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ABSTRACT

Context. Ice lines are suggested to play a significant role in grain growth and planetesimal formation in protoplanetary disks. Evap-
oration fronts directly influence the gas and ice abundances of volatile species in the disk and therefore the coagulation physics and
efficiency and the chemical composition of the resulting planetesimals.
Aims. In this work, we investigate the influence of the existence of the CO ice line on particle growth and on the distribution of CO in
the disk.
Methods. We include the possibility of tracking the CO content and/or other volatiles in particles and in the gas in our existing dust
coagulation and disk evolution model and present a method for studying evaporation and condensation of CO using the Hertz-Knudsen
equation. Our model does not yet include fragmentation, which will be part of further investigations.
Results. We find no enhanced grain growth immediately outside the ice line where the particle size is limited by radial drift. Instead,
we find a depletion of solid material inside the ice line, which is solely due to evaporation of the CO. Such a depression inside the
ice line may be observable and may help to quantify the processes described in this work. Furthermore, we find that the viscosity
and diffusivity of the gas heavily influence the re-distribution of vaporized CO at the ice line and can lead to an increase in the
CO abundance by up to a factor of a few in the region just inside the ice line. Depending on the strength of the gaseous transport
mechanisms, the position of the ice line in our model can change by up to ∼ 10 AU and consequently, the temperature at that location
can range from 21 to 23 K.

Key words. Protoplanetary disks – Accretion, accretion disks – Diffusion – Methods: numerical

1. Introduction

Ice lines are locations in protoplanetary disks at which a transi-
tion between the gaseous and the solid phase of an element or
a molecular species occurs. Inwards of the ice line, the volatile
species is condensed in the form of ice. Outside the ice line, the
material exists in its solid form. Ice lines are of special inter-
est in planetary sciences since they are suggested to affect the
formation and composition of planetesimals (Öberg et al. 2011).
Ali-Dib et al. (2014) argue from the chemical composition of
Uranus and Neptune that they may have been formed at the car-
bon monoxide ice line.

Planetesimals are formed from dust and ice surrounding
young stars in protoplanetary disks. The dust particles collide
and are held together by contact forces forming ever larger bod-
ies (see, e.g., Brauer et al. 2008; Birnstiel et al. 2010). How-
ever, experiments and simulations show that the growth is lim-
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?? Royal Society Dorothy Hodgkin Fellow.

ited by at least two processes. One is the inward drift of particles
on Keplerian orbits losing angular momentum to the pressure-
supported gas orbiting the star with sub-Keplerian velocities
(Weidenschilling 1977). The drift velocity is size-dependent.
Therefore, particles affected by drift quickly fall onto the central
star. Another mechanism that prevents grain growth is fragmen-
tation. If the collision velocity is high enough, silicate particles
tend to bounce or fragment rather than sticking together (Blum
and Wurm 2008). If particles grow to certain sizes (centimeter
to decimeter), the streaming instability can take over and form
planetesimals by clumping and subsequent gravitational collapse
(see, e.g., Johansen et al. 2007; Youdin and Goodman 2005; Bai
and Stone 2010; Dra̧żkowska and Dullemond 2014).

How particles can grow to sizes for which the streaming in-
stability is efficient is unknown. Besides the fact that icy mate-
rials have higher fragmentation velocities than pure silicate par-
ticles (Wada et al. 2009; Gundlach and Blum 2015), and can
therefore grow to larger sizes, several authors argue that ice
lines play an important role in the growth process (e.g., Kretke
et al. 2008; Brauer et al. 2008). Also, Kataoka et al. (2013) pro-
posed that fluffy ice aggregates may overcome the drift barrier.
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Stevenson and Lunine (1988) found, in their model, a significant
solid material enhancement at the ice line due to diffusive redis-
tribution of vapor from the inner disk and subsequent condensa-
tion on particles outside the ice line. Closely related, Ros and Jo-
hansen (2013) proposed grain growth by evaporation of inward-
drifting particles and subsequent recondensation of backwards-
diffusing vapor. Cuzzi and Zahnle (2004) proposed a significant
vapor enhancement inside the ice line due to rapidly inward-
drifting particles.

The goal of our work is to include the transport of volatile
materials into the grain growth and disk model of Birnstiel et al.
(2010) and to use this model to investigate the influence of pos-
sible particle density enhancements at ice lines on dust coagula-
tion and on the distribution of CO gas. We therefore developed
a model to track the volatile content of particles and the gas in-
cluding the processes of coagulation, radial drift, and viscous
accretion, as well as CO evaporation and condensation at the ice
line.

We focus, here, on CO ice near the CO ice line for several
reasons. First, we assume that the collisional physics of the par-
ticles is mostly determined by the presence of water ice. If we
further assume that the water ice content is always well mixed
within the particle, there will always be enough water ice at
the particle’s surface such that the collisional physics does not
change by crossing the CO ice line and evaporating the CO (but
see also Okuzumi et al. 2016). Wada et al. (2009) estimated the
fragmentation velocity of water ice particles to be ∼ 50 m/s.
Such high collision velocities are not reached in our model. We
can therefore neglect fragmentation, since, even by total evapo-
ration of the CO, there is still enough water ice in the particles
such that we can use the higher fragmentation velocity of water
ice. The growth of the particles is therefore solely limited by the
inward drift. But see also Gundlach and Blum (2015), who found
fragmentation velocities for water ice in the order of 10 m/s. It
might also be the case that the water ice is not well mixed within
the particle or that the particle is covered by a layer of CO. In
that case, the fragmentation velocity is that of CO ice, which
might also be lower than the fragmentation velocity of water ice.
We aim to investigate the influence of fragmentation in future
works.

Another reason for looking at CO is that it has observable
features (Qi et al. 2015). The CO ice line at temperatures of ap-
proximately 20 K is in the outer parts of protoplanetary disks
compared to other volatile species such as water ice. Further-
more, the CO abundance is generally large enough to be well
observed.

We investigate the radial distribution of dust particles and
molecular species in the gas and ice phases around the region of
the ice line in a time dependent manner by solving the Smolu-
chowski equation and the re-distribution of the CO vapor origi-
nating from the evaporating particles.

In section 2, we describe our model of advection, diffusion,
grain growth, and evaporation/condensation. In section 3, we
show the influence of the ice line on the grain growth and the
influence of the advection and diffusion of the gas on the CO va-
por distribution at the ice line. In section 4, we discuss our results
and the assumptions made in the model.

2. Model

We constructed a model for simulating the evolution of a vis-
cously evolving protoplanetary disk including dust coagulation,
particle drift, condensation, and evaporation of CO at the CO

ice line. The model is one-dimensional and the densities are ver-
tically integrated, assuming that gas and dust are constantly in
thermal equilibrium, throughout the model. We model the sur-
face densities of approximately 150 different dust sizes Σdust,i
and of two gas species, ΣH2 and ΣCO. Our model of CO transport
is built upon the gas and dust model of Birnstiel et al. (2010).

The gas disk is viscously evolving according the α-disk
model of Shakura and Sunyaev (1973) while we study the diffu-
sive behavior of CO by choosing different values for the Schmidt
number Sc, which is the ratio of viscosity over diffusivity of the
gas.

We model dust growth by solving the Smoluchowski equa-
tion. The dust species themselves are subject to radial drift
and gas drag. In contrast to previous works, we use a two-
dimensional scalar field for the particle distribution, where one
dimension is the silicate mass and the second dimension the CO
ice content of the particle. We therefore model the migration of
CO both via drifting particles and via diffusing gas and simulate
the evaporation of CO at the CO ice line by solving the Hertz-
Knudsen equation.

2.1. Evolution of the gas surface density

We consider two molecular gas species in our model, H2 , which
is the main gas density constituent, and CO, which is generally
the second most abundant molecular species in the interstellar
medium (ISM). The surface density of the two species, ΣH2 and
ΣCO, and therefore the total gas density, Σgas, are directly related
through the continuity equation:

∂

∂t
Σgas +

1
R
∂

∂R

(
RΣgasugas

)
= 0, (1)

where ugas is the radial gas velocity given by Lynden-Bell and
Pringle (1974);

ugas = −
3

Σgas
√

R

∂

∂R

(
Σgasν

√
R
)
, (2)

where ν is the viscosity of the gas. Shakura and Sunyaev (1973)
parameterized the viscosity in their α-disk model to account for
an unknown source of viscosity with

ν = αcsHP, (3)

where cs is the sound speed, HP = cs/ΩK the pressure scale
height of the disk, and ΩK the Keplerian frequency. The viscos-
ity parameter α is typically of the order of 10−2 to 10−4 (e.g., Jo-
hansen and Klahr 2005). Equation (1) has no source terms on the
right hand side, because we do not consider any infall of matter
from the common envelope onto the disk. Evaporation and con-
densation, which would also be a source or sink term for ΣCO,
are treated separately.

We assume that both gas species evolve separately without
interacting with one another. We then obtain a separate continu-
ity equation for each of the species j

∂

∂t
Σ j = −

3
R
∂

∂R

[
√

R
∂

∂R

(
Σ jν
√

R
)]
. (4)

Following the calculations of Pavlyuchenkov and Dullemond
(2007), this equation can be further manipulated to

∂

∂t
Σ j = −

3
R
∂

∂R

[
√

R
∂

∂R

(
Σgas

Σ j

Σgas
ν
√

R
)]

= −
3
R
∂

∂R

[
√

R
Σ j

Σgas

∂

∂R

(
Σ jν
√

R
)

+ RΣgasν
∂

∂R

(
Σ j

Σgas

)]
, (5)
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where Σgas =
∑

j
Σ j is the total gas surface density. By substituting

the gas velocity of equation (2) in this equation, we obtain

∂

∂t
Σ j +

1
R
∂

∂R

(
RΣ jugas

)
−

3
R
∂

∂R

[
RΣgasν

∂

∂R

(
Σ j

Σgas

)]
= 0. (6)

This equation implies that each gas species is radially advected
with the gas velocity ugas and has a diffusive term, which smears
out concentrations.

By introducing the Schmidt number Sc = ν/D, which is the
ratio of viscosity ν to diffusivity D of a gas, one can disentangle
advection and diffusion

∂

∂t
Σ j +

1
R
∂

∂R

(
RΣ jugas

)
−

1
R
∂

∂R

[
RΣgasD

∂

∂R

(
Σ j

Σgas

)]
= 0. (7)

A Schmidt number of Sc = 1/3 reproduces equation (6). Phys-
ically, the Schmidt number is the ratio of momentum transport
to pure-mass transport. By changing Sc and keeping α constant,
we investigate the influence of the diffusivity D on the CO dis-
tribution in the disk.

2.1.1. Vertical and radial structure of the gas disk

We assume that the gas is always in thermal equilibrium and that
the temperature profile does not change over time. The vertical
structure of the gas density is then given by

ρgas (z) = ρgas (z = 0) exp
−1

2
z2

H2
P

 , (8)

where z is the height above the midplane. Since Σgas is the z-
integral of ρgas , it follows directly for the midplane gas density
that

ρgas (z = 0) =
Σgas
√

2π HP
. (9)

Even though the model is one-dimensional, we still need the
vertical structure of the disk to calculate the densities at the mid-
plane that are needed for the coagulation as well as for the evap-
oration method.

In our fiducial model, we used the following power law as
initial surface density distribution:

Σgas (R) = 250
g

cm2 ×

( R
1 AU

)−1

. (10)

2.1.2. Temperature structure of the disk

For the midplane temperature of the disk, we assume a simple
power law;

T (R) = 150 K ×
( R
1 AU

)− 1
2

, (11)

that remains constant in time. The viscous heating rate, which is
the energy that is created by the viscous accreting of the gas, is
proportional to the gas density Σgas (Nakamoto and Nakagawa
1994) and therefore mainly important in the inner part of the
disk. Since we are interested in the region of the CO ice line at
40 – 50 AU where the densities are low, this effect is negligible.

2.2. Radial evolution of the dust surface density

The spatial evolution of the dust particles is strongly influenced
by interactions with the gas. Although it is possible, in real disks,
that particles become locally concentrated to gas-to-dust ratios
of unity or less, especially at the disk’s midplane, and therefore
trigger streaming instabilities, we neglect this here, and assume
that accumulations of dust happen only at smaller radii (Youdin
and Shu 2002) or on smaller scales (Youdin and Goodman 2005).
In other words: the gas has an effect on the dust particles, but the
dust particles have no back-reaction on the gas in our model.

To describe the coupling of the particles to the gas, it is use-
ful to characterize the particles not by size but by their dimen-
sionless Stokes number St. The Stokes number is defined as the
ratio of the stopping time τs of the particles to the largest eddy’s
turn-over time τed;

St =
τs

τed
. (12)

The Stokes number can be used as a measure to describe the cou-
pling between the gas and the dust. Since this coupling depends
not solely on the particle size but, amongst other parameters, also
on the gas density, it is convenient to use the Stokes number to
describe the equations of motion of the particles.

The stopping time τs in equation (12) is the ratio between a
particle’s momentum and the rate of its momentum change by
the drag force. It yields the time scale on which a particle adapts
to the gas velocity. Weidenschilling (1977) identified four differ-
ent regimes of the drag force. The important regime in our work
is the Epstein regime, where the stopping time is given by

τs =
ρs a
ρgas ū

, (13)

with the bulk density of the solids ρs and the particle size a.
ū = cs

√
8/π is the mean thermal velocity of the gas molecules.

In protoplanetary disks, the Stokes I drag regime is important
only in the inner part of the disk (. 1 AU). We therefore only
include the Epstein regime in this work.

As a first order approximation for the eddy turnover time,
one can use τed = 1/ΩK (Schräpler and Henning 2004), and
obtain the Stokes number:

St =
ρs a
Σgas

π

2
. (14)

The advection of the dust surface densities of the different
species can now be described with a continuity equation as equa-
tion (7)

∂

∂t
Σdust,i +

1
R
∂

∂R

(
R

[
Σdust,iudust,i − Ddust,iΣgas

∂

∂R
Σdust,i

Σgas

])
= 0,

(15)

where Ddust,i = αcsHP/(1 + St2) is the dust diffusivity and udust,i
the radial velocity of dust species i given by

udust,i =
ugas

1 + St2i
−

2uP

Sti + St−1
i

. (16)

This velocity consists of two terms. The first term describes the
dust particles that are dragged along with the inwards accreting
gas; it is most effective for small particles (St � 1) that are well-
coupled to the gas and insignificant for large particles (St � 1).
The second term describes radial drift due to a pressure gradient
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in the gas. The gas feels an additional force due to its own pres-
sure gradient. If the pressure gradient is pointing inwards, then
the gas is on a sub-Keplerian orbit. The acceleration of the dust
particles due to the pressure force, on the other hand, is negli-
gible because of their high bulk density compared to the gas.
Therefore, the particles try to orbit with a Keplerian velocity.
Due to this velocity difference with the gas, they feel a constant
headwind, lose angular momentum, and drift in the direction of
the pressure gradient. The maximal drift velocity (for particles
with St = 1) is given by Weidenschilling (1977) as

uP = −

∂
∂R Pgas

2ρgasΩK
. (17)

2.3. Vertical structure of the dust disk

Since the dust particles do not feel any pressure amongst them-
selves, we cannot give a simple pressure-equilibrium expression
for the particle scale heights as for the gas scale height HP. The
particle scale heights are given by the equilibrium of vertical set-
tling by gravity and turbulent stirring and therefore depend on
the particle’s Stokes number. Therefore, every particle size has
its own scale height. We follow, here, Brauer et al. (2008) for the
description of the scale height of species i as

hi = HP ·min

1,
√

α

min
(
Sti, 1

2

)
·
(
1 + St2i

)
 , (18)

which limits the dust scale height to be, at maximum, equal to
the gas scale height HP. From this equation, it can be seen that
larger particles (St � 1) are settled to the midplane, while small
particles (St � 1) follow the gas scale height. A stronger tur-
bulence (i.e., larger turbulent viscosity parameter α), in general,
increases the scale height up to a maximum of HP.

We assume that the particles are distributed with Gaussian
distributions just as the gas in equation (8), but with the dust
particle’s specific scale height hi instead, which allows us to an-
alytically integrate the Smoluchowski equation vertically.

2.4. Dust coagulation

We include dust growth in our model to study the CO redistribu-
tion in protoplanetary disks. The dust carries the CO ice inwards
through the CO ice line. As seen in equation (16), the Stokes
number, and therefore the particle size, is important for the drift
velocity of the dust particles.

We therefore include hit-and-stick collisions of particles in
our model. We neglect fragmentation because the CO ice line is
well outside of the water ice line, meaning that, everywhere in
our model, the particles have a significant amount of water ice,
which is also mixed within the particle in such a way that the
particle collision properties are always determined by the water
ice. As explained above, we therefore neglect fragmentation.

2.4.1. Smoluchowski equation

The growth of the dust particles with mass m by hit-and-stick
collisions without fragmentation can be described by the Smolu-
chowski equation

∂

∂t
f (m) =

1
2

∞∫
0

dm′
∞∫

0

dm′′ f
(
m′

)
f
(
m′′

)
K

(
m′; m′′

)
×

× δ
(
m′ + m′′ − m

)
− f (m)

∞∫
0

dm′ f
(
m′

)
K

(
m; m′

)
, (19)

where the collision kernel K (m; m′) = σgeo (m; m′) ∆u (m; m′)
is the product of the geometrical cross section and the relative
velocity of the colliding particles. Equation (19) is a partial dif-
ferential equation for the time evolution of a mass distribution of
particles. The positive term on the right-hand side counts colli-
sions that lead to particles of mass m. The negative term removes
particles of mass m that collided with other particles to create
larger particles.

To keep track of not only the mass of the particles, but also of
another property that represents the CO ice content of them, we
add another parameter Q to our distribution. The following equa-
tions are general for an arbitrary Q that could represent anything
from the volume of the particle as in Okuzumi et al. (2009) to
the electrical charge of the particle. In the following sections we
identify Q with the particle’s ice fraction. The two-dimensional
Smoluchowski equation then reads as follows

∂

∂t
f (m,Q) =

1
2

∞∫
0

dm′
∞∫

0

dm′′
∞∫

0

dQ′
∞∫

0

dQ′′×

× f
(
m′,Q′

)
f
(
m′′,Q′′

)
×

× K
(
m′,Q′; m′′,Q′′

)
×

× δ
(
m′ + m′′ − m

)
× δ

(
Qnew (

m′,Q′; m′′,Q′′
)
− Q

)
− f (m,Q)

∞∫
0

dm′
∞∫

0

dQ′ f
(
m′,Q′

)
×

× K
(
m,Q; m′Q′

)
, (20)

where Qnew (m′,Q′; m′′,Q′′) is the new Q-value of the particle
that was created in the collision. In principle, this equation could
be solved as for equation (19), but adding another parameter and
therefore two additional integrals would be computationally very
expensive.

We therefore follow the moment method introduced by
Okuzumi et al. (2009) to re-write one two-dimensional Smolu-
chowski equation into two one-dimensional equations. The idea
is that instead of evolving the full Q- distribution, we only evolve
its first moment, its mean Q̄ for a given mass m. By introducing
the distribution function of particles of mass m

n (m) =

∞∫
0

f (m,Q) dQ, (21)

and the mean Q-value of particles with mass m

Q̄ (m) =
1

n (m)

∞∫
0

Q f (m,Q) dQ, (22)
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and by assuming that the particle distribution is very sharp in Q

f (m,Q) = n (m) δ
(
Q̄ (m) − Q

)
, (23)

where δ is the Dirac delta function, equation (20) can be rewrit-
ten and simplified. We end up with one partial differential equa-
tion for n (m)

∂

∂t
n (m) =

1
2

∞∫
0

dm′n
(
m′

)
n
(
m − m′

)
×

× K
(
m′, Q̄

(
m′

)
; m − m′, Q̄

(
m − m′

))
− n (m)

∞∫
0

dm′n
(
m′

)
K

(
m, Q̄ (m) ; m′, Q̄

(
m′

))
, (24)

and one equation for nQ̄ (m) ≡ n (m) Q̄ (m)

∂

∂t

(
nQ̄ (m)

)
=

1
2

∞∫
0

dm′n
(
m′

)
n
(
m − m′

)
×

× K
(
m′, Q̄

(
m′

)
; m − m′, Q̄

(
m − m′

))
×

× Qnew
(
m′, Q̄

(
m′

)
; m − m′, Q̄

(
m − m′

))
− nQ̄ (m)

∞∫
0

dm′n
(
m′

)
K

(
m, Q̄ (m) ; m′, Q̄

(
m′

))
.

(25)

For a detailed derivation of the equations, we refer to Okuzumi
et al. (2009). Both one-dimensional equations can be simultane-
ously solved, which is significantly more efficient than solving
one two-dimensional equation. The coagulation equations (24)
and (25) and the dust advection equation (7) are simultaneously
solved with the method described in the appendix of Birnstiel
et al. (2010)

2.4.2. The Q-parameter

We have now the freedom of choice on what exactly the physical
meaning of our Q-parameter should be. One way to include ices
in our coagulation code is to take m = mtot as the total mass and
Q = mice

m as the ice fraction of a particle. However, this approach
has the disadvantage that as a result of evaporation and conden-
sation, both parameters m and Q change. In this case, evapora-
tion/condensation would be advection of the function Q(m, t) in
the m-coordinate with an additional source term.

We therefore chose m = msil as the silicate mass and Q =
mice

msil+mice as the ice fraction of a particle. Here, evaporation and
condensation only change Q and not m.

By using this approach, the ice mass of a particle is mice =
Q

1−Q msil , whereas the total mass is mtot = 1
1−Q msil. Therefore,

we cannot model particles fully consisting of ice (Q = 1). Qnew ,
which is the new Q-value of a particle resulting from a collision
followed by sticking between a particle with mass m and another
particle with mass m′ (and ice fractions Q and Q′, respectively),

is then determined by

Qnew (
m,Q; m′,Q′

)
=

mice + mice′

mtot + mtot′

=

Q
1−Q m +

Q′

1−Q′m
′

1
1−Q m + 1

1−Q′m
′

=
(1 − Q′) Qm + (1 − Q) Q′m′

(1 − Q′) m + (1 − Q) m′
. (26)

2.4.3. Relative velocities

The coagulation is driven by the relative velocities of the parti-
cles that determine the collision rates and the possible collision
outcome. We consider, here, five different sources of relative ve-
locities: Brownian motion ∆uBM, azimuthal particle drift ∆uφ,
radial particle drift ∆uR, vertical settling ∆usett , and turbulence
∆uturb.

The total relative velocity is then given by the root mean
square of all sources of relative velocity

∆u =

√
∆u2

BM + ∆u2
R + ∆u2

φ + ∆u2
sett + ∆u2

turb. (27)

We assume that all particles of a certain size collide with this
distinct mean velocity. It has been shown that the use of a veloc-
ity distribution can have a significant influence on dust growth
by breaking through growth barriers as the bouncing barrier or
the fragmentation barrier (Windmark et al. 2012; Garaud et al.
2013). Since we are not dealing with bouncing and/or fragmen-
tation in this model, we do not consider any velocity distribution.

For a detailed description of the various sources of relative
velocity, we refer to Birnstiel et al. (2010).

2.5. Evaporation and condensation

When particles drift inwards they move from colder regions in
the disk to warmer regions. At some point – at the ice line –
the temperature is high enough for the ice in the particles to be
evaporated. The vapor that is created by evaporation can then be
diffused backwards through the ice line and can re-condense on
the colder particles there. We therefore consider both evapora-
tion and condensation along with diffusion and viscous evolution
of the gas in our model.

We assume that the particles always adapt instantaneously to
the new temperature. This might not be the case for very large
particles with high heat capacities. But as seen later in Section 3,
we do not have such large particles. The temperature change our
particles experience is solely caused by their drift from colder
regions to warmer regions in the disk. With typical drift speeds,
the particles experience a change in temperature of less than 1 K
in 1000 yrs. The assumption of instantaneous adaption to the am-
bient temperature is therefore well justified.

Evaporation/condensation can be described by the Hertz-
Knudsen equation which gives the number of CO molecules N
per unit surface area that leave the particle,

d
dt

N = vtherm

(
Peq

kBT
− nvap

)
, (28)

where nvap is the number density of vapor molecules, Peq

the saturation pressure of the volatile species and vtherm =√
8kBT/ (πmCO) is the mean thermal velocity of gas molecules of

mass mCO. If the ambient pressure of the volatile species equals
the saturation pressure then there is no net evaporation.
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Peq has to be determined experimentally. We use the values
from Leger et al. (1985) as

Peq
CO (T ) = 1

dyn
cm2 × exp

[
−

1030 K
T

+ 27.37
]
. (29)

Evaporation/condensation is, in general, dependent on the
surface curvature of the particle, where convex surfaces have
slightly higher evaporation rates than concave surfaces (Sirono
2011). We do not consider those surface curvature effects in our
model. This means if equation (28) is negative, we have conden-
sation on all particles independent of their size. If equation (28)
is positive, all particles evaporate as long as they still carry some
ice.

The Hertz-Knudsen equation needs to be solved for every
particle size at every radial and vertical position of the disk sep-
arately and simultaneously. But since we are not dealing with
the vertical structure of the disk in our model, we need to trans-
fer this expression into an expression for surface densities. If we
look at the midplane of the disk, the Hertz-Knudsen equation for
the midplane vapor mass density reads as

d
dt
ρvap =

∑
i

πa2
i ndust,i vtherm

(
mCOPeq

kBT
− ρvap

)
, (30)

where ai is the particle radius and ndust,i the midplane number
density of dust particles species i. This system is in equilibrium
if

ρvap =
mCO Peq

kBT
≡ ρ

eq
vap, (31)

where ρeq
vap is defined as the equilibrium vapor mass density. If

we assume that the vapor is always in pressure equilibrium, we
get for the equilibrium vapor surface density

Σ
eq
vap =

√
2π HP ρ

eq
vap =

√
2π HP

mCO Peq

kBT
. (32)

Assuming this, we can transform equation (30) into an expres-
sion for the vapor surface density

d
dt

Σvap =
∑

i

πa2
i ndust,i vtherm

(
Σ

eq
vap − Σvap

)
=

∑
i

(
Ei −CiΣvap

)
= E −CΣvap ≡ −S , (33)

with

Ci = πa2
i vthermndust,i (34)

Ei = CiΣ
eq
vap. (35)

Therefore, the change in the ice surface density of particle
species i is given by

∂

∂t
Σice,i = CiΣvap − Ei, (36)

which is the difference between a condensation term CiΣvap and
an evaporation term Ei. The deeper meaning behind this formal-
ism is that we treat the evaporation/condensation rates as if the
particles were in the midplane, while we assume that gas and
particles are always in thermal equilibrium and distributed ac-
cording to their pressure scale heights HP and hi.

For Ci and Ei , the following relation holds:

Ei

Ci
=

E
C
. (37)

2.5.1. Condensation mode

If S > 0, then we are in the condensation regime and condensa-
tion will take place on all particles. In that case, we can directly
integrate equations (36) and (33) until the end of the time step.
If we assume that the particle radius ai is constant and does not
change over the time step, then both equations have analytic so-
lutions. This assumption is justified if we use a canonical abun-
dance of CO of 10−4. By using a dust to gas ratio of 10−2 , this
leads to an initial mass ratio of CO (gas and ice phase) to dust
of ∼ 14 %, and therefore a maximal change in radius of ∼ 5 %.
The analytic solution of equation (33) is then

Σvap (t) = Σvap (t0) e−C(t−t0) +
E
C

(
1 − e−C(t−t0)

)
. (38)

Using equation (38) in equation (36) leads to

∂

∂t
Σice,i = − Ei + CiΣvap

= − Ei + Ci

(
Σvap (t0) e−C(t−t0) +

E
C

(
1 − e−C(t−t0)

))
=

(
CiΣvap (t0) − Ei

)
e−C(t−t0), (39)

where in the last step, equation (37) was used. This equation has
the analytical solution

Σice,i (t) = Σice,i (t0) +
CiΣvap (t0) − Ei

C

(
1 − e−C(t−t0)

)
. (40)

Equations (38) and (40) can be used to calculate the surface den-
sities at any time step directly.

2.5.2. Evaporation mode

If at the start of the time step S < 0, we are in an evaporation
regime. Also in this regime, the time evolution is governed by
equations (38) and (40). However, we need to take into account
that bare grains will not contribute to the flux of molecules, and
that during the time step, grains may become bare. Therefore, we
split the integration into a number of sub-steps. During each sub-
step, the same set of grain sizes contributes to the evaporation
flux, and we completely ignore bare grains. For each step, we
define restricted versions of C and E. These restricted versions
only sum over non-bare grains;

Crest =
∑

i, not bare

Ci and Erest =
∑

i, not bare

Ei. (41)

We define bare grains as particles that have less than one mono-
layer of ice molecules on their surface.

With these definitions, we use equation (40) to check if any
ice component becomes depleted during the time step, that is,
we check for the first root in any of the equations;

Σice,i (t0) +
CiΣvap (t0) − Ei

C

(
1 − e−C(t−t0)

)
= 0. (42)

If that first root is before the end of the time step, we evolve the
system to this time, remove the newly bare grain size from the
participating set of grain sizes, and continue in the same way.
Eventually, either all grains will be bare, or the first root in the
set of equations (42) will be beyond the end of the time step.
Then we use equation (40) with C replaced by Crest to move the
system to the end of the time step.
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Table 1. Fiducial model parameters.

Parameter Symbol Value Unit

Viscosity parameter α 10−3 –
Schmidt number Sc 1/3 –
Stellar mass Mstar 1.0 M�
Gas-to-dust ratio fg2d 100 –
Gas-to-CO ratio fg2CO 700 –
Silicate bulk density ρsil 1.6 g/cm3

CO bulk density ρCO 1.6 g/cm3

2.5.3. Caveats

We do not consider grain curvature effects on evaporation and
condensation. This means either all particles are in evaporation
mode or all particles are in condensation mode. In general, this
effect is mostly effective for very small particles (< 0.1 µm). As
seen in section 3, we get rid of the small particles very quickly
due to coagulation and do not replenish them since we do not
have fragmentation.

The surface of a real disk is directly illuminated by the star
and therefore hotter than the midplane. This means that in addi-
tion to a radial ice line in the midplane, disks also have a two-
dimensional surface called atmospheric ice line towards their
surface, where the temperatures are high enough for ices to evap-
orate. Since we are only looking at midplane quantities to de-
cide between evaporation or condensation, we neglect the atmo-
spheric ice line. This leads to an overestimation of the ice content
of the particles. But since most of the dust mass is basically be-
low the vertical ice line, especially the larger grains, the effect
is only expected to be important near the radial ice line where
the vertical ice line reaches the midplane. However, this is a ra-
dially narrow region, so it shouldn’t affect the global transport,
but possibly modifies the shape of the snow line.

Our particles have a relatively simple structure in the model.
They are treated as particles with a core and a mantle of CO. If
two particles with mantles collide in our model, they form a new
particle with a single core and a mantle instead of a particle with
two cores connected at their contact point, or even more com-
plex fragmented structures. This may lead to an artificial growth
of silicate particles. If we consider the case where outside the ice
line, many particles with CO mantles collide; in our model they
form a large particle with a large single core and a large CO man-
tle. By crossing the ice line and evaporating the CO, we are then
left with this large core instead of many small cores. Aumatell
and Wurm (2011) showed, experimentally, that by evaporating
fractal ice particles, one would expect to be left with many small
particles instead of one large particle. In favor of simplicity, we
neglect this effect.

Furthermore, the evaporation of CO ice can be decreased if
some of the CO ice is trapped inside a porous and spatially com-
plex structure of the dust particle. Or it can be increased if the
dust particle is very fluffy because its surface area is then much
larger than in the case of a spherical particle of the same size.
These effects are also ignored in this work.

3. Results

3.1. The fiducial model

The input quantities of our fiducial model are given in table 1.
The grain sizes are initially distributed with the MRN distribu-
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Fig. 1. Gas surface densities of the fiducial model after 1 Myr. Shown
are the total gas surface density (solid black line) and the surface density
of gaseous CO (dashed green line). The dotted blue line is the equilib-
rium surface density of CO given by equation (32). The location where
the CO surface density detaches from the equilibrium CO surface den-
sity is called the ice line.

tion (Mathis et al. 1977) with an upper cutoff at 1 µm. We inte-
grate the equations (7), (15), (24), and (25) and use the method
for evaporation/condensation as described in section (2.5) to cal-
culate the time evolution of the gas surface densities ΣH2 and ΣCO,
and the dust surface densities of the different grain sizes Σdust, j.

Figure 1 shows the gas surface densities after 1 Myr of the
simulation. We have chosen this value, because it is the typical
age of some of the best studied star-forming regions and thus
also of the disks therein. Also, it is the typical timescale for disk
dispersion (e.g., Haisch et al. 2001). Shown is the total gas sur-
face density Σgas = ΣH2 + ΣCO and the CO gas surface density
ΣCO. Overplotted is the equilibrium CO gas surface density Σ

eq
CO

given by equation (32), which the system would have if there
was no net evaporation/condensation and if there was enough
CO available. If there is not enough CO in the system, then the
CO in the particles evaporates until the grains are bare. The ra-
dial distance, where ΣCO detaches from Σ

eq
CO , is then our defi-

nition of the CO ice line because it is the point where there is
just enough CO in our model to provide the vapor pressure nec-
essary to counterbalance the evaporation. In our fiducial model,
this happens at ∼ 47 AU. Outside the ice line, the CO is frozen
out onto the grains until ΣCO = Σ

eq
CO. Inside the ice line, all CO

is in the gas phase. Although it is not a power law, the equilib-
rium density at the position of the ice line can be approximated
by Σ

eq
CO ∝ R−p with p ≈ 20. Since this is very steep, the region

around the ice line, where the CO is partially condensed, is very
small and therefore the ice line is well defined.

Figure 2 shows the total dust surface density Σdust and the
surface densities Σa>1mm of grains larger than one millimeter,
Σ1µm<a<mm of grain sizes between 1 mm and 1 µm, and Σa<1µm of
sub-micrometer-sized grains after 1 Myr. The total dust surface
density outside of 70 AU is dominated by sub-millimeter-sized
grains. The amount of millimeter-sized grains becomes impor-
tant inside of 70 AU. The reason for that is that the maximum
size of the particles is limited by radial drift. As particles grow
to larger sizes, their Stokes number increases. In the Epstein
regime of drag, which is relevant in this work, particles of the
same size have a larger Stokes number in regions of smaller gas
density. This means that particles of a given size drift faster in
the outer region of the disk. When the particles grow and their
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Fig. 2. Dust surface densities of different dust sizes at the CO ice
line after 1 Myr. Shown are the total surface density (solid gray line),
millimeter-sized (dotted blue line), sub-millimeter-sized (dashed red
line), and sub-micrometer-sized (dash-dotted green line) particles. The
vertical dashed line marks the location of the CO ice line.

Stokes numbers approach unity, they are heavily affected by ra-
dial drift and drift rapidly towards the central star.

We do not see any enhanced particle growth at the ice line.
The reason for that is the so-called drift barrier. If particles drift
through the ice line and evaporate their CO, this CO vapor can
diffuse backwards through the ice line and can re-condense on
the particles there. These particles then grow in size. Therefore,
their Stokes number increases and with that their drift velocity,
making them drift even faster through the ice line.

In fact, the feature we see in Σdust in figure 2 at the ice line
should rather be seen as a depletion inside the ice line instead
of an enhancement outside, because it is solely caused by evap-
oration of the CO ice on the inwards drifting particles. This de-
pletion approximately corresponds to the input ratios of fg2d and
fg2CO.

Figure 2 also shows a complete lack of sub-micrometer sized
grains in a region of approximately 10 AU outside the ice line.
Those particles do not exist here, because the backwards diffus-
ing CO vapor preferentially re-condenses on the smallest par-
ticles since they contribute the most to the total surface area.
Therefore, these particles grow in size. The particles with the
smallest silicate cores have ice fractions of Q > 0.999. There-
fore, their mass is enhanced by a factor of at least 1,000 and their
radius by a factor of at least 10. Particles with a silicate core of
asil < 1 µm therefore have a resulting radius of areal > 1 µm.

Figure 3 shows these ice fractions Q (R) as a function of dis-
tance from the star after 1 Myr of the simulation for different
silicate core sizes of the particles. Since we do not take into ac-
count any curvature effects for our evaporation/condensation al-
gorithm, this means the evaporation/condensation rate per unit
surface area is the same for all particle sizes. In the case of con-
densation, the absolute change in radius would be the same for
all particles independent of their size. But the relative gain in
particle mass is therefore larger for smaller particles and there-
fore their Q-value increases faster. Figure 3 shows this effect.
The smaller the particle is, the larger its CO ice fraction Q at
the ice line at 47 AU. Also, it can be seen that the CO vapor is
redistributed to large distances outwards of the ice line. Even at
R > 70 AU, there is a noticeable increase of Q for the small
particles.

Figure 4 shows different snapshots of the size evolution in
our fiducial model. Plotted are the following distribution func-

40 50 60 70 80 90 100

Distance from star [AU]

0.0

0.2

0.4

0.6

0.8

1.0

Ic
e

fr
ac

ti
on

1 µm

5 µm

10 µm

50 µm

100 µm

Fig. 3. The CO ice fraction Q of particles with different silicate core
sizes depending on their radial position in the disk after 1 Myr.

tions:

σdust, tot (a; R) =

∞∫
−∞

n (a; R, z) · m · a dz

σdust,CO (a; R) =

∞∫
−∞

nQ (a; R, z) · m · a dz. (43)

The solid line denotes the particles with a Stokes number of
unity. The dashed line is an analytical estimate of the maximum
drift-limited particle size as given by Birnstiel et al. (2011). At
first, the particle growth is most effective in the inner regions of
the disk because of the larger collission rates of the particles. The
particle growth is later hindered by radial drift. In the snapshots
at 500,000 yrs and 1 Myr, a region from the ice line at 47 AU
outwards can be seen where there are no small particles (dotted
line). Because of the re-condensation of CO, these particles grow
in size. The distribution functionsσ are therefore compressed to-
wards larger sizes leading to the darker spot at intermediate par-
ticle sizes in the µm range. The total number density of particles
has no discontinuity at the ice line.

To investigate the typical particle size ām that carries most of
the CO ice mass and the typical particle size āF that transports
most of the CO ice, we define the following quantities:

ām (R) =

∫
a · σdust,CO dlna∫
σdust,CO dlna

(44)

āF (R) =

∫
a · ugas · σdust,CO dlna∫

ugas · σdust,CO dlna
. (45)

ām is the average particle size weighted by the CO dust distri-
bution and āF is the average particle size weighted by the CO
ice flux. Both quantities are plotted in figure 5. It can be seen by
comparing figure 5 with figure 4 that ām is always close to the
maximum particle size. Furthermore, ām is always close to the
particle size āF that is responsible for the ice flux on the parti-
cles in the disk.

3.2. Transport of CO in the dust phase

Figure 6 shows the excess in total dust surface density compared
to a model without CO, the dust-to-gas ratio and the ice-to-dust
ratio for different values of the initial gas-to-CO ratio fg2CO at
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Fig. 4. Different snapshots of our fiducial model. Shown are the different distribution functions as defined by equations (43) at 10,000 yrs,
100,000 yrs, 500,000 yrs, and at 1 Myr. The solid line denotes the particle sizes with Stokes number unity, The dashed line is an analytical es-
timation of the drift barrier. The dotted line encompasses a region outside of the ice line that is free of small particles.

different times in the simulation. We used values for fg2CO of 70,
700 (fiducial model), and 7000, which correspond to CO abun-
dances of 10−3, 10−4, and 10−5. For guidance, the horizontal lines
mark the values for the quantities one would expect outside the
ice line simply from the initial conditions. The excess is defined
as Σi/Σ0−1, where Σi is the total dust surface density in the mod-
els of the different CO abundances and Σ0 is the total dust surface
density in the model without CO. The initial value of the excess

outside the ice line is fg2d/ fg2CO. The initial value of the gas-
to-dust ratio is 1/ fg2d + 1/ fg2CO. The ice-to-dust ratio compares
the surface density of CO ice to the total dust surface density. Its
initial value is fg2d/( fg2d + fg2CO).

It can be seen that the closer the CO ice line is to the star,
the higher the CO abundance is. Further, the more CO there is in
the system, the more saturated the evaporation/condensation is,
causing the ice line to be pushed inwards. This varies the position
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Fig. 6. The excess of total dust surface density compared to a model without CO, the dust-to-gas ratio and the ice-to-dust ratio at different times
for initial gas-to-CO ratios of 70 (dotted red line), 700 (fiducial model, solid green line) and 7000 (dashed blue line). The horizontal gray lines are
the respective quantities one would expect from the initial conditions outside the ice line.

of the CO ice line in these models from approximately 40 AU to
50 AU, initially.

The left panels show the excess compared to a model with-
out CO. Notably, the excess inside the ice line is nonzero in all
cases, meaning the total surface density is still higher than in the
comparison model without CO. Because of the larger CO-coated
particles in the models with CO, and therefore the more effective
drift, the dust surface density is enhanced inside the ice line. This
is especially visible in the high abundance model. In some mod-
els, the excess at the ice line can be a few times larger than one
would expect from the initial values. This is due to accumulation
and re-distribution of CO at the ice line.

In general, the dust-to-gas ratio decreases with time. The dust
surface density decreases while the gas density remains approx-
imately constant over time, as discussed later. The dust-to-gas
ratio decreases from inside out because the particle growth is
most efficient in the inner parts of the disk, meaning the par-
ticles start to drift earlier than outside. The dust-to-gas ratio is
increased at the location of the ice line. This is due to two ef-
fects: first, as the particles drift through the ice line, they shrink
because of evaporation, making drift less efficient and therefore
leading to a “traffic jam”, and second, the backwards-diffusing

and re-condensing CO vapor increases the ice surface density
outside the ice line.

This effect can also be seen in the ice-to-dust ratio. At 1 Myr,
the ice-to-dust ratio is enhanced above the initial value even at
radii larger than 70 AU depending on the model.

3.3. Transport of CO in the gas phase

CO is radially transported in the disk via three mechanisms: vis-
cous accretion and diffusion in the gas phase and frozen-out
as ice on drifting particles. As, outside of the ice line, most of
the CO is frozen-out on particles, the dominant radial transport
mechanism there is particle drift. Inside the ice line, on the other
hand, all of the CO exists in the gas phase and is radially trans-
ported by viscous accretion and diffusion.

This means that transport of CO through the ice line from
the outside into the inner part of the disk happens on drifting
dust particles, while transport from the inside to the outside takes
place in the gas phase. The efficiency of viscous accretion is
highly dependent on the viscosity parameter α while the drift
velocity of particles depends on their size and is only indirectly
related to α through the dust growth.
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Fig. 5. The typical particle size ām that carries most of the ice mass,
and the typical particle size āF that transports most of the ice mass for
different snapshots in our fiducial model.
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Fig. 7. The ratio of CO gas surface density to total gas surface density
after 1 Myr in the region of the ice line. Shown are the fiducial model
with α = 10−3 (solid green line), a low-viscosity model with α = 10−4

(dashed blue), and a high-viscosity model with α = 10−2 (dotted pur-
ple). The ratio of Σ

eq
CO/Σgas is plotted with a dashed black line. Also

plotted is the case of a disk without viscous spreading (red dash-dotted
line). The horizontal gray line is our input value for the CO-to-gas mass
ratio.

Particles are drifting through the ice line and deposit their
CO as vapor there. The strength of α determines how rapidly
this CO vapor is diffused from there. This is shown in figure 7
where we compared our fiducial model, with α = 10−3 , with
a low-viscosity model of α = 10−4 and a high-viscocity model
of α = 10−2 at the time of 1 Myr. Plotted is the ratio of the CO
gas surface density ΣCO to the total gas surface density Σgas at

the region of the ice line. Also plotted is the ratio of Σ
eq
CO to

Σgas. The ice line is therefore defined as the position where the
CO gas phase abundance approaches the level set by the equi-
librium density (dashed black line). This can happen anywhere
from 39 to 49 AU approximately, depending on the assumed vis-
cosity and consequently the CO gas abundance. The lower the
viscosity, the more efficient the accumulation of gas, pushing the
ice line closer to the star.

Even though the temperature structure is the same for all
three models, there is still a difference in the location of the
ice line. The reason for this is that evaporation/condensation not
only depends on the temperature but also on the partial pressure
of CO, as seen in equation (28). The partial pressure depends
on the amount of vaporized CO at a given location and on the
temperature (cf. equation (32)). This means that, in principle,
any system can be in saturation (ie., equation (28) equals zero)
for any temperature if the density is high enough. In our fidu-
cial model, at 1 Myr, (green solid line in figure 7) this happens at
∼ 47 AU where the temperature is ∼ 22 K.

In the beginning of the simulations, the ice lines of the dif-
ferent models were at the same position. As soon as the particles
start to grow, they drift inwards, cross the ice line, and deposit
their CO there. Depending on the efficiencies of accretion and
mixing, the system can become saturated at the ice line if more
CO vapor gets deposited there by drifting particles than can be
transported away in the gas phase. If that is the case, then the
ice line moves inwards because the particles can only evapo-
rate when they are in a region where the system is not in satura-
tion. Therefore, the ice line in the low-α models is closer to the
star than the ice line in the fiducial model. As mentioned above,
this inward motion of the ice line is entirely due to non-thermal
effects, as we consider a time invariant temperature structure.
Should the midplane temperature change, due to changes in disc
flaring, for example, this would have a more noticeable effect on
the ice line location as shown in Panić and Min (2017).

We also show, in Fig. 7, a model where we turned off the vis-
cous evolution of the gas disk by not solving equation (7). This
is equivalent to setting α = 0. In this case, all the CO vapor re-
mains where it is evaporated, and this moves the ice line inwards
to approximately 39 AU compared to the fiducial case at 47 AU.
In the region just inside the ice line, the ratio ΣCO/Σgas is largely
increased compared to the initial ratio of 1/ fg2CO depending on
the strength of viscosity. In the fiducial model, ΣCO/Σgas is, in
general, slightly increased in the inner part of the disk, since the
transport of evaporated CO from the ice line to the inner disk is
more effective here.

In the high viscosity case, the re-distribution of vapor is
stronger than the recondensation onto the particles. Meaning,
vapor from inside the ice line becomes diffused outwards faster
than it can recondense onto the particles. This can be seen as the
ratio of CO vapor to total gas is decoupled from the equilibrium
evaporation line. In this case, no increase of CO vapor in the
inner disk can be seen.

3.4. The influence of diffusion on the position of the ice line

By rewriting the equation (4) for viscous accretion, one can see
that it consists of an advective and a diffusive term with a dif-
fusivity D = 3ν, as can be seen in equation (7). By introducing
the Schmidt number Sc = ν/D, we disentangled the advective
and diffusive terms. The Schmidt number compares the strength
of angular momentum transport to pure mass transport. To in-
vestigate the influence of the diffusivity on the transport of CO,
we performed simulations where we kept the viscosity, as in the
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Fig. 8. Dependency of the ratio of CO vapor surface density to total gas
surface density on the Schmidt number at 1 Myr. The fiducial model
is identical to the model with Sc = 1/3 (green solid line). The dashed
black line represents the ratio of Σ

eq
CO/Σgas. The horizontal gray line cor-

responds to the initial CO-to-gas ratio.

fiducial model, at α = 10−3 , and changed the diffusivity by
choosing different Schmidt numbers.

The result is shown in figure 8. The green models in figures 7
and 8 are the fiducial model and are therefore identical. It can be
seen that the diffusivity D is relevant for distributing the CO in
the gas disk; it smears out concentration gradients. With lower
diffusivities (higher Schmidt numbers), the pile-up of CO gas
just inside the ice line gets larger because it cannot be transported
rapidly enough as it gets deposited there. The ice line is therefore
shifted slightly to the inside of the disk for models with higher
Schmidt numbers.

One possibility to trap particles is to assume a pressure
bump. The dust particles drift in the direction of the pressure gra-
dient (cf. equation (17)). Kretke and Lin (2007) proposed such a
pressure bump at ice lines because of a sharp transition of the tur-
bulent viscosity parameter α at the ice line. In our model, we do
not change α at the ice line. The pressure bumps we could create
are therefore only due to evaporation of CO on inward-drifting
particles, but to create such a pressure bump only by depositing
CO gas is rather unrealistic since one would need to increase the
CO gas surface density by a factor larger than fg2CO.

Figure 9 shows the distribution of ice along the different par-
ticle sizes dependent on α. For high-viscosity cases, the CO ice
gets distributed as far out as 90 AU for small particles. In the
low-viscosity case, the CO ice region is restricted up to 60 AU.
Also, the higher the viscosity, the farther out the ice line. With
high α (and therefore, via the Schmidt number, also high D), CO
vapor cannot be accumulated at the ice line. This prevents any
saturation effect.

4. Discussion

4.1. The CO surface density and ice line position

In the previous section, we showed that ΣCO, the vapor den-
sity of CO, approximately follows the equilibrium vapor density
Σ

eq
CO , as long as there is enough CO in the disk. If the evapora-

tion/condensation timescales are shorter than the dynamical time
scales of the system, the CO exactly follows the equilibrium den-
sity; if the evaporation/condensation timescales are longer than
the dynamical timescales, it can decouple from the equilibrium
vapor density. To first order, one can therefore approximate the
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Fig. 9. The distribution of Q according to R for different silicate core
sizes asil and different values of α = 10−4 (dotted red line), α = 10−3
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CO vapor surface density in the whole disk with the equation

ΣCO = min
[

1
fg2CO

Σgas, Σ
eq
CO

]
. (46)

Outside the ice line, the CO surface density is equal to ΣCO
gas ; in-

side the ice line it is approximated by using the total surface den-
sity and the initial gas-to-CO ratio. Although, one should note
that in figures 7 and 8, the ratio of ΣCO/Σgas can be significantly
increased just inside the ice line, depending on the values of α
and Sc.

The position of the ice line Rice is then defined as the point
where the CO surface density joins the equilibrium density and
can be approximated by equating:

1
fg2CO

Σgas (Rice) = Σ
eq
CO (Rice) . (47)
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Fig. 10. Comparing the desorption time tdes with the drift timescale tdrist.
If the ratio tdes/tdrift is larger than unity, the particles can drift past the
ice line before they fully evaporate their ices. The vertical dashed line
is the location of the ice line in our model.

Piso et al. (2015) showed, by comparing the desorption time
tdes of evaporating particles with their respective drift timescale
tdrift, that the location of the ice line does not necessarily coincide
with the location where the system gets out of saturation. When
the particles drift faster than they evaporate (i.e., tdes/tdrift � 1),
the particles drift far past the ice line before they evaporate their
ice, leading to icy particles inside the ice line.

Figure 10 shows the ratio of the desorption time tdes to the
drift timescale tdrift for our fiducial model. The desorption time
is given by

tdes =
a
ȧ

=
a ρCO

mCO

kBT
vthermPeq (T )

, (48)

whereas the drift timescale is given by

tdrift =
R

udust
. (49)

By comparing figure 10 with figure 4, one can see that the
particles at the location of the ice line have a size where this
‘smearing-out’ begins to happen. Figure 11 shows the CO ice
surface density after 1 Myr in our fiducial model. The ice line of
the smaller particles is at approximately 47 AU, whereas the ice
line for the largest particles is at approximately 45 AU.

By using equation (46), one has to keep in mind that the val-
ues for ΣCO around the ice line and the position of the ice line
itself highly depend on the transport properties of CO in the gas
phase, that is, the viscosity ν and therefore the α turbulence pa-
rameter, and on the diffusivity D. If the transport mechanism
of CO in the gas phase is not strong enough, that is, low α or
low D, a pile-up of vaporized CO is created just inside the ice
line. This brings the system into saturation even closer to the
star and therefore shifts the ice line closer to the star. This can
lead to differences in the position of the ice line of up to 10 AU
and a change in temperature at the ice line from 21 K to 23 K.
In an evolving disk, where the temperature profile is not fixed,
the change in the position of the ice line can be even stronger
due to changes in the midplane temperature (e.g., Panić and Min
2017). Also, in the high viscosity case, redistribution of CO can
be strong enough for the vapor to be decoupled from the equilib-
rium vapor pressure.

By looking at figures 7 and 8, one can see that the CO va-
por abundance in the inner part of the disk is significantly in-
creased over to the canonical ISM value. This was also predicted
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Fig. 11. CO ice surface density in our fiducial model after 1 Myr. The
largest particles are just large enough such that their drift timescale is
smaller than their desorption timescale leading to a ‘smearing-out’ of
the ice line. The solid line denotes the particle sizes with Stokes number
of unity. The dashed line is the drift barrier. The dotted line encompasses
an empty region outside the ice line.

by Cuzzi and Zahnle (2004, Regimes 1 and 2 therein). However,
we cannot reproduce a depleted inner nebula as in Stevenson and
Lunine (1988) and Cuzzi and Zahnle (2004, Regime 3) because
we do not have any sink terms such as immobile planetesimals
outside the ice line that can remove the vapor from the disk. Our
particles on which the CO vapor re-condenses outside the ice
line are still mobile and drift inwards through the ice line replen-
ishing the CO vapor there. Only in the high-viscosity case does
the inner disk become slightly depleted in CO vapor around the
ice line due to the turbulent diffusion being effective enough to
push the gas farther out against recondensation.

4.2. Particle growth at the ice line and detectability

We do not see an enhanced particle growth just outside the ice
line; instead we see a depletion in surface density of dust inside
the ice line. This depletion is entirely due to loss of CO ice man-
tles, thereby making the dust particles smaller and less massive.
The particle surface density is dominated by particles close to
their local drift barrier. CO vapor, that previously diffused back-
wards from inside the ice line and then recondensed on those
particles outside the ice line, only increase their size and Stokes
number, making them drift even more rapidly though the ice line.
This drift barrier limits the sizes of the particles in our models to
less than one centimeter at the CO ice line.

The depression in total dust surface density seen in figure 2
is therefore related to the amount of CO in the system. The radial
jump in the total dust surface density is approximately given by
the ratio fg2d

fg2CO
. If we assume that the loss of the CO ice mantle

at the CO ice line does not cause any differences to the optical
properties of the dust in the mm-wavelength regime, then the
difference in the intensity by thermal continuum emission of the
dust S ν is dominated by the difference in surface density of the
dust. Using the optically thin approximation

S ν, in

S ν, out
=

Σdust, in

Σdust, out

Bν(Tin)
Bν(Tout)

, (50)

where Bν(T ) is the Planck function and in/out refers to locations
shortly inside/outside the ice line. The dust densities are given
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by

Σdust, in = Σdust (Rin)
(
1 −

fg2d

fg2CO

)
Σdust, out = Σdust (Rout) = Σdust (Rin)

(
Rout

Rin

)p

,

(51)

by assuming a simple power law for the dust surface density
Σdust (R) = Σ0

(
R

1 AU

)p
. This leads to

S ν, in

S ν, out
=

(
1 −

fg2d

fg2CO

) (
Rin

Rout

)p Bν(Tin)
Bν(Tout)

' 0.86
(

Rin

Rout

)p

, (52)

by assuming a canonical ISM value of fg2d/ fg2CO = 1/7 (see e.g.,
Yamamoto et al. 1983) and Bν(Tin)/Bν(Tout) ' 1. To detect the
effect of the CO evaporation and to quantify fg2d/ fg2CO (under
the assumption that no other process causes a bump at the ice
line), it is clear that one needs to constrain p in the region beyond
the ice line and measure S ν at Rice to S/N much greater than 7.

4.3. Influence of the particle size on the fragmentation
velocity

Okuzumi et al. (2016) showed that a change in the fragmentation
velocity due to sintered aggregates in the proximity of ice lines
can produce rings in disks, as observed for example in the disk
around HL Tau. Evaporation preferentially happens on convex
surfaces, while condensation preferentially happens on concave
surfaces. Close to the ice line, evaporation starts to happen on
the convex surface of a monomer, while simultaneously, con-
densation can happen on the concave contact point (“neck”) of
two connected monomers (Sirono 2011). This effect stiffens the
neck making it harder for the monomers to roll around this con-
tact point. Aggregates can absorb the impact energy of collisions
by restructuring via rolling (Dominik and Tielens 1997). Sinter-
ing reduces the possibility of rolling leading to a breakup of the
monomer connections and therefore a lower fragmentation ve-
locity.

In contrast to that, the critical breaking velocity necessary to
break up the connection of two monomers is inversely propor-
tional to the monomer size vcrit ∝ a−5/6

0 (cf. Dominik and Tielens
1997) leading to lower fragmentation velocities for aggregates
with larger monomer sizes. We showed in figure 3 that our par-
ticles with a silicate core of 0.1 µm (the monomers) have an ice
fraction of Q > 0.999 in the region outside the ice line. The
monomer size in that region is therefore increased by a factor of
at least 10 and the fragmentation velocity decreased by a factor
of approximately 7. This could lead to enhanced fragmentation
just outside ice lines and requires further investigation in upcom-
ing works.

Possible improvements of the model

1. Our model is one-dimensional and we only use surface den-
sities in our calculations. This leads to errors in ΣCO in our
treatment of the evaporation/condensation described in sec-
tion 2.5. We underestimate ΣCO since we are neglecting the
CO in the hot surface layers of the disk. However, since the
disk’s atmosphere is small compared to its scale height, and
its density is significantly smaller than the midplane density,
this should not be a large effect.

2. We do not take into account the vertical movement of dust
particles. This movement could also influence the vertical

distribution of CO gas. One could imagine that the CO gas
condenses on small dust particles in the surface of the disk.
These particles then sink more easily towards the midplane
and remove CO vapor from the disk’s atmosphere. Or, vice
versa, small CO-coated dust particles are pushed through the
atmospheric ice line due to turbulence, depositing their CO
as gas in the disk’s surface. This is a topic of further investi-
gation.

3. We also do not take into account the vertical diffusion of CO
vapor and how this affects the local CO vapor pressure in
the midplane. As particles grow, they settle to the midplane.
When they drift inwards through the ice line, one would
think that most of the CO vapor is set free close to the mid-
plane and is not instantaneously in thermal equilibrium as we
assume in our model.

4. In our model we treat the particles as compact spheres, but
Kataoka et al. (2013) showed that, through fractal growth,
the particles can potentially overcome the drift barrier. The
reason for this is that fluffy aggregates have larger cross-
sections than compact aggregates of the same mass. This de-
creases the growth timescales of the particles, making the
growth of the particles more efficient and potentially making
it possible to overcome the drift barrier.

5. Treating particles as compact spheres and not as fluffy ag-
gregates could lead to an artificial ‘non-fragmentation’ by
evaporation, since we combine the silicate mass of the parti-
cle in one particle core after evaporation of the CO instead of
creating many small particles as Aumatell and Wurm (2011)
suggested.

6. Including fragmentation and looking at the inner disk can po-
tentially change some results. In general, the particle size in
the inner parts of the nebula is fragmentation limited instead
of drift limited, as in the outer disk. Therefore, the particle
dynamics and distributions change, which can have effects
on the various volatile re-distribution mechanisms discussed
in this paper.

5. Conclusions and outlook

We developed a model for dust growth with a volatile species
including particle drift and diffusion, evaporation and condensa-
tion of the volatiles, and viscous evolution of the gas. We do not
find any enhanced particle growth by re-condensation just out-
side the ice line, since the particles there are already close to their
drift barrier. Due to particle drift through the ice line, evapora-
tion, diffusion and re-condensation on particles outside the ice
line, we find a dust surface density enhancement at the ice line
that could be observable at the CO ice line. The vapor that gets
deposited at the ice line by inwards-drifting particles can push
the ice line closer to the star. If the efficiency of re-distribution
of vapor in the disk is low, then the vapor accumulates at the ice
line, bringing the system into saturation and therefore preventing
evaporation. The location of the ice line itself does depend on
disk parameters such as temperature, volatile abundance, viscos-
ity, or diffusivity. Furthermore, different particle sizes can have,
in general, different locations at which they fully evaporate their
volatile species. The increase in monomer size just outside the
ice line could lead to fragmentation, exactly as proposed for sin-
tering.

Our model is not restricted to CO. By using the analogous
parameters for water ice, we can transfer the simulation to the
water ice line in the inner disk. Here, one has to take into ac-
count that the collisional properties of water-ice-coated particles
and purely silicate particles differ tremendously (e.g., Blum and
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Wurm 2008; Güttler et al. 2010). For ice-free particles, fragmen-
tation plays an important role and has to be taken into account
for particles crossing the ice line. Furthermore, the water ice line
is at locations in the disk where viscous heating is important and
has to be taken into account. The question of the location and
distribution of H2O has an important role in astrophysics and
planetary sciences. Whether the Earth formed dry, that is, inside
the water ice line, or in a region outside the ice line remains to be
determined. If the Earth formed dry, the origin of the Earth’s wa-
ter is unclear. If it formed wet, the relatively small amount of wa-
ter observed on Earth is curious. By transforming our model to
water ice and implementing fragmentation, we will try to come
closer to elucidating these subjects in future work.
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Appendix A: Modified Podolak algorithm for Q
Brauer et al. (2008) described, in their appendix A, the diffi-
culties of numerically solving the discrete Smoluchowski equa-
tion for coagulation on a logarithmically spaced mass grid. They
present a method for circumventing these problems. This method
has to be modified for the Q parameter used in this work.

We will shortly repeat the formalism of Brauer et al. (2008).
For further details we refer to that paper.

By coagulating two particles on a logarithmic mass grid,
the resulting particle’s mass will not be exactly on a grid point.
Therefore, its mass has to be split between two adjacent grid
points. Let us assume the collision rate Ri j of particles with
masses mi and m j is given by

Ri j = NiN jKi j, (A.1)

where Ni is the number density of particle species i, and Ki j is the
coagulation Kernel of mass bins i and j. The resulting particle
mass of these collisions is m = mi + m j , which lies in between
the two mass grid points mm and mn such that mm < m < mn.
The change in number density of mass bin k is then given by

Ṅk =
1
2

∑
i j

Ri jCi jk −
∑

i

Rik, (A.2)

with

Ci jk =


ε if mk is the largest grid point with mk < m
1 − ε if mk is the smallest grid point with mk > m
0 else

,

(A.3)

and

ε =
mn − m

mn − mm
. (A.4)

This guarantees that the collision rates are split between two ad-
jacent grid points with strict mass conservation, which can be
easily calculated.

Another problem arises if particles coagulate, whose masses
differ by more than 15 orders of magnitude. Standard double
precision variables have accuracies up to 15 digits. In that case,
for a computer using double precision variables, a sticking col-
lision of two particles with masses mi and m j would lead to a
particle with mass m = mi + m j = m j when m j is the larger parti-
cle, meaning many collisions of very small particles with a very
large particle would lead to no growth at all, which is solely a
numerical effect.

Brauer et al. (2008) avoided this by re-sorting sums. They
came to the following equation:

Ṅk =
∑

i j

NiN jKi jMi jk, (A.5)

where the matrix M is given by

Mi jk =δi jCi jk + Ci jkΘ

(
k − i −

3
2

)
Θ

(
i − j −

1
2

)
+ D jiδik

+ E j,i+1δi,k−1Θ

(
k − j −

3
2

)
, (A.6)

where δ is the Kronecker delta and Θ the Heaviside step function.
The matrices D and E are given by

D jk =

− m j

mk+1−mk
l ≤ k + 1 − ce

1 else
, (A.7)

and

E jk =


−

m j

mk−mk−1
j ≤ k − ce

1 − m j+mk−1−mk

mk+1−mk
j > k − ce ∧ mk−1 + m j ≤ mk+1

0 else.
(A.8)

The integer number ce is defined in a way that the inequality,

mk−1 + mi < mk, (A.9)

is satisfied for every i ≤ k − ce. In that way, some equal sized
terms cancel out in the sums and inaccuracies resulting from
the limited accuracy of the double precision variables can be
avoided. Unfortunately, by introducing the Q parameter, these
terms do not exactly cancel out in the coagulation equation for
NQi ≡ Ni · Qi. We have to modify the equations here to get to

˙NQk =
∑

i j

NiN jKi jM̃i jk, (A.10)

with the matrix M̃ that can be expressed in terms of M as

M̃i jk = Qnew
i j

(
Mi jk − D jiδik + D̂ jiδik

)
, (A.11)

and

D̂ ji =


1 − Qi

Qnew
i j −

m j
mi+1−mi

j ≤ i + 1 − ce

−
Qi

Qnew
i j

else.
(A.12)

Qnew
i j is the new Q-value of the particle that resulted from the

collision of particle i with particle j.
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