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Abstract We extend Igusa’s description of the relation between invariants of binary
sextics and Siegel modular forms of degree 2 to a relation between covariants and
vector-valued Siegel modular forms of degree 2. We show how this relation can be
used to effectively calculate the Fourier expansions of Siegel modular forms of degree
2.

Mathematics Subject Classification 10D · 11F11 · 14L24 · 13A50

1 Introduction

In his 1960 papers Igusa explained the relation between the invariant theory of binary
sextics and scalar-valued Siegel modular forms of degree (or genus) 2. The relation
stems from the fact that the moduli spaceM2 of curves of genus 2 admits two descrip-
tions. The moduli spaceM2 has a classical description in terms of the invariant theory
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of binary sextics. But via the TorellimorphismM2 is an open part of a Shimura variety,
the moduli spaceA2 of principally polarized abelian surfaces. Therefore we have two
descriptions of natural vector bundles on our moduli space and thus two descriptions
of their sections. The purpose of this paper is to extend the correspondence given by
Igusa between invariants of binary sextics and scalar-valued Siegel modular forms of
degree 2 to a correspondence between covariants and vector-valued Siegel modular
forms of degree 2. We give a description of vector-valued Siegel modular forms of
degree 2 in terms of covariants of the action of SL(2,C) on the space of binary sextics.

Since the complement of the Torelli image of M2 in A2 is the space A1,1 of
decomposable abelian surfaces (products of elliptic curves) we have to analyze the
orders of modular forms described by covariants along this locus. The scalar-valued
modular forms χ10 and its square root χ5 that vanish with multiplicity 2 and 1 along
this locus play a key role.

We shall see that the ‘first’ vector-valuedmodular form that appears on Sp(4,Z), the
form χ6,8 of weight (6, 8), corresponds in some sense to the ‘universal’ binary sextic.
The relation between covariants and modular forms allows us to use constructions
from representation theory to construct vector-valued Siegel modular forms. In fact,
we shall show that up to multiplication by a suitable power of χ10, every vector-valued
Siegelmodular formof degree 2 can be obtained by applying a representation-theoretic
construction to the form χ6,8. In this sense, our form χ6,8 may be called the ‘universal
vector-valued Siegel modular form of degree 2’. In fact, in practice we work with the
form χ6,3 = χ6,8/χ5 which is a modular form with a character.

We show that our constructions can be used to efficiently calculate the Fourier
expansions of vector-valued Siegel modular forms. We illustrate this with a number of
significant examples where we use these Fourier expansions to calculate eigenvalues
of Hecke operators and check instances of Harder type congruences.

Similar ideas will be worked out for the case of genus 3 in a forthcoming paper.

2 Siegel modular forms

The Siegel modular group �g = Sp(2g,Z) of degree (or genus) g acts on the Siegel
upper half-space

Hg = {τ ∈ Mat(g × g,C) : τ t = τ, Im(τ ) > 0}

of degree g by

τ �→ γ · τ = (aτ + b)(cτ + d)−1 for γ =
(
a b
c d

)
∈ �g .

A scalar-valued Siegel modular form of degree g > 1 and weight k is a holomorphic
function f : Hg → C satisfying

f (γ · τ) = det(cτ + d)k f (τ )
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Covariants of binary sextics and Siegel modular forms 1651

for all γ ∈ �g . (For g = 1 we also need a growth condition at infinity.) IfW is a finite-
dimensional complex vector space andρ : GL(g,C) → GL(W ) a representation, then
a vector-valued Siegel modular form of degree g > 1 and weight ρ is a holomorphic
map f : Hg → W such that

f (γ · τ) = ρ(cτ + d) f (τ )

for all γ ∈ �g . Siegel modular forms can be interpreted as sections of vector bundles.
The moduli spaceAg(C) = �g\Hg of complex principally polarized abelian varieties
of dimension g carries an orbifold vector bundle of rank g, theHodge bundleE, defined
by the factor of automorphy given by

j (γ, τ ) = (cτ + d) .

Its determinant L = det(E) defines a line bundle. A scalar-valued Siegel modular
form of degree g and weight k can be seen as a section of L⊗k . A vector-valued Siegel
modular form of weight ρ can be viewed as a section of the vector bundle Eρ that is
defined by the factor of automorphy j (γ, τ ) = ρ(cτ + d). The vector bundle E and
the bundles Eρ extend in a canonical way to toroidal compactifications ofAg and the
Koecher principle says that their sections do so too.

We are interested in the case g = 2. An irreducible representation of GL(2,C) is of
the formSym j (V )⊗det(V )⊗k for ( j, k) ∈ Z≥0×Zwith V the standard representation
of GL(2,C). We denote the corresponding vector space of Siegel modular forms by
Mj,k(�2) or simply by Mj,k . It contains a subspace of cusp forms denoted by S j,k(�2)

or simply by S j,k . The scalar-valued modular forms correspond to the case where
j = 0.
The scalar-valued modular forms of degree 2 form a ring R = ⊕kM0,k(�2). Igusa

showed in [14] that R is generated by modular forms E4, E6, χ10, χ12 and χ35 of
weight 4, 6, 10, 12 and 35. The subring Rev of modular forms of even weight is the
pure polynomial ring generated by E4, E6, χ10 and χ12, and the form χ35 satisfies a
quadratic equation over Rev expressing χ2

35 as a polynomial in E4, E6, χ10 and χ12.
The bi-graded R-module M = ⊕ j,kM j,k can also be made into a ring by using

the canonical projections Sym j1(V ) ⊗ Sym j2(V ) → Sym j1+ j2(V ) defined by multi-
plying homogeneous polynomials of degree j1 and j2 in two variables to define the
multiplication.

The ring M of vector-valued modular forms is not finitely generated as shown by
Grundh, see [9, p. 234].

3 Invariants and covariants of binary sextics

Let V be a 2-dimensional vector space (overC), generated by elements x1 and x2. We
will denote by Sym6(V ) the space of binary sextics, where we write a binary sextic
as

f =
6∑

i=0

ai

(
6

i

)
x6−i
1 xi2 . (1)
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1652 F. Cléry et al.

The group GL(2,C) acts on V via (x1, x2) �→ (ax1 + bx2, cx1 + dx2) for
(a, b; c, d) ∈ GL(2,C). This induces an action of GL(2,C) on Sym6(V ), and sim-
ilarly actions of PGL(2,C) and SL(2,C) on X = P(Sym6(V )). We take (a0 : a1 :
. . . : a6) as coordinates on the projectivized space X .

The space X carries the natural ample line bundle L = O
P(Sym6(V ))(1). On L

we have an action of the group SL(2,C) that is compatible with the action on the
projectivized space X of binary sextics, see [21]. We can retrieve X as the projective
scheme Proj(⊕nH0(X ,Ln)).

The ring of invariants is defined as the graded ring

I = ⊕n≥0H
0(X ,Ln)SL(2,C) .

Thus an invariant can be seen as a polynomial in the coefficients ai of f that is invariant
under the action of SL(2,C). The ring of these invariants was determined in the 19th
century by work of Clebsch and Bolza [3,5]. It is generated by elements A, B,C, D
and E of degrees 6, 12, 18, 30 and 45 in the roots of the binary sextic. We normalize
their degree by taking the degree in the roots divided by 3 and this is then the degree
in the ai . The invariant D is the discriminant and E satisfies a quadratic equation
expressing E2 in the even invariants.

Given the representation of GL(2,C) on V and on Sym6(V )we look at equivariant
inclusions of GL(2,C)-representations

ιA : A −→ Symd(Sym6(V )) ,

with A a GL(2,C)-module, or equivalently at equivariant inclusions

ϕ : C −→ Symd(Sym6(V )) ⊗ A∨.

The image ϕ(1) is denoted 	 = 	(ϕ) and called a covariant.
If A = A[λ] is the irreducible representation of GL(2,C) of highest weight λ =

(λ1, λ2) with λ1 ≥ λ2 then the covariant 	 can be viewed as a form of degree d in the
variables a0, . . . , a6, of degree λ1 − λ2 in x1 and x2.

Example 3.1 The tautological f . As a first example we consider the (tautological)
case where d = 1 and A = Sym6(V ) and we take ιA = idSym6(V ). Then the covariant

	 = ϕ(1) can be viewed as the universal binary sextic f = ∑
J aJ x

J given by (1).

Example 3.2 As a second example we look at d = 2. We have the isotypical decom-
position

Sym2(Sym6(V )) = A[12, 0] + A[10, 2] + A[8, 4] + A[6, 6].

We can view the covariant associated to A[12, 0] as the square of the tautological f
given by (1),while the covariant associated to A[10, 2] is theHessian of the polynomial
f given by fx1x1 fx2x2 − f 2x1x2 or equivalently (up to a scalar) by

(a0a2 − a21)x
8
1 + 4(a0a3 − a1a2)x

7
1 x2 + · · · + (a4a6 − a25)x

8
2 .

123
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The covariant corresponding to A[8, 4] is given by

(a0a4 − 4a1a3 + 3a22)x
4
1 + (2a0a5 − 6a1a4 + 4a2a3)x

3
1 x2

+ (a0a6 − 9a2a4 + 8a23)x
2
1 x

2
2

+ (2a1a6 − 6a2a5 + 4a3a4)x1x
3
2 + (a2a6 − 4a3a5 + 3a24)x

4
2 .

Moreover, the covariant associated to A[6, 6] is an invariant equal to a0a6 − 6 a1a5 +
15 a2a4 − 10 a23 and coincides (up to a multiplicative scalar) with the invariant A ∈ I .

The covariants of the action of SL(2,C) form a graded ring C . This ring can be
identified with the ring of invariants

C[V1 ⊕ V6]SL(2,C) ,

where we write Vi = Symi (V ), see [23, p. 55]. It was shown in the 19th century by
Clebsch and others that the ring C is generated by 26 elements (5 invariants and 21
other covariants) [5, p. 296]. Covariants corresponding to an irreducible representation
A[λ] with λ1 + λ2 = 6 d can be calculated by the so-called symbolic method. We
refer to [10, p. 156], [4] and [22, p. 214].

4 Covariants and Siegel modular forms

The moduli space of curves of genus 2 admits two different descriptions. First, using
the Torelli morphism t we can viewM2 as an open subspace of the moduli spaceA2
of principally polarized abelian surfaces. The complement of the image t (M2) inA2
is the divisor A1,1 of products of elliptic curves. Over the complex numbers we can
view M2(C) as an open suborbifold of the orbifold A2(C) = �2\H2.

The second description of M2 is as the GIT quotient associated to the action of
GL(2,C) on the space X = Sym6(V ) of binary sextics. A binary sextic f (x1, x2)
with non-vanishing discriminant determines a curve C of genus 2 with affine equation
y2 = f̃ (x) with f̃ (x) = f (x, 1). Moreover, the curve C comes with a basis of the
space of differentials given by xdx/y and dx/y.

We let the group GL(2,C) act on the pairs (x, y) by

x �→ (ax + b)/(cx + d), y �→ y/(cx + d)3 .

This gives an action dx �→ (ad − bc) dx/(cx + d)2 and hence an action by det(A) A
on our basis xdx/y, dx/y.

Using this we can identify the moduli space M2 with the algebraic stack
[Y/GL(2,C)] with Y the algebraic stack of curves with a framed Hodge bundle:
the objects of Y are pairs (π, α) with π : C → S a curve of genus 2 and an iso-
morphism α : O⊕2

S
∼−→π∗ωπ . The group GL(2,C) acts via (π, α) �→ A · (π, α) =

(π, det(A) A ◦ α). We thus have (see [24])

q : [Y/GL(2,C)] ∼−→M2 .
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Let X0 ⊂ X be the complement of the discriminant locus. We have a natural
identification of Y with X0 such that the above action of GL(2,C) on Y corresponds
to the action of GL(2,C) on X given by A ◦ f = f (ax1 + bx2, cx1 + dx2). This
implies the following corollary.

Corollary 4.1 The pullback of theHodge bundleE onM2 to X0 ∼= Y is theGL(2,C)-
equivariant bundle V ⊗ det(V ).

This can be extended to include the locus of binary sextics with at least five distinct
zeros. We write a binary sextic with five zeros as (x − α)2 f4 with f4 a binary quartic
with non-zero discriminant and f4(α) 
= 0. To this we associate the nodal curve C
which is obtained by associating to f4 the genus 1 curve C1 given by w2 = f̃4 with
f̃4 = f4(x, 1) and identifying the two points of C1 lying over x = α. It comes with
two differential forms dx/w and dx/(x −α)w; the latter form has poles with opposite
residues in the two points of C1 lying over x = α. The connection with the case of
sextics with non-vanishing discriminant is given by setting y = w(x −α). In this way
we can associate to a binary sextic with at least five zeros a nodal curve with a frame
of the Hodge bundle. The group GL(2,C) acts by

x �→ (ax + b)/(cx + d), w �→ w/(cx + d)2 .

The identification [Y/GL(2,C)] ∼= M2 can be extended if we include for Y the case
of irreducible nodal curves of arithmetic genus 2 with one node and replace M2 by
M2 − �1 with �1 the locus of reducible curves. The conclusion of Corollary 4.1 is
still valid. In a similar way it can be extended to the case of binary sextics all of whose
zeros have multiplicity ≤ 2. We denote by Xs the open subset of X of stable sextics,
that is, binary sextics none of whose zeros have multiplicity ≥ 3.

A scalar-valued Siegel modular form F of weight k on �2 is by definition a section
of the line bundle Lk with L = det(E) on Ã2, the standard toroidal compactification
(equal toM2), and its pullback to Xs will give rise to an invariant section of det(V )3k

on Xs , that is, an invariant iF , hence an invariant on all of X . This gives a map from
the ring of scalar-valued Siegel modular forms R to the ring of invariants

i : R −→ I .

Igusa defined this injective map in a slightly different way in [16]. By Igusa’s
map we can view I as a ring of meromorphic Siegel modular forms. The genera-
tors E4, E6, χ10, χ12 and χ35 of R correspond to non-zero multiples of B, AB −
3C, D, AD and D2E (see [16, p. 848]). We see that every invariant defines a mero-
morphic modular form F such that χm

10F is holomorphic for an appropriate power m.
In other words we have inclusions

R ⊂ I ⊂ Rχ10 ,

where Rχ10 is obtained by inverting χ10. Moreover, the ideal of R of cusp forms maps
to (D), the ideal generated by the discriminant (cf. [16, p. 845]).

123
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The relation between invariants and scalar-valued Siegel modular forms can be
extended to a relation between covariants and vector-valued Siegel modular forms. A
section F of Sym j (E) ⊗ det(E)k will by pullback under q give rise to a section of
Sym j (V ) ⊗ det(V ) j+3k , hence to a covariant of the action of SL(2,C) on Sym6(V ).
We get inclusions similar to those above

M ⊂ C ⊂ Mχ10

with Mχ10 = M ⊗R Rχ10 fitting into a commutative diagram

M C
c

Mχ10

R I Rχ10

(2)

Recall that the ring M of vector-valued modular forms is not finitely generated, but
the ring C of covariants is. Any covariant defines a meromorphic Siegel modular form
the polar locus of which is either empty or the divisor A1,1. A covariant, that is, an
equivariant section of Sym p(V ) ⊗ det(V )q with λ = (p + q, q), defines a section F
of

Sym p(E) ⊗ detE(q−p)/3 = Eλ ⊗ detE−2d

onA2−A1,1. If F extends to a holomorphic section of someSym j (E)⊗det(E)k onA2,
then it extends as a section of that bundle to all of Ã2 by the Koecher principle. If the
section F has order −ν(F) along the divisor A1,1 then multiplying F with χ

�ν(F)/2�
10

makes it into a holomorphic section. Similarly, multiplication with χ
ν(F)
5 makes it into

a holomorphic modular formwith character of weight (p, (q− p)/3+5ν(F)), see the
next section. In particular, we can apply this to the universal binary sextic f given in
Example 3.1. It thus defines a meromorphic Siegel modular form of weight (6,−2).

5 The forms χ10 and χ6,8

In this paper two modular forms (and two closely related ones) will play a central
role. The modular forms are χ10 and χ6,8 and the related ones are χ5 and χ6,3. Up to
a normalization the modular form χ5 is defined as the product of the ten even theta
constants and χ10 = χ2

5 is its square. The form χ5 can be seen as a cusp form of weight
5 on the principal congruence subgroup �2[2] of level 2 which is invariant under the
alternating group A6 ⊂ S6 = Sp(4,Z/2Z); alternatively it can be seen as a modular
form on �2 with character ε. (The abelianization of �2 isZ/2Z, see [19, Satz 3], [20].)
The Fourier expansion of χ5 follows from its definition and starts with

χ5(τ ) = (1/R − R) Q1Q2 + (−1/R3 − 9/R + 9R + R3)(Q3
1Q2 + Q1Q

3
2)

+ (−9/R5 + 93/R3 − 90/R + 90R − 93R3 + 9R5) Q3
1Q

3
2 + · · ·,

123



1656 F. Cléry et al.

where we write τ ∈ H2 as

τ =
(

τ1 τ12
τ12 τ2

)

and use Q1 = eπ iτ1 , Q2 = eπ iτ2 and R = eπ iτ12 . The Fourier expansion of χ10 thus
starts with

χ10(τ ) = (1/r − 2 + r)q1q2 − (2/r2 + 16/r − 36 + 16r + 2r2)(q21q2 + q1q
2
2 )

+ (1/r3 + 36/r2 + 99/r − 272 + 99r + 36r2 + r3)(q31q2 + q1q
3
2 )

+ (−16/r3 + 240/r2 − 240/r + 32 − 240r + 240r2 − 16r3)q21q
2
2

+ · · · ,

where q1 = e2π iτ1 , q2 = e2π iτ2 and r = e2π iτ12 .
We will be interested in the expansion of χ5 and χ10 along the locusH1 ×H1 ⊂ H2

given by τ12 = 0. Note that the pullback toA1 ×A1 of the normal bundle alongA1,1
is the dual of the product E � E of the (pullbacks of the) Hodge bundles of the two
factors, see [6, p. 23].

We need the concept of a quasi-modular form and refer to [18] and to [25]. For
even k ≥ 2, we will denote the Eisenstein series of weight k on SL(2,Z) by ek . Its
Fourier expansion is given by

ek(τ ) = 1 − 2k

Bk

∑
n�1

σk−1(n) qn

with Bk the kth Bernoulli number, σr (n) = ∑
d|n dr and q = e2π iτ . For a subgroup �

of finite index of the full modular group SL(2,Z) we denote by M∗(�) = ⊕kMk(�)

the graded ring of modular forms and by M̃∗(�) = ⊕k M̃k(�) the graded ring of
quasi-modular forms on �. We have a differential operator

D = 1

2π i

d

dτ
= q

d

dq

that sends quasi-modular forms to quasi-modular forms. We refer to [18] for the
following facts.

Lemma 5.1 We have M̃∗(�) = M∗(�) ⊗ C[e2]. Furthermore, for even k > 0 we
have

M̃k(�) = ⊕0�i�k/2D
iMk−2i (�) ⊕ 〈Dk/2−1e2〉 .

We develop χ10 as a Taylor series in the normal direction of H1 × H1 inside H2
with coordinate t = 2π i τ12

χ10(τ ) =
∞∑

m=0

ξm
tm

m! , with ξm = ∂m χ10

∂tm
|( τ1 0

0 τ2

) .

123
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Since sections of the Hodge bundle on Ã1 are modular forms and since we know that
the operator D sends the ring of quasi-modular forms on SL(2,Z) to itself, it follows
that the terms in the Taylor series ofχ10 onH2 alongH1×H1 are quasi-modular forms.
Using the definition in terms of even theta constants we can calculate the expansions
of χ10 and χ5.

Lemma 5.2 We have ξm = 0 for every odd m. The first three non-zero coefficients of
χ10 = ∑∞

m=0 ξm tm/m! are

ξ2 = 2� ⊗ �, ξ4 = 2�e2 ⊗ �e2 ,

and

ξ6 = 1

24

(
−7�e4 ⊗ �e4 + 65�e22 ⊗ �e22 − 5 (�e4 ⊗ �e22 + �e22 ⊗ �e4)

)
.

Here we use the shorthand f ⊗ g instead of f (τ1) ⊗ g(τ2).

Similarly, for the development of χ5 as a Taylor series in the normal direction we
need the square root of � which is the modular form

δ = q1/2
∞∏
n=1

(1 − qn)12

of weight 6 on the congruence subgroup �1(2). If we use s = π iτ12 as the normal
coordinate then we find the development

χ5(τ ) = −2 δ ⊗ δ s − 1

3
δe2 ⊗ δe2 s

3 + · · ·.

The second form that plays a central role is the form χ6,8 (and its relative χ6,3).
We defined this vector-valued Siegel modular form of weight (6, 3) with character ε

on �2 in the paper [7, Example 16.1] using the gradients of the six odd theta series
ϑmi (τ, z) (i = 1, . . . , 6) with characteristics in degree 2:

χ6,3 = c · Sym6(G1, . . . ,G6) with Gi (τ ) =
(

∂ϑmi /∂z1
∂ϑmi /∂z2

)
(τ, (0, 0)) ; (3)

here the constant c ∈ C
∗ is chosen such that the Fourier expansion of χ6,3 starts with

χ6,3(τ ) =

⎛
⎜⎜⎜⎝

0
0

(R−R−1)

(2R+2R−1)

(R−R−1)
0
0

⎞
⎟⎟⎟⎠ Q1Q2 + · · · , (4)

where Q1 = eiπτ1 , Q2 = eiπτ2 and R = eiπτ12 . The form χ6,3 is a modular form
of weight (6, 3) with character ε on �2. (For the coordinates chosen on Sym6 we

123



1658 F. Cléry et al.

refer to the beginning of Section 3.) Alternatively, it can be viewed as a form on the
level 2 principal congruence subgroup �2[2] that is invariant under the action of the
alternating group A6. We define χ6,8 ∈ S6,8(�2) as the product χ6,3χ5.

Using the definition with the gradients we find the Taylor expansion of χ6,3 in the
normal direction along H1 × H1 with s = π iτ12 as coordinate:

χ6,3(τ ) =
⎛
⎜⎝

0
0
0

4 δ⊗δ
0
0
0

⎞
⎟⎠ +

⎛
⎜⎝

0
0

2 e2δ⊗δ
0

2 δ⊗e2δ
0
0

⎞
⎟⎠ s +

⎛
⎜⎜⎜⎝

0
2
3 (e22−e4)δ⊗δ

0
4 e2δ⊗e2δ

0
2
3 δ⊗(e22−e4)δ

0

⎞
⎟⎟⎟⎠

s2

2! + · · · .

This gives then the Taylor development of χ6,8 in the normal direction with coor-
dinate t = 2π iτ12:

χ6,8(τ ) = −
⎛
⎜⎝

0
0
0

4�⊗�
0
0
0

⎞
⎟⎠ t −

⎛
⎜⎝

0
0

e2�⊗�
0

�⊗e2�
0
0

⎞
⎟⎠ t2 −

⎛
⎜⎜⎜⎝

0
2(e22−e4)�⊗�

0
16e2�⊗e2�

0
2�⊗(e22−e4)�

0

⎞
⎟⎟⎟⎠

t3

3
+ · · · .

The modular form χ6,8 was first given by Ibukiyama using theta series with pluri-
harmonic coefficients, see [12]. It is the first vector-valued (non scalar-valued)modular
form if one orders them according to Deligne weight (= j + 2k − 3).

6 Modular forms associated to covariants

Recall from Sect. 4 the inclusions

M −→ C
c−→Mχ10 .

We wish to describe the map c explicitly. For this we consider the meromorphic
modular form χ6,3/χ5 of weight (6,−2) (without character). It is holomorphic on
Ã2 − A1,1, hence defines by Corollary 4.1 under pullback a covariant, a section of
Sym6(V ). Up to a non-zero multiplicative scalar r we thus find the tautological f (see
Example 3.1), hence

r c( f ) = χ6,3

χ5
.

We will discard the factor r and assume that r = 1 by normalizing f appropriately.
But every covariant can be constructed from f . In fact, let h be a covariant associated
to the irreducible representation A[p + q, q] in Symd(Sym6(V )). It can be viewed
as a form of degree d in a0, . . . , a6, the coefficients of f , and of degree p in the
coordinates x1 and x2, or simply as a vector of length p + 1 with entries which are
polynomials of degree d in a0, . . . , a6.
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Nowwrite theFourier expansionofχ6,3 as a vector (α0, 6α1, 15α2, 20 α3, . . . , α6)
t ,

or more symbolically as

χ6,3 =
6∑

i=0

(
6

i

)
αi X

6−i Y i ,

where αi is a Fourier series in Q1, Q2 and R and R−1, and the X6−i Y i indicate the
coordinate places. Define a map

γ : C → M, h �→ Fh,

where Fh is obtained by substituting αi for ai in h. When h is viewed as a vector of
length p+1 this gives the p+1 entries of a holomorphic vector-valued modular form
Fh of weight (p, q + 3d). In particular, we have

c(h) = γ (h)/χd
5

and we see that the order of c(h) alongH2
1 is≥ −d. Using the expansion of χ6,3 and χ5

alongH2
1 given in Section 5 we can calculate the order ν(Fh) of Fh alongH2

1. Division

by χ
ν(Fh)
5 yields a holomorphic modular form on �2 (with or without a character) of

weight (p, q + 3d − 5ν(Fh)).

Conclusion 6.1 Every vector-valued modular form of given weight on �2 can be
constructed from a covariant by substituting the Fourier coefficients of χ6,3 and by
multiplying with an appropriate power of χ5. The same holds for modular forms on
�2 with a character.

We shall see in the next sections that this gives a very effective way of constructing
the Fourier expansions of vector-valued modular forms of degree 2. In fact, we can
calculate the Fourier expansion of χ6,3 and χ5 easily as these are given in terms of
theta functions.

Remark 6.2 The central role that χ6,3 plays can be explained as follows. It is well-
known that for a smooth curve C of genus 2 there are six symmetric translates of the
theta divisor, each isomorphic toC , in the Jacobian Jac(C) passing through the origin.
The tangents to these six curves give six points in the projectivized tangent space at the
origin, that is, six points on P1. That is the way to retrieve the sextic as was remarked
by Bolza, see [3, p. 481]. In terms of odd theta characteristics this means that if we
write the Taylor expansion of the odd theta functions as

ϑmi = ci,1 z1 + ci,2 z2 + higher order terms,

then we get the form χ6,3 up to a normalization as the product of these linear terms

χ6,3 ∼
6∏

i=1

(ci,1z1 + ci,2z2) = c1,1 · · · c6,1z61 + · · · + c1,2 · · · c6,2z62 .
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7 Construction of modular forms

In this section we give examples of constructions of vector-valued and scalar-valued
modular forms using covariants. Our point of departure is the Fourier expansion of
χ6,3 that we calculated as in (4) as a series in Q1 and Q2 up to Qa

1Q
b
2 with a+b ≤ 170.

d = 2
We start with d = 2, see Example 3.2. Covariants associated to the isotypical

decomposition

Sym2(Sym6(V )) = A[12, 0] + A[10, 2] + A[8, 4] + A[6, 6]

provide by the construction given above modular forms in S12,6, S8,8, S4,10 and S0,12.
Notice that all the latter spaces are one dimensional. The modular form in S12,6 is the
square of χ6,3 and this gives us its Fourier expansion immediately.

The covariant corresponding to A[10, 2] is (up to a scalar) the Hessian and we
thus find a modular form χ8,8 ∈ S8,8 with coordinates (symmetric in the sense that
interchanging αi and α6−i reverses the vector)

(α0α2 − α2
1, 4α0α3 − 4α1α2, 6α0α4 + 4α1α3 − 10α2

2, 4α0α5 + 16α1α4 − 20α2α3,

α0α6 + 14α1α5 + 5α2α4 − 20α2
3, . . . , α4α6 − α2

5)

which we normalize such that its Fourier expansion starts with:

χ8,8(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

(r−2+r−1)

3(r−r−1)

(4 r+10+4 r−1)

3(r−r−1)

(r−2+r−1)
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
q1q2 + . . . ,

where as before q1 = e2iπτ1 , q2 = e2iπτ2 and r = e2iπτ12 . By restriction alongH1×H1
we find a non-zero multiple of the transpose of (0, . . . , 0,� ⊗ �, 0, . . . , 0) which
shows that χ8,8 is not divisible by χ5. Similarly, the covariant yielding a modular form
in S4,10 has coordinates that are reversed under interchanging αi and α6−i

(α0α4 − 4α1α3 + 3α2
2, 2α0α5 − 6α1α4 + 4α2α3, α6α9

−9α2α4 + 8α2
3, . . . , α2α6 − 4α3α5 + 3α2

4).

We normalize the resulting form χ4,10 such that

χ4,10(τ ) =
⎛
⎜⎝

(r−2+r−1)

2(r−r−1)

3(r+6+r−1)

2(r−r−1)

(r−2+r−1)

⎞
⎟⎠ q1q2 + · · · .
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Its restriction to H1 × H1 is a non-zero multiple of (0, 0,� × �, 0, 0)t , and we thus
cannot divide by χ5. Finally, we get a non-zero form in S0,12 by taking

χ12 = α0α6 − 6α1α5 + 15α2α4 − 10 α2
3

which we normalize so that it starts with χ12(τ ) = (r + 10 + 1/r)q1q2 + · · · . One
immediately gets the Fourier expansion of χ12.

In all these cases we checked the Fourier expansion by calculating Hecke eigen-
values for the Hecke operators T (p) for primes p ≤ 23 and verified that these fit with
the values provided by [8] and [1]. We give the Hecke eigenvalues for χ8,8 and χ12,6
in a table in Section 10.

d = 3
In this case we have the isotypical decomposition

Sym3(Sym6(V )) = A[18, 0] + A[16, 2] + A[15, 3] + A[14, 4]
+A[13, 5] + 2 A[12, 6] + A[10, 8]

which by the procedure of the last section leads to modular forms of weights
(18, 9), (14, 11), (12, 12), (10, 13), (8, 14), (6, 15) and (2, 17) on the group �2 with
a character. If these forms are divisible by χ5 or χ10 we will find forms of smaller
weight. Note that in the case of weight (6, 15) we find a 2-dimensional space of mod-
ular forms. In the cases of weight (18, 9), (14, 11), (10, 13), (2, 17) the restriction of
the corresponding form to H1 ×H1 is a non-zero multiple of the transpose of a vector
of the form

(0, . . . , 0,�δ ⊗ �δ, 0, . . . , 0)

and thus gives non-zero modular forms and these forms are not divisible by χ5. We
analyze the remaining three cases. In the case of weight (12, 12) our form vanishes
with order 2 on H2

1; dividing by χ10 yields a form χ12,2 on �2 with character whose
Fourier expansion starts with

χ12,2(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

2(R − R−1)

9(R + R−1)

12(R − R−1)

0
−12(R − R−1)

−9(R + R−1)

−2(R − R−1)

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q1Q2 + · · · .
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Note that its square Sym2χ12,2 is the generator of the space S24,4. Similarly, in the
case of weight (8, 14) our form vanishes with order 2 along H2

1 and by dividing by
χ10 we find a form of weight (8, 4) with character.

The representation A[12, 6] occurs with multiplicity 2 in Sym3(Sym6(V )) and we
thus can find two linearly independent covariants, say h1 and h2. The general linear
combination of these two gives a modular form that upon restriction to H2

1 yields a
non-zero multiple of the transpose of

[0, 0, 0, η12 �(τ1) ⊗ η12 �(τ2), 0, 0, 0] .

The linear combination that vanishes along H2
1 vanishes with multiplicity 2 and by

division by χ10 we find the cusp form that generates the space of cusp forms of weight
(6, 5) with character and its Fourier expansion starts with

χ6,5(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(R − R−1)

6(R + R−1)

5(R − R−1)

0
5(R − R−1)

6(R + R−1)

2(R − R−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q1Q2 + · · · .

8 Further examples

Here we look at a few cases with d = 4 and d = 5.
d = 4

We have the isotypical decomposition

Sym4(Sym6(V )) = A[24, 0] + A[22, 2] + A[21, 3]
+ 2 A[20, 4] + A[19, 5] + 3 A[18, 6]
+ A[17, 7] + 3 A[16, 8] + A[15, 9]
+ 2 A[14, 10] + 2 A[12, 12] .

We then use the covariants to construct modular forms from χ6,3. By calculating the
behavior along H2

1 we can deduce the orders of vanishing along H2
1.

We claim that the following table gives the orders of the corresponding modular
forms alongH2

1. If themultiplicityμm,n is greater than 1we list the orders of vanishing
occurring in the μm,n-dimensional space of covariants.

From this table one can read off what modular forms can be constructed. For
example, for the representation A[18, 6] (resp. A[16, 8]) we find multiplicity 3, hence
a 3-dimensional space of cusp forms of weight (12, 18) (resp. weight (8, 20)). We
can calculate generating modular forms using the expressions for the covariants and
observe that in both cases there is a 2-dimensional subspace of forms vanishing with
order 2 along H2

1. Dividing these forms by χ10 yields a 2-dimensional space of cusp
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[m, n] μm,n weight order

[24,0] 1 (24,12) 0
[22,2] 1 (20,14) 0
[21,3] 1 (18,15) 2
[20,4] 2 (16,16) 0,2
[19,5] 1 (14,17) 2
[18,6] 3 (12,18) 0,2,3
[17,7] 1 (10,19) 2
[16,8] 3 (8,20) 0,2,3
[15,9] 1 (6,21) 2

[14,10] 2 (4,22) 0,2
[12,12] 2 (0,24) 2,4

forms of weight (12, 8) (resp. (8, 10)). By analyzing their behavior along H2
1 we see

that there is a 1-dimensional subspace vanishing along H2
1 and division by χ5 leads

to a cusp form of weight (12, 3) (resp. (8, 5)) with character. Alternatively, from the
vanishing/non-vanishing of spaces of cusp forms (with/without a character) one can
read off the orders of vanishing.

We give the details for A[16, 8]. We find a 3-dimensional space of cusp forms γ (h)

in M as h ranges over the space of covariants associated to d = 4 and A[16, 8]. The
generic element yields [0, . . . , 0,�2 ⊗ �2, 0, . . . , 0] when restricted to H2

1 and there
is a 2-dimensional space of forms of weight (8, 10) vanishing at least doubly on H2

1.
Division by χ10 gives the 2-dimensional space of cusp forms of weight (8, 10) and it
is generated by G1 and G2 with Fourier expansions

G1(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(r − 2 + r−1)

4(r − r−1)

(9 r + 34 + 9 r−1)

13(r − r−1)

15(r − 2 + r−1)

13(r − r−1)

(9 r + 34 + 9 r−1)

4(r − r−1)

(r − 2 + r−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q1q2 + · · · , G2(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(r − 2 + r−1)

12(r − r−1)

2(11 r + 26 + 11 r−1)

24(r − r−1)

25(r − 2 + r−1)

24(r − r−1)

2(11 r + 26 + 11 r−1)

12(r − r−1)

3(r − 2 + r−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q1q2 + · · · .

The action of the Hecke operator T2 on G1 and G2 is as follows:

G1|8,10T2 = 8160G1 − 4080G2, G2|8,10T2 = −2880G1 − 720G2.

We get two Hecke eigenforms in S8,10, namely χ
(±)
8,10 = (37 ± √

2185)G1 − 34G2,

on which the Hecke operator T2 acts with eigenvalues (3720 ± 120
√
2185).

For the case of A[18, 6], leading to modular forms of weight (12, 18) and after
division by χ10 to the 2-dimensional space of cusp forms of weight (12, 8), the story
is very similar and we can calculate the Fourier expansions and Hecke eigenvalues as
well. We list these eigenvalues for weight (8, 10) and (12, 8) in the following table.
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q λq (χ±
8,10) λq (χ±

12,8)

2 3720 ± 120
√
2185 −768 ± 192

√
1381

3 674280 ∓ 18720
√
2185 86616 ± 20736

√
1381

4 −945536 ∓ 28800
√
2185 790528 ∓ 147456

√
1381

5 −70706100 ± 8188800
√
2185 362491500 ∓ 5145600

√
1381

7 −11441284400 ∓ 446644800
√
2185 14252364592 ∓ 459468288

√
1381

The restriction of G1 (resp. G2) to H2
1 is 52 (resp. 96) times the transpose of

[0, 0, e4� ⊗ �, 0, 0, 0,� ⊗ e4�, 0, 0]

so G1/52 − G2/96 vanishes on H2
1 and dividing it by χ5 gives the unique cusp form

of weight (8, 5) on �2[2] which is S6-anti-invariant.
Finally, in the case of A[12, 12] we find a 2-dimensional space of cusp forms of

weight (0, 24). Every modular form in this space restricts to a multiple of �2 ⊗ �2

and there is a linear combination that vanishes on H2
1 and it is a multiple of E4 χ2

10.
Thus we see that by dividing by χ2

10 we get the Eisenstein series of weight 4.

d = 5
We list the irreducible representations occurring in the isotypical decomposition

for d = 5 in a table together with their multiplicities, the weight of the corresponding
modular forms and the orders of vanishing along H2

1.

[m, n] μm,n weight order [m, n] μm,n weight order

[30,0] 1 (30,15) 0 [22,8] 4 (14,23) 0,2,3,4
[28,2] 1 (26,17) 0 [21,9] 3 (12,24) 2,3,4
[27,3] 1 (24,18) 2 [20,10] 4 (10,25) 0,2,3,4
[26,4] 2 (22,19) 0,2 [19,11] 2 (8,26) 2,3
[25,5] 2 (20,20) 2,3 [18,12] 4 (6,27) 0,2,3,4
[24,6] 3 (18,21) 0,2,3 [17,13] 1 (4,28) 2
[23,7] 2 (16,22) 2,3 [16,14] 2 (2,29) 0,4

We give the details for the case of λ = (18, 12), where the 4-dimensional space
of covariants produces modular forms of weight (6, 27) with character. We find a 2-
dimensional subspace of modular forms vanishing with multiplicity≥ 3, and dividing
these by χ3

5 produces a basis of S6,12 which is of dimension 2. The two basis elements
G1 and G2 have Fourier expansions starting with

G1(τ ) =

⎛
⎜⎜⎜⎜⎜⎝

2(r+10+r−1)

6(r−r−1)

33(r−2+r−1)

56(r−r−1)

33(r−2+r−1)

6(r−r−1)

2(r+10+r−1)

⎞
⎟⎟⎟⎟⎟⎠
q1q2 + · · · , G2(τ ) =

⎛
⎜⎜⎜⎝

0
0

(r−2+r−1)

2(r−r−1)

(r−2+r−1)
0
0

⎞
⎟⎟⎟⎠ q1q2 + · · · .
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One calculates the action of the Hecke operator T2 and finds

G1|6,12T2 = −2592G1 + 254016G2, G2|6,12T2 = −480G1 + 24960G2

and obtains eigenforms χ
(±)
6,12 = (−41 ± √

601)G1 + 756G2.
In a similar way one finds a basis for the 2-dimensional spaces of cusp forms

S14,8, S12,9 and S10,10. One thus can calculate Hecke eigenvalues from the Fourier
expansions. We give the results in the tables in Sect. 10.

The cusp form G2 vanishes identically along H2
1 and G2/χ5 generates the 1-

dimensional space S6,7(�2, ε).

9 A final example: the space S4,16

In this section we illustrate the effectivity of our approach and show how one can
use covariants to construct a basis for the 3-dimensional space S4,16 and use this to
calculate eigenvalues for the Hecke operators.

In the decomposition of Sym8(Sym6(V )) the irreducible representation A[26, 22]
of GL(2,C) occurs with multiplicity 7. By the construction of Section 6 this leads
to a 7-dimensional subspace of S4,46 vanishing with multiplicity ≥ 8 at the divisor
at infinity. All restrictions to H2

1 of the cusp forms associated to the corresponding
covariants are multiples of the transpose of [0, 0,�4 ⊗ �4, 0, 0]. In fact, we find a
6-dimensional subspace of forms vanishing with order ≥ 2 along H2

1. Dividing these
forms by χ10 leads to a 6-dimensional space of cusp forms of weight (4, 36). These
forms restrict to multiples of the transpose of [e4 �3 ⊗�3, 0, 0, 0,�3 ⊗ e4 �3]. Thus
there is a 5-dimensional subspace of forms of weight (4, 36) vanishing along H2

1 and
these all vanish with multiplicity ≥ 2 along H2

1. We divide again by χ10 to get a 5-
dimensional space of cusp forms of weight (4, 26). All the forms in this space restrict
to multiples of the transpose of [0, 0, e4�2 ⊗ e4�2, 0, 0] along H2

1. This leads to a
4-dimensional space of cusp forms vanishing with multiplicity ≥ 1 along H2

1 and we
divide these by χ5 to find a 4-dimensional space of cusp forms of weight (4, 21) with
character. Since all these forms restrict to a multiple of the transpose of [0, e6δ� ⊗
e4δ�, 0, e4δ�⊗e6δ�, 0] it contains a 3-dimensional subspace of cusp forms vanish-
ing alongH2

1. Division by χ5 leads to the 3-dimensional space of cusp forms of weight
(4, 16). We normalize these forms such that their Fourier expansion starts with

E1(τ ) =

⎛
⎜⎜⎜⎝

(r+10+r−1)

2(r−r−1)

3(r−2+r−1)

2(r−r−1)

(r+10+r−1)

⎞
⎟⎟⎟⎠ q1q2 +

⎛
⎜⎜⎜⎝

2(7 r2+308 r+2106+308 r−1+7 r−2)

4(7 r2+214 r−214 r−1−7 r−2)

2(27 r2+504 r−1062+504 r−1+27 r−2)

4(10 r2+76 r−76 r−1−10 r−2)

2(5 r2+76 r+1134+76 r−1+5 r−2)

⎞
⎟⎟⎟⎠ q21q2 + · · ·

E2(τ ) =

⎛
⎜⎜⎜⎝

(r+10+r−1)

2(r−r−1)

3(r−14+r−1)

2(r−r−1)

(r+10+r−1)

⎞
⎟⎟⎟⎠ q1q2 +

⎛
⎜⎜⎜⎝

2(−11 r2+596 r+1566+596 r−1−11 r−2)

4(11 r2+1006 r−1006 r−1−11 r−2)

2(9 r2+2088 r+5310+2008 r−1+9 r−2)

4(10 r2+76 r−76 r−1−10 r−2)

2(5 r2+76 r+1134+76 r−1+5 r−2)

⎞
⎟⎟⎟⎠ q21q2 + · · ·
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E3(τ ) =

⎛
⎜⎜⎜⎝

(5 r+104+5 r−1)

10(r−r−1)

(15 r−138+15 r−1)

10(r−r−1)

(5 r+104+5 r−1)

⎞
⎟⎟⎟⎠ q1q2

+

⎛
⎜⎜⎜⎝

2(35 r2+3808 r+18306+3808 r−1+35 r−2)

4(35 r2+3338 r−3338 r−1−35 r−2)

2(243 r2+8568 r+10890+8568 r−1+243 r−2)

4(104 r2+1892 r−1892 r−1−104 r−2)

8(13 r2+473 r+2106+473 r−1+13 r−2)

⎞
⎟⎟⎟⎠ q21q2 + · · ·

The restrictions of the Ei along the diagonal are the transposes of 12 [e24� ⊗
e4�, 0, 0, 0, e4� ⊗ e24�], 12 [e24� ⊗ e4�, 0,−3e6� ⊗ e6�, 0, e24� ⊗ e4�] and
6 [19e24� ⊗ e4�, 0,−18e6� ⊗ e6�, 0, 19e24� ⊗ e4�]. So the orders of vanishing
along H2

1 in the 7-dimensional space of cusp forms of weight (4, 46) that is the image
under the map γ of the covariants given by A[26, 22] are {0, 2, 4, 5, 6, 7}. Finally we
remark that the form (E1/12+ E2/26− E3/78)/χ5 gives a cusp form that generates
the space of cusp forms of weight (6, 11) with character.

Using the Fourier expansions that we got we can calculate Hecke eigenvalues. Let
α be a root of the irreducible polynomial P = x3 − 1042 x2 + 215915 x + 6800500
in Q[x]. This field has discriminant 43803704 and a basis of the ring of integers of
K = Q(α) is given by 1, α and β = (1/16785)α2 + (1062/1865) α + 3007/3357.
Then a Hecke eigenform χ4,16 = χ

(α)
4,16 with integral Fourier coefficients is given by

χ4,16 = (405064α − 662955β + 1366955) E1 + 435α E2

+ (−61595α + 100650 β − 210400) E3 .

The Hecke eigenvalues generate the totally real field Q(α) of degree 3 over Q of
discriminant 43803704. We give some Hecke eigenvalues for this form.

q λq (χ4,16)

2 192α

3 −497664α + 311040 β + 103935960
4 157261824α − 230584320 β − 11214073856
5 −15895326720α + 27887846400 β − 41100006690
7 −7428303065088α + 12024244661760 β + 44274749992240
9 160404429828096α − 252069882854400 β − 377719068915351

Harder predicted in [11] congruences between elliptic modular forms and Siegel
modular forms. In the case at hand, the critical value at s = 20 of the L-series
�(s)(2π)−s L( f, s) of a Hecke eigenform f = ∑

n a(n)qn of weight 34 for SL(2,Z)

is divisible by the prime 1571 and therefore we expect for every prime p a congruence
of the form
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λp(χ4,16) ≡ p14 + a(p) + p19 mod � ,

where � is a prime dividing 1571 in the composite of the fieldsQ(α) andQ(
√
2356201)

of eigenvalues λp(χ4,16) of χ4,16 and a(p) of f for appropriate choices of the eigen-

forms χ
(α)
4,16 and f . One checks that the norm of λp(χ4,16) − (p14 + a(p) + p19) is

indeed divisible by 1571 for p = 2, 3, 5 and 7. More precisely, we let fa ∈ S34(�1)

be the form

fa = q + a q2 + (−22140 − 312 a) q3 + · · ·

with a being a root of Q = x2+121680 x−8513040384. Theminimal polynomials P
and Q of a andα split inF1571[x] as (x−851)(x−7) and (x−63)(x−1146)(x−1404).
One sees that the congruence is satisfied for the modular forms fa and χ4,16 = χ

(α)
4,16

for p = 2, 3, 5 and 7 for the pair (a, α) corresponding to (851, 63) mod 1571 only.

10 Tables

In this section we give the Hecke eigenvalues of some modular forms constructed
above using covariants. We checked that these eigenvalues are consistent with the
results of [1,2,8]. The form χ8,8 generates S8,8 and χ12,6 generates S12,6. The forms
χ+
6,12, χ

−
6,12 form a basis of the 2-dimensional space S6,12; similar notation is used for

weights (10, 10), (12, 9) and (14, 8).

q λq (χ8,8) λq (χ12,6)

2 1344 −240
3 −6408 68040
4 28672 1118464
5 −30774900 1476510
7 451366384 −334972400
9 −3092097159 −5279708871

11 13030789224 3580209624
13 −328006712228 91151149180
17 5520456217764 −11025016477020
19 −28220918878760 −22060913325080
23 79689608755152 195863810691120

q λq (χ±
6,12) λq (χ±

10,10)

2 11184 ± 336
√
601 11400 ± 120

√
11041

3 −167832 ∓ 157248
√
601 480600 ± 4320

√
11041

4 −26121728 ± 5451264
√
601 149854336 ± 339840

√
11041

5 −554158500 ± 77280000
√
601 −1325429700 ∓ 25276800

√
11041

7 −28518281456 ± 177641856
√
601 236903926000 ∓ 658324800

√
11041
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q λq (χ±
12,9) λq (χ±

14,8)

2 −6216 ± 72
√
25249 −2016 ± 96

√
9961

3 1074168 ∓ 16416
√
25249 2762568 ± 18432

√
9961

4 −40492928 ∓ 784512
√
25249 −80611328 ± 1050624

√
9961

5 −1795354500 ± 3600000
√
25249 −951372900 ∓ 12134400

√
9961

7 −147859080656 ∓ 507187008
√
25249 87767118544 ∓ 804225024

√
9961

Using these tables one can check Harder’s conjecture [11] on the existence of con-
gruences between Siegel modular forms and elliptic modular forms. In [9, p. 240]
one finds for the cases of weights (6, 12), (10, 10), (12, 9) and (14, 8) predicted con-
gruences with the eigenform f ±

28 ∈ S28(�1) modulo 823, 157, 4057 and 647. The
congruence for the eigenvalues for T2 was checked in [9, p. 239] and one can verify
that these congruences hold for the eigenvalues of T3, T5 and T7 as well. For example
for ( j, k) = (12, 9), Harder predicts for every prime p a congruence

λ(p) ≡ pk−2 + a(p) + p j+k−1 mod �

for the Hecke eigenvalues λ(p) and a(p) of a pair (F, f )with F equal to an eigenform
in S12,9(�2) and f an eigenform in S28(�1), where � is a prime dividing 4057 in the
composite of the fields of eigenvalues of f ±

28 and χ±
12,9. One checks that the norm of

147859080656 + 507187008
√
25249 + 77

−87695981800 − 809077248
√
18209 + 720

in Q(
√
25249,

√
18209) is divisible by 4057.
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