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ABSTRACT

The formation of planetesimals in protoplanetary disks is not well-understood. Streaming instability is a promising mechanism to
directly form planetesimals from pebble-sized particles, provided a high enough solids-to-gas ratio. However, local enhancements of
the solids-to-gas ratio are difficult to realize in a smooth disk, which motivates the consideration of special disk locations such as the
snowline – the radial distance from the star beyond which water can condense into solid ice.
In this article we investigate the viability of planetesimal formation by streaming instability near the snowline due to water diffusion
and condensation. We aim to identify under what disk conditions streaming instability can be triggered near the snowline.
To this end, we adopt a viscous disk model, and numerically solve the transport equations for vapor and solids on a cylindrical, 1D
grid. We take into account radial drift of solids, gas accretion on to the central star, and turbulent diffusion. We study the importance
of the back-reaction of solids on the gas and of the radial variation of the mean molecular weight of the gas. Different designs for the
structure of pebbles are investigated, varying in the number and size of silicate grains. We also introduce a semi-analytical model that
we employ to obtain results for different disk model parameters.
We find that water diffusion and condensation can locally enhance the ice surface density by a factor 3–5 outside the snowline. As-
suming that icy pebbles contain many micron-sized silicate grains that are released during evaporation, the enhancement is increased
by another factor ∼2. In this ‘many-seeds’ model, the solids-to-gas ratio interior to the snowline is enhanced as well, but not as much
as just outside the snowline. In the context of a viscous disk, the diffusion-condensation mechanism is most effective for high values
of the turbulence parameter α (10−3–10−2). Therefore, assuming young disks are more vigorously turbulent than older disks, plan-
etesimals near the snowline can form in an early stage of the disk. In highly turbulent disks, tens of Earth masses can be stored in an
annulus outside the snowline, which can be identified with recent ALMA observations.

Key words. accretion, accretion disks – turbulence – methods: numerical – planets and satellites: formation – protoplanetary disks

1. Introduction

Planets form in gaseous disks around young stars. Initially,
micron-sized dust grains are present in such a disk. It is gen-
erally thought that planets form from planetesimals of the or-
der of a kilometer in size, which are large enough for gravity
to play an important role (Safronov 1969; Pollack et al. 1996;
Benz 2000). However, the first step in the planet formation pro-
cess, the coagulation of dust grains into planetesimals, is still an
unsolved problem. Although micron-sized grains can quite eas-
ily coagulate to mm-sized particles (Dominik & Tielens 1997;
Ormel et al. 2007), typical relative velocities quickly become so
large that particles fragment or bounce rather than stick (Blum &
Wurm 2000; Zsom et al. 2010). The typical size at which coagu-
lation is no longer feasible is referred to as the fragmentation or
bouncing barrier. Observations at radio wavelengths indeed infer
a large reservoir of these mm-to-cm size particles (pebbles) (e.g.
Testi et al. 2014).

Even if it were possible to coagulate uninterruptedly from
micron-sizes to large bodies, the growth process would face an-
other challenge: that of radial drift. As soon as particles reach
sizes at which they aerodynamically start to decouple from the
gas, they lose angular momentum and spiral towards the star
(Whipple 1972; Weidenschilling 1977). Radial drift is a fast pro-
cess and hence poses a challenge to planetesimal formation the-
ories, as planetesimals should form before the solids are lost to
the star.

A promising mechanism to quickly form planetesimals di-
rectly from pebbles is streaming instability (Youdin & Goodman
2005; Johansen et al. 2007; Johansen & Youdin 2007). Stream-
ing instability leads to clumping of pebbles that subsequently be-
come gravitationally unstable and form planetesimals. In order
for streaming instabilities to occur, the metallicity of the disk has
to be locally enhanced above the typical value of 1% (Johansen
et al. 2009; Bai & Stone 2010; Dra̧żkowska & Dullemond 2014).
However, if one considers a smooth disk (i.e., without any ra-
dial pressure bumps or special locations), solids are flushed to
the star in an inside-out manner due to dust growth and radial
drift (e.g., Birnstiel et al. (2010a, 2012); Krijt et al. (2016b); Sato
et al. (2016))1. Radial drift lowers the metallicity of the disk and
– at first sight – works against creating conditions favorable to
streaming instability.

A special location that can affect the distribution of solids in
the disk is the snowline. The snowline is the radius from the cen-
tral star interior to which all water is in the form of vapor. Recent
observations of structures in protoplanetary disks (for example
HL Tau; ALMA Partnership et al. 2015) have been proposed to
be associated with icelines (not necessarily water), e.g., Banzatti
et al. (2015); Okuzumi et al. (2016); Nomura et al. (2016).

The viability of a pile-up of solids at the snowline has been a
topic of interest for considerable time. Several mechanisms have
1 Dra̧żkowska et al. (2016) argue that growth and radial drift can lead
to pile-ups in the inner disk, where streaming instability may then be
triggered.
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been proposed, such as the creation of a pressure maximum (e.g.
Brauer et al. 2008) or a deadzone (e.g. Kretke & Lin 2007). An-
other pile-up mechanism is water diffusion and condensation:
water vapor in the inner disk can diffuse outward across the
snowline and condense, thereby increasing the solids reservoir
just outside the snowline. Works that have investigated the role
of water diffusion and condensation on the growth and distri-
bution of solids include Stevenson & Lunine (1988); Cuzzi &
Zahnle (2004); Ciesla & Cuzzi (2006); Ros & Johansen (2013);
Estrada et al. (2016); Armitage et al. (2016) and, recently, Krijt
et al. (2016a), which focuses on the atmospheric snowline. In
this paper, we investigate the role of the radial snowline to en-
hance the solids-to-gas ratio.

The works most relevant to our problem are Stevenson &
Lunine (1988) and Ros & Johansen (2013). Stevenson & Lunine
(1988) investigated the role of outward diffusion of water va-
por across the snowline. In their work, a ‘cold-finger’ effect was
considered: water vapor from the inner disk condenses on (pre-
existing) solids beyond the snowline. In this way, they found a
steep increase in the solid density beyond the snowline and hy-
pothesized that this could accelerate the formation of Jupiter.
However, dynamical aspects of the disk, such as radial drift of
solids and accretion of gas, were not taken into account; except
for the vapor, their model is essentially static. More recently, Ros
& Johansen (2013) also simulated pebble growth by condensa-
tion, adopting a Monte Carlo method. In their simulation, the
purely icy particles grow by condensation, until the point that
they are ‘lost’ by evaporation (modelled as an instantaneous pro-
cess). Because their work does not feature silicate ‘seeds’ that
are immune to evaporation, the remaining ice particles can only
grow in size. Consequently, a steady-state is never reached, also
not because the simulation domain does not connect to the rest
of the disk: there is no inflow of small pebbles or removal of
vapor-rich gas.

In this work we consider a model that emphasizes the dy-
namic nature of the disk, characterized by the accretion rates of
pebbles and gas. Our model of the iceline therefore includes in-
flow of pebbles (at the outer boundary) and outflow of vapor (at
the inner boundary) – a design that results in a steady-state. Our
goal is to investigate whether-or-not this more dynamic design
will result in a solids enhancement that could trigger streaming
instabilities. In particular, we will investigate how the solids-to-
gas ratio will depend on the properties of the disk: the accretion
rates (of solids and gas), the turbulence strength, and the aerody-
namical properties of the drifting pebbles. We will also investi-
gate which side of the snowline the solids-to-gas ratio is boosted
most: interior or exterior.

We use a characteristic particle method, assuming a sin-
gle pebble size at each time and location in the disk (Ormel
2014; Sato et al. 2016). We numerically solve the partial dif-
ferential equations that govern the transport and condensa-
tion/evaporation processes for solids and vapor. We consider
two model designs for the composition of pebbles: ‘single seed’
(all silicates in one core) and ‘many seeds’ (many tiny silicates
grains). Our model also accounts for feedback of solids on the
gas (a.k.a. collective effects) and feedback of water vapor on the
scale height of the disk. A semi-analytic model is presented that
approximates the numerical results, enabling us to carry out pa-
rameter searches.

We start out with a description of our model in Sect. 2. In
Sect. 4 we discuss numerical results for a fiducial set of model
parameters in detail. We first describe the time-dependent nu-
merical results in Sect. 4.1, after which we focus on the steady-
state solution in Sect. 4.2. In Sect. 5 we summarize the semi-

analytical approximate model (which is described in more detail
in Appendix C) and present our results concerning streaming in-
stability conditions. We discuss our results in Sect. 6 and present
our main conclusions in Sect. 7. A list of frequently used sym-
bols can be found in Table A.1.

2. Model

2.1. Disk model

Throughout this paper, we use the α-accretion model (Shakura
& Sunyaev 1973) to model disks. We fix the mass of the central
star M? = M�. We fix the temperature profile T (r) to:

T = 150
( r
3 au

)−1/2
K (1)

where r is the radial distance from the star. This temperature
power-law profile corresponds to a passively-irradiated disk and
a solar-mass star (Kenyon & Hartmann 1987; Armitage et al.
2016); for simplicity, we neglect viscous heating. The isothermal
sound speed cs is related to the temperature as:

cs =

√
kBT
µ

(2)

with kB the Boltzmann constant and µ the molecular weight of
the gas, which is 2.34 times the proton mass for a typical solar
metallicity gas. The disk scale height Hgas is given by:

Hgas =
cs

Ω
≈ 0.033

( r
1 au

)5/4
au (3)

where Ω is the Keplerian orbital frequency. The gas accretes to
the central star at a rate Ṁgas. Given α and Ṁgas, the steady-state
gas surface density is (Lynden-Bell & Pringle 1974):

Σgas =
Ṁgas

2πrvgas
=

Ṁgas

3πν
(4)

where vgas = 3ν/2r is the radial speed of the accreted gas, with ν
the turbulent viscosity, which is given by:

ν = αcsHgas (5)

where α is the dimensionless turbulence parameter. As a result of
our choices for the temperature and scale height profiles, Σgas(r)
is a power-law with index −1. We take the turbulent gas diffusiv-
ity Dgas equal to the turbulent viscosity ν.

2.2. Radial motion of ice, silicates and vapor

In this study, we are interested in the pebble-sized fraction of the
solids – we do not consider the smaller-sized dust. Pebbles are
characterized by the fact that they are aerodynamically partly
decoupled from the gas disk. The gas disk is partly pressure-
supported, and therefore rotates at a sub-Keplerian velocity. The
pebbles do not feel the pressure gradient, and therefore tend to
move toward Keplerian orbital velocities. This means that peb-
bles are moving through a more slowly rotating gas disk, thereby
losing angular momentum through gas drag. The loss of angu-
lar momentum results in pebbles spiralling (‘drifting’) towards
the central star. The extent to which pebbles drift depends on the
stopping time tstop, which measures how strongly the pebbles are
coupled to the gas – it is the time after which any initial momen-
tum is lost due to gas friction.
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Concerning the stopping times of pebbles we can distinguish
between two regimes: in the Stokes regime, the particle size is
larger than the mean-free path of the gas molecules lmfp, and the
stopping time is calculated in a fluid description; in the Epstein
regime, the particle size is smaller than the mean-free path of the
gas molecules, and a particle description is needed instead. The
mean-free path lmfp is given by:

lmfp =
µ√

2ρgasσmol
(6)

where σmol is the molecular collision cross-section, and ρgas is
the gas density. We take σmol = 2 × 10−15 cm2 as the colli-
sional cross-section of molecular hydrogen (Chapman & Cowl-
ing 1970). The stopping time is given by:

tstop =


ρ•,psp

vthρgas
, (Epstein: sp <

9
4 lmfp)

4ρ•,ps2
p

9vthρgas
, (Stokes: sp >

9
4 lmfp)

(7)

where sp is the particle radius, ρ•,p is the particle internal den-
sity, and vth is the thermal velocity of the gas molecules, defined
as vth =

√
8/πcs. The dimensionless stopping time (sometimes

referred to as the Stokes number) is τS = tstopΩ.
The radial drift velocity of pebbles vpeb is given by (Weiden-

schilling 1977; Nakagawa et al. 1986):

vpeb =
vgas + 2ηvKτS

1 + τ2
S

(8)

where ηvK is the magnitude of the azimuthal motion of the gas
disk below the Keplerian velocity vK :

ηvK = −1
2

c2
s

vK

∂ log P
∂ log r

(9)

with P the gas pressure. Under normal disk conditions, the
solids-to-gas ratio is about 1 in 100, and it is reasonable to ne-
glect the back-reaction of the solids on the gas. In this paper
we are interested in situations where the solids-to-gas ratio is
boosted, however, and therefore we study the effects of the back-
reaction of solids on the gas, or ‘collective effects’, as well. Col-
lective effects have been calculated by Nakagawa et al. (1986).
However, their formula was derived in the inviscid limit. In Ap-
pendix B we have calculated the drift velocity, accounting for
both the backreaction and viscous forces. When including the
back-reaction, we replace Eq. (8) by Eq. (B.7).

Water vapor (denoted by the subscript Z) mixes with the gas
and gets accreted to the central star at the same velocity as the
gas.

2.3. Evaporation and condensation

The rate of change in mass (dmp/dt) of a spherical icy pebble
is given by (Lichtenegger & Komle 1991; Ciesla & Cuzzi 2006;
Ros & Johansen 2013):

dmp

dt
= 4πs2

pvth,Z ρZ

(
1 − Peq

PZ

)
(10)

where sp is the radius of the pebble, vth,Z is the thermal velocity
of vapor particles, ρZ is the vapor density, PZ is the vapor pres-
sure, and Peq is the saturated or equilibrium pressure, which is
given by the Clausius-Clapeyron equation:

Peq = Peq,0e−Ta/T (11)

where Ta and Peq,0 are constants depending on the species. For
water, Ta = 6062 K and Peq,0 = 1.14 × 1013 g cm−1 s−2 (Licht-
enegger & Komle 1991).

Assuming spherical pebbles and one typical particle mass
mp at each location and time in the disk (i.e., the particle size
distribution is narrow), and using the ideal gas law to write PZ in
terms of the (midplane) vapor density ρZ , we can rewrite Eq. (10)
into a change in the ice surface density Σice due to condensation
and evaporation:
Σ̇ice,C/E = RcΣiceΣZ − ReΣice (12)
where the dot denotes the time derivative. In Eq. (12) the vapor
surface density ΣZ is related to the midplane vapor density as
ρZ = ΣZ/

√
2πHgas and Rc and Re are the condensation rate and

evaporation rate, respectively, defined as:

Rc = 8

√
kBT
µZ

s2
p

mpHgas
(13)

Re = 8
√

2π
s2

p

mp

√
µZ

kBT
Peq (14)

with kB the Boltzmann constant, and µZ = 18mH the mean
molecular weight of water vapor, where mH is the proton mass.
Evaporating ice turns into vapor, and condensing vapor turns into
ice, and therefore we find for the vapor source terms:
Σ̇Z,C/E = −Σ̇ice,C/E = −RcΣiceΣZ + ReΣice (15)

2.4. Internal structure and composition of pebbles

We assume that in the outer disk, half of the mass in pebbles con-
sists of water ice, and the other half consists of silicates (Lodders
2003; Morbidelli et al. 2015). That is, the dust-fraction in peb-
bles in the outer disk ζ = 0.5. Adopting ρ•,ice = 1 g cm−3 as the
density of a pure ice particle and ρ•,sil = 3 g cm−3 as the den-
sity of a pure silicate particle, we find that in the outer disk, the
internal density of a pebble is ρ•,p = 1.5 g cm−3. Generally, the
internal density of an ice/silicate pebble is given by:

ρ•,p =
ρ•,iceρ•,sil(msil + mice)
msilρ•,ice + miceρ•,sil

(16)

where mice is the mass in ice within the pebble and msil is the
mass in silicate within the pebble. Equation (10) is valid for a
pure ice particle, while we use it for icy pebbles with (a) sil-
icate core(s). We checked that using mice instead of mp in the
condensation and evaporation rates does not change the results
significantly.

We consider two possibilities for the internal structure of icy
pebbles (Fig. 1).

– Single-seed model. In this model we view pebbles in the
outer disk as balls of ice with a single core made of silicates.
When the ice in such a pebble evaporates, the silicate core is
left behind. In this framework, the number of pebbles does
not change when crossing the snowline.

– Many-seeds model. In this model we view icy pebbles as
lots of small silicate particles that are ‘glued’ together by
ice. The small silicate particles are released by evaporation,
and free silicates can stick onto icy pebbles. We do not ‘re-
solve’ the internal structure of the pebbles, and only trace the
total amount of silicates ‘locked’ into icy pebbles. Following
Saito & Sirono (2011), we assume that the released silicate
particles are of micron size. Because they are so small, the
silicates do not undergo any aerodynamic drift and follow
the radial motion of the gas.
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single#seed

many#seeds

evaporation*front*

Fig. 1. Schematic showing the difference between the single-seed model
and the many-seeds model for the internal structure of icy pebbles in the
outer disk. In the single-seed model, the water ice layer (white) on the
silicate core (red) becomes smaller at the evaporation front, and after
complete evaporation of the ice, only one single silicate core remains.
Since we take ζ = 0.5, the silicate core contains half the mass of the
original pebble: mcore = mice = 0.5mp,start. In the many-seeds model,
pebbles in the outer disk consist of many micron-sized silicate grains
(red) ‘glued’ together by water ice (white). As the ice evaporates, sili-
cate grains are released as well. After complete evaporation of the ice,
many micron-sized silicate grains remain. Again, with ζ = 0.5, the total
mass in silicate grains in a pebble in the outer disk is half of the total
pebble mass, but this mass is now divided among many silicate grains
that each have mass msil. See text for more details.

2.5. Transport equations

In this subsection we provide the systems of transport equations
corresponding to both pebble composition models presented in
Sect. 2.4. Our model is 1D; we integrate over the vertical di-
mension of the disk and follow column (surface) densities. Mid-
plane densities are calculated assuming a Gaussian distribution
in height with scaleheights Hgas (for the gas and the vapor) and
Hpeb (for the pebbles), respectively.

2.5.1. Single-seed pebble model

In the single-seed model, we follow the vapor surface density
ΣZ , the ice surface density Σice, and the number density of par-
ticles Np. The equations governing the time evolution of these
quantities are:

∂Σice

∂t
+ ∇ ·Mice = Σ̇ice,C/E (17)

∂ΣZ

∂t
+ ∇ ·MZ = Σ̇Z,C/E (18)

∂Np

∂t
+ ∇ · Np = 0 (19)

where the source terms Σ̇ice,C/E and Σ̇Z,C/E are defined in Eq. (12)
and Eq. (15),Mice andMZ are the ice and vapor mass flux, re-
spectively, and Np is the number flux of solid particles. These

fluxes are given by:

Mice = −Σicevpeb − DpΣgas∇ Σice

Σgas
(20)

MZ = −ΣZvgas − DgasΣgas∇ ΣZ

Σgas
(21)

Np = −Npvpeb − DpNgas∇
Np

Ngas
(22)

where vpeb is the drift velocity of the pebbles given by Eq. (8) or
by Eq. (B.7) when including collective effects, Ngas is the num-
ber of gas particles, and Dp is the particle diffusivity, which is
related to Dgas through the Schmidt number Sc (Youdin & Lith-
wick 2007):

Dp = Dgas × Sc =
Dgas

1 + τ2
S

(23)

Since in our models the stopping times are much smaller than
unity, we set Dp equal to Dgas.

Note that a negative flux means that material is transported
inwards, towards the star. Under the single-size approximation,
the typical pebble mass mp is given by:

mp = mcore +
Σice

Np
(24)

with mcore the mass of the bare silicate cores of the pebbles.

2.5.2. Many-seeds pebble model

We implement the many-seeds model as follows. We now con-
sider two additional populations of solids: dirt and free sili-
cates. Dirt refers to the silicates that are captured in icy pebbles,
whereas free silicates are small silicate grains without any ice
coating. The transport equations for Σice, ΣZ , and Np are the same
as in the single-seed pebble model (Eq. (17)–(19)). The transport
equations for the dirt surface density Σdirt and free silicates sur-
face density Σsil are given by:

∂Σdirt

∂t
+ ∇ ·Mdirt = −max [0, (Re − RcΣZ)] Σdirt + RsΣsil (25)

∂Σsil

∂t
+ ∇ ·Msil = max [0, (Re − RcΣZ)] Σdirt − RsΣsil (26)

where Mdirt and Msil are the dirt and free silicate mass fluxes,
respectively. Free silicates are released from the pebbles at a
rate proportional to the decrease of ice surface density due to
evaporation and to the amount of dirt that can evaporate from
within the pebbles: (Re − RcΣvap)Σdirt, but only when there is net
evaporation of ice. Silicate grains stick to icy pebbles at a colli-
sion/sticking rate Rs:

Rs =
Σice + Σdirt√

2πHsilmp
· ∆vsil,peb · πs2

p (27)

where ∆vsil,peb is the relative velocity between the pebbles and
the silicates and Hsil is the scale height of the free silicates. Since
the inward drift velocity of the pebbles is much larger than the
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outward diffusion velocity of the silicates, we take ∆vsil,peb ≈
vpeb

2.
The dirt and silicate mass fluxes, Mdirt and Msil, are given

by:

Mdirt = −Σdirtvpeb − DpΣgas∇Σdirt

Σgas
(28)

Msil = −Σsilvgas − DgasΣgas∇ Σsil

Σgas
(29)

where vpeb is again the radial drift velocity of the pebbles, and
silicates are advected with the gas.

2.6. Effects of variable µ

When icy pebbles evaporate, the gas becomes enriched in water
vapor. This means that the mean molecular weight µ of the gas
increases:

1
µ

=
fH2O

µH2O
+

fgas

µgas
(30)

where fH2O is the mass fraction of water molecules, µH2O =
18mH is the mean molecular weight of water, and fgas is the mass
fraction of gas molecules (without the vapor contribution), with
µgas = 2.34mH.

Since the sound speed cs is proportional to
√

1/µ, the sound
speed decreases as more water vapor is added. The disk scale
height Hgas is proportional to cs and will therefore decrease as
well: the disk becomes more vertically compact with increasing
water vapor. An increase in µ across the water evaporation front
has an effect on the pebble drift velocity vpeb (Eq. (8)) in this
region, since vpeb is proportional to 1/µ through its dependence
on cs, and sensitive to variations in the gas pressure P through
∂ log P/∂ log r. The total gas pressure (hydrogen/helium plus wa-
ter) is given by:

P = Pgas + PZ =
ΣgaskBT√

2πHgasµH2/He
+

ΣZkBT√
2πHgasµH2O

(31)

We take the viscosity ν to be independent of variations in µ.
Therefore, Σgas = Ṁgas/3πν is independent of µ as well. How-
ever, the H2O-enriched gas is characterized by a reduced scale-
height, since Hgas ∝

√
1/µ, increasing the midplane gas pressure

Pgas as Pgas ∝ √µ. Evaporation hence increases the pressure gra-
dient and the headwind of the gas through Eq. (9): pebbles tend
to drift faster. Finally, the drift velocity vpeb also depends on the
stopping time τS , which in turn depends on the gas density and
the thermal velocity – both quantities that depend on µ. We take
these dependencies into account as well.

We now define two models that we study in the following
sections. In the simple model, we do not include collective ef-
fects and the variability of the mean molecular weight µ. In the
simple model, the sound speed and scale height are independent
of variations in µ, ηvK (Eq. (9)) is constant and the midplane gas
density is µ-independent: ρgas = Σgas/

√
2πHgas. In the complete

model, we do take collective effects and variations of µ into ac-
count, as described above.
2 For simplicity, we have ignored other contributions to ∆vsil,peb. Tur-
bulent velocities, however, may dominate over radial drift motion when
α is large (Cuzzi & Hogan 2003; Ormel & Cuzzi 2007). Accounting for
turbulent relative velocities will result in an increase of the peak solids-
to-gas ratio of ∼10% (e.g., 20% for our fiducial parameters presented in
Table 1).

2.7. Input parameters

The four key input parameters that can be varied in our model
are:

– The gas accretion rate Ṁgas.
– The ratio between the pebble accretion rate and the gas ac-

cretion rate, denoted by the symbol Fs/g, and defined as:

Fs/g ≡ Ṁpeb/Ṁgas. (32)

– The dimensionless turbulence parameter α.
– The initial stopping time of pebbles just outside the snowline

(at 3 au) denoted by the symbol τ3. This parameter is simply
a proxy for the mass of the incoming pebbles.

Together, these input parameters define the ‘zero-model’ of the
disk: the gas and solids distribution in the case of no conden-
sation and evaporation. The gas surface density profile Σgas is
defined through Eq. (4), where the turbulent viscosity ν is de-
termined by α through Eq. (5). With Σgas and the stopping time
normalization τ3 at 3 au, we can find τ(r) at any other radius
r. We can then also determine the pebbles surface density Σpeb

for the zero-model: it is given by Fs/gṀgas/2πrvpeb(r), where the
pebble velocity vpeb(r) depends on τ(r) and is given by Eq. (8)
(without backreaction) or Eq. (B.7) (including backreaction).

2.8. Model assumptions

In constructing our model we employed several assumptions,
which we discuss below.

– We do not include a particle size distribution, but rather con-
sider one typical pebble size at each time and location in the
disk. In the many-seeds model, we do distinguish between
the population of small silicate grains and large icy pebbles,
however. We come back to the importance of condensation
onto small grains rather than onto pebbles in the discussion
(Sect. 6).

– Our model does not account for coagulation among pebbles:
the enhancement of the solids-to-gas ratio is solely due to
diffusion and condensation. We remain agnostic as to what
happens to the pebbles in terms of coagulation and fragmen-
tation until they reach the evaporation front. In the many-
seeds model, we do not take into account coagulation of sili-
cate particles. We will come back to this point in the discus-
sion (Sect. 6).

– Our model is 1D, and has a straight vertical snowline. In re-
ality, the vertical snowline is curved rather than straight, be-
cause the temperature varies with height above the midplane
(e.g. Oka et al. (2011)). However, Ros & Johansen (2013)
have shown that particle growth due to diffusion and sub-
sequent condensation of water across the vertical snowline
is negligible compared to the same process across the radial
snowline.

– Similarly, we assume that the scale height of the vapor – and,
in the many-seeds implementation, of the free silicates – is
always equal to the scale height of the disk; in other words,
when an icy pebble evaporates, the released water vapor im-
mediately distributes itself over the same vertical extent as
the background gas, whereas it originates from the icy peb-
bles that reside in a thinner disk, characterized by a scale
height Hpeb:

Hpeb = Hgas

√
α

τS + α
. (33)
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The assumption of rapid vertical mixing extends to the cal-
culation of the mean molecular weight of the gas in the com-
plete model. Also there, it is assumed that the water va-
por is distributed evenly throughout the gas at all times. In
Sect. 4.2, we verify that the assumption of taking the vapor
scale height equal to the disk scale height rather than the peb-
bles scale height, does not have a large effect on the results.

– We assume a steady-state gas distribution, that is, Ṁgas and T
remain constant. This assumption is justified since the solids-
to-gas enhancement takes place on a radial scale ∆r that is
small compared to the size of the disk. In other words, the
local viscous evolution timescale (∆r2/ν), on which the ef-
fect happens, is much smaller than the global viscous evo-
lution timescale of the disk, on which the gas accretion rate
and global temperature profile change. The temperature pro-
file (Eq. (1)) corresponds to a passively-irradiated disk. How-
ever, in case of viscous heating T (r) will still be described by
a power-law (Armitage 2015). We have checked the effect of
adopting a viscous heating temperature profile (T (r) ∝ r−3/4)
in our numerical simulation. The key consequence is that the
location of the snowline is shifted in radius; all other model
results are very similar.

– We adopt an α-viscosity model, with constant α (the value
of which we allow to vary between very high and very low
values), independent of the solids-to-gas ratio. However, if
turbulence is driven by the magneto-rotational instability, the
local turbulence strength at the midplane depends on the lo-
cal grain size and abundance. So-called ‘dead zones’, where
turbulence is strongly reduced, could occur at locations in the
disk with a sharp increase in the solids-to-gas ratio (Kretke &
Lin 2007). Since our results depend strongly on the amount
of turbulence near the snowline, the creation of dead zones
would change our results.

– Similarly, we do not consider the interplay between (small)
grains and the local temperature: we do not solve for the
temperature profile self-consistently, but take it as constant,
given by Eq. (1). However, in the many-seeds model, a large
amount of small silicate grains is released in the evapora-
tion front. This means that locally the opacity could increase.
Conceivably, this could lead to a steeper temperature pro-
file in the region near the snowline and therefore to a more
narrow evaporation front. Including these effects requires a
radiation transfer model, which is beyond the scope of this
work.

– In the many-seeds implementation, we do not include con-
densation onto the small, free silicate particles. We also do
not model the porosity of pebbles. We come back to these
issues in Sect. 6.3.

3. Numerical implementation

We make use of the open source partial differential equations
solver FiPy (Guyer et al. 2009) to solve the transport equations
numerically. The coupled systems of equations are solved on a
cylindrical 1D grid that ranges from 1 to 5 au.

We implement boundary conditions as follows. At the outer
boundary r2 = 5 au, the pebble mass flux Fs/gṀgas is fixed3. We
convert the input parameter τ3 to a physical pebble size sp,start
using Eq. (7), and since our model does not include coagulation,

3 We do not fix the pebble surface density: for high values of α, out-
ward diffusion can be strong enough to enhance the surface density of
pebbles at the outer boundary (Σpeb,r2) with respect to the expected value
Σpeb,r2 = Ṁpeb/(2πr2vpeb(r2)) in case of no diffusion.
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Fig. 3. Rate of change of the ice surface density at the peak location, as
function of time. The rate of change increases until the icy pebble front
has reached the peak location, after which the peak continues to grow at
an exponentially decreasing rate, while the system is converging to its
steady-state solution.

we set the pebble size (which can be converted to a pebble mass
mp,start) at the outer boundary r2 to this value. For the single-
seed model, the mass of the bare silicate core is then given by
mcore = ζmp,start = mp,start/2. At the inner boundary r1 = 1 au,
we implement outflow boundary conditions: solid particles and
water vapor are accreted to the central star at a constant rate. We
also demand that Σice = 0 at r1 and ΣZ = 0 at r2, for obvious rea-
sons. Additionally, in the many-seeds implementation we have
Σdirt = Σice = 0 at r1 and Σsil = ΣZ = 0 at r2.

3.1. Time-dependent

In our time-dependent method, we adopt small time steps (∆t ∼
100 yr) and a small value for the allowed residuals, to ensure
mass conservation by demanding the residuals4 to be small. This
method requires a lot of computational power because the sys-
tem of partial differential equations is numerically very stiff, but
the advantage is that we find not only the steady-state solution
to the equations, but are able to follow the solution in time. This
allows us to get a measure of the time needed for the solution to
settle into a steady-state. We present the time-dependent results
for the simple, single-seed, model with fiducial input parameters
in Sect. 4.1.

3.2. Time-independent

Our time-independent method solves for the steady-state solu-
tion directly, by taking very large time-steps (in total 40 time
steps that increase to 107 yr) and decreasing the residuals thresh-
old after each run, taking the solution from the previous run as
the new input. We continue this process until we reach con-
vergence. We present the steady-state results for the ‘simple,
single-seed’, ‘simple, many-seeds’, ‘complete, single-seed’, and
‘complete, many-seeds’ models with fiducial input parameters in
Sect. 4.2.

4 FiPy linearizes the equations while our system is nonlinear; the
residuals quantify this mismatch.
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Fig. 2. The solution to the transport equations at different points in time, for the fiducial model parameters listed in Table 1. At t = 105 yr,
approximately 90% of the steady-state peak in the ice surface density has formed. (a) Surface densities Σ of ice (solid lines) and vapor (dashed
lines). The dotted line corresponds to the steady-state advection-only vapor surface density profile. (b) Midplane pebbles-to-gas ratio ρpeb/ρgas. (c)
Typical pebble mass mp. (d) Typical pebble internal density ρ•,p.

Table 1. Fiducial model parameters

Gas accretion rate Ṁgas 10−8 M�yr−1

Pebbles-to-gas accretion rate Fs/g 0.8
Turbulence strength α 3 × 10−3

Dimensionless stopping time at 3 au τ3 3 × 10−2

Notes. See Sect. 2.7. τ3 translates into a physical pebble size at 3 au for
the zero-model.

4. Results — Fiducial model

In this section we introduce a standard set of parameters which
we then use to illustrate different aspects of the model. The fidu-
cial model is defined by the parameters listed in Table 1. We
first discuss the time-dependent results for the simple, single-
seed, fiducial model in Sect. 4.1. We then go on to discuss the
steady-state results for the other variants of the fiducial model in
Sect. 4.2.

4.1. Time-dependent solution

In Fig. 2 we plot several quantities as function of radial distance
from the star r, at four points in time. In Fig. 2a, the surface
densities of ice (solid lines) and vapor (dashed lines) are plot-
ted. Initially (t = 0), the ice and vapor surface density are zero,
Σice = ΣZ = 0. Icy pebbles are drifting in from the outer disk
(right) to the inner disk (left). At the point where Σ̇Z,C/E > 0
the icy component of the pebbles evaporate. At the snowline
rsnow ≈ 2.1 au all the H2O is in the gas phase. Since the vapor is
advected with the gas velocity vgas, which is much smaller than
the pebble velocity vpeb, the vapor surface density (dashed line)
quickly exceeds that of the ice (solid line). The vapor density
increases until the steady-state vapor distribution ΣZ,a has been
reached. ΣZ,a is given by5:

ΣZ,a =
Ṁgas

3πν
(34)

and is plotted by the dotted curve. Meanwhile, due to the out-
ward diffusion of water vapor across the snowline and subse-
5 Diffusion does not play a role in the steady-state, advection-only va-
por surface density profile, because vapor has the same velocity as the
gas and therefore the vapor concentration is independent of r.
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(c) many-seeds Σice
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Fig. 4. Steady-state results for the fiducial parameters, for the simple model with single-seed evaporation (upper two panels) and many-seeds
evaporation (lower two panels). (a) Surface densities of ice, silicates and vapor (Σice, Σsil, and ΣZ , respectively) for the single-seed model. The
silicates are locked in the icy pebbles outside the snowline, whereas they are bare grains interior to the snowline. (b) Midplane pebbles-to-gas ratio
ρpeb/ρgas, and pebbles-to-gas column density ratio Σpeb/Σgas for the single-seed model. (c) Same as panel (a) but for the many-seeds model. The
silicates are now divided in two populations: silicates that are locked up in icy pebbles (Σdirt), and free silicates (Σsil). Note that in panels (a) and (c)
the x-axis ranges between r = 1.8 − 2.8 au, for clarity. (d) Same as (b), but for the many-seeds model and with an additional line for the midplane
‘free silicates’-to-gas ratio ρsil/ρgas.

quent condensation onto the inward-drifting pebbles, the ice sur-
face density just exterior to the snowline increases. Diffusion of
vapor therefore results in a distinct bump in the ice profile and
we denote the location corresponding to maximum Σice the peak
radius rpeak. A similar maximum is seen in the solids-to-gas ratio
(Fig. 2b), which rises to ∼0.45. After t = 2×105 yr a steady state
has been reached.

The enhancement of the pebbles-to-gas ratio is reflected by
the typical pebble mass mp and density ρ•,p, plotted in Fig. 2c
and Fig. 2d, respectively. Pebbles at the inner boundary are half
as massive as pebbles at the outer boundary, because at the in-
ner boundary all the ice has evaporated off the pebbles, and the
dust fraction of pebbles ζ = 0.5. The typical pebble mass just
outside the snowline increases over time, indicating that water
vapor condenses onto the pebbles. This is also shown by the be-
haviour of the typical pebble density ρ•,p. At the outer bound-
ary, ρ•,p = 1.5 g cm−3, corresponding to pebbles containing
as much water ice as silicates in mass; at the inner boundary,
ρ•,p = 3 g cm−3, corresponding to pure silicate pebbles; whereas

just outside the snowline, ρ•,p decreases over time to values close
to unity – corresponding to pure water ice pebbles. A decrease in
particle internal density outside the snowline due to water con-
densation was also found by Estrada et al. (2016).

In Fig. 3 we plot the growth rate of the peak in Σice outside
the snowline as function of time t. At the start of the simulation,
ice is not yet present at the location of the peak. After the icy
pebbles have reached the location of the eventual peak, at t ∼
2 × 104 yr, the rate of growth decreases exponentially – the peak
continues to grow, but at an ever slower rate, while the system
is converging to its steady-state solution. The e-folding growth
timescale is ∼3 × 104 yr, which is approximately equal to the
gas advection timescale (rpeak − rsnow)/vgas; the time it takes for
the vapor to traverse the peak and contribute to the steep vapor
concentration gradient along which outward diffusion can take
place. We will come back to the peak formation timescale in
Sect. 5. The time in which 90% of the peak forms is ∼105yr. Note
that we have assumed that the incoming pebble mass flux does
not change over time (Fs/g is constant at the outer boundary r2).
If the pebble flux would decrease on a timescale shorter than the

Article number, page 8 of 19



Djoeke Schoonenberg and Chris W. Ormel: Planetesimal formation near the snowline: in or out?

time it takes to form the peak, a steady-state would not exist. If
the pebble flux would decrease on a timescale longer than it takes
to form the peak, we would reach a quasi-steady-state solution;
in that case our model is fully applicable.

4.2. Steady-state solution

The time-dependent solution described in Sect. 4.1 converges to
the steady-state solution. In this section we take a closer look
at the steady-state solution for the fiducial parameters, for the
model designs discussed in Sect. 2.

4.2.1. Single-seed versus many-seeds

In Fig. 4 we compare the simple single-seed model (upper two
panels) with the simple many-seeds model (lower two panels).
The left panels show the surface densities of ice, vapor, and in
the many-seeds case, also of locked silicates (dirt) and free sil-
icates. The ice profiles are very similar in both models, but in
the many-seeds case there is an additional peak in the dirt sur-
face density. This is because the free silicates behave like vapor:
they are released throughout the evaporation front, and follow
the gas profile interior to the snowline. Turbulent diffusion not
only causes vapor to be transported outward and condense onto
the pebbles, but leads to the same effect for the small silicates
– they diffuse outward and stick onto the pebbles, resulting in a
peak in the dirt surface density distribution.

In the right panels we plot pebbles-to-gas midplane density
ratios ρpeb/ρgas and column density ratios Σpeb/Σgas. In the many-
seeds model, the pebbles-to-gas ratio is the sum of the dirt-to-
gas ratio and the ice-to-gas ratio. In both models, a clear peak is
present just outside the snowline. The midplane density ratio is
larger than the column density ratio due to settling of pebbles. In
the many-seeds case, we also plot the free silicates-to-gas mid-
plane density ratio ρsil/ρgas. This ratio is constant interior to the
snowline because the silicates are perfectly coupled to the gas.
In the many-seeds model, small silicate grains diffuse outward
across the snowline, whereas in the single-seed model, there is
no significant outward diffusion of the larger silicate pebbles due
to the absence of a steep concentration gradient. Therefore, the
peak in the pebbles-to-gas ratio outside the snowline is larger in
the many-seeds model than in the single-seed model.

4.2.2. Simple versus complete models

Figure 5 shows the results for the complete model with the
single-seed pebble design (upper two panels, a and b) and with
the many-seeds pebble design (lower two panels, c and d). In
Fig. 5a (single-seed) and Fig. 5c (many-seeds), we plot the sur-
face densities of ice, vapor, and in the many-seeds case the sur-
face densities of locked silicates (dirt) and free silicates (sil).
Dashed lines denote the simple model results of Fig. 4a and
Fig. 4c, for comparison. The grey lines correspond to the mean
molecular weight of the gas. From the outer disk to the inner
disk, the mean molecular weight increases from 2.34 mH to 3.11
mH across the snowline. Clearly, the peak in the ice surface den-
sity is higher and broader for the complete model than for the
simple model. This is because collective effects (which reduce
the pebble drift velocity) outweigh the effect of the enhanced
gas pressure gradient in the evaporation front (which enhances
the pebble drift velocity). In the complete model, therefore, peb-
bles effectively have a smaller radial velocity than in the sim-
ple model, and therefore the resulting ice peak is higher and

broader. This is also the case in the many-seeds implementation.
The width of the peak strengthens the justification of the vertical
mixing assumption (see below).

In Fig. 5b and Fig. 5d we compare the midplane pebbles-to-
gas ratios between the simple and the complete model. Collec-
tive effects help to boost the pebbles-to-gas ratio, for the reason
outlined above.

4.2.3. Validation of vertical mixing assumption

As discussed in Sect. 2.8, we assume rapid vertical mixing of va-
por. However, it could be argued that (part of) the released vapor
recondenses onto icy pebbles before relaxing to the same ver-
tical distribution as the gas, thereby boosting the condensation
rate. This assumption also extends to the small silicate grains in
the many-seeds model. Similarly, one could argue that the sil-
icate grains can collide with a pebble before they can diffuse
to higher vertical layers (e.g. Krijt & Ciesla (2016)). In order
to investigate what the difference is in terms of the steady-state
ice distribution between two extreme cases, we take the simple,
single-seed, fiducial model and run it once with HZ = Hgas and
once with HZ = Hpeb. We compare the steady-state outcomes of
the two cases in Fig. 6. Even though the location of the snow-
line and of the pebbles-to-gas peak differs a bit between the two
cases, the height of the peak in the midplane pebbles-to-gas ra-
tio increases only by ∼0.3% if one takes HZ = Hpeb instead of
HZ = Hgas. Similarly, assuming a smaller scale height for the
silicate grains in the evaporation region would probably not sig-
nificantly change the height of the peak in the ‘locked’ silicates,
since the silicate grains behave like vapor. In the rest of this pa-
per, we assume HZ = Hsil = Hgas.

5. Streaming instability conditions

Carrera et al. (2015) have investigated for what values of the
solids-to-gas column density ratio streaming instability occurs,
as function of the stopping time of the solid particles. They found
that, typically, the solids-to-gas column density ratio should ex-
ceed ∼2% for stopping times ∼5 × 10−2. However, these results
should be interpreted with caution, since Carrera et al. (2015)
only accounted for self-driven (Kelvin-Helmholtz) turbulence.
We do include global turbulence, and therefore cannot simply
use their conditions for streaming instability. A more robust con-
dition for streaming instability in the presence of global turbu-
lence is probably a midplane solids-to-gas ratio that reaches or-
der unity (Johansen & Youdin 2007).

In this section we investigate under what disk conditions,
the midplane solids-to-gas ratio near the snowline gets most en-
hanced due to the effect of water diffusion and condensation.
To this end, we have constructed a semi-analytic approximate
model to be able to quickly test for many different values of the
input parameters (Sect. 2.7), within the single-seed implementa-
tion (Sect. 2.4). Before presenting the results, we will provide a
short summary of the semi-analytical model, which is discussed
in greater detail in Appendix C.

5.1. Semi-analytical model: Summary

Our semi-analytical model is an analytic prescription to find the
approximate location, height and width of the ice surface density
at the location of the ice peak, rpeak, of the steady-state (time-
independent) solution (see Sect. 3.2 for our numerical method to
find the steady-state solution to the transport equations). For sim-
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Fig. 5. Comparison of steady-state results for the fiducial parameters between the simple model (dashed lines) and the complete model (solid
lines), which includes collective effects and the effects of the variation of the mean molecular weight µ. The upper two panels correspond to the
single-seed evaporation model; the lower two panels correspond to the many-seeds evaporation model. In the latter case, we made the conservative
choice of not including the free silicates in the back-reaction onto the gas. (a) Surface densities of ice (Σice), vapor (ΣZ) and silicates (Σsil) for the
single-seed model. The grey line indicates the mean molecular weight of the gas in units of proton mass mH. (b) Midplane pebbles-to-gas ratio
ρpeb/ρgas. (c) Same as (a), but the silicates are now divided into ‘free silicates’ (Σsil) and ‘locked silicates’ (Σdirt). For clarity, we only show the
clean Σice profile for comparison. (d) Same as (b), with an additional line denoting the ‘free silicates’-to-gas ratio ρsil/ρgas.

plicity, we have tailored the semi-analytical model towards the
‘single-seed’ design. (An extension to also include the ‘many-
seeds’ design will be considered in a future work).

The model works by iteratively solving a set of analytical
equations, until convergence is reached. The key parameter is
the ratio between the pebble velocity at rpeak and the normal-
ized diffusivity at this location, ε = vpeb(rpeak)/D(rpeak)rpeak. Ini-
tially, we start with an estimate for ε, which can, for example,
be taken from the zero-model solution (Sect. 2.7). For a certain
ε the semi-analytical model then updates the surface density at
the peak (Σpeak) as well as rpeak (or rather the difference between
rice and rpeak). With these updates we obtain a new value of ε and
the procedure can be repeated until the fractional change in the
parameters has become sufficiently low.

We emphasize that the semi-analytical model gives approxi-
mate solutions (correct at the ∼20% level), but that they are very
useful since they come at almost zero computational costs. It is
therefore ideal to be applied to the parameter searches that we
consider in this section. In Appendix C the model is described in
detail and compared to runs of the numerical steady-state model.

5.2. Enhancement of the ice surface density

We first look at the relative effect of enhancing the ice surface
density near the snowline: for each disk model, we normalize
the resulting peak ice surface density by the ice surface density
at the peak radius in case there is only advection:

fΣ,peak =
Σice,peak

(1 − ζ)Fs/gṀgas/2πrpeakvpeb
(35)

where vpeb is calculated in the absence of condensation and evap-
oration. As before, we take ζ = 0.5. In Fig. 7a we plot contours
of constant fΣ,peak as function of α and Fs/g, where Ṁgas is fixed
at 10−8M� yr−1 and τ3 is fixed at 0.03. Clearly, the higher the
solids-to-gas accretion rate Fs/g, the higher fΣ,peak – at fixed α the
normalized ice peak increases from low Fs/g-values to high Fs/g-
values, due to collective effects playing an increasingly impor-
tant role. The plot also shows that disks with α-values of about
10−3 are best at enhancing the ice surface density with respect to
the advection-only expected ice surface density. This is because
higher values of α lead to a broader and relatively lower peak,
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Fig. 6. Comparison of steady-state results for the simple, single-seed, fiducial model between the case where vapor has the same vertical distribution
as the background gas (HZ = Hgas) and the case where vapor has the same scale height as the pebbles (HZ = Hpeb). In all three panels, solid lines
correspond to the HZ = Hgas case and dashed lines correspond to the HZ = Hpeb case. (a) Steady-state water ice (blue) and water vapor (green)
surface densities. (b) Midplane solids-to-gas ratios (green) and solids-to-gas surface densities ratios (blue). (c) Typical pebble mass mp.
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Fig. 7. (a) Contours of constant relative ice surface density peak heights fΣ,peak (see text for details) as function of turbulence parameter α and
solids-to-gas accretion rate Fs/g. The gas accretion rate Ṁgas is fixed to 10−8 M� yr−1 and the initial size of the pebbles τ3 is fixed to 0.03. (b)
Contours of constant relative ice surface density peak heights (see text for details) as function of the turbulence parameter α and the gas accretion
rate Ṁgas. The solids-to-gas accretion rate ratio Fs/g is fixed to 0.4 and the initial size of the pebbles τ3 is fixed to 0.03. The cyan lines denote a
Toomre parameter (QT ) of unity at 10 au (1 au); the space below these lines has QT < 1 and is gravitationally unstable at 10 au (1 au).

while lower α-values, indicating larger gas densities, move peb-
bles into the Stokes drag regime. The fact that the relative height
of the ice peak becomes smaller when pebbles enter the Stokes
regime, is explained by the pebble size-dependency of the drift
velocity. In the Epstein regime the drift velocity depends linearly
on the pebble size, whereas in the Stokes regime the drift veloc-
ity is proportional to the square of the pebble size. This means
that when pebbles enter the Stokes regime, their stopping time
– and hence their drift velocity – increases rapidly. The effect
of this is that fΣ,peak decreases rapidly. Therefore, the transition
from the Epstein regime to the Stokes drag regime is character-
ized by closely-spaced contours.

Figure 7b shows contours of constant fΣ,peak, as function of
α and Ṁgas. Fs/g is fixed at 0.4 and τ3 is fixed at 0.03. The cyan
lines correspond to a Toomre parameter (QT ) of unity at 10 au
(1 au). QT is defined as:

QT =
csΩ

πGΣgas
(36)

where G is the gravitational constant. A disk is gravitationally
unstable if QT < 1. In Fig. 7b, models in the parameter space
below the cyan line have QT < 1 at 10 au (1 au). In Fig. 7b

densely-spaced contours again indicate the transition between
Epstein and Stokes drag.

The enhancement of the ice surface density near the snow-
line is relatively modest, but enrichment factors of a few can still
be important for triggering streaming instability (Johansen et al.
2009). Besides, Fig. 7 corresponds to our single-seed model,
which is conservative. Larger enhancements can be achieved in
the framework of the many-seeds model (see Fig. 4). We can
imitate the many-seeds model in the analytical model of Sect. C,
crudely, when we let ζ → 0, which assumes that micron-sized
silicate grains behave like vapor. In that case we see fΣ,peak in-
crease by another factor of two (results not plotted). Therefore,
total enhancements of fΣ,peak ∼ 5–10 are feasible, which signifi-
cantly boost the likelihood of triggering streaming instability.

5.3. Solids-to-gas ratios

Let us now look at the absolute results, in terms of the midplane
solids-to-gas ratio. In Fig. 8a, black lines denote contours of con-
stant peak midplane solids-to-gas ratios, as function of α and
Fs/g. We again fix Ṁgas = 10−8M� yr−1 and τ3 = 0.03. The or-
ange contours correspond to the total amount of solids in units
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Fig. 8. (a) Contours of midplane solids-to-gas ratios (black) as function of the turbulence parameter α and the solids-to-gas accretion rate Fs/g. The
gas accretion rate Ṁgas is fixed to 10−8 M� yr−1 and the initial size of the pebbles τ3 is fixed to 0.03. Orange contours denote the amount of solid
material (in Earth masses) that is required to form the eventual peak in the ice surface density just outside the snowline. (b) Contours of midplane
solids-to-gas ratios as function of α and Ṁgas. The solids-to-gas accretion rate Fs/g is fixed to 0.4 and the initial size of the pebbles τ3 is fixed to
0.03. Orange contours denote the amount of solid material (in Earth masses) that is required to form the eventual peak in the ice surface density
just outside the snowline. The cyan lines denote a Toomre parameter (QT ) of unity at 10 au (1 au); the space below these lines has QT < 1 and is
gravitationally unstable at 10 au (1 au).

of Earth masses that is needed to form the eventual peak. This
quantity (Msolids,needed) is calculated as:

Msolids,needed ∼
Fs/gṀgas(rpeak − rsnow)

vgas
(37)

where (rpeak − rsnow)/vgas is the typical timescale on which the
peak forms, as discussed in Sect. 4.1. The value of Msolids,needed
is similar to the amount of solids that gets ‘locked up’ in the
peak6. Figure 8a shows that the higher the value of Fs/g, the eas-
ier streaming instability can be triggered, as one may expect. It
also shows that in order to reach midplane solids-to-gas ratios
of ∼10%, a solids-to-gas accretion rate Fs/g of the same order
is required. This also holds for other values of the gas accretion
rate Ṁgas and initial pebble size τ3.

Figure 8b is the same as Fig. 7b, except that the black con-
tours now denote constant values of the peak midplane solids-
to-gas ratio. Just like in Fig. 8a, orange contours denote con-
stant Msolids,needed, but now with Ṁgas as the parameter on the
x-axis. The region with closely-spaced contours in Fig. 8a and
the oblique regions in the otherwise fairly horizontal contours in
Fig. 8b are again due to the transition between the Epstein and
Stokes drag regimes.

Up to this point we have kept the parameter τ3 constant at its
fiducial value of 0.03. Recently, Yang et al. (2016) have shown
that the streaming instability mechanism can also work for small
particles (τ ∼ 10−3). In Fig. 9 we now vary τ3 and plot the re-
sulting peak midplane solids-to-gas ratio, whilst fixing Ṁgas at
10−8M� yr−1, Fs/g at 0.4, and α at 3 × 10−3. Different regimes
in the plot are denoted by Roman numbers I-IV. In region I,
the particles are well-coupled to the gas. The solids-to-gas ra-
tio flattens out towards low τ3-values, because radial drift and
settling do not play a role for these particles. The boundary be-
tween regime I and regime II corresponds to the value of α. The

6 We stress again that the model assumes that the incoming pebble
mass flux is constant over time (see Sect. 4.1). However, the amount of
solids needed to form the peak is independent of this assumption.

highest solids-to-gas ratios are reached for particles with stop-
ping times of the same order as α or smaller. For higher values of
τ, the larger drift velocity (proportional to τ) starts to dominate
over the larger degree of settling (proportional to

√
τ). There-

fore, in regime II, the solids-to-gas ratio decreases with increas-
ing τ. The transition from regime I and regime II corresponds to
the τ3-value for which ε is unity. The ε parameter (introduced
in Sect. 5.1) increases with increasing τ3, and the peak surface
density decreases at a faster rate with increasing ε for ε > 1
than for ε < 1 (Eq. (C.13)). The physical explanation is that
the solution changes from diffusion-dominated (ε < 1) to drift-
dominated (ε > 1). Therefore, the solids-to-gas ratio decreases
more steeply in regime III than in regime II. The final transition,
from regime III to regime IV, is caused by the transition from
the Epstein regime to the Stokes regime. For τ3 values of ∼1, the
enhancement effect becomes minimal and the peak solids-to-gas
ratio flattens out.

From Fig. 8a and Fig. 8b we learn that in the context of the
α-viscosity disk model, the largest solids-to-gas ratios near the
snowline are reached for high α-values. This means that our dif-
fusion model does not require a very quiescent disk to achieve
high solids-to-gas ratio, and also works in the early disk phase
when α and Ṁgas are presumably high. Our results show that for
high α and high Ṁgas, tens of Earth masses are locked up in peb-
bles in an annulus outside the snowline with a width of the order
of 1 au.

6. Discussion

6.1. Conditions for streaming instability

Our results show that the ice surface density can be enhanced
by a factor ∼3–5 outside the snowline, due to the effect of water
diffusion and subsequent condensation onto icy pebbles (adopt-
ing ζ < 0.5 or the many-seeds model increases the enhancement
by another factor ∼2). This differs from the results of Steven-
son & Lunine (1988), who found that the same effect could lead
to an enhancement by as much as 75. However, they considered
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Fig. 9. Peak midplane solids-to-gas ratio as function of τ3. Ṁgas is fixed
at 10−8 M� yr−1, Fs/g at 0.4, and the value of α is 3 × 10−3. We can
distinguish four regimes I-IV, which are explained in the main text.

a static system, whereas our model accounts for radial drift of
pebbles and gas accretion onto the star. Even though we found a
modest enhancement, we showed that the pebble density at the
midplane can reach tens of percent of the gas density, under the
condition that the solids-to-gas accretion rate Fs/g is of order 0.1.

But what are realistic values for Fs/g? Ida et al. (2016) have
calculated the pebble mass flux Ṁpeb in a viscously-evolving
disk, taking into account dust growth and radial drift. They found
that after 106 yr, Fs/g ∼ 0.3 for a turbulence parameter α = 10−3

and a gas accretion rate Ṁgas = 10−8M� yr−1. Since this result
suggests Fs/g-values of order 0.1 are plausible, water conden-
sation can plausibly trigger streaming instability near the snow-
line. According to Ida et al. (2016), Ṁpeb is inversely propor-
tional to α. This implies that even though our results show that
for high α-values, water diffusion and condensation leads to the
largest solids-to-gas ratio at the snowline, a smaller pebble mass
flux is expected, which reduces the effect. The pebble mass flux
is, however, dependent on time t as Ṁpeb ∝ t−1/3, meaning that
the pebble mass flux earlier in the disk is higher than the fidu-
cial 30% of the gas accretion rate quoted before. Because higher
α-values lead to larger solids-to-gas ratios but to lower pebble
mass fluxes, we conclude that intermediate α-values (∼10−3) are
most favorable to trigger streaming instabilities. The fact that the
diffusion-driven model of this work already produces enhance-
ment of solids at intermediate α-values and high Ṁgas, implies
that planetesimal formation does not have to await the arrival of
quiescent disk conditions. Provided a sufficiently large pebble
flux, our results imply that planetesimals can form early.

6.2. Interior or exterior?

In Saito & Sirono (2011), it is argued that the evaporation of icy
pebbles leads to a large enhancement of small silicate grains inte-
rior to the snowline. In their model, micron-sized silicate grains
are instantaneously released at the snowline, and then follow the
radial motion of the gas. Since the gas moves at a much lower ve-
locity than the drift velocity of the icy pebbles, the silicate grains
pile-up and become gravitationally unstable. A similar mecha-
nism for the formation of planetesimals in the inner disk has
recently been presented by Ida & Guillot (2016).

We confirm that the solids-to-gas ratio interior to the snow-
line is boosted due to the slow radial motion of the small silicates
(see Fig. 4c), but find smaller enhancements than Saito & Sirono
(2011) and Ida & Guillot (2016). These works assumed that the
evaporated silicate grains remained in the same vertical layer as
the icy pebbles, which had settled to the midplane due to their
larger size. This is a natural assumption if one adopts instanta-
neous evaporation. However, in our model silicate grains are not
instantaneously released from the pebbles at a single location,
but are instead released across the ice evaporation front – the
region between the snowline and the peak radius. With the ex-
ception of very low α-values, the width of the ice peak is (much)
larger than the gas scale height. Consequently, the timescale for
vertical mixing is smaller than the timescale on which the silicate
grains traverse the evaporation front, justifying our assumption
that silicate grains (and water vapor) are distributed over Hgas.
Allowing for the vertical mixing of silicate grains is why we
found smaller solids-to-gas ratios interior to the snowline than
Saito & Sirono (2011) and Ida & Guillot (2016).

In this work we did not model the porosity of pebbles, but
assumed pebbles are compact spheres. For homogeneous porous
spheres, the results are the same as for compact spheres with the
same stopping time, if they are in the Epstein regime. This is
because the evaporation and condensation rates (Eq. (13)–(14))
depend on s2

p/mp (the surface to mass ratio of a pebble), which
is effectively the Epstein stopping time (Eq. (7)). For fractal ag-
gregates, however, the evaporation rate could conceivably be in-
creased due to a larger total surface area available for evapora-
tion. In that case, the location of the snowline (rsnow) and of the
peak (rpeak) are pushed to larger radial distances, because drift-
ing pebbles start to evaporate earlier. The shape of the solids
distribution profile and hence the width of the evaporation front,
however, remain similar. We have confirmed this behaviour by
running our simulation with an evaporation rate that has been ar-
bitrarily increased by a factor 100 compared to Eq. (13). There-
fore, a fractal interior structure of the pebbles would not much
change the extent of the region in which pebbles evaporate. We
note however that in the many-seeds model, a large increase in
opacity due to small silicate grains might lead to a steeper tem-
perature profile than assumed here, and therefore to a more nar-
row evaporation front.

Even though we found smaller enhancements interior to the
snowline, adopting the many-seeds model leads to larger en-
hancements outside the snowline compared to the single-seed
model. This is because outward radial diffusion and subsequent
sticking of silicate grains to icy pebbles adds to the ice peak
and therefore enforces the enhancement of the solids-to-gas ratio
outside the snowline (see Fig. 5).

6.3. Condensation onto small grains

In our single-seed model, we adopted a single-size assumption
for the solid particles, applicable to a drift-limited scenario, in
which particles grow until they decouple from the gas and start
to drift inward (see, e.g., Birnstiel et al. (2010b); Krijt et al.
(2016b)). Because the solids density is larger close to the star
than in the outer disk, particles close to the star start to drift
inward earlier than particles in the outer disk. This leads to an
inside-out clearing of the solids component of the disk. In this
case, one would not expect small particles to be present in sig-
nificant amounts near the snowline at the time when icy pebbles
approach the snowline, drifting in from the outer disk. There-
fore, in the drift-limited case the single-size approximation for
pebbles is valid.

Article number, page 13 of 19



A&A proofs: manuscript no. snowline_arxiv

The single-size assumption does not hold for a
fragmentation-limited size distribution, however. In that
case, pebbles dominate the total mass of solids, but small
particles dominate the total surface area (see, e.g., Birnstiel et al.
(2012)). Then, condensation of water vapor will predominantly
happen onto small particles, instead of onto pebbles as consid-
ered in this work. Also, in our many-seeds model, we do not
allow for condensation onto the small grains that get released
from icy pebbles upon evaporation.

Within the single-seed framework, we can mimic the situa-
tion where condensation happens onto small grains rather than
onto pebbles by adopting a very small typical stopping time
just outside the snowline (τ3). This results in approximately
the same or even larger peaks, as illustrated by Fig. 9. In that
sense, assuming condensation occurs solely onto pebbles, rather
than onto small grains, is a conservative choice. However, a
more correct approach would allow for condensation onto small
grains in the many-seeds model, in which icy pebbles break up
into small grains upon evaporation, or, alternatively, within a
fragmentation-limited scenario by adopting a full size distribu-
tion. Such improvements will be considered in future work.

6.4. Relevance of coagulation

The many-seeds model ignores coagulation among the small sil-
icate grains, as well as the possibility that water vapor condenses
on to silicates. Because there are so many of them, the average
silicate grain size would not increase significantly due to water
condensation. In that case, the assumption that they are well-
coupled to the gas would still hold. However, growth of silicates
might also occur due to coagulation. Growth increases the drift
velocity, thereby reducing the effect of the outward-diffusion and
recondensation of the silicate component. Consequently, coagu-
lation among silicates would bring the many-seeds model closer
to the single-seed model due to a decrease in the enhancement
of ‘locked’ silicates outside the snowline. A similar trend is ex-
pected when the silicates that are released upon evaporation are
larger. According to the experimental work of Aumatell & Wurm
(2011), an icy aggregate of 1 cm in size breaks up into about
200 sub-aggregates when it evaporates. In any case, we expect
that a more realistic ‘break-up’ or coagulation model will lead
to results that lie in between the results for our many-seeds and
single-seed model designs.

In our work, we have also neglected coagulation among peb-
bles. On the one hand, one could think that icy pebbles on their
way to the snowline would grow even more because of coagula-
tion – at least as long their relative velocities stay low enough.
On the other hand, according to Sirono (2011) and Okuzumi
et al. (2016), the fragmentation threshold velocity for icy pebbles
near the snowline is reduced due to sintering. This might moti-
vate a smaller average icy pebble size (a lower τ3 in our nomen-
clature) and therefore a smaller radial drift velocity, which would
further increase the solid surface density exterior to the snowline
(see Fig. 9).

6.5. Observational implications

We showed that intermediate-to-high α-values are most favor-
able for triggering streaming instability near the snowline. The
onset of streaming instability manifests itself through the forma-
tion of a peak in the solids-to-gas ratio that grows in height (in-
creasing Σice) but also in width – the latter because collective ef-
fects cause pebbles to move slower. Even though more solids are

required for high α and high Ṁgas than for low α and low Ṁgas,
tens of Earth masses are sufficient to form the ice peak. This also
means that tens of Earth masses can be stored in an annulus out-
side the snowline, especially when the system is characterized
by high pebble and gas accretion rates. Such annuli of solid en-
hancement can be observable with facilities as ALMA. In the
context of the snowline, the ring structure seen in the TW Hya
system with a width of about 1 au (Andrews et al. 2016) might
very well correspond to a realisation of the water-diffusion effect
in a highly turbulent disk with a high gas accretion rate.

The fact that the planets in the inner Solar System are water-
poor (Marty 2012; McCubbin et al. 2012), even though the
snowline should have migrated to 1 au before the disk was de-
pleted, was pointed out as the ‘snowline problem’ by Oka et al.
(2011). The early formation of a protoplanet near the snowline
might provide a solution to this problem, as proposed recently
by Morbidelli et al. (2016). Once a protoplanet near the snowline
has formed it could halt the inward-drifting pebble flux, either by
accreting the pebbles (Guillot et al. 2014), or by trapping them
in pressure maxima created by the newborn planet (Zhu et al.
2014; Lambrechts et al. 2014). In the meantime, the water vapor
gets accreted to the star and the snowline location migrates in-
ward (e.g., Oka et al. (2011). Consequently, an early formation
of a protoplanet near the snowline might explain the lack of wa-
ter in the inner Solar System. The water diffusion/condensation
effect discussed in this paper provides a way to form planetesi-
mals near the snowline in an early stage of the disk (i.e., when
the snowline is still located outside of the current water-poor re-
gion of the Solar System). After planetesimals of a certain size
have formed, they can subsequently accrete pebbles and quickly
grow to larger bodies (e.g., Ormel & Klahr (2010); Lambrechts
& Johansen (2012, 2014); Bitsch et al. (2015); Visser & Ormel
(2016)). Therefore, our water diffusion/condensation model pro-
vides the first key step to realize the early formation of a proto-
planet near the snowline.

7. Conclusions

Our main findings can be summarized as follows.

1. Water diffusion and condensation near the snowline can re-
sult in an enhancement of a factor several in the ice surface
density. Because of the dynamic setup of our model where
water vapor is carried away with the accreting gas, this en-
hancement is much less than found by Stevenson & Lunine
(1988). Nevertheless, the boost in the solids-to-gas ratio can
still trigger streaming instability, provided a large enough
pebble flux.

2. The peak in the ice surface density is not located at the snow-
line, but exterior to it (rpeak > rsnow). With larger incoming
pebble flux, the peak becomes broader, because the back-
reaction of the solids on the gas reduces the pebble drift ve-
locity. Depending on the turbulence strength, the width of the
peak can be as much as ∼1 au.

3. Such broad peaks can contain tens of Earth masses in peb-
bles, appearing as bright annuli at radio wavelengths.

4. The release of many micron-sized silicate grains upon evap-
oration of icy pebbles produces a peak in ‘locked’ silicates
exterior to the snowline, due to diffusion and sweep-up of
the silicates. This peak adds to the ice peak and therefore en-
forces the enhancement of the solids-to-gas ratio outside the
snowline.
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5. Interior to the snowline, the solids-to-gas ratio is boosted if
many micron-sized silicate grains are released during evap-
oration, because they cause a ‘traffic jam’ effect. However,
because silicate grains mix with the background gas before
they cross the snowline, the solids-to-gas ratio enhancement
just interior to rsnow is limited.

6. In the context of a viscous disk model, the ratio between the
accretion rate of solids and gas needs to be of order ∼0.1 in
order to reach solids-to-gas midplane ratios of the order of
tens percent. The mechanism operates best at intermediate
(∼10−3) α-values. Therefore, planetesimals can form at an
early time in the evolution of the disk.
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Table A.1. List of frequently-used symbols

M mass flux
Fs/g solids-to-gas accretion rate
Ω Keplerian orbital frequency
Σ surface density
α turbulent strength parameter
µ mean molecular weight
ν viscosity
ρ midplane density
ρ• internal density
τS dimensionless stopping time
ζ dust fraction in pebbles
D gas or particle diffusivity
H gas or pebble scaleheight
Ṁ accretion rate
P pressure
R condensation or evaporation rate
T temperature
m mass
mcore silicate mass in single-seed model
r disk orbital radius
sp particle (pebble) radius
vpeb pebble drift velocity

Appendix A: List of symbols

A list of frequently-used symbols is given in Table A.1.

Appendix B: Expression Collective Effects

Expressions for the aerodynamic drift of single particles have
been derived by Whipple (1972) and Weidenschilling (1977) for
non-accreting disks. Later, Nakagawa et al. (1986) accounted for
the backreaction forces that the particles collectively exert on the
gas. The gas motion is then outwards while the total dust+gas
mass flux becomes zero. These expressions can be generalized
to account for a size distribution of particles (Tanaka et al. 2005;
Estrada & Cuzzi 2008; Bai & Stone 2010).

In (steady) accretion disks gas moves inwards at a rate that
is set by the viscosity. This modifies the single particle drift ex-
pressions. In particular, small particles, which show negligible
radial drift, nevertheless move inwards as they are carried by the
gas. While for the single particle case the modification of the
drift expressions for accreting disks is straightforward, expres-
sions accounting for both collective effects and viscosity have,
to the best of our knowledge, not yet been presented. We derive
those here.

The equations of motions in a frame co-rotating with the lo-
cal Keplerian period read:

Du
Dt

= − u − u
tstop

− 2ΩK × u + FEuler−dust (B.1a)

Du
Dt

=
ρp

ρg

u − u
tstop

− 2ΩK × u + FEuler−gas + F∇P + Fν (B.1b)

where u is the particle velocity and u the gas velocity, D/Dt is the
material derivative, the first term on the RHS is the drag force,
the second term is the Coriolis force, and FEuler = −(dΩK/dt)×r
is the Euler force that arises due to the radial motion. It therefore
appears in the radial equations. In addition, the equation of mo-
tion for the gas includes a hydrostatic correction due to a radial

pressure gradient (F∇P) and viscous forces (Fν). Following con-
vention, we write the pressure gradient in terms of a nondimen-
sional η:

F∇P =
1
ρg

dP
dr
≡ 2ηvKΩKer (B.2)

and use the thin disk approximation (consider column densities
Σgas instead of ρ) for the viscous force:

Fν =
1

Σgas
∇ · T (B.3)

where T is the viscous stress tensor. In cylindrical coordinates,
the only relevant term is:

Trφ = νΣgasr
dΩK

dr
, (B.4)

with which the viscous force becomes

Fν =
1

Σgas
∇ · T =

1
Σgas

1
r2

∂

∂r

(
r2νΣgasr

dΩK

dr

)
eφ (B.5)

where ν is the kinematic viscosity. In the α-disk model we have
that νΣgas is constant and therefore

Fν = −3νΩK

4r
eφ. (B.6)

In order to solve for the drift velocities, we put the accelera-
tions on the LHS of Eq. (B.1) zero, Du/Dt = Du/Dt = 0. This
is justified, because a change in the drift velocities occurs on a
timescale of ∼r/vr, which is always much longer than the stop-
ping time. Inserting Eq. (B.2) and Eq. (B.6) into Eq. (B.1) gives
a system of four equations and four unknowns (the velocities).
Its solution is:
vr
vφ
ur
uφ

 =
1

τ2
s + (1 + ξ)2


−2ητs − 3

2 ν̃(1 + ξ)
3
4 ν̃τs − η(1 + ξ)

2ητsξ − 3
2 ν̃(1 + τ2

s + ξ)
− 3

4 ν̃τsξ − η(1 + τ2
s + ξ)

 vK (B.7)

where τs = tstopΩK , ξ = ρd/ρg, and ν̃ = ν/r2ΩK . Note that in the
α-prescription ν̃ ∼ αη, that is, for α � 1 the modification due to
viscosity is minor.

Appendix C: Semi-analytical model

In this section we aim for an analytic prescription of the key
characteristics of the steady-state ice and vapor distribution for
any given disc model – not necessarily with the same gas and
temperature profiles as assumed in this study. We will derive ex-
pressions for the peak of the ice surface density and its location,
which enable us to determine whether the conditions for stream-
ing instability beyond the snowline can be reached.

Appendix C.1: Location of the snowline

The location of the snowline, rsnow, is the outer-most radius
where the entire incoming ice flux can thermodynamically exist
in the gaseous state. Its location is found by equating the equi-
librium (saturation) pressure to the vapor pressure of H2O cor-
responding to the incoming icy pebble flux, that is, Peq = PZ,a,
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where PZ,a is the steady-state vapor pressure; i.e., the vapor pres-
sure obtained when all the H2O is in the gas phase. Therefore,
the snowline rsnow is given by the radius r where

Peq,0 exp
[
− Ta

T (r)

]
=

kBT
µ

ΣZ,a√
2πHgas

=
kBT (r)
µ

Ṁice/3πν(r)√
2πHgas(r)

(C.1)

see Eq. (11) and Eq. (34). Given Ṁice, α and a disk model, we
can therefore readily solve (numerically) for rsnow.

A caveat of Eq. (C.1) is that the role of transport processes
are neglected. These could potentially introduce disequilibrium
corrections. However, we find that the times to achieve the equi-
librium (saturation) pressure is typically much shorter than the
transport timescales (by diffusion or drift).

Appendix C.2: The equilibrium density

Generalizing the above arguments to locations beyond rsnow, we
approximate the vapor pressure with the saturation pressure – an
approximation that is again justified as long as the timescales for
evaporation (and condensation) are sufficiently short (in other
words: the super-saturation level is small). Similarly, we can
define a vapor surface density (Σeq) corresponding to Peq. Re-
arranging Eq. (C.1) in terms of Σ we obtain this equilibrium sur-
face density:

Σeq ≡
√

2πHgasµ

kBT
Peq

= Σsnow

(
r

rsnow

)p

exp
[

Ta

Tsnow

(
1 −

(
r

rsnow

)q)]
(C.2)

where Σsnow and Tsnow are the vapor surface density and the tem-
perature at the location of the snowline. In Eq. (C.2) we have as-
sumed power-laws for the temperature, gas surface density, and
the gas scaleheight. In our case we have p = 7/4 and q = 1/2
(see Sect. 2.1).

Taylor-expanding the (weakly-varying) power-laws involved
in the expression of Σeq around rsnow gives:7

Σeq(x) ≈ Σsnow (1 + px) exp
[
− qTax

Tsnow

]
= Σsnow (1 + px) e−aeq x

(C.3)

where x = (r − rsnow)/rsnow is the fractional distance beyond the
snowline and

aeq =
qTa

Tsnow
≈ 15

( q
0.5

) ( Tsnow

200 K

)−1

(C.4)

is a dimensionless number that weakly depends on the location
of the snowline.

In Fig. C.1 the respective vapor density profiles have been
plotted. Parameters correspond to those of the default model (Ta-
ble 1). The simulated result of Sect. 4 is plotted by the thick
gray curve. It is characterized by a sharp dent at rsnow. Exterior
to the snowline ΣZ follows the equilibrium profile (solid black
curve), while interior to rsnow, it is limited by the imposed mass
flux (solid dashed curve). The approximate expressions derived
in Eq. (C.3), valid for r > rsnow, are shown by the blue curves.
We obtain rsnow = 2.09 au, Σsnow = 92 g cm−2 and aeq = 16.9.
The solid blue curve approximates Σeq very closely. The dashed

7 Taylor-expansion of the exponent, on the other hand, would be valid
only over a very limited range, because aeq � 1.

2.0 2.1 2.2 2.3 2.4 2.5 2.6
r [au]

0

20

40

60

80

100

Σ
Z

[g
cm
−2

]

rsnow

simulated
steady state
equilibrium
approximate
approximate, p = 0

Fig. C.1. Vapor surface density profiles. Shown in black are the steady
state vapor profile when all the ice is in the gas phase (thin solid curve),
and the surface density corresponding to equilibrium vapor pressure Peq
(Eq. (C.2); dashed solid curve). The snowline rsnow is located at the in-
tersection of these two curves. The numerically-obtained profile (thick
gray curve) closely follows the minimum of steady-state and equilib-
rium profiles. The blue curves present mathematically-convenient ap-
proximations to Σeq (see text), valid for r > rsnow.

blue curves gives a further approximation to Σeq, obtained by
putting p = 0. This slightly underestimates ΣZ but nevertheless
gives a reasonable approximation that we will use below.

Assuming ΣZ = Σeq for the vapor density beyond rsnow, we
write for the associated mass fluxMZ :

MZ ≈ Meq = −vgasΣeq − DgasΣgas
d
dr

(
Σeq

Σgas

)
≈ −vgasΣeq − Dgas

dΣeq

dr
(C.5)

where we neglected the curvature of the disk, i.e., we assumed
that the scales over which Σeq and Σgas change are much smaller
than r. This is justified as long as x � 1. In a similar vein, we
assume that quantites as Dgas and vgas do not vary. With Eq. (C.3)
for Σeq we obtain:

Meq

Dgas/rsnow
= − vgasrsnow

Dgas
Σeq −

dΣeq

dx
(C.6)

= Σsnow

(
−bgas(1 + px) + aeq(1 + px) − p

)
e−aeq x

≈ Σsnow(aeq − bgas)e−aeq x (C.7)

where bgas = vgasrsnow/Dgas is the dimensionless gas velocity and
in the last step p = 0. In a viscously-evolving disk vgas = 3ν/2r
and hence bgas = 1.5.

Appendix C.3: The ice profile

With the equilibrium profile as the approximation to the vapor
density, we solve for the surface density of the ice by invok-
ing conservation of mass. In steady-state the total H2O mass
fluxMtot,ice = Mice +MZ is constant. Interior to the snowline,
MZ = Mtot,ice while for r � rsnow MZ � Mice ≈ Mtot,ice. But
near the snowline the mass fluxes change rapidly. Here, the steep
gradient in the vapor density causes an outward (positive) mass
flux, which increases the inwardly-directed icy pebble flux:

−Mice ≡ Σicevice + Dp
dΣice

dr
=MZ −Mtot,ice. (C.8)

Article number, page 17 of 19



A&A proofs: manuscript no. snowline_arxiv

2.0 2.1 2.2 2.3 2.4 2.5 2.6
r [au]

0

5

10

15

20

25

30

Σ
ic

e

rpeakrsnow

aeq =16.9

ε =1.55

simulated
p = 7/4 approx.
p = 0 approx.

Fig. C.2. Steady state surface density of ice for the default model pa-
rameters. The simulated profile from the numerical model (thick grey
line) is well reproduced by the full analytical solution using p = 7/4
(solid curve; formula not shown in the main text) and the further p = 0
approximation (dashed curve; Eq. (C.10)). The black square denotes the
values corresponding to the mass peak (rpeak,Σpeak) given by Eqs. (C.12)
and (C.13).

(Note that just outside rsnow, Mice and Mtot,ice are negative and
MZ is positive.) WithMeq forMZ Eq. (C.8), in terms of x, reads

dΣice

dx
+ bpebΣice =

rsnow

Dp

(
Meq −Mtot

)
(C.9)

where bpeb = rsnowvpeb/Dp is the ratio between the speed at which
the pebbles drift in and the radial velocity of the gas. Usually,
pebbles outpace the gas and bpeb � 1.

To solve Eq. (C.9) we will assume that bpeb and other param-
eters are constant in x. Assuming constant bpeb is clearly an ap-
proximation, since the pebbles may (i) acquire thick icy mantles
on their approach to the snowline but (ii) lose all their ice once
their are very close to rsnow. Hence, the aerodynamical properties
of the pebbles and therefore vpeb are expected to vary consider-
ably. Disregarding these concerns, momentarily, the solution to
Eq. (C.9) reads:

Σice = e−bpeb x
∫ x

0
ebpeb x′ rsnowMeq(x′)

Dp
dx′

= Σsnow(1 − εgas)
[
cM(1 − e−aeqεx)

ε
+

e−aeq x − e−aeqεx

ε − 1

]
(C.10)

where we used Eq. (C.6) for Meq, put p = 08 and defined ε =
bpeb/aeq, εgas = bgas/aeq and cM = −Mtot,icersnow/ΣsnowDp(aeq −
bgas) to keep the notation concise. Typically, εgas ≈ 1.5/aeq and
cM are small numbers. In a steady-state viscous disk Σsnow ≈
Ṁice/2πrvgas and Mtot,ice = −Ṁice/2πrsnow. Hence in a viscous
disk cM is related to εgas:

cM =
vgasrsnow

Dp(aeq − bgas)
=

εgas

1 − εgas
≈ 0.1 (C.11)

In Fig. C.2 we plot Σice for the parameters of the default
model (Table 1). The simulated data are given by the thick grey
curve while the analytical profiles are in blue – the more pre-
cise approximation (with p = 7/4; solid) and the p = 0 case in

8 For p , 0 a closed-form solution is possible but extremely contrived.

Table C.1. Comparison between analytical and numerical model

S/F parameter Fipy Analytical
rpeak Σpeak rpeak Σpeak

S (default) 2.20 26 2.20 26
S α 3 × 10−4 1.77 12 1.77 11
S α 0.03 2.75 5.0 2.72 4.7
S Ṁ 1 × 10−7 1.80 110 1.80 96
S τ3 0.3 2.13 4.2 2.12 4.5
F (default) 2.34 15 2.33 16
F α 3 × 10−4 1.85 5.9 1.86 5.3
F α 0.03 2.95 2.7 2.88 2.5
F Ṁ 1 × 10−7 1.90 66 1.89 58
F τ3 0.3 2.22 2.0 2.21 2.5
F Fs/g 0.6 2.30 26 2.28 28
F Fs/g 0.8 2.29 40 2.25 43
F Fs/g 1 2.30 60 2.25 63

Notes. Column entries denote: (S/F) simple (no µ-variations or collec-
tive effects) or full model; (parameter) input parameter that is varied and
its value; (FiPy) values for the position of the ice peak (in au) and the
surface density (in cgs units) for the ice peak; (Analytical) same for the
analytical model.

dashed. The analytical profiles fit the simulation data very well.
The key parameter for the analytical profiles is the velocity of
the pebbles vpeb. Here, we have chosen vpeb to be the pebble ve-
locity at the ice peak rpeak, vpeb ≈ 2.4 m s−1, which provides a
decent fit. The fit is somewhat sensitive to the choice of vpeb; for
example, adopting vpeb(rpeak) with the initial value for mice (i.e.,
without deposition of vapor) would overestimate the numerical
curve by 20%.

Appendix C.4: Peak values and final tuning

Equation (C.10) has a maximum at (x,Σice) = (xpeak,Σpeak)
where

xpeak =
log [ε + cM(ε − 1)]

aeq(ε − 1)
(C.12)

or rpeak = (1 + xpeak)rsnow in dimensional units, and

Σpeak = (1 − εgas)
cM + [cM(ε − 1) + ε]1/(1−ε)

ε
Σsnow. (C.13)

Since cM and εgas are fixed, the latter expression only depends
on ε. Lower ε – meaning: a smaller pebble velocity at rpeak – in-
creases both the width (xpeak) and the magnitude of the ice peak,
resulting in a more pronounced, ‘fatter’ ice bump.

All that remains is to find an expression for the pebble ve-
locity at the ice peak vpeb, which in turn depends on the amount
of ice those pebbles have accreted. To obtain mpeb = mcore + mice
we invoke conservation of the pebble number flux

Np =
Ṁsil/mcore

2πrvpeb
=

Σice

mice
. (C.14)

Hence, we can obtain mice from Σpeak, calculate the the aerody-
namical properties of the pebbles at the peak (i.e., their stopping
time) and obtain the pebble velocity vpeb.

With Eq. (C.14) we have a closed system of expressions to
obtain the relevant quantities at the ice peak. These can best be
computed by an iterative scheme, e.g.,
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1. From (an initial guess for) ε obtain Σpeak and the position
of the ice peak rpeak from the ice flux conservation model,
Eq. (C.13).

2. From Σpeak, obtain the ice mass mice at the ice peak from the
pebble conservation law, Eq. (C.14).

3. From mice and the gas properties at r = rpeak, compute the
stopping time of the pebbles at rpeak. Update the pebble ve-
locity vpeb and its normalized variant ε.

This scheme can easily be extended with collective and mean
molecular weight effects (i.e., the complete model). Finally, in
order to obtain a better match to our numerical results we adopt
two ad-hoc empirical ‘fixes’. First we reduce Eq. (C.13) by 10%,
which accounts for the fact that the p = 0 approximation tends
to overestimate the peak. Secondly, we slightly increase ε when
it drops below unity. This fix approximately accounts for cur-
vature effects (not included in the model) that become appar-
ent when the ice peak becomes broad (at low ε). Hence we take
ε = max(ε∗, ε∗0.8) where ε∗ = (vpeb,peakrpeak/a2Dpeak) is the un-
corrected value.

In Table C.1 a comparison of the model with the
numerically-obtained peak parameters is given for a number of
model parameters. Generally, the agreement is very good; the
error in Σpeak is at most 20%. Given its crudeness, the analytical
model, however, does not always produce a perfect match – es-
pecially not when it comes to the profile. For example the low
turbulence runs (α = 3 × 10−4), which imply high gas densities
when Ṁgas is kept the same, still show a good match to Σpeak,
but the profile corresponding to Eq. (C.10) is very different from
the numerical model. The reason for this is that pebbles enter
the Stokes drag regime when approaching the ice peak, causing
a sharp increase in the stopping time (and ε). The stopping time
at the ice peak is in that case not representative for other radii.
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