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A test-retest reliability analysis of diffusion measures of white

matter tracts relevant for cognitive control

W. BOEKEL, B. U. FORSTMANN, AND M. C. KEUKEN

Amsterdam Brain & Cognition Centre, University of Amsterdam, Amsterdam, The Netherlands, and Netherlands Institute for Neuroscience, Royal
Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands

Abstract

Recent efforts to replicate structural brain-behavior correlations have called into question the replicability of structural

brain measures used in cognitive neuroscience. Here, we report an evaluation of test-retest reliability of diffusion

tensor imaging (DTI) measures, including fractional anisotropy, mean diffusivity, axial diffusivity, and radial

diffusivity, in several white matter tracts previously shown to be involved in cognitive control. In a data set consisting

of 34 healthy participants scanned twice on a single day, we observe overall stability of DTI measures. This stability

remained in a subset of participants who were also scanned a third time on the same day as well as in a 2-week follow-

up session. We conclude that DTI measures in these tracts show relative stability, and that alternative explanations for

the recent failures of replication must be considered.

Descriptors: Test-retest reliability, Diffusion tensor imaging, DTI, Cognitive control

Many studies in the cognitive neurosciences aim to investigate the

link between brain and behavior. Recently, researchers have

exploited significant advances in diffusion weighted imaging

(DWI) to detect subtle differences in brain structure associated

with differences in behavioral measures (e.g., Kanai & Rees, 2011)

including the stop-signal task (Aron, Behrens, Smith, Frank, & Pol-

drack, 2007; Forstmann et al., 2012; Rae, Hughes, Anderson, &

Rowe, 2015), conflict tasks such as the Simon task (Forstmann

et al., 2008), and strategic decision-making tasks (Coxon, van

Impe, Wenderoth, & Swimmen, 2012; Forstmann et al., 2010;

Mulder, Boekel, Ratcliff, & Forstmann, 2014). In a recent study

from our group using a preregistered confirmatory framework

(Boekel, Forstmann, & Wagenmakers, 2016), we attempted to rep-

licate studies that adopt this structural brain-behavior (SBB) corre-

lational approach. Confirmatory Bayesian statistical tests suggested

that eight out of 17 SBB effects were reliably absent in our inde-

pendent replication data set. This apparent instability of effects

calls into question the test-retest reliability of DWI-derived mea-

sures (for a comprehensive discussion of our replication results, see

Boekel, Wagenmakers et al., 2015; Kanai, 2015; Muhlert & Ridg-

way, 2016).

Previous investigations into the test-retest reliability of DWI

have generally suggested stability (Buchanan, Pernet, Gorgolewski,

Storkey, & Bastin, 2014; Fox et al., 2012; Heiervang, Behrens,

Mackay, Robson, & Johansen-Berg, 2006; Jansen, Kooi, Kessels,

Nicolay, & Backers, 2007; Jovicich et al., 2014; Madhyastha et al.,

2014; Owen et al., 2013; Pfefferbaum, Adalsteinsson, & Sullivan,

2003; Vollmar et al., 2010; Wang, Abdi, Bakhadirov, Diaz-

Arrastia, & Devous, 2012). These studies have mostly used whole-

brain methods to calculate an overall estimate of the reliability of

the DWI-derived measures. Some have also specifically tested

major white matter tracts to investigate the possibility that areas of

low reliability selectively impede robust measurements of DWI

measures in white matter tracts such as the corpus callosum (Heier-

vang et al., 2006) and the inferior frontooccipital fasciculus (IFOF;

Wang et al., 2012). Yet, another class of tracts is often investigated

by researchers in the field of cognitive neuroscience, particularly

those adopting the SBB approach. Informed by functional findings,

researchers use probabilistic tractography to identify white matter

pathways between areas found to be involved in the performance

of a task. After the delineation of such a tract, DTI measures can be

extracted and correlated to individual differences in behavior.

For example, Mulder, Wagenmakers, Ratcliff, Boekel, and For-

stmann (2012) found that providing participants with prior informa-

tion about the reward balance of a two-alternative forced choice

perceptual decision-making task elicits activation in the right ven-

tromedial prefrontal cortex (vmPFC). Subsequently, in Mulder,

et al. (2014), a white matter pathway between the vmPFC and the

subthalamic nucleus (STN) was estimated using probabilistic trac-

tography. The tract strength between the vmPFC and STN was

then shown to be quantitatively predictive of individual differences
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in value-based choice bias. This SBB finding requires the assump-

tion that diffusion tensor fitting on data from a single DWI scan-

ning session provides robust diffusion measures. However, this

assumption is challenged by a study from Jansen et al. (2007). In

their study, an area of decreased reliability across sessions in the

basal ganglia (BG) was found. The authors argued that this

decrease in reliability was possibly due to increased iron content in

the BG causing susceptibility artifacts in the DWI data (Drayer

et al., 1986). It is possible that tracts originating from the BG are

negatively affected in terms of their test-retest reliability. This

example suggests that it is not sufficient to investigate whole-brain

DWI robustness; specific white matter pathways should be tested

for test-retest reliability to exclude the influence of local islands of

increased variability.

Here, we report an evaluation of test-retest reliability of dif-

fusion measures in white matter tracts of the cognitive control

network delineated by probabilistic tractography. We specifi-

cally inspect the DTI measures fractional anisotropy (FA), mean

diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD),

tract strength, and tract volume. FA is a measure of the degree

of anisotropic diffusion of molecules, where low FA values cor-

respond to equidirectional (un)restricted diffusion (i.e., Brow-

nian motion), and high FA values reflect restricted linear

diffusion. MD is a measure of the total diffusion. AD is defined

by the principal eigenvalue of the tensor model, which repre-

sents the degree of diffusion in the main diffusion direction. RD

is defined by the average of the second and third eigenvalue of

the tensor model, representing the degree of diffusion perpendic-

ular to the main diffusion direction. Tract strength is derived

from the tractography procedure (see Method, “Probabilistic

tractography”), and tract volume is given in mm3.

We investigate these measures in four white matter pathways:

(1) the tract between the subthalamic nucleus (STN) and the inferi-

or frontal cortex (IFC) shown to be involved in stopping behavior

(Aron et al., 2007; Aron, Robbins, & Poldrack, 2014); (2) the IFOF

involved in the Simon task (Forstmann et al., 2008); (3) the tract

between the striatum (in our analysis comprising putamen and cau-

date, excluding the nucleus accumbens) and presupplementary

motor area (pre-SMA), which has been implicated in the speed-

accuracy tradeoff (Forstmann et al., 2010); and (4) the tract

between STN and vmPFC, involved in value-driven choice bias

(Mulder et al., 2014). All but the IFOF were identified using proba-

bilistic tractography in our dataset (the IFOF was extracted from

the JHU white matter tractography atlas implemented in FSL, Hua

et al., 2008; and registered to individual space).

Here, we investigate a structural DWI data set including 34 par-

ticipants who were scanned in two DWI sessions 1 h apart. Of these

34 participants, 15 were additionally scanned 1 h after the second

scan session, as well as in a 2-week follow-up scan session. In com-

parison to the majority of previous DWI reliability studies, this

data set provides (a) a somewhat larger sample size, and (b) rela-

tively more data per scan. We have relatively more data per scan

because the scan sessions include four repetitions of a DWI

sequence, each of which is merged within-session, prior to testing

reliability between sessions.

The reliability assessment of DWI measures in the above-

mentioned four tracts is particularly interesting to researchers in

the field of cognitive control. More generally, it allows the

investigation of potential sources of variance, which is important

when investigating relationships between brain structure and

behavior.

Method

Participants

This data set is an extension of an unpublished pilot study set up as

an exploration into the possibility that practice effects on a stop-

signal task elicit short-term structural changes in a network previ-

ously labeled the cognitive control network (Aron et al., 2007,

2014). This pilot study initially comprised data from 15 partici-

pants, who were divided into a stop group (nine participants per-

forming the stop-signal task between scans), and a passive control

group (six participants who did not perform the stop-signal task

between scans). Later, this data set was expanded to include an

active control group of seven participants, who performed a go task

(i.e., the stop-signal task without stop signals) between DWI scans.

Moreover, nine and three additional participants were respectively

assigned to the stop and passive control group. As such, our final

data set consists of structural brain scans of 34 healthy young par-

ticipants (18 females) with a mean age of 22.76 (SD 5 3.12, range

19.17–35.67). The study was approved by the local ethics commit-

tee at the University of Amsterdam. All participants gave their

written consent prior to scanning and received a monetary

compensation.

Experimental Design

Figure 1 displays the design. Participants in the stop-signal group

and the active control group started with a go task to familiarize

them with the left/right decision component of our task. This prac-

tice session was followed by the first DWI scan. Subsequently, the

stop-signal group performed behavioral stop-signal tasks between

scans, and the active control group performed go tasks between

scans. The passive control group did not perform any task in

between the scans. Participants in this group were asked to remain

in the waiting room of the scanning center while they waited for

the next scan. Our stop task was a computerized perceptual two-

alternative forced choice directional discrimination task using

arrows pointing left or right, with the inclusion of auditory tones

prompting the participant to inhibit their response. Stop-signal

delay started at 190 ms and was updated after every stop trial by an

addition or subtraction of 50 ms, depending on the subjects’ stop-

respond rate so far, leading to an eventual average stop-respond

rate of 50%. The go task was a copy of the stop task using only go

trials. The stop-signal reaction time (SSRT) was estimated per ses-

sion using the BEEST (Bayesian ex-Gaussian estimation of stop-

signal reaction time [RT] distributions) software (version 2.0;

Matzke et al., 2013). The MCMC (Markov chain Monte Carlo)

sampling settings were number of chains: 3; number of samples:

20,000; number of burn-in: 5,000; and amount of thinning: 5. All

incorrect RTs and RTs shorter than 200 ms were excluded for the

estimation of the SSRT.

The final data set consisted of a group of 34 participants

scanned in Session 1 and 2, of which a smaller subset of 15 partici-

pants were also scanned in a third session on the same day, as well

as in a 2-week follow-up session.

DWI imaging acquisition. Imaging data were acquired on a 3T

Philips Achieva XT scanner (80 mT/m maximum amplitude gradi-

ent strength and a maximum slew rate of 200 mT/m/ms) using a

32-channel head coil. For each participant, a T1 anatomical scan

was acquired (T1 turbo field echo, 220 coronal slices with an iso-

tropic voxel resolution of 1 mm, field of view 5 240 3 188 3

Test-retest reliability of diffusion measures 25



220 mm, flip angle 5 88, TR 5 8.4 ms, TE 5 3.9 ms, SENSE factor

(RL) 5 2.5, SENSE factor (FH) 5 2, bandwidth 191.4 Hz/Px,

acquisition time 3.06 min).

In each DWI scanning session, four repetitions of a multislice

spin echo (MS-SE), single-shot DWI scans were acquired on a 3T

MRI (60 transverse slices with an isotropic voxel resolution of

2 mm, field of view 5 224 3 224, TR 5 7,545 ms, TE 5 86 ms,

SENSE factor (AP) 5 2, bandwidth 5 32.1 Hz/Px, acquisition time

5.30 min each). Diffusion weighting was isotropically distributed

along 32 directions (b value 5 1,000 s/mm2). For each repetition,

six images with no diffusion weighting (b0; b value 5 0 s/mm2)

were acquired and averaged by the scanner before adding to the

raw data. All DWI data are made freely available on http://www.

nitrc.org/projects/dwi_test-retest/.

DWI preprocessing. All DWI data (pre)processing and analyses

were carried out using FMRIB’s Software Library (FSL, version

5.0.8; www.fmrib.ox.ac.uk/fsl; Smith et al., 2004). For each partici-

pant and session, all four DWI repetitions were concatenated and

corrected for eddy currents. Affine registration was used to register

each volume to a reference volume (Jenkinson & Smith, 2001). A

single image without diffusion weighting (b0; b value 5 0 s/mm2)

was extracted from the concatenated data, and nonbrain tissue was

removed using FMRIB’s brain extraction tool (Smith, 2002) to cre-

ate a brain mask that was used in subsequent analyses. DtiFit (Beh-

rens et al., 2003) was applied to fit a tensor model at each voxel of

the data (Smith et al., 2004) to derive FA, MD, AD, and RD mea-

sures for further analyses.

ROI definition. We extracted the striatum (STR) and STN regions

of interest (ROIs) from the probabilistic atlas from Keuken et al.

(2014). The pre-SMA ROI was drawn in MNI (Montreal Neurolog-

ical Institute) space by using the coordinates reported by Johansen-

Berg et al. (2004). The IFC ROI was extracted from the Harvard/

Oxford atlas included in FSL (Desikan et al., 2006). The vmPFC

ROI was provided by Mulder et al. (2014). Finally, the IFOF was

extracted from the JHU white matter tractography atlas included in

FSL (Hua et al., 2008). Bilateral ROIs were extracted and separated

by hemisphere. As the right vmPFC was functionally defined, we

generated the left hemisphere version of this ROI based on its mir-

rored x coordinate. All probabilistic ROIs were thresholded at

10%. In order to bring these ROIs into individual space, we first

registered the standard MNI template to the participant’s whole-

brain MPRAGE (magnetization-prepared rapid gradient echo)

using FLIRT (12 degrees of freedom, correlation ratio, trilinear

interpolation). The registered MNI template was then registered to

individual b0 images. We subsequently nonlinearly optimized these

transformations using the symmetric image normalization method,

which is part of the advance normalization tools (Avants et al.,

2008). Using the resulting transformation matrices and warp fields,

the ROIs were then transformed into individual space. Figure 2

provides an overview of the resulting ROIs that were subsequently

used in probabilistic tractography.

Probabilistic tractography. BedpostX (Behrens et al., 2003) was

applied to the preprocessed DWI data to estimate voxelwise diffu-

sion parameter distributions. Estimation of tract strengths was con-

ducted using probabilistic tractography (Behrens et al., 2003). Fifty

Figure 1. Experimental design. Three groups underwent scanning interleaved with a stop task (stop signal group), a go task (active control group), or

an equal amount of time to be spent in the waiting room of the scanning center (passive control group). The stop signal and active control groups per-

formed on a go practice task prior to the first scanning session to familiarize them with the left/right discrimination aspect of the task.
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thousand tracts were sampled from each voxel in the seed masks at

a curvature threshold of 0.2. We used two separate tractography

analyses per tract: a seed-to-classification analysis, which we used

to extract tract strength measures; and a seed-to-termination analy-

sis, which we used to generate the tract images for the assessment

of tract-average FA/MD/AD/RD test-retest reliability.

First, in the seed-to-classification analysis, we used a seed mask

from which to start tracking, an individually drawn midline mask

to prevent fibers from crossing over to the other hemisphere, and a

classification mask serving as target for the tractography. This anal-

ysis returns an image containing, for each voxel in the seed mask,

the number of samples reaching the classification mask. To remove

any spurious connections, this image was thresholded at 10% of

robust range using the fslmaths -thrP command. Subsequently, the

number of nonzero voxels was divided by the total number of vox-

els in the seed mask, resulting in a value that represents the propor-

tion of the seed mask that was probabilistically connected to the

classification mask. A similar procedure was applied in the oppo-

site direction (where the seed and classification masks were

switched). Tract strength was defined as the average of the two pro-

portions that resulted from the seed-to-classification and

classification-to-seed analyses.

Second, in the seed-to-termination analysis, we used a seed

mask from which to start tracking, an individually drawn midline

mask to prevent fibers from crossing over to the other hemisphere,

a waypoint mask (the inclusion of which effectively discards any

tracts not reaching it), and a termination mask that terminates but

keeps the tracts reaching this mask. In these analyses, the waypoint

mask and termination mask were always the same. The image

resulting from this analysis has probabilistic information only in

voxels where tracts passed through that (a) originated from the

seed-mask, (b) did not cross over to the contralateral hemisphere,

and (c) reached the termination/waypoint mask.

Tract-based spatial statistics. The tracts delineated by the previ-

ously described tractography procedure were used in a reliability

assessment of DTI measures. After having visually inspected these

tracts, the question emerged whether overlap between the tracts

and nonwhite matter regions could have introduced noise in our

average DTI measures (for a visual example, see Figure 3). To

answer this question, we performed tract-based spatial statistics

(TBSS) in FSL (Smith et al., 2006). First, FA images were slightly

eroded and end slices were zeroed in order to remove likely outliers

from the diffusion tensor fitting. Second, all FA images were

aligned to 1 mm standard space using nonlinear registration to the

FMRIB58_FA standard-space image. Affine registrations were

then used to align images into 1 3 1 3 1 mm MNI 152 space, and

finally skeletonized. Subsequently, the mean skeletonized FA

image was thresholded at FA of 0.2. (In the online supporting infor-

mation Table S1–S4, we include an additional analysis using an

Figure 3. Bilateral IFOF in MNI space. The blue IFOF tract is wide and still shows overlap with nonwhite matter regions. The green mask represents

the IFOF after applying the shrinkage operator.

Figure 2. Masks used in probabilistic tractography. Cyan 5 ventromedial prefrontal cortex (vmPFC); green 5 inferior frontooccipital fasciculus

(IFOF); ochre 5 inferior frontal cortex (IFC); purple 5 presupplementary motor area (pre-SMA); red 5 striatum (STR); blue 5 subthalamic nucleus

(STN).
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FA threshold of 0.4, which is an even more conservative threshold

to only include voxels that have a relatively high FA value). Partic-

ipants’ FA data were then projected onto the mean skeletonized FA

image and concatenated. For each participant, tracts from Session 1

were then additionally masked with corresponding tracts from the

other sessions, resulting in tracts that only included voxels shared

by all sessions, in addition to being skeletonized. This was done to

further shrink and equalize our masks. We subsequently extracted

average DWI measures from these tracts and performed an intra-

class correlation (ICC) analysis augmented by Bayesian statistical

tests to assess stability. We will henceforth refer to this multistep

process as our shrinking operator.

ICC. The consistency between the different scan sessions was esti-

mated using the ICC correlation as implemented in the R Package

irr (version 0.84, Garner, Fellows, Lemon, & Singh, 2012). The

ICC is a descriptive statistic that describes the similarity between

measurements. We will adopt the labels provided by Cicchetti

(1994) where a value between 0.4 and 0.59 is fair, 0.6 and 0.74 is

good, and an ICC between 0.75 and 1.0 is excellent similarity

between measurements.

Bayesian statistics. We performed Bayesian repeated measures

analyses of variance (ANOVAs) with subject as a random factor

and paired t tests using the BayesFactor toolbox (version 0.9.12-2;

Morey, Rouder, & Jamil, 2015) in R (version 3.0.2; R Foundation

for Statistical Computing, http://www.R-project.org). T tests were

run between Session 1 and 2, and 1 and 4. ANOVAs were run over

all four sessions. In all tests, the null hypothesis represented stabili-

ty (i.e., no difference/change). These Bayesian t tests and ANOVAs

are arbitrarily similar to their frequentist counterparts. In terms of

their interpretation, they differ mostly in their outcome measure.

The outcome of these Bayesian hypothesis tests is a single number

known as the Bayes factor (Dienes, 2008; Jeffreys, 1961; Kass &

Raftery, 1995; Lee & Wagenmakers, 2013; Rouder, Morey, Speck-

man, & Province, 2012; Rouder, Speckman, Sun, Morey, & Iver-

son, 2009). The Bayes factor (BF) quantifies the support that the

data provide for the null hypothesis H0 (no change) vis-�a-vis the

composite alternative hypothesis H1 (change). For instance,

BF10 5 3 indicates that the observed data are three times as likely

to have occurred under H1 than under H0, and BF10 5 0.2 (or

BF01 5 1/0.2 5 5) indicates that the data are five times as likely to

have occurred under H0 than under H1. The evidential support that

the BF01 gives to the null hypothesis can be categorized based on a

set of labels proposed by Jeffreys (1961). Table 1 shows this sug-

gested evidence categorization for the BF01, edited by and taken

from Boekel, Forstmann, and Wagenmakers (2016; Table 1, p.

119). We will adopt these labels to facilitate the interpretation of

our Bayes factors. Nevertheless, the labels should not be zealously

adhered to.

Results

We start by presenting behavioral findings that suggest we can

merge the conditions in our data to investigate test-retest reliability

irrespective of which task participants performed between scans.

We then report the results of the reliability assessment of four tracts

derived from probabilistic tractography, after which we present

results from an additional analysis in which we investigate the reli-

ability of conservative versions of our tracts in an attempt to

exclude nonwhite matter sources of noise using a shrinkage opera-

tor. An additional, more conservative shrinkage operator was also

applied, the results of which can be found in supporting informa-

tion Table S1–S4.

Behavior

One participant did not complete the second stop-signal block and

was omitted from behavioral analysis. See Table 2 for an overview

of descriptive behavioral results. Below, we describe the behavioral

results in detail.

Go-trial response times. To assess the between-groups behavior-

al differences in go-trial response time, we performed a Bayesian

t test on the go response times of the go-task practice session (Ses-

sion 0), between the stop and go active control groups. We found

anecdotal evidence in favor of the null hypothesis of no difference

(BF01 5 2.52).

To investigate behavioral changes over time, we performed sev-

eral Bayesian ANOVAs testing for main effects of session. A

Bayesian ANOVA of the go-trial response times of the go active

control group in Session 0 (practice), 1, and 2 showed very strong

Table 1. Suggested Categories for Interpreting Bayes Factors

Bayes factor
BF01 Interpretation

100 Extreme evidence for H0

30 – 100 Very strong evidence for H0

10 – 30 Strong evidence for H0

3 – 10 Moderate evidence for H0

1 – 3 Anecdotal evidence for H0

1 No evidence
1/3 – 1 Anecdotal evidence for H1

1/10 – 1/3 Moderate evidence for H1

1/30 – 1/10 Strong evidence for H1

1/100 – 1/30 Very strong evidence for H1

< 1/100 Extreme evidence for H1

Table 2. Behavioral Results Split by Groups and Sessions

Group Session Go RT Accuracy SSRT P(StopFail)

Stop signal group 0 364.26 (19.16) 0.96 (0.04) – –
1 471.63 (65.06) 0.96 (0.04) 235.61(89.92) 0.51 (0.03)
2 437.42(66.32) 0.94 (0.07) 215.39(66.48) 0.50 (0.03)
3 432.90 (82.74) 0.97 (0.03) 225.11(123.89) 0.52 (0.04)

Active control group 0 364.72(30.56) 0.96 (0.04) – –
1 353.40 (30.77) 0.95 (0.03) – –
2 354.72 (31.95) 0.93 (0.04) – –

Note. Session 0 is the go practice session performed by participants to familiarize them with the directional decision component of the task. Standard
deviations appear in parentheses. P(StopFail) represents the probability of stop trials in which subjects responded.
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evidence in favor of the presence of a main effect of session

(BF01 5 0.03). A similar ANOVA on go-trial response times from

Session 1, 2, and 3 of the stop group showed anecdotal evidence in

favor of the absence of a main effect of session (BF01 5 2.64).

Because the latter analysis only included the nine stop participants

who completed the 2-week follow-up session, we performed an

additional Bayesian t test (including all 18 stop participants) on the

difference in go response time between Session 1 and 2. The result-

ing Bayes factor shows anecdotal evidence in favor of the absence

of a difference in go response times between Session 1 and 2 for

the stop group (BF01 5 1.40). This result reflects absence of evi-

dence rather than evidence for absence, and as such precludes a

definite conclusion in favor of either hypothesis.

Accuracy. We performed comparable analyses to the go-trial

response times for the accuracy data (i.e., the proportion of

responses directionally congruent with the stimulus). The direction-

al discrimination in our stop task was intentionally made trivial,

and accordingly accuracy was generally high (see Table 2).

A Bayesian t test on the accuracy of the practice session (go

task) between the stop and go active control groups showed anec-

dotal evidence in favor of the null hypothesis of no difference

between groups (BF01 5 2.52).

A Bayesian ANOVA of the accuracy of the go active control

group in Session 0, 1, and 2 showed anecdotal evidence in favor of

the null hypothesis (BF01 5 1.08). For the stop participants who

completed the 2-week follow-up session, a Bayesian ANOVA on

accuracy in Session 1, 2, and 3 showed moderate evidence in favor

of the absence of a main effect of session (BF01 5 3.61). An addi-

tional Bayesian t test between the accuracy in Session 1 and 2 for

the complete stop group provided anecdotal evidence in favor of

the absence of a change in accuracy (BF01 5 1.20).

SSRT. Two tests were performed to investigate behavioral changes

in SSRT over time and between groups. A Bayesian ANOVA of

SSRT in Session 1, 2, and 3 of the nine participants who completed

all three stop sessions showed moderate evidence in favor of the

absence of a main effect of session (BF01 5 3.37). An additional

Bayesian t test including the entire stop group on the difference in

SSRT between Session 1 and 2 showed anecdotal evidence in favor

of the absence of a difference (BF01 5 1.66).

Beyond the simple go-RT session effect, there appear to be no

practice effects in our data. As such, we continue with DTI test-

retest reliability analyses.

DTI

Next, we report test-retest reliability of the following DTI mea-

sures: mean FA/MD/AD/RD, tract strength, and tract volume. We

computed ICCs between the first two sessions for all 34 partici-

pants, between the first and last session of a subset of 15 subjects,

as well as over all sessions for this subset. We augment this ICC

analysis using Bayesian t tests and Bayesian ANOVAs to facilitate

statistical inference.

STN-IFC. We delineated a tract between STN and IFC and

extracted average DTI measures for each session and participant.

An overview of the results of this tract can be seen in Table 3. For

the consistency between the first and second session, in our bigger

sample of 34 subjects, we observe high ICCs for all DWI measures

and tract strength (ICCs> 0.86). For tract volume, we find slightly

lower ICCs (left: 0.77; right: 0.61). However, all but two of the

Bayes factors for the associated t test are higher than 3 (only left

FA and right tract strength show anecdotal evidence, albeit in favor

of the null), suggesting that the evidence is moderately in favor of

an absence of a difference between these sessions. For the consis-

tency between the first and last session, in our smaller sample of 15

subjects, we observe reasonably high ICCs for all DTI measures

and tract strength (ICCs> 0.72). For tract volume, we find a lower

ICC of 0.44 in the left hemisphere (although the ICC for the right

hemisphere is 0.88). Our Bayes factors for this test are generally in

favor of the absence of a difference, although they suggest this

only anecdotally. We suspect that this is due to the smaller sample

size of this group (n 5 15). Finally, for the overall consistency, we

observe reasonably high ICC values for all measures in this tract

(ICCs> 0.71). All but two (left FA: BF01 5 0.55; left RD:

BF01 5 2.14) Bayes factors of the associated ANOVAs are higher

than 3, suggesting that the evidence is moderately in favor of the

absence of a difference over the four sessions included in this test.

These Bayes factors seem high in comparison to those coming

from the comparison of Session 1 and Session 4. We suspect that

this is due to the ANOVA taking more data into account, since it is

run over all four sessions as opposed to only two.

STN-vmPFC. We delineated a tract between STN and vmPFC

and extracted average DTI measures for each session and partici-

pant. An overview of the results of this tract can be seen in Table 4.

For the consistency between the first and second session, in our

bigger sample of 34 subjects, we observe reasonably high ICCs for

all but one measure (ICCs> 0.69). For AD in the right hemisphere

version of this tract, we find a rather low ICC of 0.33. However, all

but two (left FA: BF01 5 1.33; left RD: BF01 5 2.70) Bayes factors

for the associated t test are higher than 3, suggesting that the evi-

dence is moderately in favor of an absence of a difference between

these sessions. For the consistency between the first and last ses-

sion, in our smaller sample of 15 subjects, we observe reasonably

high ICCs for all DTI measures and tract strength (ICCs> 0.77).

For tract volume, we find slightly lower ICCs (left: 0.60; right:

0.57). Our Bayes factors for this test are in favor of the absence of

a difference, although they suggest this only anecdotally. Finally,

for the overall consistency, we observe reasonably high ICC values

for all measures in this tract (ICCs> 0.80), with only one exception

Table 3. Reliability of DTI Measures in the STN-IFC Tract
Thresholded at 10% of Robust Range

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 2.40 0.90 0.68 0.84 0.55 0.95
R 3.92 0.89 3.46 0.90 9.80 0.93

MD L 4.98 0.87 1.85 0.72 4.47 0.90
R 4.78 0.95 1.87 0.91 6.72 0.96

AD L 4.26 0.87 3.68 0.84 9.77 0.89
R 5.44 0.94 2.08 0.87 5.92 0.95

RD L 3.97 0.89 1.31 0.77 2.14 0.93
R 4.67 0.94 2.15 0.92 7.89 0.95

VOL L 5.17 0.77 2.80 0.44 4.44 0.71
R 4.76 0.61 2.94 0.88 8.68 0.77

TS L 4.89 0.89 3.70 0.86 8.05 0.87
R 2.65 0.86 3.72 0.82 9.35 0.89

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; VOL 5 volume; TS 5 tract strength; RD 5 radial diffusivity;
ICC 5 intraclass correlation coefficient; BF01 5 Bayes factors represent-
ing relative evidence in favor of the null hypothesis.
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of AD in the left hemisphere showing a slightly lowered ICC of

0.63. Bayes factors of the associated ANOVAs are all higher than

3, suggesting that the evidence is moderately (or in some cases

strongly; BF01> 10) in favor of the absence of a difference over

the four sessions included in this test.

STR-pre-SMA. We delineated a tract between STR and pre-SMA

and extracted average DTI measures for each session and partici-

pant. An overview of the results of this tract can be seen in Table 5.

For the consistency between the first and second session, in our

bigger sample of 34 subjects, we observe reasonably high ICCs for

all but one measure (ICCs> 0.72), with a single slightly lower ICC

of 0.65 in the AD of the left hemisphere version of this tract. All

but one Bayes factor for the associated t test are higher than 3, sug-

gesting that the evidence is moderately in favor of an absence of a

difference between these sessions. The Bayesian t test for tract

strength in the left hemisphere version of this tract resulted in a

lower Bayes factor of 1.58, although this was still in favor of the

absence of a difference. For the consistency between the first and

last session, in our smaller sample of 15 subjects, we observe high

ICCs for all DTI measures (ICCs> 0.78). Lower ICCs were found

in the tract strength measure (left: 0.55; right: 0.53), and in terms

of volume (left: 0.64; right: 0.72). Our Bayes factors for this test

are in favor of the absence of a difference, although they suggest

this only anecdotally. Finally, for the overall consistency, we

observe reasonably high ICC values for all measures in this tract

(ICCs> 0.78). All but three (right FA: BF01 5 2.83; right MD:

BF01 5 2.70; right RD: BF01 5 1.19) Bayes factors of the associat-

ed ANOVAs are higher than 3, suggesting that the evidence is

moderately in favor of the absence of a difference over the four ses-

sions included in this test.

IFOF. Finally, we investigated the reliability of DTI measures in

the IFOF. We delineated the IFOF based on a registration method

(see Method) to mimic the analyses of Forstmann et al. (2010). No

tractography was run for this particular tract, and therefore no tract

strength measures or informative tract volumes were derived.

Bayesian reliability analyses were computed only including mean

FA, MD, AD, and RD. An overview of the results of this tract can

be seen in Table 6. For the consistency between the first and sec-

ond session, in our bigger sample of 34 subjects, we observe high

ICCs for all measures (ICCs> 0.85). All Bayes factors for the asso-

ciated t test are higher than 3, suggesting that the evidence is mod-

erately in favor of an absence of a difference between these

sessions. For the consistency between the first and last session, in

our smaller sample of 15 subjects, we observe high ICCs for all

DTI measures (ICCs> 0.80). Our Bayes factors for this test are in

favor of the absence of a difference, although they suggest this

only anecdotally. Finally, for the overall consistency, we observe

reasonably high ICC values for all measures in this tract

(ICCs> 0.95). Bayes factors of the associated ANOVAs are all

higher than 3, suggesting that the evidence is moderately (or in

some cases strongly, BF01> 10) in favor of the absence of a differ-

ence over the four sessions included in this test.

We were uncertain about our construction of the IFOF, consid-

ering the deviation in its methods compared to our construction of

the other tracts. Whereas other tracts were obtained using probabil-

istic tractography, individual IFOF ROIs were generated by regis-

tering the template IFOF from Hua et al. (2008) in MNI space to

each participant’s DWI data in individual space. We hypothesized

that, despite our initial 10% thresholding procedure, misregistra-

tions could have resulted in the IFOF ROI overlapping with non-

white matter tissue. To illustrate, Figure 3 depicts the bilateral

Table 4. Reliability of DTI Measures in the STN-vmPFC Tract
Thresholded at 10% of Robust Range

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 1.33 0.88 0.79 0.87 0.87 0.95
R 3.42 0.85 2.86 0.90 6.07 0.88

MD L 3.89 0.91 1.86 0.78 3.69 0.91
R 5.01 0.69 2.05 0.86 8.24 0.86

AD L 4.72 0.92 3.52 0.78 8.43 0.90
R 5.43 0.33 0.81 0.77 6.55 0.63

RD L 2.70 0.90 1.38 0.82 2.32 0.93
R 4.49 0.80 2.97 0.88 8.84 0.90

VOL L 4.80 0.81 3.78 0.60 1.64 0.83
R 5.26 0.75 3.72 0.57 7.44 0.80

TS L 5.40 0.90 3.48 0.85 10.39 0.87
R 3.47 0.91 3.73 0.81 6.40 0.89

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; VOL 5 volume; TS 5 tract strength; RD 5 radial diffusivity;
ICC 5 intraclass correlation coefficient; BF01 5 Bayes factors represent-
ing relative evidence in favor of the null hypothesis.

Table 5. Reliability of DTI Measures in the STR-PreSMA Tract
Thresholded at 10% of Robust Range

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 5.44 0.93 1.71 0.98 8.48 0.94
R 5.42 0.79 3.81 0.95 2.83 0.96

MD L 4.92 0.81 3.81 0.89 9.02 0.90
R 5.32 0.73 3.59 0.92 2.70 0.96

AD L 4.50 0.65 3.18 0.78 9.76 0.80
R 5.14 0.72 3.60 0.82 9.96 0.93

RD L 5.15 0.86 3.36 0.94 7.63 0.91
R 5.38 0.73 3.65 0.95 1.19 0.96

VOL L 5.44 0.88 3.69 0.64 7.16 0.81
R 4.37 0.83 3.5 0.72 4.61 0.87

TS L 1.58 0.75 2.52 0.55 3.88 0.78
R 5.02 0.77 3.72 0.53 8.18 0.82

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; VOL 5 volume; TS: tract strength; RD 5 radial diffusivity;
ICC 5 intraclass correlation coefficient; BF01 5 Bayes factors represent-
ing relative evidence in favor of the null hypothesis.

Table 6. Reliability of DTI Measures in the IFOF Thresholded
at 10% of Robust Range

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 5.01 0.85 3.81 0.84 4.06 0.95
R 2.75 0.89 2.67 0.95 6.89 0.96

MD L 4.47 0.97 3.78 0.81 10.18 0.96
R 4.73 0.95 0.58 0.98 2.73 0.98

AD L 2.71 0.98 3.74 0.87 3.20 0.96
R 5.32 0.95 1.60 0.98 2.03 0.98

RD L 5.28 0.96 3.79 0.80 9.37 0.96
R 3.78 0.94 0.63 0.97 3.96 0.97

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; RD 5 radial diffusivity; ICC 5 intraclass correlation coeffi-
cient; BF01 5 Bayes factors representing relative evidence in favor of
the null hypothesis.
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IFOF masks in standard space showing, in some places, overlap

with nonwhite matter. Visual inspection of individual left IFOF

ROIs confirmed that this overlap was also the case at an individual

level.

We decided that, more generally, additional shrinkage of all our

tracts might mitigate the unwanted influence of nonwhite matter

voxels, thereby further increasing reliability. We performed TBSS

(see Method, “Tract-based spatial statistics”), which yields group-

averaged white matter skeletons representing only the core white

matter fibers. We transformed our individual tracts to the common

TBSS space and skeletonized them (i.e., we masked individual

tracts with the group white matter skeleton; see Figure 3 for a visu-

alization of a skeletonized IFOF in green). In addition, for each par-

ticipant, tracts from Session 1 were masked with corresponding

tracts from the other sessions, resulting in tract masks that only

included voxels shared by all sessions. This latter step was done to

further shrink our masks and ensure comparison between only

spatially overlapping voxels. The skeletonization procedure

alongside the between-sessions masking represents our shrink-

age operator. We extracted average DTI measures from these

tracts and report on their test-retest reliability below. Further-

more, we include results from a more conservative shrinkage

operator in Table S1–S4.

Reliability of DTI measures in tracts after shrinkage. Here,

we report the reliability assessment after applying our shrinkage

operator to tracts used in our experiment. All results can be viewed

in Table 7 through (8–10).

We expected to see higher stability in our tracts because the

shrinking procedure should solve the problem of overlap between

our tracts and nonwhite matter tissue. It seems that, overall, the

ICCs are indeed higher in these more conservative versions of our

tracts (all ICCs> 0.87; but most even> 0.95). More notably, the

low ICC of 0.33 in the AD measure of the right STN-vmPFC tracts

has disappeared; after applying the shrinkage operator, this ICC

was brought to 0.94. Bayes factors were not noticeably affected.

In sum, our data revealed that, using an initial thresholding pro-

cedure of 10%, we find convincing test-retest reliability in most

measures in most tracts. Several measures, mostly tract strength

and volume, showed decreased reliability, although Bayesian statis-

tical tests still largely support the notion of stability. This stability

was further enhanced by our shrinkage operator, which aimed to

remove nonwhite matter voxels from our tracts.

Discussion

We set out to assess the test-retest reliability of DTI measures in

four tracts that have recently been the subject of SBB investiga-

tions. We delineated these tracts using standard probabilistic trac-

tography and subsequently tested FA, MD, AD, RD, tract strength,

and tract volumes for stability using ICCs augmented by a Bayes-

ian statistical framework.

Table 7. Reliability of DTI Measures in the STN-IFC Tract
After the Shrinking Procedure

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 3.52 0.96 1.95 0.91 2.59 0.97
R 5.26 0.95 2.66 0.92 6.97 0.96

MD L 3.62 0.94 1.47 0.91 1.25 0.97
R 5.35 0.94 3.33 0.93 9.45 0.94

AD L 4.87 0.96 1.46 0.97 1.77 0.98
R 5.19 0.95 1.49 0.95 4.90 0.94

RD L 3.53 0.95 1.78 0.89 1.94 0.97
R 5.43 0.94 3.81 0.92 11.06 0.95

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; RD 5 radial diffusivity; ICC 5 intraclass correlation coeffi-
cient; BF01 5 Bayes factors representing relative evidence in favor of
the null hypothesis.

Table 8. Reliability of DTI Measures in the STN-vmPFC Tract
After the Shrinking Procedure

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 4.36 0.96 2.53 0.88 4.49 0.96
R 2.90 0.98 3.31 0.92 7.68 0.97

MD L 4.04 0.95 2.02 0.90 2.13 0.96
R 5.41 0.96 2.27 0.96 6.53 0.97

AD L 4.51 0.96 1.85 0.96 1.82 0.98
R 5.13 0.94 1.49 0.91 3.57 0.95

RD L 4.05 0.95 2.15 0.87 2.86 0.96
R 5.03 0.97 3.51 0.95 9.26 0.97

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; RD 5 radial diffusivity; ICC 5 intraclass correlation coeffi-
cient; BF01 5 Bayes factors representing relative evidence in favor of
the null hypothesis.

Table 9. Reliability of DTI Measures in the STR-Pre-SMA Tract
After the Shrinking Procedure

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 3.56 0.97 2.81 0.97 8.57 0.98
R 4.89 0.96 3.24 0.98 3.64 0.98

MD L 3.39 0.98 2.53 0.98 6.75 0.99
R 4.84 0.97 3.26 0.98 8.89 0.99

AD L 1.82 0.97 3.27 0.98 7.81 0.99
R 2.85 0.97 3.01 0.94 5.18 0.98

RD L 5.15 0.99 2.51 0.98 7.07 0.99
R 5.33 0.97 3.69 0.99 7.63 0.99

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; RD: radial 5 diffusivity; ICC 5 intraclass correlation coeffi-
cient; BF01 5 Bayes factors representing relative evidence in favor of
the null hypothesis.

Table 10. Reliability of DTI Measures in the IFOF After the
Shrinking Procedure

t test S1–S2 t test S1–S4 ANOVA

Measure Hemisphere BF01 ICC BF01 ICC BF01 ICC

FA L 5.29 0.94 2.88 0.95 8.52 0.98
R 1.06 0.97 1.49 0.97 3.31 0.98

MD L 3.96 0.98 3.41 0.93 6.80 0.98
R 4.80 0.98 3.49 0.96 9.66 0.98

AD L 2.64 0.98 3.81 0.94 4.41 0.98
R 5.07 0.97 2.47 0.92 5.89 0.97

RD L 5.0 0.98 3.09 0.93 7.49 0.98
R 3.62 0.98 3.81 0.97 10.28 0.99

Note. FA 5 fractional anisotropy; MD 5 mean diffusivity; AD 5 axial
diffusivity; RD 5 radial diffusivity; ICC 5 intraclass correlation coeffi-
cient; BF01 5 Bayes factors representing relative evidence in favor of
the null hypothesis.
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Our analyses showed general stability in our initial tracts that

were thresholded at 10% of robust range. Tract strength and tract

volume seemed overall to be the least stable, although Bayes fac-

tors were still largely in favor of stability. The tracts in our initial

analysis were still rather large and showed overlap with gray mat-

ter. In order to restrict our analyses to the main white matter tracts,

we applied a shrinking operator. The pattern of results in our more

conservative tracts improved in the sense that stability (at least in

terms of ICC) was generally greater after applying the shrinkage

operator. We are left with an overall reliable data set, suggesting

that the cognitive control tracts we tested here are stable over time,

in a small (n 5 15) as well as larger (n 5 34) sample size, and thus

can readily be correlated to (stable) behavior measures.

With regard to our smaller subset of 15 subjects, we find a nota-

ble pattern of results when comparing the first and last sessions.

While ICCs show general stability, Bayes factors associated with

this comparison only provide anecdotal evidence in favor of stabili-

ty. We believe this to be due to the smaller sample size. Contrary

to this comparison between only the first and last sessions, a com-

parison taking into account all four sessions (also using N 5 15)

resulted in higher Bayes factors, probably because of the increased

number of sessions (and therefore data) used per subject.

Continuing on sample sizes, previous studies have shown stabil-

ity of DWI measures in as little as fewer than 10 participants (Fox

et al., 2012; Heiervang et al., 2006; Vollmar et al., 2010). Previous

studies have also shown this stability using, compared to the pre-

sent analysis, overall fewer data per participant (Buchanan et al.,

2014; Vollmar et al., 2010). With our comparatively larger

(although still somewhat small; see Button et al., 2013) sample

size, and our greater amount of data per participant through multi-

ple repetitions of the same DWI sequence, we provide additional

evidence for the stability of DTI measures.

We demonstrate this stability specifically in tracts of the cogni-

tive control network. In light of the preexisting body of literature,

we are tempted to also make the generalized claim that DWI mea-

sures, obtained using a standard acquisition and analyses, show

general stability. Further investigations into test-retest reliability of

DWI measures could systematically vary parameters in the acquisi-

tion and analysis stages in order to investigate the extent to which

these parameters can influence DWI stability.

Some DWI reliability studies have already investigated the

impact of specific acquisition parameters on test-retest reliability

(Buchanan et al., 2014; Celik, 2016; Vollmar et al., 2010; Wang

et al., 2012). Parameters such as the amount of volumes acquired

per diffusion direction and the amount of diffusion directions have

been shown to impact test-retest reliability. Different parameters

such as b values and voxel resolution might also affect test-retest

reliability. Comprehensive test-retest reliability studies that system-

atically vary these parameters may start to elucidate the conditions

under which the most reliable DWI signal can be acquired and

processed.

Such comprehensive studies can be found in the fMRI literature

(Bennet & Miller, 2010; Laumann et al., 2015) and could serve as

templates for future DWI reliability studies and meta-analyses. At

this time, extensive investigations of this kind for DWI data seem

to be absent. Recent efforts in promoting transparency and data

sharing could also help to increase the availability of data and sub-

sequently facilitate large-scale investigations into DWI reliability

and its relationship to acquisition parameters (Poline et al., 2012).

Some examples include openfMRI (https://openfmri.org/), Open

Science Framework (https://osf.io/), and the human connectome

project (http://www.humanconnectomeproject.org/data/). More

efforts to increase public availability of data are sure to come,

and will open the door to large-scale reliability analyses.
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