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Abstract In this paper we generalize and improve a recently developed domain
decomposition preconditioner for the iterative solution of discretized Helmholtz
equations. We introduce an improved method for transmission at the internal bound-
aries using perfectly matched layers. Simultaneous forward and backward sweeps
are introduced, thereby improving the possibilities for parallellization. Finally, the
method is combined with an outer two-grid iteration. The method is studied the-
oretically and with numerical examples. It is shown that the modifications lead to
substantial decreases in computation time and memory use, so that computation times
become comparable to that of the fastests methods currently in the literature for
problems with up to 10® degrees of freedom.

Keywords Helmbholtz equation - Domain decomposition - Multigrid method -
High-frequency waves - Perfectly matched layers
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1 Introduction

The linear systems resulting from discretizing the high-frequency Helmholtz equa-
tion have been a challenge for mathematicians for a long time [6, 7]. A class of
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46 Christiaan C. Stolk

methods that recently gained much attention is that of sweeping domain decompo-
sition preconditioners and related methods [4, 5, 12, 15, 21, 23]. In this paper we
consider the improvement and generalization of one such method, namely a double
sweep method using the perfectly matched layer (PML) at the interfaces, described
in [15].

To be specific, we consider the Helmholtz equation in two and three dimensions.
In two dimensions it reads

— 07 u(x, y) — O u(x, y) — k(x, »u(x, y) = f(x, y), (1)

where k(x, y) = C(XL}), with ¢(x, y) the wave speed. The computational domain is
assumed to be a rectangle that is truncated using perfectly matched layers, or classical
damping layers. We consider finite difference or finite element discretizations on
regular meshes that result in a compact stencil, i.e. a3 x 3 or 3 x 3 x 3 square or
cubic stencil depending on the dimension. Accurate discretizations of this type are
possible, see e.g. [16, 19]. Thus we generalize the results of [15] involving second
order finite differences.

Domain decomposition methods for the Helmholtz equation typically follow, to
an extent depending on numerical approximations, the principles that:

(i) the boundary conditions at the subdomain interfaces should be non-reflecting;

(i) if QY=Y and Q) are neighboring subdomains then the outgoing wave field
from QU= should equal the incoming wave field in Q) at the joint boundary
and vice versa. 2)

The use of Robin or numerical absorbing boundary conditions at the interfaces is one
way to do this, see e.g. [8, 21] and references. Another way is using PML boundary
layers [14, 15], the method we will use here (in modified form).

Double sweep domain decomposition is distinguished from other domain decom-
position methods by the ordering of the subdomain solves. Here the subdomains are
chosen as parallel slices of the original domain, say numbered from 1 to J. The sub-
domain solutions are computed first for j = 1, ..., J subsequently, this is called the
forward sweep, and then for j = J, J — 1, ..., | subsequently, called the backward
sweep. In this way information can propagate over the entire domain in one precondi-
tioner application. The condition that information can propagate over at least an O (1)
part of the domain is necessary to achieve a good approximation of the true solution.

In this paper we consider three modifications to the method of [15]. The first con-
cerns the transmission of information between neighboring subdomains using PML
layers. It was observed in [15] that at the onset of the PML layer the field is approx-
imately outgoing and that in the next subdomain, a similar ingoing field can be
reproduced using a planar source proportional to the outgoing field. We modify the
way this is done compared to [15]. The new method is more generally applicable
and prevents the planar source radiating into the added absorbing layer, which is an
advantage because these layers are in general not perfectly absorbing.

The second is the use of simultaneous forward and backward sweeps as opposed
to consecutive ones. This idea has been previously tried with other types of domain
decomposition in [20]. We find that this improves the possibilities for parallellization
at very little cost.
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An improved sweeping domain decomposition preconditioner 47

The third modification is the most interesting from the point of view of com-
putational cost. We propose to combine the domain decomposition with a two-grid
method, in such a way that the exact inverse at the coarse level of a two-grid pre-
conditioner is replaced by an approximate inverse given by a domain decomposition
preconditioner. The result will be called a two-grid sweeping preconditioner (TGSP).
The idea is reminiscent of inner-outer iteration methods. However, we consider only
a single inner iteration. As a result our preconditioner is a linear map.

Motivating this is the observation that a single iteration of the domain decom-
position preconditioner is considerably more expensive than a single two-grid or
multigrid iteration, compare e.g. the computation times in [3, 12]. As a consequence,
a single iteration of a TGSP is considerably cheaper than a single domain decompo-
sition iteration. But can TGSP also lead to convergence in few iterations? Here recent
results on multigrid methods for the Helmholtz equation enter. In [17] a class of
multigrid methods for the Helmholtz equation with very good convergence is studied,
based on certain optimized finite difference discretizations used at the coarse level
of the multigrid method. The numerical examples below show that the good con-
vergence properties carry over to the TGSP method, i.e. when the exact coarse level
solver is replaced by a domain decomposition preconditioner. The idea of combin-
ing a solver with an outer two grid iteration was previously studied, using a different
setup, in [3].

A technical complication is the use of multigrid in the presence of PML layers.
This generally requires specifically designed multigrid methods, e.g. in [3] a nonlin-
ear smoother is used. In this paper we propose two alternatives. The first is the use
of classical absorbing layers, also called sponge layers, instead of PML layers. The
second is a modification in the mesh coarsening in the PML layers. In this case the
use of PML layers of just a few grid cells wide remains possible. The sponge layers
are considerably thicker than the PML layers, e.g. 35 points for the sponge layers in
[13], versus around 4 points for the PML layer.

A theoretical result concerning the domain decomposition method with new trans-
mission and simultaneous forward and backward sweeps is presented. We show that
the method produces an exact solution on the strip with constant k, similar to the
domain decomposition method of [15].

We then study the method using numerical examples. In 2-D we study problems
with up to 7 - 10° degrees of freedom, and in 3-D with up to 10% degrees of freedom.
In both cases it is possible to use quite thin PML layers for the domain decomposition
preconditioner, e.g. wpm = 3 or 4 grid cells thick. The convergence of the method
changes very little when simultaneous forward and backward sweeps are used, com-
pared to executing them after each other. We show that for the 3-D examples the
two-grid accelerated method indeed leads to a large reduction in computational cost
compared to the “pure” sweeping method, and becomes comparable in computation
time to the fastest methods in the literature.

The setup of the paper is as follows. In Section 2 we describe the double sweep
domain decomposition method, including the modified transmission and simultane-
ous forward and backward sweeps. A theorem describing the behavior of this method
on a strip with constant k is given in Section 3. We then describe in Section 4 the
two-grid sweeping preconditioner. In Section 5 the implementation will be briefly
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48 Christiaan C. Stolk

discussed. Section 6 contains the numerical results. In Section 7 a brief discussion of
our results and possible further developments is given. In an Appendix we discuss the
discretization of the operators when PML layers and multigrid are combined using
modified mesh coarsening in the PML layers.

2 A modified domain decomposition method
In this section we introduce the modified domain decomposition method.
2.1 Continuous formulation

We will formulate the method first in the continuous setting. We assume the domain
is a rectangle Q =]0, L[x]0, 1[. It is straightforward to generalize this to other 2-D
and 3-D rectangular domains.

The Helmbholtz operator will be denoted by A, and is given away from the PML
or sponge boundary layers by

A=—37 — 0], —k(x,y)%. A3)
In a PML layer at a boundary, say x = constant, it is obtained by replacing

0 1 0 @
JR— % _—
ox 1472 9x
w
where o, = 0 in the interior of the domain, and positive inside the PML layers [11].
More specifically, motivated by Eq. 8 of [11] we set

Cpm]x2 forx <0
ox =140 for0 < x < By (®))
Cpmi(x — By)? forx > B,

if the PML layers are added outside the domain x € [0, By ], where Cpm1 = Spm1d3—
pml
with Spm1 is a dimensionless PML strength parameter, ¢ pm is a typical velocity, and

dpmi the thickness of the PML layer. In a sponge boundary layer, the constant k is
replaced by k(1 + iB(x, y)). This results in exponential decay of solutions inside
the damping layer, by a factor (in 1-D) of approximately e~ [ M) dx The function
B was chosen continuous and quadratically increasing so that in the sponge layer a
damping on the order of 1072 to 10~ resulted (note that reflecting waves pass this
layer twice). Variations in S lead to reflections. To make sure that the reflected energy
is small, the sponge layers were several wave lengths wide.

Note that absorbing layers of the original domain in general differ from those
introduced in the domain decomposition. In the domain decomopsition we always
use PML layers, of thickness wpmi = 3,4 or 5 grid points. For the original domain
we choose between sponge and PML boundary layers.

We assume the domain is divided in J subdomains 1b;_1, b;[x]0, 1[, with

O=by<...<bj=1L, (6)
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An improved sweeping domain decomposition preconditioner 49

i.e. a partition along the x-axis. This partition of the domain will be used for the
forward sweep. For the backward sweep we assume the domain is divided in J
subdomains ]b; 1, b;[x]0, 1[, with

O=by<...<by=L. 7
It is essential that the b; and the b ; are different and we will assume that
bj <bj <bjs1, j=1,...,0 -1 ®)

(A limited number of experiments has been done with b; < b i < biy1, j =
1,...,J — 1 which indicated the method also works well in this case. Therefore we
will formulate the method for both cases). Subdomains Q) (cf. equation (10) of
[15]) are then defined by

QY =Imin(bj-1,b;-1) — Lemr(1 — 8, 1), max(b;, b;)+Lemr(1 — 8; N[x]0, 1[

)
On the domains Q(/), functions k) (x, y) are defined that agree with k in the non-
PML core of Q) and are independent of x and equal to k at the boundary of the
core subdomain inside the added PML layers, i.e.

. k(x,y) for min(b;_1,b;—1) < x < max(bh;, b))
KD (x, y) = k(min(bj_l,l;j_l), y) forx <min(bj_q, I;j_l) Gfj > 1
k(max(b;, b;), y) for x > max(b;, b;) (if j < J).
(10)

On the domains Q) operators A) are defined as Helmholtz operators with PML
modifications, similar as A was defined on 2.

To derive the method for transmission, we consider the case J = 2. Then, in the
forward sweep, the equation is first solved on Q) with f) = H(b; — x) f as right
hand side, where H denote the Heaviside function. Subsequently it is solved on ©®)
with as right hand side f® = H(x —b1) f plus a contribution from the local solution
on Q) which is to be determined. Suppose v is the solution of ADy™ = F1),
Then, ideally we would like to obtain w such that H(b; — v + w is the true
solution, in other words

AH®by — D +w) = f (11)
(cf. [14]). Then w must satisfy

Aw = f—AHb1—x)v V) = FO—AD(H (b1 —x)vD)+H (b1 —x) ADvD . (12)
To arrive at a domain decomposition method, we observe that the right hand side is

supported in the set x € [by, b] and solve this on Q?), i.e. we solve
APv@ = @ _ AD @By — x)oD) + Hby — x)AD D (13)
The second and third terms on the right hand side amount to the transmission of
information from the solution on subdomain 1 to the equation for subdomain 2.
Below we will show that they generate a forward propagating wave in the subdo-
main x € [by, b>], thereby extending the truncated solution H (b — v, We set

u = vY 4+ v as approximate solution. We show below this can model forward
propagating waves over the entire domain, but not the backward propagating waves.
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50 Christiaan C. Stolk

These can be computed in a backward sweep: solving first on subdomain 2 and then
on subdomain 1. Waves reflecting back and forth between the subdomains can be
obtained in an iterative process.

To denote the contribution from neighboring solutions to the right hand sides of
some subdomain, we will define transmission operators TG and TU ), for the for-
ward and backward sweep respectively. The operator TU) acts on v/~1 defined
on QU—Y (where vU~D must be such that the product H(bj_1 — x)vU=D s well
defined), and is defined by

TW =D — —A("'_l)(H(bjfl _x)v(,i—l) + H(bj— —x)A(j_l)v(j_l), (14)

This is a distribution supported on x = b;_; and hence can be considered a
distribution on /). Similarly we define 7w by

TW U+ — —A(j'H)(H(x _ Ej)w(,i-H) + H(x — gj)A(~i+l)w(j+l). (15)

We can now describe the domain decomposition method with the forward and
backward sweeps performed after each other. By I.¢(q,5) We denote the indica-
tor function which is one for x € [«, 8] and we will assume 7O = 7Y =
0. The domain decomposition preconditioner is then described by the algorithm
SWEEPINGPRECUDCONTINUOUS in Table 1.

Note that the restrictions of g to the subdomains x € [bj_1, b;] are well defined,
because the singular support of v is at the boundaries x = b;. Similarly, the singular
support of the residual f — Au is at the boundaries x = I;.,', so that, in the next
iteration of a preconditioned iterative solver, the restrictions of the residual f — Au
to the sets x € [b;_1, b;] are well defined.

Next we consider the continuous formulation of a domain decomposition method
with simultaneous sweeps. We will also refer to this as intersecting sweeps or X-
sweep, because, in a plot of the subdomain being solved versus the step number in the
algorithm, the resulting graph contains two intersecting lines like a diagonal cross.
We assume that J is even and that this intersection is at a particular subdomain num-
bered jmid, chosen such that jiyig = J/2+ 1. The algorithm for this case is algorithm
SWEEPINGPRECXCONTINUOUS in Table 1. Just like above, the restrictions of g to
the subdomains are well defined because the b; are different from the b e

The resulting solutions u for the algorithms in Table 1 depend linearly on f and
will be denoted by Pyp f and Px f respectively.

2.2 Discrete formulation

For the discrete formulation we assume that A is discretized on a regular or rectilinear
mesh. The mesh is to consist of Ny x N, cells. Because we use Dirichlet boundary
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An improved sweeping domain decomposition preconditioner 51

Table 1 Domain decomposition algorithms in the continuous setting

SWEEPINGPRECUDCONTINUOUS( f)

1 u=0

2 forj=1,...,J

3 solve v from AV v() = Leetp; 1o, f + TWyl=b
4 M:M'f‘[xe[b/-_l,bj]v(j)

5 g=f—Au

6 forj=J,J—-1,...,1

7 solve w( from ADwD =15 5 1g+TDwi+h
8 u =u+1x€[5j71‘};j]w(j)

9 return u

SWEEPINGPRECXCONTINUOUS(f)

1 u=0

2 forj=1,...,J/2

3 solve v¥) from AW () = Ixe[bj,].h,»]f + TWypl=b
4 u=1u-+ ng[;,jfl,b_,.]v(-")

5 if j #1

6 k=J+2—-j

7 solve v® from A®y®) = Ixe[l;k,l,lsklf + TOyk+D
8 u=u+ IXE[Ek—lvl;k]v(k)

9 j=J/2+1

10 solve v¥) from AW () = Ixe[b;

i f A TOWITD Ty
o u=utlg, 50"

12 g=f—Au

13 solve w") from AWV w0 = Ixe[ﬁj,l,bjlg
14 u=u+ Ixe[gj_l.b/]w(j)

15 forj=J/2,0/2—1,...,1

16 solve w/) from AW () = Ixe[li,,],i?‘,‘]g + TWyU+h

17 u=u-+ Ixe{ﬁ,;l,ir,-]w(j)

18 ifj <J/2

19 k=N+1-j

20 solve w® from AP w® = .y, | pyg + THOwED
21 u=u+ Ixe[;,kflybk]w(k)

22 returnu

conditions, there are (Ny — 1) x (Ny — 1) unknowns. If we denote the degrees of
freedom by u; j, we will write the discretized Helmholtz equation as

(Aw)ik = Y a; 7t o (16)
ik
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52 Christiaan C. Stolk

We will assume a compact stencil discretization, i.e. a; ;.- z = 0if [i — il > 1or
lk —k| > 1.
The subdomain boundaries b; and b; are assumed to be at half grid points xg,+1/2
and x G412 The discrete equivalent to the interval ]b; 1, b;[ is therefore the set of
; :

points {xg; 41, ..., xg;}. After the first set of discrete subdomain boundaries f; is
chosen, the second set is defined by

Bo=Bo

Br= Bi (17)

Bi= Bi—1 forj=1,...,J—1

The discretized transmission matrix 7/ is a matrix from the layers with global

coordinates i = B;_1, Bj—1 + 1 in subdomain j — 1, to the layers with the same
(-0
J

out
from the unknown on subdomain j — 1, and operators (Ji;] ))’ to inject (is adjoint
of restriction) into subdomain j. It is straightforward to show that the discretized
transmission operator, defined using (14), is then given by a product

global coordinates in subdomain j. We define operators to extract these layers

A\ . i1
(#) s (1)
where the discrete operator T/) is given by (note that s, § € {0, 1})

0 { 0 whens =s (19)

14s,k; 145,k iAﬂj,1+s,k;ﬁj,1+§,l€ when § — s = +1,

(We use the same notation T/ for the continuous and discrete transmission opera-
tors, from the context it should be clear which one is intended). Let operators fé,ﬂf D
to extract these layers from the unknown on subdomain j + 1, and operators J EI{))’
be defined similarly to extract layers with global coordinates i = f;, ; + 1 from
subdomain j + 1, and to inject them into subdomain j. The discrete transmission

matrix in this case has components

= (j) { 0 when s = s (20)

Vs it5] | FAg 1s.jify45.; When§ —s = +1

(again s, § € {0, 1}).

To map data between subdomains and the full domain we define J (j, a, b) to be
the matrix that maps degrees of freedom u; x withi € {a + 1, ..., b} to the corre-
sponding degrees of freedom for a discrete function defined on Q). The transpose
J(j,a, b)T maps values from the a discrete function on the subdomain to a discrete
function of the full domain.

With these definitions and results we can define algorithms for the discrete domain
decomposition preconditioners that were presented above in the continuous setting. A
few helper algorithms are presented in Table 2. The algorithm SUBDOMSOLVE per-
forms a generic subdomain solve and update including the handling of transmission
data. The argument j is the subdomain number; a, b describe which layers of degrees

@ Springer



An improved sweeping domain decomposition preconditioner 53

Table 2 Helper algorithms

SUBDOMSOLVE(, f, j,a,b,d, b, 11, B, T2, B2, 73, B, T4, Ba)

1 fa=J(j,a,b)f

2 if 7

3 fa=fa+ U TO B
4 if 73

5 fa= fa+ (F) TV Bs
6 ug= (AT fy

7 u=u+JG,ab) ug

8 if 7

9 By = Juy

10 ifry

11 By = JNéLj,zud

FORWARDSWEEP(u, f, jo, j1, B)

1 for j = jo,jo+1,.... j1

2 SUBDOMSOLVE(u, f, j, Bj—-1,Bj. Bj—1,Bj, j > 1, B, j < Ngom, B, 0, NIL, 0, NIL)
BACKWARDSWEEP(u, f, jo, j1, B)

1 for j = jo,jo—1,...,j1

2 SUBDOMSOLVE(u, f, , Bj—1, Bj, Bj—1, Bj, 0, NIL, 0, NIL, j < Ngom, B, j > 1, B)
MIDSOLVEIN(u, f, j, Bi, B2)

1 SUBDOMSOLVE(u, f, j, Bj-1, /5/, /Sj_l,ffj, 1, By, 0,NIL, 1, By, 0, NIL)
MIDSOLVEOUT(u, f, j, B1, B2)

1 SUBDOMSOLVE(u, f, j, Bj-1, Bj, Bj-1, Bj, 0, NIL, 1, By, 0, NIL, 1, By)

of freedom are to be copied from the right hand side on €2 to the right hand side
on QU); &, b describe which layers from to solution on (/) to copy to the approx-
imate solution on £2; flags 7;, j = 1, 2, 3, 4 indicate whether transmission is done
for (in,forward), (out,forward), (in,backward) and (out,backward) uses respectively
and the B; are variables used for storing or retrieving transmission data. The algo-
rithms FORWARDSWEEP and BACKWARDSWEEP execute a series of solves, using
the transmission matrices. They have as arguments the right hand side and unknown
for the approximate solution, the first and last subdomain to be included and a buffer
B to store transmission data.

The preconditioner applications, using non-simultaneous and simultaneous for-
ward and backward sweeps are given in Table 3. We have included an algorithm
for domain decomposition with partial sweeps called SWEEPINGPRECNX. In
[20] such an algorithm was given for domain decomposition with different inter-
face/transmission conditions, the equivalent for our method is including in Table 3. In
this algorithm intersecting sweeps are done over groups of subdomains. The bound-

ary domains of these groups are given by jeelim, m = 0, ..., Ncen, and the center
domains where the local sweeps intersect are given by jmigm, m = 1, ..., Neenr. It is
assumed that jeen o = —1 and jeen N = J + 1.
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Table 3 Algorithms SWEEPINGPRECUD, SWEEPINGPRECX and SWEEPINGPRECNX for different
variants of the sweeping preconditioner

SWEEPINGPRECUD(f)

1 u<0

2 FORWARDSWEEP(u, f, 1, Ngom, B)

3 g=f—Au

4 BACKWARDSWEEP(u, g, Ngom, 1, B)

5 return u

SWEEPINGPRECX( f)

1 u<~0

2 FORWARDSWEEP(u, f, 1, jmia — 1, B1)

3 BACKWARDSWEEP(u, f, J, jmid + 1, B2)

4 MIDSOLVEIN(u, f, jmid: B1, B2)

5 g=f—Au

6 MIDSOLVEOUT (, g, jmid» B2, B1)

7 BACKWARDSWEEP(u, g, jmid — 1, 1, By)

8 FORWARDSWEEP(u, g, jmid + 1, J, B2)

9 return u

SWEEPINGPRECNX( f)

1 form=1,..., Neen

2 if m < Neen

3 MIDSOLVEOUT(u, f, jeell,m, Bam—1)

4 FORWARDSWEEP(u, f, jeellm—1 + 1, jmid,m — 1, Bam—1)
5 BACKWARDSWEEP(u, f, jeelln — 1, jmid.m + 1, Bam)
6 MIDSOLVEIN(u, f, jmidms Bam—1, Bam)

7 g=f—Au

8 form =1,..., Nen

9 MIDSOLVEOUT (i, g, jmid.m> Bams Bam—1)

10 BACKWARDSWEEP(u, g, jmidm — 1, jeel,m—1 + 1, Bam—1)
11 FORWARDSWEEP(U, &, jmid,m + 1, jeet,m — 1, Bam)
12 if m < Neen

13 MIDSOLVEIN(u, g, jeell.m> Bams Bam+1)

14 returnu

3 Theoretical results

Here we study the domain decomposition in case of constant k on a line segment
in one dimension and for a two-dimensional strip with PML layers only at the
boundaries x =0 and x = L.
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3.1 One-dimensional analysis

We will show that the domain decomposition method reproduces the exact solution
when the domain is a line segment and k is constant.

In one dimension absorbing boundary conditions are given by Robin boundary
conditions and the problem on ]0, L[ becomes

—32u(x) —kKux) = f(x)
3, u(0) + iku(0) = hy,
—0xu(L) +iku(L) = hy 21

One can also enlarge the domain, i.e. if o < 0 < L < B the problem on can be
considered on ]e, B[ with boundary conditions at «, 8, without affecting the solution
on ]0, L[, because in each case an unbounded domain is simulated. The solution for
(21) is given by

i X x( ) i L k ) eikx e—ik(x—L)
— IK(X—S d _ —IK(X—S§ d h h
u(x) Zkfo M=) £ (5) s+2k/x e f5)ds S+ S
(22)
In some case we are interested in solutions w to the
Aw = f — Au (23)

on an interval Jo, [ with homogeneous boundary conditions 9, w(«) + ikw(a) =0
and —d,w(B) + ikw(B) = 0. In this case we determine

e 1
Reu(e) & o (du(er) + iku(eo)

def

1
R_u(p) = p (—0xu(B) + iku(p)) (24)

2ik
The solution to (23) then satisfies
w e = o [ as+ o "o 1) ds
2k Jq 2k Jy
+e*=OR () + e THOTPR_u(p) (25)
The effect of using a transmission source 7 v 1 can be analyzed using equa-

tions (23) to (25). We will consider the case J = 2 given in Egs. 11 to 13. First note
that for0 < x < by

. X ) . bl )
v = 2l_k /O RO £(s)ds + 2l—k e~ =9 £(5) ds. (26)
X
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Using that we can enlarge the domain, we consider equation (13) as an equation of
the type (23) on the interval x €]b; — €, by[. This gives that for x €]b; — €, by[ we
have

v(2)(x) + U(I)H(bl —x) = eik(x—(bl—6))R+v(1)(b1 —€)

. .
+2l—k - e’k(xfs)f(s) ds + 2l_k/x eilk(xfs)f(s) ds.
27

Considering that v H(by — x) = 0 for x > by, that RyvD(by) = L [

e*B179) £(s5) ds, and taking the limit € — 0, we obtain for x €]by, by[

. X ) . bz )
V) = 5 /0 O psyds + o [Tt f), 28)

which is the correct solution on this subdomain. Similarly it follows that the
effect of the transmission source 7/ vU~D in the right hand side of AWy =
Leeto; 10,1 + TWylU=D is a contribution

eik(x—bj—l)R+v(j—1)(bj_l) (29)

to the solution v on 1b;_1, b;[.
By induction we then find the following for the forward sweep in algorithm
SWEEPINGPRECUDCONTINUOUS. After step j in the loop, we have

. x . b .
u(x):l—/ K09 £(5) ds—i—zl—k/ e =) gy ds,  forx elbj_1, by, < j.
0

2k x
(30)
and u(x) = 0 for x > b;. For the backward sweep (25) is used again. By induction
one can show that after subdomain j is updated, the solution is given by

; X ; L
u(x) = 2l_k/o e f(s)ds + 2l_k/x e T f(s) ds, 31)

for x > b;_1 while u(x) is still given by (30) for x € [b;—1,b;],] < j. Hence
algorithm SWEEPINGPRECUDCONTINUOUS yields the correct solution.
For the simultaneous sweeps, similarly after step j of the first loop we have

e [ eR ) f () ds + & [P e f(s)ds  forx € [bi_1, bil, I < j
w@) =3 % [ e O f(s)ds + 3¢ [ e f(s)ds forx € b1, Bl I = +2—

0 otherwise.
(32)
After lines 9-11 of the algorithm the function u satisfies for x €]by 2, by 7241l
X i L .
ux) = / K= £y ds + — | e RE=9 £ () ds, (33)
0 2k X

which is the true solution. Next one can show inductively that steps 13-21 in the
algorithm yield the correct solution in each subdomain that is updated, implying that
the algorithm SWEEPINGPRECX CONTINUOUS yields the correct solution.
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3.2 Modified domain decomposition method on the strip

We next consider the problem with k = constant on the strip ]0, L[x]O0, 1[, with
Dirichlet boundary conditions at y = 0 and y = 1 and PML boundary layers atx = 0
and x = L. In this section we will assume that a PML layer behaves like a perfect
non-reflecting boundary condition. In essence we will show that Theorem 1 of [15]
remains valid for the modified method.

After a Fourier transform in y the solution becomes of the form u =
Y oysin@rla(x), I = 1,2,..., and writing #;(x) = u(x,n), n = 2ul, the
Helmbholtz equation becomes a family of ODE’s that reads

— 32+ n*h — K = f(x, ) (34)

We assume that k # 2/ for all integers / > 0. The non-reflecting boundary
condition becomes

Oyl + AU = hy atx =0 (35)
—0yil + Al = hy atx = L, (36)
where A is given by
. 2 _ 2 .
ao )i k*—n %f|n|<k 37)
—/n? =K% if |n| >k,

and k1 and h; are O for homogeneous non-reflecting boundary conditions and non-
zero if incoming waves are to be modeled.

In this case we can apply exactly the same analysis as in Section 3.1 to the
problems for each 7. For example, the solution formula for Eqs. 34-35 is straightfor-
wardly derived and given by

N — i N e)\x e—)»(x L)
ih(x,m) = / €9 f(s, n)ds+—/ O fs myds o+
(38)

Thus we have

Theorem 1 On the strip 10, L[x]0, 1[ with absorbing boundaries at x = 0 and
x = L and constant k, the map Px satisfies APxf = f.

4 Two-grid domain decomposition preconditioner

In this section we describe a method in which a domain decomposition preconditioner
is used as an inexact coarse level solver in a two-grid method. We consider the case
where a two-grid cycle is used as preconditioner for GMRES. The modified two-grid
cycle, with domain decomposition preconditioner used as coarse level solver, will
be called a two-grid sweeping preconditioner or TGSP. It follows from computation
times given in [3, 12] that a TGSP application is considerably cheaper than a direct
sweeping preconditioner application. Since the cost of a solve is roughly given by
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the cost of a preconditioner application times the number of iterations, the question is
what happens with the number of iterations when an outer two-grid iteration is added.

In [17] it is shown that a certain class of two-grid methods converges rapidly. This
of course refers to the case using an exact coarse level solver. A priori it is unknown
whether these good convergence properties extend to the case of an inexact, domain
decomposition based coarse level solver, also because in the multigrid method the
sweeping preconditioner is applied at coarser meshes than it has been tested with so
far, using e.g. five instead of ten points per wavelength. However, it is clear that an
efficient solver would result if the convergence doesn’t degrade too much.

The purpose of the present section is to describe a two-grid sweeping precondi-
tioner based on the two-grid method of [17]. In sections below we will show that
in numerical examples the convergence remains good and that the method is in fact
highly efficient.

In two subsections we will separately discuss the cases with and without PML
boundary layers present. The presence of PML layers makes it necessary to modify
the multigrid method. We opt for a specific modification where the mesh coarsening
in the PML layers is changed. Alternatively the smoother can be modified, see e.g.
[3]. When PML layers are absent we use classical damping layers as absorbing layers
near the boundary of the domain 2. See [18] for background on multigrid methods.

The original problem will be standard second order finite differences. The dis-
cretization on a regular mesh of the 1-D second order operator u +— —% (,8 (x)g—Z)
is given by

B2 (=Bic1pui—1 + Bi—1/2 + Biv1/2)ui — Bi12Uit1) - (39

This formula is used to find the following 5-pt finite difference discretization of the
Helmbholtz equation (in 2-D) in presence of PML boundary layers

1
ary (—anim1pmim1k + (@1,i—1/2 + Q1 ip1/2) Uik — O1it1/2Ui+1 k)

1 , o ‘
i (=2, k—1/2Ui k=1 + (@2, k=172 + €2 k1/2) Uik — O k1/2Ui k1) (40)
k?
ik _ 1 a
ok ik Jik:

1
1+iw*1tr_,- (x;)
respectively). (In absence of PML boundary layers, the coefficients o ; are equal to 1).

where where o (x;) = (with j = 1,2 referring to the x and y axes

4.1 The two-grid method in absence of PML layers

In this subsection we will discuss the two-grid method to be used in absence of
PML boundary layers. This method is according to [17]. It is based on the V-cycle,
full weighting prolongation and restriction operators and w-Jacobi smoothers, with
parameters given in Section 6 below. As mentioned, the two-grid method is used as
preconditioner for GMRES.

The main difference of the method of [17] compared to standard multigrid meth-
ods is that optimized finite difference operators constructed in that paper are used
as coarse level discretization. These are designed such that phase speed differences
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between fine and coarse level discretizations are minimal. We recall the definition
of these operators in Appendix A.l that treats coarse level discretizations for the
case that PML layers are present. A second difference is in the choice of parameters
for the smoother. In order to have good convergence the weight @ in the w-Jacobi
smoother and the number of pre- and postsmoothing steps v used in the V-cycle must
be chosen quite specifically. Results in [17] show that convergence properties depend
sensitively on these parameters.

The inclusion of an inexact, domain decomposition based coarse level solver is
done straightforwardly: The coarse level solver is simply replaced by a precondi-
tioner application. This is of course an additional difference with standard multigrid.
The parameters (number of subdomains, PML width and PML strength S,m1) will be
discussed below in the section on numerical examples.

4.2 Using PML layers in the two-grid method

With PML-layers it is typically necessary to modify the multigrid method because
convergence becomes poor. It is not easy to precisely pinpoint the cause of this behav-
ior. The local Fourier analysis of the Helmholtz operator without PML is inapplicable
for two reasons. First the matrix is changed locally, and second the coefficients o,
and oy vary rapidly, implying that the assumptions of the local Fourier analysis are
not valid. These are also the potential reasons for which convergence is hampered.

A potential solution to the second problem is to avoid mesh coarsening and
refinement in the direction normal to the PML layer, i.e. the direction of the rapid
variation of the coefficients oy, and o. This provides a simple way to avoid certain
interpolation and discretization errors in these direction of rapid variations. Num-
bering the mesh cells with half-integers, assuming wpm cells in the PML layer. The
idea is that there is no coarsening inside the PML layers, i.e. for axis j, the cells
1/2, ..., wpm —1/2 and Ny —wpm +1/2, ..., Ny —1/2 are not coarsened while the
Ny — 2wpy interior cells undergo standard coarsening (and similar in the y-direction
and z-direction), see Fig. 1.

The changes to the multigrid method concern the prolongation and restriction
operators, and the coarse level discretization. We propose to determine both in a finite
element context.

The choice of the coarse level discretization is described in detail in the Appendix.
It is such the phase speed differences with the fine level discretization are minimized
like, the discretization discussed in [17] and it is a compact stencil discretization like
required for the domain decomposition as presented here.

Fig. 1 Schematic display of
mesh coarsening for multigrid in
presence of PML layers in 2-D
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The prolongation and restriction operators can be written as tensor products of
one dimensional prolongation and restriction operators, obtained by using tent finite
elements. Let ipp be the function maps a coarse point index to the corresponding
fine point index along one of the axes, and that the function rc (i) evaluates to “true”
when cell i is refined and “false” otherwise. Letting i refer to any coarse mesh point
and i = ipp(i) to the corresponding fine mesh point, the 1-D prolongation operator
is given by

(Pu); = u; (41)
and
1 . ,
(Pu);,, = E(ui +uiy1) if re@ +1/2). (42)

This defines the prolongation operator. The restriction operator is its transpose. This
concludes the description of the modified two-grid method.

5 Implementation

We have developed a parallel implementation of the above described method in three
dimensions on a distributed memory machine (Linux cluster) using MPI. The par-
allel implementation is fairly straightforward, except for the domain decomposition
preconditioner. Inside the two-grid method, a Cartesian distribution of the degrees of
freedom over the compute nodes is used. The w-Jacobi smoother, and the restriction
and prolongation operators were implemented in a matrix-free fashion. Each time
one of these operators is applied, some communication is done between nodes that
are neighbors in the Cartesian compute grid.

A 2-D Cartesian compute grid is used for easy combination with the sweeping
preconditioner. Degrees of freedom are not distributed over the sweeping axis.

The main difficulty in the sweeping preconditioner concerns the subdomain
solves. These are done using a sparse direct solver. In the UD-sweep all subdomains
solves are done consecutively. In the X-sweep several two solves can be done simul-
taneously, while in the NX-sweep multiple solves can be done simultaneously. In
particular the UD-sweep leads to a challenging parallellization problem.

There are several software packages avaible to perform sparse direct solves, which
allow for various degrees of parallellization. We investigated two strategies

(1) Our first strategy was to use all the available compute nodes for each solve
using the Clique parallel solver of [12]. This solver is designed for use on many-
core systems. However, we found that solutions were sometimes incorrect. We
attribute this to limitations in the strategies for choosing pivots (pivots were
chosen inside previously chosen nested-dissection nodes). When these experi-
ments were done, this solver was still in development and the problem could be
absent in later versions, but we have not tested this.

(2) Our second strategy was to apply the method to multiple, say n rygs, right hand
sides at the same time, and to apply the domain decomposition preconditioner
in a pipelined fashion. In the domain decomposition step, the total number of
computational processes was divided in nrps groups (for the UD-sweep) or
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2nrys groups (for the X-sweep) and each group was responsible for a number
of subdomain solves. By suitably assigning the subdomain solves to the groups
of processes, all groups of processors could be busy at the same time (starting
from step nrys in the domain decomposition, when the pipeline was filled).
The factorizations and solves were done using the MUMPS parallel solver [1],
version 4.10.0. For this solver it is known that it performs best when the number
of process is not too large compared to the size of the system. A disadvantage of
this method is that it leads to large memory requirements, because of the storage
required by GMRES. We experimented with values of nrys < 8, at which
value the memory used for GMRES and for the subdomain factorizations were
of roughly the same size. The outer iterative method and the two-grid method
were applied to nrys vectors simultaneously.

Because of the incorrect solves in the first strategy, results will only be given for the
second strategy.

6 Numerical experiments

In this section we study the numerical performance of the two-grid sweeping pre-
conditioner. The 2-D case is the easiest to study and vary the various parameters.
We have studied problems of sizes up to 2048 x 2048 (for a square domain) and
4600 x 1500 (for the Marmousi problem) on a laptop with §GB memory using a Mat-
lab implementation. For the three-dimensional example the parallel implementation
that was described in the previous section was used and the emphasis is on the actual
computation times.

In the numerical experiments below, the value wpm refers to the width of the
PML layers introduced in the domain decomposition. At the outer boundaries of the
domain, sponge or PML boundary layers are used as indicated.

6.1 2-D experiments

The first of our 2-D experiments concerns a comparison of the new transmission
conditions to those of [15] and of the new X-sweep method with the UD sweep
method used in [15]. The comparison is done for two different discretizations, for
different values of wppy and for two velocity models: a constant model of size 1024 x
1024 grid point and the Marmousi model of size 2300 x 750. The latter model is
displayed in Fig. 2. In both models a minimum of 10 points per wave length is used.
Sponge boundary layers of thickness 36 were used. Iteration numbers to reduce the
residual by a factor 1076 are given in Table 4.

The new transmission conditions are consistent with arbitrary 9 point discretiza-
tions, not only the standard 5 point discretization and indeed this shows from the
results. In the old transmission method, the planar transmission source radiates not
only in the direction of the sweep, but also backward, into the added PML layer,
while this is not the case in the new method. This fact explains that for small wpm
the new method performs better, in both discretizations.
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Marmousi velocity model

> 1500

L I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
X

Fig. 2 Marmousi velocity model

We next study the two-grid method and the hybrid two-grid domain decomposition
preconditioner. To choose the smoother parameters, we study the convergence of the
two grid method with exact coarse level inverse. We vary v (the number of pre- and
postsmoothing steps) and wy,c, the relaxation constant. The model is the unit square
with unit velocity discretized with 1536 x 1536 points (excluding sponge or PML
layers) and with frequency 72 = 153.6 (10 points per wavelength). This is about
the largest problem that can still be done without using excessive amounts of swap
memory. The tests are done using sponge boundary layers of thickness 36 and PML
layers of thickness 4. The results in Table 5 show that v = 3 and wy,e = 0.8 gives
good results. The improvements in iteration count found for even larger values of v

Table 4 Iteration counts for different transmission conditions for the UD and X-sweep preconditioners

Ndom Standard 5pt discretization Opt 9pt discretization
UD-sweep X-sweep UD-sweep X-sweep
T1 T2 T1 T2 T1 T2 T1 T2
Constant medium 1024 x 1024
Wpml = 3 78 7 13 8 14 8 63 9 59
Wpml = 4 60 6 6 7 7 6 14 6 14
Wpml = 5 49 5 5 6 6 4 10 5 10
Marmousi 2300 x 750
Wpml = 3 169 18 58 18 53 18 30 19 30
Wpml = 4 131 12 12 12 14 11 25 12 26
Wpml = 5 107 9 9 10 11 9 12 10 13

T1 refers to the new transmission conditions, T2 to those of [15]
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Table 5 Number of iterations (computation times for the solve phase) as a function smoothing parameters
for a constant velocity, 10 points per wavelength, and mesh size 1536x 1536

wlac = 0.5 0.6 0.7 0.8 0.9

Sponge

v=1 >99 69(114) 47(77) 26(43) 26(43)

2 28(54) 18(36) 13(26) 9(19) 12(25)

3 15(34) 9(21) 7(17) 5(12) 9(21)

4 9(24) 7(19) 5(14) 5(14) 8(22)

5 7(21) 5(16) 4(13) 4(13) 7(21)

6 6(20) 5(18) 4(15) 4(15) 6(20)
PML

v=1 >99 >99 >99 54(85) >99

2 67(120) 30(55) 18(33) 15(28) >99

3 23(48) 14(30) 10(22) 10(23) 80(161)

4 13(32) 10(25) 9(22) 10(25) 70(158)

5 10(28) 9(25) 9(25) 10(28) 70(175)

6 9(28) 9(27) 10(30) 12(37) 82(224)

are not found in other experiments involving domain decomposition. Therefore we
choose v = 3 and wy,c = 0.8 for the 2-D problem. Good results are obtained for both
sponge and PML layers, we will study the difference further in other examples.
Next we study the convergence for different values of wpm and the problem size.
We also include the exact coarse scale solver. This is done for two problems, the
constant-velocity unit square and the Marmousi model. For the constant velocity
model, 10 points per wavelength fine scale discretization was used. The values of
Spm1 are chosen to be 15, 20 and 25 respectively for wpm = 3, 4 and 5. For the outer
boundaries sponge boundary layers of thickness 36 and PML layers of thickness 4
were used. We determined iteration counts and the time for the solve phase. Setup
times were of the same order of magnitude as the solve times. Results are in Table 6.

The number of subdomains used, given by bwé\]ﬁj, depended on wpm and is also

indicated in the table (in the column labeled ngom). It is clearly seen that for larger
problems also a larger value of wpm should be used because the number of itera-
tions grows faster than the extra cost of thicker PML layers. In some examples good
convergence was obtained using up to 250 subdomains.

Next we test the X-sweep, and the NX-sweep approaches described in Section 2,
involving simultaneous and partial sweeps. Iteration numbers for these approaches
for our largest constant and Marmousi examples are given in Table 7. In both cases
we see that the UD-sweep pattern can be replaced by the X-sweep pattern at little or
no cost. The method with partial sweeps performs poorly. The gain in computation
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Table 6 Iteration numbers (and time per solve in seconds) as a function of wpm; and problem size for a
constant velocity and the Marmousi model

size freq. Ndom for exact Wpml =3 Wpm =4  Wpm =35
Wpml =3/4/5
Constant medium, PML
256 x 256 25.6 23/18/14 10(0.51) 10(0.75)  10(0.75)  10(0.76)
512 x 512 51.2 41732126 10 (2.4) 11 (3.3) 10 (2.9) 10 (2.9)
1024 x 1024 102.4  78/60/49 10 (10) 13 (14) 11 (13) 10 (12)
2048 x 2048 204.8  151/117/96 11(61) 32 (129) 15 (64) 12 (55)
Constant medium, sponge
256 x 256 25.6 23/18/14 5(0.46) 5(0.63) 5(0.63) 5(0.70)
512 x 512 51.2 41/32/26 5(1.6) 6(2.3) 5(1.9) 5(1.9)
1024 x 1024 1024 78/60/49 5(5.8) 7 (8.8) 6(7.9) 6 (7.9)
2048 x 2048 204.8  151/117/96 6 (41) 10 (46) 7 (38) 7 (34)
Marmousi model, PML
575 x 188 9.4 46/36/29 13(1.2) 14 (1.8) 14 (1.8) 14 (1.8)
1150 x 375 18.8 87/67/55 15 (5.8) 14 (6.6) 14 (6.6) 14 (6.6)
2300 x 750 375 169/131/107 13 (20) 17 (29) 14 (25) 14 (25)
4600 x 1500 75 333/259/212 12 (%) 39 (%) 17 (%) 14 (%)
Marmousi model, sponge
575 x 188 9.4 46/36/29 10 (1.4) 10 (1.9) 10 (1.9) 10 (1.9)
1150 x 375 18.8 87/67/55 12 (5.9) 13 (7.8) 13 (8.1) 13 (7.9)
2300 x 750 375 169/131/107 11 (22) 14 (29) 13 (26) 13 (26)
4600 x 1500 75 333/259/212 10 (¥) 25 (%) 14 (%) 13 (%)

(*) denotes long times, between 200 and 600 seconds, due to shortage of RAM

time that can be obtained by performing the partial sweeps in parallel disappears
because of the additionally required iterations.

6.2 The 3-D SEG-EAGE salt model

The SEG-EAGE salt model is a 3-D synthetic Earth model from exploration geo-
physics. The original model is of size 13500 x 13500 x 4200 meter, discretized

Table 7 Iteration numbers as a
function of sweep type for the
constant and Marmousi velocity
models

For the NX-sweep pattern the
number N is indicated
between the brackets
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velocity CONSTANT MARMOUSI
size 2048 x 2048 4600 x 1500
UD-sweep 8 15
X-sweep 8 16
NX-sweep(2) 40 54
NX-sweep(4) 46 68
NX-sweep(8) 63 99
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with 20 m grid spacing. We apply the two-grid sweeping preconditioner to solve the
Helmbholtz equation with this velocity at four different frequencies from 3.75 to 7.5
Hz, using a minimum of 10 points per wave length. At the outer boundaries, we used
PML boundary layers of width 3 grid points. In the domain decomposition, we used
wpmi = 3. Three iterations of w-Jacobi with w = 0.6 were used as smoother in the
two-grid method. The right hand side was chosen randomly. Convergence for the ran-
dom right hand side typically required about 1 iteration extra compared to the point
source. Slices of the model, and a solution with a points source of the Helmholtz
equation at 7.5 Hz are displayed in Fig. 3. The problem studied has about 1.0 - 103
degrees of freedom.

Computations were done the Lisa cluster at surfsara (www.surfsara.nl) using the
implementation described in Section 5. For parallel computations this systems con-
tains 32 nodes with each two intel Xeon processors E5-2650 v2 running at 2.60 GHz
and 64 GB memory, connected by Mellanox FDR Infiniband. The use of two intel
Xeon units results in 16 cores per node. A maximum of 16 nodes were used in parallel
for these computations.

As described in Section 5, the algorithm solves multiple right hand sides at the
same time, using subgroups of processes for the subdomain solves in combination
with pipelining. The number of right hand sides was chosen < 8, to control the
memory use. The size of the subgroups was varied between 8 and 32. For larger
subgroups, larger problems can be solved using the parallel algorithm.

Results, in particular iteration counts and computation times, of the computations
are given in Table 8. Our main conclusion is that there is large improvement in com-
putation times and memory use compared to the pure sweeping methods described
in [12], such that the method becomes comparable to in computation times to some
of the fastests methods in the literature, see for example [3], where a combination of
a two-grid and a shifted Laplacian method was considered and [13, 22] for further
examples of solvers applied to large scale examples.

a ‘SEG EAGE salt model b SEG EAGE salt model
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4000} n n n n n n 4000, n n n n n n
1500 1500
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
x y
c Wavefield in SEG EAGE salt model d Wavefield in SEG EAGE salt model
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Fig. 3 SEG-EAGE salt velocity model: (a) (x, z) slice at y = 6740 (b) (v, z) slice at x = 6740. Solution
to the Helmholtz equation at 7.5 Hz: (¢) (x, z) slice at y = 6740 (d) (y, z) slice at x = 6740
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Table 8 Simulation results for the 3-D SEG-EAGE salt model

Freq. (Hz) 3.75 4.72 5.95 7.5

Problem size 338x338x106 426x426x132 536x536x166 676x676x210
#layers 25 30 40 48

#dof 1.3-107 2.5-107 5.0-107 1.0- 108
Cores 32 64 128 256

UD-SWEEP, Mumps 16 cores

iterations 11 12 12 14
#rhs 2 4 8
setup time (s) 47 54 66
solvetime/rhs 27 26 44
UD-SWEEP, Mumps 32 cores
#rhs 1 2 4 8
setup time (s) 74 82 94 144
solvetime/rhs 36 48 52 67
X-SWEEP, Mumps 8 cores
iterations 11 12 13 15
#rhs 2 4 8
setup time (s) 39 44 62
solvetime/rhs 20 26 39
X-SWEEP, Mumps 16 cores
#rhs 1 2 4 8
setup time (s) 49 54 66 96
solvetime/rhs 22 27 31 62
X-SWEEP, Mumps 32 cores
#rhs 1 2 4
setup time (s) 82 86 107
solvetime/rhs 43 60 80

Considering the results as a function of problem size we see that computation
times increase with problem size, even if the number of processes also increases.
Several factors contribute to this: the number of iterations increases slowly, the cost
of the sparse direct solve increases somewhat faster than linearly and cost related
to the parallellization will also typically increase. When the MUMPS solver is used
with 32 cores, the computation times are somewhat longer compared to 8 or 16 cores.
While it is difficult to explain this precisely, it is likely that the slow communication
over multiple nodes (instead of just within a node) contributes to this.

7 Discussion

In this work we used a two-grid method to accellerate a Helmholtz solver based
on a sweeping preconditioner. This resulted in a new method that we call two-
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grid sweeping preconditioner. A priori it was not clear that such a method would
work, as both the sweeping preconditioner and the two-grid method are used in new
conditions.

With the two-grid method as outer method, the cost of the sweeping precon-
ditioner is strongly reduced. When problems of the same size are considered,
computation times appear to be roughly comparable to those of the method of
[3], where a combination of a two-grid and a shifted Laplacian method were con-
sidered. Thus the methods is comparable in performance to some of the fastests
methods in the literature. (See [12, 13, 22] for other works that consider large scale
examples).

Parallellization of the numerical linear algebra remains a challenge for these meth-
ods. The performance of sweeping preconditioners is determined in part by the
possibilities and limitations of parallel solvers like MUMPS [1] and Clique [12].
For reasons explained in Section 5 we used MUMPS. The version which was used
doesn’t scale very well to large numbers of processes. Improvements in this area will
be useful for large scale parallel application of the methods.

If wpm and the thickness of the layers is kept fixed, the preconditioner can be
applied with cost log-linear in the number of unknowns, because for a single layer
of size n x n x d, the cost for solving the factorized system is O (d*n?logn), cf.
[5, 9]). The numerical results show that quite small values of wpm| can be used (e.g.
wpmi = 3 with more than 100 subdomains). However, we find that to keep good
convergence for larger number of subdomains, wpm should increase slowly with
problem size.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: A Helmholtz discretization for use in the two-grid
sweeping preconditioner with PML boundary layers

In this section we discuss a discretization that can be used on meshes of the type
displayed in Fig. 1, where inside the PML layers, the coarsening only takes place in
the tangential directions. This is done using a variant of the multigrid finite element
method. The result can be used as coarse level discretization in a multigrid method, as
explain in Section 4.2. The construction of a coarse level operator with phase speeds
matching those of the fine level operator is achieved using the equivalence between
finite element schemes with general testfunctions and finite difference schemes. This
allows us to reproduce the behavior of the optimized finite difference method of [17]
in the current setting. We will treat the 3-D case, which is slightly more complicated
than the the 2-D case.

The discretization is done using rectilinear (product) meshes with mesh points
(X, ¥j,2k),0 <i < N,,0<j < Nyand 0 < k < N,. The cells will be numbered
such that cell i + 1/2 is between points i and i + 1. Cell size parameters of cell
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(i+1/2, j+1/2,k+1/2) are hy ;y1/2, h2, j+1/2 and h3 k. 1/2. This allows for regular
and non-regular meshes A regular mesh of this type can be used for finite differences.
For a regular mesh, i will denote the mesh parameter. General rectilinear meshes of
this type can be used for finite element discretizations. We assume the nodes are the
eight corners of each cell, and degrees of freedom are denoted by u; ; . The degrees
of freedom are located at points with 1 <i < Ny—1,1<j < Ny,—1,1 <k < N,—1
because Dirichlet boundary conditions are used.

In the remainder of this section we first revisit the optimized finite differences
from [17]. We then describe a general finite element discretization. In the third
subsection we describe how to choose coefficients in this general finite element dis-
cretization to recover the optimized finite differences in the regular, non-PML part
of the mesh. This yields the discretization that we used in the two-grid method when
PML layers were present. In the last subsection of this appendix we present a further
result on the connection between finite elements and optimized finite differences.

A.1 Optimized finite differences

Optimized finite differences for frequency domain simulation in the plane are
described for example in [10]. In [17] a different version was introduced for both
two and three dimensions which was applied in a multigrid method. See also [2] and
further discussion in [16]. We will explain in detail the 3-D method of [17], the 2-D
version is derived in the same way.

First we define some discrete operators. Define M;, j =0, 1, 2, 3 by

(Mow); jx = uijk

1
(Miyu)i jx = g(ui—l,j,k A i1,k F Wi o1k Witk k=1 Wi k1)
1
(Mau)i jx = E(”i—l,j—l,k F Uit j—1k U1 41k T Wit 1k Ui k—1 F Uit jk—1

Ui, k1 T ULk T U1 k—1 T U k—1 T U1 k1 T Mi,j+1,k+1)

1

(M3u)i jr = g(“i—l.j—l.k—l FUig1, -1 k=1 T Uil k=1 F Uit j+1 k-1

i1, 1] Wil j— Lkl F Wi 1 k] T Wi, 41 k1) (43)

All of these are second order discretizations of the identity operator in 3-D. Similarly,
for 2-D field u; ;, consider the operators N, j = 0, 1, 2 given by

(Now)i,j = u;j

1
(Niu);,j = Z(“i—l,j +uig1,j + i j—1 + Ui j1)
1

(Nau)i,j = Z(”i—l,j—l A i1, =1+ Ui1, j1 Ui, j41) 44)
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These form discretizations of the identity operator in 2-D. By Nél’m) we denote these

operators acting along the (x;, x,,) axes. Furthermore, denote by D; rp the discrete
second order derivative

1
(D2, ppu); = 7 (i1 —2u; +uig1). (45)

By Dg) we denote this operator acting along the x; axis.
We will next define a five parameter family of second order discrete Helmholtz
operators. Given 5 coefficients ¢;, j = 1,2, 3,4, 5, denote
= ciMou + coMqu + csMou + (1 —c1 — ¢cp — c3)M3u
= c4No +csN1 + (1 — ¢4 — ¢c5)N3. (46)

= X

By N NEm) e W111 denote versions of these operator acting along the (x;, x,,,) axes.
The operators M N are weighted average of second order discretizations of the
identity, and are hence second order discretizations of the identity themselves. We
use them to define a five parameter family of second order discretizations of the
Helmbholtz operator, with a compact 3 x 3 x 3 stencil as follows

def ~
(Hrpop)i,jk = — , i k(MM)l ok — (D(l)D ® N® ), k= ((D(Z)D @ NU ), i
3
~((D5pp ® NPy ik
= fijk- (47)

In 2-D, a similar formula can be made with three independent coefficients c;, j =
1,2,3.

We now have five coefficients that can be chosen (or three in 2-D). The phase
speed of the numerical method depends on the product kA, or equivalently on the
number of points per wavelength G = hk and on the direction of the wave that is
considered. In addition it depends on the choice of the coefficients ¢;. In [10] the
coefficients ¢;, [ = 1, 2, 3 for the 2-D case, were fixed so as to minimize the max-
imum of the absolute difference between the exact and the numerical phase speeds
(to be precise, Jo Shin Suh considered a different set of basic operators and an equiv-
alent set of coefficients was fixed). Here the maximum was taken over all angles and
G > 4. In this way, a numerical method with much better dispersion properties than
standard second order finite differences was obtained.

Stolk et al. [17] observed that the phase speed errors can be further reduced if c;
depends on 1/G (using 1/G is slightly more convenient than G). To represent the
functions c;(1/G) simple linear interpolation was chosen. Le. the function ¢ (1/G)
was parameterized by support points 1/ Gy, and values ¢ (1/Gy), and given by linear
interpolation for values of 1/G between the support points. An optimization proce-
dure was done to find values c¢;(1/Gy) such phase speed differences between the
coarse and fine scale methods of a two-grid method were minimal over the consid-
ered range of 1/G. The values 1/Gy and ¢;(1/Gy) for both the 2-D and 3-D case
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are given in Table 9. Graphs of the error (maximum over angle) are given in Fig. 4.
In this way the phase speed differences between the fine and coarse scale methods
could be reduced very strongly, to about 2 - 10~ for G > 4.

A.2 A class of finite element discretizations

The weak form of the Helmholtz equation with PML boundary layers reads, using
that # and v vanish on the boundary,

3 g2

o du v K2 1
Z____ uv — fuldx=0 (48)
el ajoas 0xj 0x;  ajao03 o003

for all v, where «; is as defined below (40).
To obtain a finite element method we must describe the spaces of trial and test
functions. The trial functions associated with the nodes of the mesh and are derived

Table 9 Coefficients for
optimized finite differences with ()

phase speeds matching those of 1/Gy ¢
standard second order finite

differences (a) two dimensions, 0.00 0.61953 0.45295 0.77363

(b) three dimensions
0.04 0.63691 0.47535 0.87242
0.08 0.62988 0.48633 0.86400
0.12 0.62610 0.48880 0.84984
0.16 0.62289 0.48759 0.83017
0.20 0.62596 0.47106 0.80852
0.24 0.62213 0.46478 0.78215
0.28 0.61036 0.47016 0.74857
0.32 0.59107 0.48468 0.70553
0.36 0.56369 0.50746 0.65062
0.40 0.52412 0.54163 0.57676
(b)
1/Gk  « &) 3 ca cs
0.00 0.56428 0.35970 0.20490 0.77998 0.17505
0.04 0.56571 0.36071 0.20541 0.78635 0.17442
0.08 0.56298 0.36150 0.20719 0.78273 0.16881
0.12 0.56540 0.35620 0.20287 0.76438 0.18678
0.16 0.56370 0.35299 0.20299 0.74684 0.19603
0.20 0.55813 0.35277 0.20452 0.72755 0.20131
0.24 0.54673 0.35830 0.20693 0.70298 0.20847
0.28 0.52423 0.38368 0.19633 0.66863 0.22424
0.32 0.49946 0.39740 0.20725 0.62734 0.23845
0.36 0.47567 0.40216 0.22132 0.58198 0.25329
0.40 0.45011 0.36784 0.29962 0.53417 0.23589

2 3
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Fig. 4 Fine-coarse phase speed error using optimized finite differences, maximum over angle (a) two
dimensions; (b) three dimensions

from standard trilinear shape function. I.e. on the unit cube the shape function
associated with the origin is

Y0,00 = (I —x)(1 —x2)(1 — x3) (49)

For the test functions we will only assume that they derive in the usual way from a
single shape function 1}0’0,0 on a reference cell that is continuous and piecewise C!
and symmetric under permutation of the axes.

We assume that k(x) and the «; are cellwise constant. This implies that only a few
integrals of the test and trial functions and their derivatives need to be known.

Next we obtain an expression for the mass matrix, i.e. the matrix with elements

k2
MFE‘i,j,k,f,]T,lz = / —0[10[20[3 M;’]Tylgvi,j,k dx. (50)
Define
Isl,s2,33 = wO,O,OI//sl,sz,sgdx' (51)
[0,113
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Due to the symmetries there are four independent values, namely those with
(s1,52,53) € {(0,0,0),(1,0,0), (1, 1,0), (1, 1, 1)}. We hence set

Io = Io,0,0 I =100

(52)
L=1,p Li=1,.
To easily list the contributions to the matrix we define the index sets
{—1/2} ifi=i—1
s, i = 22 = (53)
{1/2} ifi =i+1
otherwise.

With these definitions, we have the following expression for the mass matrix

k2
i+s1,j+52,k+s3

My jki k= > R h s hiees Diig - g oo
(51,52,83)€S3, D) x S(j, ) x S (k. k) ’ R
(54)

where, as usual, the sum over an empty index set is zero. As expected, nonzero matrix
elements occur when max(|lT —1i, |f —Jjl, |I€ —k|) < 1. The sumis over 8,4, 2, or 1
cells, depending whether the vector (zN' —1, f -7, k— k) is in the center, face-center,
edge-center or vertex position of the 27 point cube {—1, 0, 1}3.

By the stiffness matrix we mean the matrix whose (i, j, k; f, f, 12) element is
given by

Z/ i vk (55)
a3 0xg 0x; ’

Each summand is an integral over multiple cells, and for each summand, and each
cell, the integral can be reduce to a multiple of one of the following integrals

Jx(l)s s :/ 3W0008¢91 52, S3d (56)
1,52,83 [0 1]3 8)6] aX]

where the s; are 0 or 1. Taking / = 1, the derivative 3150% = (1 —x)(1 —x3)1is
independent of x| and the integral reduces to a sum of surface integrals

I =— f V1523 (1, %2, x3) (1 — x2) (1 — x3) dx2 dx3

+/ Vs, 52,55 (0, 2, x3) (1 — x2) (1 — x3) dx2 dxs3. (57)

We observe that Jl(,ls)z, 55 = —Jéls)z 53 and that J31 55,53 and Js(i )n, s, can be derived
from JS(I],)SN_T So there are three independent constants
Jo=Jooo J1=Jo1o J2=Jo11. (58)

Due to the relations above, in the stiffness matrix each of the three summand equals the
tensor product of a 1-D discrete derivative (with PML modifications), and a 2-D
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mass matrix (with PML modifiations). We first treat the PML modified derivative

—iaz (xl)i. Taking the case ! = 1, we can write the discrete version of this as
dx; ax]
T ifi =i—1,
il ~
i T
p® 1 hip lfi =i+l (59)
2.FE,i,i _ogi—1/2  OLi1/2 ifi=i
hii-12 hi,i+1/2 ’
0 otherwise.

The elements of the 2-D mass matrix with PML modifications read, for the 2-D mass
matrix related to the (x;, x3) coordinate axes,

hZ,s2h3,s3
= J1j— ik ) PP (60)
< - 520353
(s2,83)€S(j,j)xS(k,k)

(2,3)
FE, j.k,j k

when max(|]7 —Jl, |k — k|) < 1 (and is defined to be 0 otherwise). The full discrete
Helmholtz operator becomes

Heg i jriji = = Megijiijk
NG 2.3) e 13 3 (1,2)
Dz,FE,Z,i FE, j.k,j .k Dz,FE,]',j FE.i ki k Dz,FEJ},k FE,i,j,i.j (61)

A.3 Coarse level optimized finite elements

We will now show that the constants in the finite element method of Section A.2 can
be chosen in such a way that the rows associated with the regular, interior part of the
mesh are equal to the above described finite difference discretization, up to a scalar
factor. This means that the phase speeds of the coarse level finite element method
in the interior region closely match the phase speeds of the fine level method. In
this way we obtain the coarse level discretization used in the two-grid method. The
fine level method is a finite difference method scaled by a constant 4> (or 42 in two
dimensions), like in a finite element method. We will start by assuming k is constant.
Consider the expressions for the mass matrix Mg and Ngém). For the rows
corresponding to degrees of freedom in the interior part of the mesh, we have

Riivsy =h2 j1s, =h3x4sy =h and O1,jts; = OO, jps; = Q3 kts3 = L.
(62)
since in the interior part of the mesh oy = 1 for/ = 1, 2, 3. If we set
Ip=c1/8 I1=c/24 1, =c3/24 L=((0—-c—c—c3)/8

(63)
Jo=c4/4 J1=c¢5/8 Jo=(1—cqa—c5)/4.

then the operators defined in Eqs. 61 and 47 have equal rows up to a factor /47 in three
dimensions (A2 in two dimensions).

The coarse scale finite element operator that we will consider is given by taking
(63) as the definition of the [;,/ =0,1,2,3and J;,1 =0, 1, 2.
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In Appendix A.4 we show that the shape function 1/}0’0,0 can be chosen such that
the constants /; and J; satisfy the above equalities.

For variable k we must specify how to obtain the coarse scale k from the fine scale
k. The coefficient k at the coarse mesh cell midpoints in PML layers are given by
averaging with tensor products of 1-D averagings with 1/2, 1/2 in the fine scale mesh
points, and 1/4, 1/2, 1/4 in the coarsened interior part. The o values are evaluated at
the cell-midpoints numerically.

For variable k some differences between FD and FE discretizations exist, due to
the slightly different discretization of k in these operators.

A.4 Finite element discretization with general test functions

Equation 63 contains a choice of the values I,,a = 0,1,2,3 and Jp, b = 0, 1, 2.
Denote these prescribed values by I, and Jj,. We will show that there a shape function
1}0,0,0 such that the values of the I, and Jj; defined in Eqgs. 52 and 58 agree with the
prescribed values ia and fb.

We define a symmetric 1-D tent function by

= lx —m|)/r? if |x —m| <r
Tonr (x) = { 0 otherwise 64)
form,r € R, r > 0. We define also define
~ | e=-x)/rif0<x=<r
Trx) = { 0 otherwise 65)

Let 0 < n be small, in each case n < 1/2, and let po = n, p1 = 1 —n. Given 7
parameters A,, Bp,a =0,1,2,3 and b = 0, 1, 2, we define ¥ 0,0 by

V000 = O BigjTpy@Tp,MT@ + Y BigkTp ()T (T (9)

A i kel0,1)
+ Z BikTp, DN Ty (T (x)
Jokel0, 1}
3—i—j—k
+ Z Ai+j+k_f3i+j+k77 Tpi ) Tp; (W) Ty (2) (66)
i,j.ke{0,1)

For the volume integrals I,, we note that an approximation to Agé is located at
(n, n, n), i.e. near (0, 0, 0) and in the interior of the unit cube. Similarly, approximate
d functions multiplied by one of the coefficients A ; are in all corners of the unit cube.
For the surface integrals J, we note that the restriction to the plane z = 0 contains
an approximation to By at (1, ) and similar approximations to B;é and B4 in the
other corners of the unit square. The same is true for the planes x = 0 and y = 0.

Denote by @ the linear map obtained by mapping (Ao, A1, A2, A3, Bo, B1, B2)
to &0,0,0 according to Eq. 66 and then mapping lﬁo,o,o to (lo, 11, I, I3, Jo, J1, J2)
according to Egs. 52 and 58.

Let e > 0. We already observed that 1}0,0,0 is a linear combination of approximate
3 functions at the corners of the cube, supported just inside cube. This approximation
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becomes more accurate when n — 0. Using this idea it is not difficult to show that
when 7 is sufficiently small, then

|Ia_Aa| S 6||(A01A19A29A3»B0»BI3B2)”7 fora=0717213 (67)
|Jo — By| = €ll(Bo, B1, B2l forb=0,1,2

In other words, the linear map & is close to the identity, we have |® — || < Ce
(using the matrix norm). This means that for sufficiently small 5, the linear map & is
invertible and (Ag, A1, Ay, A3, By, B1, B>) can be found such that

(lo, 1, I, I3, Jo, J1, J2) = (lo, 11, Ia, I3, Jo, J1, Ja). (68)

Hence we have constructed t}o,o,o with the desired property.
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