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ABSTRACT

In this work we discuss the recent criticism by Zdziarski (2016) of the maximal jet model derived in Falcke & Biermann (1995). We
agree with Zdziarski that in general a jet’s internal energy is not bounded by its rest-mass energy density. We describe the effects of the
mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption.
The maximal jet model was used to derive a 1-D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting
of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation
of the 1-D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the
jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the
jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio
spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

1. Introduction

In this work we reexamine the maximal jet model of accreting
black-holes with disks and jets derived in Falcke & Biermann
(1995). The idea behind a maximal jet is that there is a strict
upper limit on the power carried by a jet in terms of its mass flux.
As first pointed out by Zdziarski (2016), the maximal jet is the
result of an erroneous conclusion that the internal energy density
of a gas must be less than or equal to the rest-mass energy density
of the gas. The maximal jet model was used to link the power
carried by the jet to the power in the accretion disk, arriving at
the highly influential and widely used “jet-disk symbiosis.” The
main result of the jet-disk symbiosis states that the total power
in the jet, Lj , can be related to the mass accretion rate of the
disk, Ṁdisk, through the jet’s Lorentz factor γj and an efficiency,
η < 1. Lj = ηγjṀdiskc

2.
Without appealing to a maximal jet, we argue in this paper

that the jet-disk symbiosis is reasonable for astrophysical ac-
creting black-holes in general. In fact, it is reasonable to esti-
mate the power of the jet to be . ηṀdiskc

2, as long as one
takes η . a few, as opposed to being strictly less than one.
It is intuitive why this conclusion should hold in a Blandford-
Payne type jet where the disk itself is powering the jet (Bland-
ford & Payne 1982), but the conclusion should also hold for jets
that are powered by the black hole’s rotational energy via the
Blandford-Znajek mechanism (Blandford & Znajek 1977). In
the Blandford-Znajek mechanism, the jet power is proportional
to the poloidal magnetic flux at the black hole, and the magnetic
flux that can be carried to the black hole is ultimately limited
by the mass-accretion rate (Narayan et al. 2003; Tchekhovskoy
et al. 2011). This explains why the jet-disk symbiosis has been
such a successful concept.

However, the maximal jet conclusion results solely from an
algebraic mistake in Falcke & Biermann (1995) and cannot be

applied broadly to accreting black-holes with jets. We argue in
this work that if the jet is efficiently accelerated and has a small
terminal Lorentz factor, the initial enthalpy should be roughly
equal to the rest-mass energy, in agreement with a maximal jet. A
jet with a large terminal Lorentz factor will start with a large en-
thalpy, but if the jet is efficiently accelerated, the internal energy
of the jet will be approximately equal to the rest-mass energy
density after the jet has reached its final Lorentz factor (Vlahakis
& Königl 2003; McKinney 2006). There are some cases when
this approximation breaks down. For a steady-state, axisymmet-
ric, magnetically-accelerated outflow to be efficiently acceler-
ated, it must stay causally connected in the transverse direction.
However, it is unclear if this requirement is an actual impediment
to the magnetic acceleration of astrophysical jets, or an artifact
of the symmetries imposed. (For a concise review of magnetic
acceleration of jets, see Komissarov 2011.) A radiation or ther-
mal pressure-driven jet will be efficiently accelerated even if it
is conical and free-streaming. We assume the jet opening angle
is small enough to ensure it remains in causal contact with the
external medium throughout this paper.

In addition, we correct algebraic errors made in the deriva-
tion of the jet’s Lorentz factor as a function of distance in Fal-
cke (1996). This Lorentz factor profile is used to calculate the
dynamics of a jet in agnjet, an outflow dominated model of
low-luminosity accreting black holes that has been applied to
several different low-luminosity active galactic nuclei and X-ray
binaries (Markoff et al. 2005, 2008; Maitra et al. 2009; van Oers
et al. 2010; Markoff et al. 2015; Plotkin et al. 2015; Connors
et al. 2017). The physics behind agnjet is presented in detail
in Markoff et al. (2005) & Maitra et al. (2009). We characterize
how the changes to the Lorentz factor profile effect the result-
ing spectral energy distribution calculated by agnjet. We find
that the aforementioned algebraic mistakes have a negligible ef-
fect on the radiation from the outflow as long as the jet is roughly
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isothermal, has a small Lorentz factor, and is launched with an
aspect ratio of order unity.

Our paper is organized as follows: in Section 2 we outline the
mistake made when the maximal jet was derived. Then, we argue
why the main conclusion of the maximal jet model, the jet-disk
symbiosis, still holds. We also describe the systems for which the
maximal jet model can be applied. In Section 3, we re-examine
1-D pressure-driven jets, relaxing the maximal jet requirement.
In Section 4, we make the dynamics of agnjet self-consistent,
and find the combined effects of all the changes to the dynamics
on the calculated spectral energy distribution are small. We end
by summarizing and discussing our results.

2. Bernoulli’s equation and Maximal Jets

The total power of an axisymmetric, conical jet at height z from
the launching point with an opening angle θ is equal to the jet’s
Lorentz factor γj times the enthalpy flux,

Lj = γ2
j βjcωπz

2 sin2 θ, (1)

where ω is the enthalpy. In ideal magneto-hydrodynamics
(MHD), a baryonic jet with a co-moving number density of pro-
tons n, has an enthalpy given by

ω = nmpc
2 + Uj + Pj = nmpc

2 + Uth + Pth +
B2

4π
. (2)

Uj , Pj are the total energy density and pressure of the jet, which
can be broken down into a gas component (Uth, Pth) and a mag-
netic component (UB = PB = B2/8π).1 The jet’s gas pressure
can be related to the internal energy of the gas via the adiabatic
index, Γ, Pth = (Γ − 1)Uth. We define the magnetization pa-
rameter, σ, as B2/(4πnmpc

2).2 The enthalpy then simplifies to

ω = nmpc
2

[
1 + σ +

ΓUth

nmpc2

]
(3)

In Falcke & Biermann (1995), the authors assume that the mag-
netic fields are isotropically turbulent, and therefore can be
treated as an ideal gas with adiabatic index Γ. The authors then
write the enthalpy in terms of the total jet internal energy density
Uj as

ω ∼ nmpc
2 + ΓUj (4)

The authors then re-write the enthalpy in terms of the sound
speed, βs, adiabatic index, and density. The sound speed is

β2
s =

ΓPj

ω
=

Γ(Γ− 1)Uj

ω
, (5)

(see e.g. Königl 1980). From Equations (4) & (5), one can derive
the well known result that the maximal sound speed is

√
Γ− 1.

Substituting Equation (5) into Equation (4) and solving for ω
yields

ω =
nmpc

2

1− β2
s/(Γ− 1)

(6)

1 The gravitational potential energy and the radiation pressure and en-
ergy density contributions to the enthalpy are neglected in this work.
2 Our σ is the same as the more standard magnetization parameter σ in
the “force-free” MHD regime. We neglect the gas pressure contributions
to σ to simplify the equations.

Compare the above equation to the equivalent equation in Falcke
& Biermann (1995). They give a formula that is the approxima-
tion when βs is small,

ω ≈ nmpc
2

(
1 +

β2
s

Γ− 1

)
when βs �

√
Γ− 1. (7)

The mistake is that Falcke & Biermann (1995) then use Equation
(7) to argue ω must be less than 2nmpc

2 because βs must be
less than

√
Γ− 1. Clearly this is wrong, because when using the

correct formula, Equation (6), ω diverges to infinity as βs →√
Γ− 1. This mistake was first pointed out by Zdziarski (2016).

Since the total jet power is equal to the Lorentz factor times
the enthalpy flux, the mistake leads to a maximal jet power Lj ≤
2γjṀjc

2, where Ṁj is the mass flux through the jet. Protons
are not created at the jet base, so Falcke & Biermann (1995)
argue Ṁj ≤ Ṁdisk, where Ṁdisk is the mass accretion rate of
the disk. Therefore, Falcke & Biermann (1995) conclude Lj ∼
ηγjṀdiskc

2, η ≤ 1, i.e., the jet-disk symbiosis. The mass flux
through the jet could be larger than Ṁdisk if the jet has significant
baryon loading from winds. If the disk drives a strong wind, the
disk wind may be able to increase the baryon loading, but it is
generally thought that in X-ray binaries a strong disk wind is
associated with the soft states, i.e., when the jet is not present
(Neilsen & Lee 2009). New evidence shows simultaneous winds
and jets in the high state, but there is no evidence that shows a
strong wind during the low hard-state (Muñoz-Darias et al. 2016;
Kalemci et al. 2016; Muñoz-Darias et al. 2017) Stellar winds
could also play a role in increasing Ṁj in AGN or high-mass X-
ray binaries (Komissarov 1994). At any rate, the baryon loading
would only significantly increase the power carried by the jet
when the power of the intercepted baryons exceeds that of the
jet.

It is a reasonable approximation that the power of the jet does
not significantly exceed ṀBHc

2 even if the power in the jet is
supplied by the spin of the black hole via the Blandford-Znajek
mechanism. In the Blandford-Znajek mechanism, the power ex-
tracted is proportional to the magnetic flux carried to the black
hole (Blandford & Znajek 1977). The magnetic flux carried to
the black-hole is proportional to ṀBH , and GRMHD simula-
tions find that the resultant jet power exceeds ṀBHc

2 by a factor
of at most ∼ 3 (Tchekhovskoy et al. 2011). However, there is no
general requirement that the resultant jet’s power is dominated
by the jet’s kinetic energy throughout the jet. For instance, in a
Poynting-dominated jet, the power is Lj = γjṀjc

2(1 + σ) and
σ can be� 1. Clearly, the enthalpy flux can be much larger than
the mass flux, but in the next subsection, we will argue from
completely different grounds than Falcke & Biermann (1995)
that while a jet can start with any initial enthalpy, the jet will
reach an ω/nmpc

2 ∼ 2 at the modified magneto-sonic fast point
if it is efficiently accelerated. Furthermore, in efficiently accel-
erated jets that have mildly relativistic terminal Lorentz factors,
i.e., γjβj ∼ 1, the initial enthalpy will not exceed the rest mass
energy density by a significant amount. The reason why this is
true can be seen most easily via Bernoulli’s equation.

2.1. Bernoulli’s equation

In a steady-state, conservative jet, the total power carried by the
jet is constant along the jet. Dividing the power by another con-
served quantity, the particle number flux through a cross-section
of the jet, one re-derives the relativistic Bernoulli’s equation (see
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e.g. Königl 1980):

γj
ω

n
= constant. (8)

Bernoulli’s equation is simply a statement that the energy of the
fluid per particle must not change as the particles travel along
a streamline, as long as particles are not created or destroyed.
In this paper we are only considering self-similar jets with no
gradient of the pressure in the toroidal direction of the jet. If a
jet is launched with an initial Lorentz factor γ0 with an initial
enthalpy per particle of ω0/n0, then because ω/n ≥ mpc

2, it is
clear from Eq (8) and (3) there is a maximal Lorentz factor:

γmax = γ0
ω0

n0mpc2
= γ0

[
1 + σ0 +

ΓUth,0

n0mpc2

]
. (9)

If a jet achieves γmax, it means it has converted 100% of its
Poynting and thermal energy into bulk kinetic energy. Doing
so in a steady-state, Poynting-dominated jet requires that the
jet be causally connected in the transverse direction.3 If the
jet goes out of causal contact in the transverse direction, the
magnetic pressure may not be able to accelerate the jet further.
If the flow is completely spherical with σ0 � 1, the outflow
reaches a terminal Lorentz factor ∼ σ

1/3
0 (Goldreich & Julian

1970). If instead the jet has an opening angle θj , the terminal

Lorentz factor is γf = min
(
σ0, σ

1/3
0 θ

−2/3
j

)
(Kumar & Zhang

2015). When the jet is thermally or radiatively driven, equa-
tion (9) should hold regardless of the jet’s geometry. Vlahakis
& Königl (2003); Komissarov et al. (2007) show that in some
Poynting dominated jets, electromagnetic fields will naturally
self-collimate the jet and ensure that the jet remains causally
connected up to the modified magneto-sonic fast point. In doing
so the jet reaches rough equipartition between kinetic flux and
Poynting flux, and the jet reaches a final Lorentz factor equal
to ∼ 1

2ω0/n0mpc
2.4 Therefore, using Bernoulli’s equation, the

jet should have ω/nmpc
2 ∼ 2 at the modified magneto-sonic

fast point, right after the jet has finished accelerating. Further-
more, ω0/n0mpc

2 ≈ 2 is likely to be a good assumption for
mildly-relativistic outflows with γjβj of order unity, because
if ω0 � n0mpc

2 the jets would reach γj that are too large.
Mildly relativistic jets are expected to occur in quiescent/hard
state black-hole x-ray binaries5 (Gallo et al. 2003; Miller-Jones
et al. 2007). A mildly relativistic jet may be launched by the
super-massive black-hole at the center of our galaxy, Sgr A*
(Falcke et al. 2009; Brinkerink et al. 2015).

Therefore, ω0/n0 ∼ 2mpc
2 should be a fine assumption as

long as we restrict ourselves to mildly relativistic outflows with
small enough opening angles. In jets with large Lorentz factors,
γjβj � 5, like blazars, BL Lacs, relativistic tidal disruption
events, and gamma-ray bursts, ω0/n0 � 2mpc

2, but if the jet is
accelerated efficiently, at the modified magneto-sonic fast point
ω/nmpc

2 ∼ 2.6 The previous jet model of agnjet, and the one
described in this paper, are not capable of reproducing the jets in
these objects.
3 The requirement that Poynting-dominated jets remain causally con-
nected in the transverse direction can be relaxed if the outflow is impul-
sive (Granot et al. 2011)
4 The jet is launched with a sub-relativistic velocity, γ0 = 1
5 Although see Heinz & Merloni (2004); Miller-Jones et al. (2006)
regarding the difficulties in placing a strong upper limit on the Lorentz
factor of X-ray binaries.
6 If the highly relativistic jet is comprised of electron-positron pairs,
then ω0/n0 � 2mec

2.

In the process of examining the maximal jet model, we have
discovered additional minor algebraic mistakes in the Lorentz
factor profile derived in Falcke (1996) and used in agnjet. In
the rest of the paper, we show that these mistakes are minor and
do not affect the conclusions drawn from fitting the model to low
Lorentz factor sources. We then show that isothermal or nearly
isothermal jets are required to have a flat radio spectrum.

3. Pressure-Driven Conical Jets

In this section we reproduce with minor corrections the deriva-
tion of the one-dimensional propagation of a quasi-isothermal
hydrodynamic jet from Falcke (1996). We find that the corrected
quasi-isothermal acceleration profile agrees within ∼20% with
the result in Falcke (1996), and the corrected Lorentz factor pro-
file is much closer to the profile in a perfectly isothermal flow
(see Figure 1).

The one-dimensional propagation of a supersonic jet in the z
direction follows the Euler equation given in Pomraning (1973);
Falcke et al. (2009):

γjβjn
∂

∂z

{
γjβj

ω

n

}
= −∂Pj

∂z
(10)

Following Falcke & Biermann (1995), we assume that the jet is
well-described by a fluid with adiabatic index 4/3 and use the
enthalpy from Eq (4)

ω = nmpc
2 + ΓUj , (11)

so Eq (10) becomes:

γjβjn
∂

∂z

{
γjβj

(
mpc

2 +
ΓUj

n

)}
= −(Γ− 1)

∂Uj

∂z
. (12)

Particle number conservation along the jet forces the number
density to be

nj = n0

(
γjβj
γ0β0

)−1(
z

z0

)−2(
sin θ

sin θ0

)−2

, (13)

where θ is the opening angle of the jet (i.e. the cross-sectional
radius of the jet divided by the height of the jet).

The jet is launched at an initial height of z0, and is assumed
to be traveling at the sound speed. The sound speed in the jet’s
rest frame, βs, is

β2
s =

ΓPj

ω
=

Γ(Γ− 1)Uj

nmpc2 + ΓUj
. (14)

Instead of requiring Uj = nmpc
2 throughout the jet, we intro-

duce a new parameter ζ, which is the ratio between the initial
internal energy of the jet and the initial rest-mass energy density,
i.e., U0 = ζn0mpc

2. ζ = 1 corresponds to the maximal jet con-
ditions in Falcke (1996). The initial sound speed at the base of
the jet is

βs0 =

√
ζΓ(Γ− 1)

1 + ζΓ
. (15)

For ζ = 1, Γ = 4/3 the sound speed is ≈ 0.43. Since the jet is
assumed to be launched traveling at the sound speed, the initial
velocity of the jet is

γ0β0 = 1/

√
β−2
s0 − 1 =

√
ζΓ(Γ− 1)

1 + 2ζΓ− ζΓ2
. (16)
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Fig. 1. This figure shows the difference between the Lorentz factor
profile derived in Falcke (1996) and used in agnjet c.f. Markoff
et al. (2005) (yellow solid line), the derived Lorentz factor profile af-
ter correcting for algebraic mistakes (eq 18, red solid line), the 1-D
Euler equation in a conical jet assuming continual heating of the jet
by an outside source such that the jet is isothermal, Uj = nmpc

2

(green dashed line), and the Euler equation in an adiabatic jet, where
Uj = n0mpc

2(n/n0)Γ (lilac solid line). If the jet follows Bernoulli’s
equation, γmaxβmax ≈ 2.39 when γ0β0 ≈ 0.485 and Γ = 4/3—
precisely the terminal value in the adiabatic jet Lorentz factor profile.

For Γ = 4/3, ζ = 1, γ0β0 ≈ 0.485.
The jet Lorentz factor profile from Falcke (1996) can be de-

rived by treating the jet as a conical jet (θ = θ0) and using parti-
cle number conservation to get a z dependence on the density
(see Eq 13). To fix the z dependence on the internal energy,
we need a prescription of how the temperature changes with a
change in density. If the jet is isothermal, Tj is constant and
Ue ∝ n. If the jet is adiabatic, Ue ∼ nkTj ∝ nΓ, and therefore
Tj ∝ nΓ−1 ∝ (γjβj)

1−Γz2−2Γ. Falcke (1996) assumes that the
gas is only able to do PdV work in the z-direction, hence the
only adiabatic losses are due to the jet’s acceleration. We call
this assumption quasi-isothermal. If the jet is quasi-isothermal,
the temperature Tj , is proportional to (γjβj)

1−Γ. It is difficult
to understand how exactly the gas is prevented from doing PdV
work in the lateral direction. It is far more realistic to assume
there is continuous particle acceleration to counteract the adia-
batic losses due to the expansion, as Blandford & Königl (1979)
use to explain their isothermal jet model. For a heating mech-
anism to recover the quasi-isothermal temperature dependence,
it means it must be capable of compensating the large adiabatic
losses due to the lateral expansion, but not the comparatively
small adiabatic losses from the acceleration. Why the heating
mechanism would do this is unclear. We retain Tj ∝ (γjβj)

1−Γ

here for historical reasons, and we note that when using the cor-
rect Euler equation, the difference between the quasi-isothermal
case and the isothermal case is negligible for the small Lorentz
factors achieved in jets with Uj,0 ∼ n0mpc

2 and Γ = 4/3, as
assumed in this work.

In a quasi-isothermal jet, Uj is

Uj = ζn0mpc
2

(
γjβj
γ0β0

)−Γ(
z

z0

)−2

. (17)

Substituting Eqs (17) and (13) into Eq (10), and assuming
the jet is launched with an initial γ0β0 equal to the sound speed

(Eq 16), the 1-D Euler equation that results is{
γjβj

Γ + ξ

Γ− 1
− Γγjβj −

Γ

γjβj

}
∂γjβj
∂z

=
2

z
; (18)

ξ =
1

ζ

(
γjβj
γ0β0

)Γ−1

; γ0β0 =

√
ζΓ(Γ− 1)

1 + 2ζΓ− ζΓ2
. (19)

The above equation should reduce to the jet Lorentz factor pro-
file used in Falcke (1996); Markoff et al. (2005) when ζ = 1.
However, it differs from Eq (2) in Falcke (1996):{
γjβj

Γ + ξ

Γ− 1
− Γ

γjβj

}
∂γjβj
∂z

=
2

z
; (20)

ξ =

(
γjβj

Γ + 1

Γ(Γ− 1)

)1−Γ

(21)

The difference between our equation and the equation in Falcke
(1996) can be accounted for as follows: the −Γγjβj term in Eq
(18) results from a neglected ∂

∂z (Uj/n) term, the difference in
the exponent in ξ results from an arithmetic error, and finally
the difference in the inside of the parenthesis of ξ terms is from
setting γ0β0 = β2

s0 instead of using the proper value given in Eq
(16). The difference between the solutions of Eqs (18) and (20)
are small and shown in Figure 1. In Figure 1, we also include
solutions to the 1-D Euler equations when the jet is isothermal
(Tj = constant, i.e., Eq 20 with ξ = 1) and adiabatic (Tj ∝
(γjβj)

1−Γz2−2Γ, see Eq 25).
The above quasi-isothermal and isothermal solutions do not

conserve energy, nor do they follow the Bernoulli equation. The
violation of Bernoulli’s equation is clear by looking at maximal
Lorentz factor on any pressure driven jet that conserves energy,
with U0 = ζn0mpc

2, Eq (9) becomes

γmax = γ0(1 + Γζ), (22)

or γmax = 7γ0/3 for a relativistic gas starting with equal parts
internal energy density and rest mass energy density, U0 =
n0mpc

2. All solutions except for the adiabatic solution eventu-
ally reach a γj that exceeds γmax, which is easily seen in Figure
1.

The total amount of heating needed to explain the solution
in agnjet is equivalent to the increase in the jet power. Using
Eq (1) for the jet’s total power, the increase of power in a quasi-
isothermal jet is

Lj

L0
=

1

1 + Γ

γj
γ0

[
1 + Γ

(
γjβj
γ0β0

)1−Γ
]
. (23)

The required heating to power a quasi-isothermal jet is shown
in Figure 2. The heating must come from some internal pro-
cess in the jet, but the heating mechanism is not capable of be-
ing captured by our time-independent, laminar flow treatment in
this work. One possibility is that heating originates from internal
shocks (Malzac 2013). Internal shocks would do more than just
heat the gas, they would also change the momentum and hence
the dynamics. Magnetic reconnection can convert magnetic en-
ergy into thermal energy to keep the jet’s electrons isothermal,
but reconnection would not increase the total power carried by
the jet.

The jet will conserve energy if instead of assuming Tj ∝
(γjβj)

1−Γ, we use an adiabatic jet where Uj ∝ nΓ, or Tj ∝
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Fig. 2. This plot shows the total power carried by a quasi-isothermal jet
as a function of distance from the black hole z normalized to its initial
power. The power of the jet increases as it propagates (see Equation
23). One possibility to explain how the jet is heated is via some internal
process not captured by the time-independent Euler equation, such as
internal shocks.

(γjβj)
1−Γz2−2Γ. In an adiabatic conical jet the z dependence of

the internal energy is:

Uj = ζn0mpc
2

(
γjβj
γ0β0

)−Γ(
z

z0

)−2Γ

, (24)

and the full 1-D Euler equation is{
γjβj

Γ + ξ

Γ− 1
− Γγjβj −

Γ

γjβj

}
∂γjβj
∂z

=
2Γ

z

(
1 + γ2

j β
2
j

)
;

(25)

ξ =
1

ζ

(
γjβj

√
1 + 2ζΓ− ζΓ2

ζΓ(Γ− 1)

)Γ−1(
z

z0

)2(Γ−1)

. (26)

The solution to the adiabatic 1-D Euler equation when ζ = 1
is shown in Figure 1. Unlike the quasi-isothermal case, the jet
reaches the maximal Lorentz factor equal to that predicted by
the Bernoulli equation γ0(1 + Γ).

4. Radiation, Collimation, and a more
Self-Consistent agnjet

The agnjet model was developed in Markoff et al. (2005);
Maitra et al. (2009) as way of fitting multi-wavelength spectra
of black-hole jets. The model is described in full detail in the
aforementioned papers, but we will give a brief description here.
In agnjet the gas is assumed to be moving at a velocity equal
to the sound speed though a nozzle with constant radius r0 that
ends at z0. At z0, the jet is allowed to expand at constant veloc-
ity equal to the sound speed7 in the cross-section radial direction,
and weakly accelerated in the z direction by the jet’s pressure,
i.e., it follows the 1-D Euler equation in the z direction. Elec-
trons initially have a Maxwell-Juttner thermal distribution in the
nozzle and the jet, and a fraction of the electrons are accelerated
into a non-thermal population at a height zacc. The electrons ra-
diate via synchrotron and inverse Compton processes.
7 γsβs = γ0β0
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Fig. 3. This figure shows how a different initial aspect ratio of the jet,
r0/z0, changes the dynamics of a self-collimated quasi-isothermal jet
compared to the conical jet considered in Figure 1. As long as r0/z0 ∼
1, the difference between a conical and self-collimated jet is much less
than a factor of 2.

The assumption of a lateral expansion at constant speed
while accelerating vertically results in a jet that is self-
collimating. The effect of the self-collimation on the dynamics
was not previously considered in agnjet. We show here that
the effect is small as long as the initial cross-sectional radius of
the jet is roughly equal to the launch height.

The cross-sectional radius of the jet, r, is assumed to follow

r = r0 + (z − z0)γ0β0/(γjβj), (27)

and conservation of number density of particles is

n = n0

(
γjβj
γ0β0

)−1(
r

r0

)−2

. (28)

For the quasi-isothermal case, i.e., what is currently used in
agnjet, the internal energy profile is

Uj = ζn0mpc
2

(
γjβj
γ0β0

)−Γ(
r

r0

)−2

. (29)

(ζ = 1 in agnjet). With the cross-sectional radius assumed in
Equation (27), the 1-D Euler equation becomes:{
γjβj

Γ + ξ

Γ− 1
− Γγjβj −

Γ

γjβj
+

2(z − z0)γ0β0/(γjβj)

r0γjβj + γ0β0(z − z0)

}
× ∂γjβj

∂z
=

2γ0β0

r0γjβj + γ0β0(z − z0)
; (30)

and as before,

ξ =
1

ζ

(
γjβj
γ0β0

)Γ−1

; γ0β0 =

√
ζΓ(Γ− 1)

1 + 2ζΓ− ζΓ2
. (31)

There is now another free parameter in the velocity profile: the
initial aspect ratio of the jet: r0/z0. We show the effects of this
new parameter and compare our results to a quasi-isothermal
conical jet in Figure 3.

To divvy up the total internal energy into an electron energy
density and magnetic energy density, agnjet uses a free pa-
rameter k, defined as the ratio of the magnetic energy density

Article number, page 5 of 7



A&A proofs: manuscript no. main

to the electron energy density. The dependence of the magnetic
field on the height is

B =

√
8πkUj

1 + k
. (32)

Uj has a height dependence that is different if the jet is assumed
to be isothermal, quasi-isothermal, or adiabatic. In the isothermal
jet, B ∝ r−1(γjβj)

−1/2, which is slightly slower than the ex-
pected dependence if there is flux conservation of a toroidal mag-
netic field (∝ r−1(γjβj)

−1). In the adiabatic or quasi-isothermal
case, the magnetic field decreases faster than in an isothermal
jet. The electron’s characteristic Lorentz factor γe has the same
distance and bulk Lorentz factor dependence as the temperature.
γe,0 is a free parameter. The density profile of the electrons is de-
termined by number conservation, but the initial number of elec-
trons and positrons is fixed by requiring that Uj,0 = npmpc

2,

ne
np

=
1

1 + k

mp

γe,0me
. (33)

The above relationship will break down if k is too large, and it
results in a non-physical, electrostatically charged jet with ne <
np. k must satisfy the following inequality

k + 1 . 110

(
Te,0

1011 K

)−1

(34)

If agnjet requires a k large enough to violate the above in-
equality to fit the spectrum of an object, the k is inconsistent
with the model of agnjet. In this case, it likely means that the
jet is Poynting dominated, i.e., UB > Up, a scenario which is
not considered in agnjet. We note that versions of agnjet
prior to 2014 did not use eq (33) to set the number of electrons
and positrons, and instead simply set ne = np. In the earlier ver-
sion, agnjet was only self-consistent if 1 + k was equal to the
right hand side of eq (34). If we force ne = np, as in the ear-
lier version of agnjet, when 1 + k < 110

[
Te,0/(1011 K)

]−1
,

the difference from a self-consistent solution can be estimated
by solving the Euler equation in eq (30) with a ζ = (1 +
k)
[
Te,0/(1011 K)

]
/110. The differences are likely to be minor

even if ζ � 1 because the jet is not accelerated very much even
when ζ = 1. If in the previous version of agnjet a solution was
found with 1 + k � 110

[
Te,0/(1011 K)

]−1
, the jet is Poynt-

ing dominated, and its dynamics are not correctly calculated by
agnjet.

We plot an example multiwavelength spectral-energy distri-
bution using agnjet in Figure 4. In the figure it is clear that
the quasi-isothermal, isothermal, and previous agnjetwith mi-
nor errors all give roughly the same result: a nearly flat, self-
absorbed synchrotron spectrum at frequencies below the ther-
mal bump, and a Compton hump in the X-rays. In Figure 4, we
assume the jet to be self-collimating when calculating the de-
pendence of the internal energy of the jet with height, but we
use the velocity profiles from Figure 1. Unlike the models with
a constant or nearly-constant temperature throughout the jet, the
adiabatic model shows a steep rise from the self-absorbed radio
emission to the thermal synchrotron bump. We find that to have
a flat radio spectra the jet must be kept at a nearly constant tem-
perature, a similar conclusion as found by Blandford & Königl
(1979) when fitting the radio cores of AGNs or as found by Moś-
cibrodzka & Falcke (2013) when fitting the radio spectrum of
Sgr A*, or as found by Pe’er & Casella (2009) when fitting the
radio emission of X-ray binaries.
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Fig. 4. This figure shows the different spectral energy distribution
(SED) calculated for conical jets in agnjet. The colors correspond to
the same Lorentz factor profiles in Figure 1. The models where the tem-
perature is constant or nearly constant all show similar SED, while the
adiabatic model has a steep rise below the thermal synchrotron bump.

5. Summary and Discussion

In this work, we have re-analyzed the hydrodynamical jets de-
rived in Falcke (1996). When deriving the Lorentz factor profile,
Falcke (1996) used the maximal jet model from Falcke & Bier-
mann (1995), that contains an algebraic error. The maximal jet
assumption has two main conclusions—the jet’s power is domi-
nated by its kinetic power, and the jet power must be less than the
mass accretion rate of the disk onto the black hole times the bulk
Lorentz factor of the jet. We argued in this letter that the second
conclusion is likely true in general for astrophysical jets. Even in
jets that extract their energy from the black-hole spin, the energy
in the jet does not greatly exceed ṀBHc

2 because the amount
of magnetic flux that can be carried to the black hole depends on
the mass accretion rate. The maximal efficiency of jet production
found in GRMHD simulations is . 300% (Tchekhovskoy et al.
2011; Nemmen & Tchekhovskoy 2015). Furthermore, while it
is true that the jet’s power need not be dominated by its ki-
netic power, we argued that this is a good approximation in a
jet with a sufficiently small opening angle and a small termi-
nal bulk Lorentz factor. X-ray binaries and low-luminosity AGN
likely host such jets, so models based on these assumptions are
well-founded for such objects. In addition, we corrected minor
algebraic mistakes made in the derivation of the Lorentz factor
profile from Falcke (1996). The effects of correcting these errors
are to make the quasi-isothermal jet behave more similarly to a
jet where the temperature is kept completely constant.

The Lorentz factor profile from Falcke (1996) was used in
the agnjet model described in Markoff et al. (2005) & Maitra
et al. (2009). agnjet has been used to fit the multiwave-
length spectra of outflow dominated x-ray binaries and nearby
low-luminosity active galactic nuclei. In agnjet, the jet is as-
sumed to be self-collimating, but the collimation was not self-
consistently applied to the jet’s dynamics. We show that the ef-
fects of the self-collimation are negligible for quasi-isothermal
jets as long as the aspect ratio of the jet at the launching point
is of order unity. We examined the effects of the new Lorentz
factor profile on the spectral energy distribution calculated by
agnjet. We find there is very little difference between the
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assumed quasi-isothermal jet and a completely isothermal jet,
however, we find a large difference in the spectral energy distri-
bution between an adiabatic jet and a jet where the temperature
is kept roughly constant. We find that isothermal jets are required
to match the flat radio spectra seen in hard/quiescent state XRB
and low-luminosity AGN. We do not self-consistently account
for how the jet is kept hot. If the jet is heated internally, the heat-
ing mechanism would change the Lorentz factor profile from the
one calculated in this work. If the gas is shock heated, the shocks
will change the jet’s momentum, and if the jet is Poynting dom-
inated, the dissipation of the magnetic field to heat the particles
will change the magnetic pressure gradient.

Finally, we note that in addition to this work, there is an
ongoing effort to derive a MHD-consistent jet model that will
be capable of calculating the jet properties self-consistently, e.g.
Polko et al. (2010, 2013, 2014), Ceccobello et al. in prep. Such
models will be able to address many of the short-comings of the
models described in this work.
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