(n) → 0 when kcut → ∞. This illustrates the fact
that finite-size components do not exist for β � 1, and the
whole configuration network is connected almost surely.
Nonexistence of finite components for β � 1 also follows from
the fact that in this case μ1 diverges and the point values of
w(n), as given below the definition Eq. (9), tend to zero.

Suppose the cutoff in the empirical, heavy-tailed degree
distribution is due to the fact that the network sample has a

FIG. 7. The correspondence between the exponent β in a heavy-
tailed degree distribution, and the exponent η in the associated heavy-
tailed component size distribution. The critical brunch corresponds to
θ = 0, subcritical branch to θ < 0. Positive θ is not associated with
heavy-tailed component size distributions.
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finite size, kcut = N, N 
= ∞, then one may approximate the
expected number of edges in this sample as

ne = Nμ1

2
= N

2

N∑
k=1

ku(k)  N

2

N∑
k=1

k−β+1, N >> 1,

so that

ne 
{
N (1 − N2−β), β 
= 2,

N log N, β = 2.

Subsequently, three scenarios are possible here:
(i) sparse network, ne = CN, C > 0, β > 2 : the asymp-

totic modes are given in Table II;
(ii) semi-dense network, either ne = CN log N, β = 2 or

ne = CN3−β, 1 < β < 2 : the mean value of excess distribu-
tion diverges; there are finite components but no power law in
the distribution of component sizes;

(iii) dense network, ne = CN3−β, β � 1 : the mean value
of degree distribution μ1 → ∞, and finite components vanish
as N → ∞.

C. The role of the giant component

All the cases presented in Table II depend in some way
on the value of θ . This is not a coincidence as the sign

of θ is the indicator for the giant component existence. If
the degree distribution features a heavy tail with exponent
β � 3, depending upon the value of θ, there are two possible
heavy-tail exponents for the component size distribution:
subcritical branch η = β − 1 when θ < 0, and critical branch
η = min{ 3

2 ,
β−1
β−2 } when θ = 0. This relation is illustrated in

Fig. 7, where the component size distribution exponent η

is plotted versus the degree-distribution exponent β. We
can see that if the giant component exists, θ > 0, then
irrespectively of what is the degree distribution, the component
size distribution always decays faster than the power law.
Therefore, it can be concluded that the giant component is not
compatible with a heavy-tailed component size distribution.
Any degree distribution with β < 3 leads to a giant component
since θ can only be positive in this case. Furthermore, if
β � 1, then the giant component is also the only compo-
nent: with probability 1 the configuration network is fully
connected.
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