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The identification of the FtsZ ring by Bi and Lutkenhaus in

1991 was a defining moment for the field of bacterial cell

division. Not only did the presence of the FtsZ ring provide

fodder for the next 25 years of research, the application of a

then cutting-edge approach—immunogold labeling of bacterial

cells—inspired other investigators to apply similarly state-of-

the-art technologies in their own work. These efforts have led to

important advances in our understanding of the factors

underlying assembly and maintenance of the division

machinery. At the same time, significant questions about the

mechanisms coordinating division with cell growth, DNA

replication, and chromosome segregation remain. This review

addresses the most prominent of these questions, setting the

stage for the next 25 years.
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As a field, bacterial cell division has been defined by a

series of breakthrough discoveries that resulted in new

hypotheses followed by the steady addition of data pro-

viding molecular support for or against these hypotheses

(Figure 1). Among these discoveries are the identification

of conditional alleles in E. coli cell division genes [1��], the

identification of ftsZ, the tubulin-like cell division gene

that serves as the basis for assembly of the cytokinetic

machinery in bacteria and archaea [2��], and the identifi-

cation of the first set of proteins involved in the spatial

regulation of cytokinesis [3��].
www.sciencedirect.com 
The most outstanding of all such breakthroughs, how-

ever, is undoubtedly the 1991 report that FtsZ forms a

ring at the nascent division site [4��]. Utilizing cryo-EM in

conjunction with immunogold staining, Bi and Lutken-

haus determined that FtsZ forms a ring-like structure at

the future site of cell division in Escherichia coli. The

identification of the FtsZ ring had an immediate and

profound impact on the field. Most importantly, the

presence of the FtsZ ring suggested bacteria are not so

different from eukaryotes with regard to the use of

cytoskeletal proteins for morphogenesis—a somewhat

radical idea at the time.

In the intervening 25 years, a flurry of work focused on

cloning additional cell division genes and characterizing

their relationship with FtsZ. These efforts led to the

conclusion that the FtsZ ring serves as a scaffold for

assembly of the division machinery, a complex macromo-

lecular structure composed of over 20 known proteins in

E. coli and a similar number in the Gram-positive model

organism Bacillus subtilis (although not all conserved).

Together these proteins—collectively termed the divi-

some—coordinate cell envelope invagination during

cytokinesis. Other research focused on illuminating fac-

tors contributing to the temporal and spatial regulation of

FtsZ assembly and ensuring that division is coordinated

with chromosome segregation [5,6,7��,8,9�].

Biochemical studies revealed the GTP-dependent

formation of FtsZ polymers and determined that FtsZ

assembly into single stranded polymers is a cooperative

process [10�,11]. FtsZ’s status as the first bacterial cyto-

skeletal protein was capped by solution of its structure in

1998, which revealed remarkable similarity with tubulin

(solved in the same year) despite extremely limited

sequence conservation [12��,13]. Like tubulin, FtsZ

monomers can bind GTP on their own, but dimerization

is required for formation of a shared, GTPase active site

[3��,12��].

Most recently, advances in microscopy including single

molecule tracking and structured illumination revealed

the ‘FtsZ ring’ to be a discontinuous structure composed

of short single stranded polymers held together via lateral

interactions [14��]. Fluorescence recovery after photo-

bleaching (FRAP) experiments illuminated the dynamic

nature of the ring, demonstrating that monomer turnover

within the ring occurs on average once every 9 s [15��].
Finally, two new landmark studies indicate that FtsZ

polymers serve as treadmilling platforms for the septal
Current Opinion in Microbiology 2017, 36:85–94
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86 Cell regulation

Figure 1

(a) Bacterial cell division time-line of discovery. (b) Division cycle progression time-line. Note that timing of division-related events are based on

work in MC4100 cells cultured in minimal glucose medium [37,102]. Initiation time was calculated based on an 80 min mass doubling period using

the CCSim program available at https://sils.fnwi.uva.nl/bcb/cellcycle/ [103].
peptidoglycan synthesis machinery, countering the long

held view that constriction of the FtsZ serves as a force

generating mechanism to drive cytokinesis [16��,17��]
(Figure 2).

Despite these great strides, our picture of the molecular

forces underlying the assembly and activity of the cell

division machinery is far from complete. In particular,

significant questions remain about the mechanisms con-

trolling localization of the cell division machinery and

coordinating its assembly and activation with cell growth,

DNA replication, and chromosome segregation. Below

we outline the most prominent of these, sketching a road

map of sorts for the future of this field.

FtsZ recruitment to the nascent division site
Despite species-specific variations in its physical location,

the selection of the nascent division site is a highly precise

affair. In both E. coli and B. subtilis assembly of the

division machinery takes place within �2% of the cell’s

geographical middle generating two identical daughter
Current Opinion in Microbiology 2017, 36:85–94 
cells [18�,19,20]. This level of precision suggests a multi-

layered process involving both positive regulation—in the

form of factors that promote FtsZ assembly at the nascent

septal site—and negative regulation—in the form of

factors that prevent FtsZ assembly at aberrant subcellular

positions such as close to cell poles or over unsegregated

chromosomal material (AKA the nucleoid). The mecha-

nisms by which different bacteria solve this problem

appear to differ substantially.

Division site selection in B. subtilis: ready-set-go

Data from the Wake and Harry laboratories strongly

implicate the initiation of DNA replication in the posi-

tional regulation of FtsZ in B. subtilis [18�,21]. Bacterial

DNA replication precedes assembly of FtsZ and is initi-

ated by the binding of the AAA+ ATPase DnaA to the

origin of replication (oriC) at midcell. DnaA binding

results in open complex formation, permitting the repli-

cation machinery to load and replication fork elongation

to proceed. In B. subtilis, blocking replication at initiation

results in elongated cells with single, medially positioned
www.sciencedirect.com
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Figure 2

FtsZ polymers serve as GTP-dependent treadmills for the cell wall synthesis machinery in E. coli and B. subtilis. The peptidoglycan synthesis

machinery (green) is tethered to short FtsZ filaments (yellow). FtsZ-dependent GTP hydrolysis stimulates treadmilling in which GTP bound

monomers are added to the putative (+) end of the filament and GDP bound monomers are released from the (�) end. Treadmilling leads to the

processive insertion of cell wall material at the septum. In E. coli, the positive regulators of division, ZapA (green) and ZapB (red) help organize

FtsZ polymers within the divisome. ZapB helps coordinate division with DNA replication via interactions with the terminus binding protein MatP

(gray).
chromosomes [18�]. The FtsZ ring is off-center in these

cells, immediately adjacent to the unsegregated nucleoid.

Strikingly, when DNA replication initiation and open

complex formation is allowed to proceed, but replication

fork elongation is blocked, FtsZ assembly shifts to

midcell.

Based on these observations, Harry and Moriya proposed

a ‘ready-set-go’ model in which assembly of the DNA

replication initiation machinery at the origin, readies (or

‘potentiates’) midcell for FtsZ assembly [21]. Although

the molecular mechanism underlying the ready-set-go

model remains elusive, the idea that medial division site

selection requires a handoff between the DNA replica-

tion machinery and FtsZ is appealing. Not only does it

provide a satisfying link between the two pillars of the cell

cycle, DNA replication and cytokinesis, but it also

explains why increases in intracellular levels of FtsZ

has a very modest impact on the timing and frequency

of medial FtsZ ring in E. coli and B. subtilis formation

[22�,23�] (for an excellent review of the factors coordinat-

ing division with DNA replication and chromosome seg-

regation see Ref. [24]).

Division site selection: positive regulation by ‘marker’

proteins

While similar localization determinants have yet to be

identified in E. coli and B. subtilis, in a wide range of

organisms, FtsZ assembly at the nascent septum depends

on the activity of a regulatory protein that marks the

location of the future division site. In Myxococcus xanthus,
PomZ, is recruited to midcell before FtsZ and promotes

FtsZ assembly at this position [25]. PomZ is a homolog of

ParA, an ATPase implicated in plasmid and chromosome

partitioning, supporting a connection between DNA rep-

lication and cell division. MapZ (also known as LocZ),

forms a ring at midcell in the Gram-positive pathogen
www.sciencedirect.com 
Streptococcus pneumoniae, before FtsZ recruitment, where

it serves to drive assembly of the division machinery [26].

After division, the MapZ ring splits in two and moves to

the future division site in the newborn daughter cells.

Although FtsZ is dispensable for hyphal growth in Strep-
tomyces coelicolor [27], it is absolutely required for sporula-

tion, which requires the transformation of long syncytial

filaments into individual exospores. During this transfor-

mation, SsgA localizes to internucleoid spaces, recruiting

first SsgB and then FtsZ to this position to initiate

assembly of the cytokinetic machinery [28�]. In all these

cases, how these ‘marker’ proteins recognize the nascent

septal site remains an open question.

Corralling FtsZ

FtsZ assembly is subjected to multiple layers of regula-

tion before, during, and after establishment of the nascent

division site to promote efficient assembly of the cell

division machinery ensure orderly progression through

the cell cycle. Regulatory proteins include EzrA, which

inhibits aberrant FtsZ assembly along the longitudinal

axis of the cell in B. subtilis, and MatP and ZapB, which

coordinate interactions between the division machinery

and the terminus of DNA replication during chromosome

segregation in E. coli [29a�,b,30], Most prominent among

such regulatory factors are the Min proteins, which inhibit

FtsZ assembly at aberrant positions, particularly cell

poles, and DNA-associated nucleoid occlusion proteins

(NO), SlmA in E. coli and Noc in B. subtilis, which help

prevent FtsZ assembly over the unsegregated chromo-

somes [8,9�]. Importantly, cells defective in both Min and

NO are still capable of establishing a medial division site

with remarkable precision, counter to the oft suggested,

yet erroneous idea that they play a primary role in medial

division site selection [31��,32,33]. Division is over-

whelmingly medial in B. subtilis min mutants, and septa-

tion is more or less equally distributed between medial
Current Opinion in Microbiology 2017, 36:85–94
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and polar positions in E. coli cells defective in min gene

function [33–35]. NO in particular, appears to be primar-

ily an insurance policy as NO mutants are essentially

indistinguishable from wild type cells except under con-

ditions in which DNA segregations is severely perturbed

or in the absence of min. At the same time, while not

essential for establishment of a medial division site in E.
coli or B. subtilis, NO in Vibrio cholerae is strongly involved

in timing and position of its Z-ring reinforcing the value of

studying essential processes in multiple organisms [36].

Recruitment of the ‘late’ division proteins
Assembly of the division machinery is a multi-step pro-

cess involving two sets of factors: the so-called ‘early and

late’ division proteins. The early proteins include FtsZ

and its membrane anchor FtsA, both of which are highly

conserved among the bacteria, as well as other less well

conserved factors including ZipA, EzrA, and the Zaps.

The first to assemble at the division site, the early division

proteins form what is collectively termed the ‘proto-ring’

(also known as the Z-ring). Proto-ring formation is fol-

lowed by a time delay that can occupy up to 20% of the

cell cycle, after which the ‘late division proteins’ assem-

ble [22�,37�]. The late genes include the transpeptidase

FtsI, and FtsW [3��,38�], both of which are required for

synthesis of the septal wall [39,40]. The precise function

of FtsW is somewhat unclear. Significant data support a

role for the enzyme as a transporter of Lipid II linked cell

wall precursors from the cytoplasm to the periplasm [41].

At the same time, FtsW shares a limited amount of

homology with the putative elongation-specific transgly-

cosylase RodA, raising the possibility it might serve a

similar function during synthesis of septal peptidogylcan

[38�].

As with FtsZ, the mechanisms controlling late protein

recruitment to the proto-ring are poorly understood.

Overproduction of FtsZ in B. subtilis accelerates proto-

ring formation somewhat, yet does not alter the timing of

late cell division protein recruitment [22�]. In E. coli,
overproduction of FtsN—which interacts with both the

proto-ring and the late division proteins—stabilizes the

divisome but does not reduce the time between early and

late cell division protein localization to midcell [37�,42].
Like FtsZ, the concentration of late proteins is more or

less constant over the course of the cell cycle, suggesting

recruitment is governed at the level of assembly [43].

It is possible that initial invagination of the cell mem-

brane driven by the proto-ring serves as a temporal and

topological marker for assembly of the late proteins.

However, there is conflicting data about the potential

for the proto-ring to initiate constriction in the absence of

the late proteins [44]. On the one hand, purified FtsZ and

FtsA or purified FtsZ fused to the membrane binding

amphipathic helix of FtsA are sufficient for GTP-depen-

dent constriction of liposomal membranes [45,46]. On the
Current Opinion in Microbiology 2017, 36:85–94 
other hand, insertion of amphipathic helices in between

lipids is known to strongly deform liposomes [47]. and the

amphiphathic helix of FtsA is no exception (H. Strahl &

LH, unpublished). It is thus debatable how well these in
vitro studies reflect the situation in vivo, all the more so as

these studies do not take into account the contribution of

membrane potential, which is essential for FtsA function

[48�]. Significantly, cryo-EM work has failed to find

evidence for membrane invagination by the proto-ring

[49], arguing against a role for local membrane curvature

in triggering recruitment of late cell division proteins.

Instead, recent work suggests that cooperative assembly

of late proteins is stimulated in response to interactions

between FtsA and the late protein FtsN that alter FtsA’s

conformation and stabilize assembly of three conserved

bitopic transmembrane proteins; FtsQ, FtsL and FtsB

(DivIB, FtsL, and DivIC in B. subtilis) [50�,51,52�].
Lacking any apparent enzymatic function, FtsQLB local-

ize as a group and stability of all three proteins depends on

direct interactions between themselves and other late cell

division proteins, particularly FtsW, FtsI and FtsN, all of

which are recruited to the division site subsequent to

FtsQLB [53–56]. Recent genetic data suggest that in E.
coli the ABC-transporter-like complex, FtsEX, plays an

important role in the timing of late protein recruitment,

mediating the interaction between FtsA and FtsN, driv-

ing FtsA into the ‘on’ conformation and stimulating

interaction with other components of the division

machinery including FtsQLB [50�].

Triggering cytokinesis
Formation of the septal wall requires the transpeptidase

FtsI and its putative cognate transglycosylase FtsW, as

well as a bifunctional transpeptidase-transglycosylase,

PBP1b. While FtsI and FtsW are essential, PBP1b is

dispensable in the presence of the normally elongation-

specific penicillin binding protein, PBP1a, suggesting the

two PBPs are functionally interchangeable [57]. Allelic

variants of ftsI and ftsW support a rate-limiting role for

both in septal wall formation. In E. coli, a heat-sensitive

FtsI variant, FtsI23, dramatically reduces the rate of

septal wall synthesis while gain-of-function mutations

in C. crescentus FtsW(A246T and F145L), and FtsI

(I45V) significantly reduce cell size, consistent with accel-

erated division [44,58].

Despite their critical role in cytokinesis, recruitment of

FtsI and FtsW to the nascent division site is insufficient to

drive cytokinesis. Instead, a growing body of evidence

supports a role for FtsN as a trigger for cytokinesis in part

via direct interactions with FtsI and FtsW, but also

through its role as an activator of FtsA mediated recruit-

ment of FtsQLB [42,59–63] (Figure 3). In support of this

idea, gain-of-function mutation in E. coli FtsA, FtsA*

(R268W) and FtsL, FtsL* (E88K), appear to accelerate

maturation of the divisome and bypass the essential
www.sciencedirect.com
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Figure 3

The E. coli divisome consists of two sets of factors: the early proteins (FtsZ, FtsA, ZipA, and ZapB in this figure), which constitute the proctoring,

and the late proteins, whose recruitment is subsequent to and dependent upon the early proteins. FtsN bridges the early and late proteins,

interacting with FtsA to stabilize the FtsQLB complex in the periplasm, and with FtsI/PBP3 and FtsW to stimulate cell wall synthesis (the latter

interaction is not shown). Green starbursts indicate pre-activation state of FtsA, FtsN, FtsW and FtsI/PBP3 while green and red starburst indicates

activated state. Additionally, FtsEX mediated ATP hydrolysis stimulates amidase activity (AmiA in this figure), thereby coordinating cell wall

synthesis with hydrolysis to facilitate daughter cell separation. The model is not meant to reflect actual interaction stoichiometries, because they

have yet to be determined. In addition, it is not yet clear if the amidases remain in complex with EnvC as drawn or if this interaction is also

regulated. See text for details.
functions of FtsN, as well as another essential cell division

protein FtsK, suggesting that FtsN’s stimulatry role can

be mediated solely through FtsA and FtsQLB under

certain conditions [64�,65,66�].

Significantly, although FtsA, FtsQLB, FtsI and FtsW are

widely conserved, FtsN is limited to Gram-negative

organisms, suggesting that other bacteria utilize different

mechanisms to activate division. Consistent with this

idea, cell division proteins are phosphorylated in several

bacterial species, including B. subtilis, S. pneumoniae and

Mycobacteria—but not E. coli, suggesting a potential addi-

tional route for activation (for a review see Ref. [67]).

Divisome ultrastructure and the role of the
‘bundlers’
Super resolution imaging indicates that the FtsZ ring is a

discontinuous structure, appearing as larger nodes of high

concentration separated by thinner regions of low con-

centration in both E. coli and B. subtilis [14��,68,69]. The

ring is similarly discontinuous in Caulobacter crescentus [70]

and FtsZ forms patchy foci in Streptococcus pneumoniae
[71]. Wide field and confocal microscopy of longitudinally

dividing symbiotic bacteria that grow while attached with

one pole on the skin of marine nematodes can initiate
www.sciencedirect.com 
constriction using a discontinuous Z-elipse [72�]. In these

organisms constriction can also initiate from a single pole,

utilizing an arc-like FtsZ structure instead of a ring [73].

Coupled with FtsZ’s strong tendency to form lateral

interaction alone in vitro [74], and the large number of

proteins identified as ‘FtsZ bundlers,’ (for a review of this

class of proteins see Ref. [75]) these observations sup-

ported a model in which the ring is composed of short

FtsZ polymers held together in part via lateral interac-

tions between single stranded protofilaments.

How lateral interactions relate to recent work indicating

that FtsZ polymers ‘treadmill’ in vivo-depolymerizing

from one end (�) and polymerizing from the other end

(+) is unclear. Treadmilling results in rapid rearrange-

ment of single stranded polymers, effectively moving

them in one direction at a speed of about 20–40 nm/s

depending on the bacterial species [16��,17��]. Tread-

milling had previously been observed in vitro but its

physiological significance was unclear before these stud-

ies [76]. Lateral interactions between protofilaments

inhibit subunit turnover and reduce FtsZ’s innate

GTPase activity. Bundling of FtsZ should thus reduce

the treadmilling speed of the protofilaments. However, in

E. coli treadmilling speed seems to be independent from
Current Opinion in Microbiology 2017, 36:85–94
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the Zaps (ZapA, ZapB, ZapC, ZapD), all of which pro-

mote ring-formation in vivo and lateral interactions in
vitro, as well as the spatial regulators, SlmA and MatP

[16��,75].

A lack of impact on treadmilling dynamics argues against

the Zaps and other proteins that promote lateral interac-

tions in vitro, doing the same in vivo. Based on an average

speed of 30 nm/s of treadmilling, the GTPase activity of

E. coli and B. subtilis FtsZ should be approximately 0.3–

0.6 mol GTP/mol FtsZ/s at 21�C [17��], which is much

slower than the in vitro GTPase activity of 4.8 mol Pi/mol

E. coli FtsZ/s at 30�C [77,78], but similar to the 0.8 mol Pi/

mol B. subtilis FtsZ/s at 37�C under non-bundling con-

ditions. Therefore, the in vivo speed of treadmilling does

not exclude bundling. One possibility is that “bundling”

proteins play a different role in vivo, ensuring that FtsZ

filaments are maintained within the plane of the nascent

septal site. For example, this large class of proteins might

be important for filling in gaps between FtsZ protofila-

ment clusters to maintain FtsZ’s circumferential orbit.

Consistent with this model, ZapA and ZapB molecules

are visible by super resolution microscopy between FtsZ

clusters [79].

The role of FtsZ’s C-terminal linker domain and con-

served C-terminal peptide in establishing and maintain-

ing the ultrastructure of the FtsZ ring is another outstand-

ing question. The flexible C-terminal linker is critical for

FtsZ assembly dynamics both in vitro and in vivo [80�

,81�]. This intrinsically disordered region averages �50–

60 residues in length in all but the alpha-proteobacteria

where it can be over 200 residues. For example, in C.
crescentus the C-terminal linker is �150 residues in length

and appears to mediate interactions between FtsZ and

the cell wall synthesis machinery in addition to playing a

role in FtsZ assembly [82]. The C-terminal peptide —a

highly conserved set of approximately a dozen residues at

the very end of the FtsZ polypeptide—has been impli-

cated in interactions between FtsZ and a wide range of

modulatory proteins (e.g., [83–85]). At the seame time, its

high degree of evolutionary conservation contrasts

strongly with the lack of conservation among modulatory

proteins, raising the possibility that the C-terminal pep-

tide may help mediate longitudinal interactions between

FtsZ subunits, and along with the C-terminal linker,

contribute to the cooperative nature of FtsZ assembly

[86].

Membrane fusion and daughter cell
separation
Despite occupying a respectable portion of the division

cycle, we have yet to identify the factors required for the

last step in division: the membrane fusion event that

generates two independent daughter cells. Like the

assembly of the divisome, its disassembly is a time

consuming event that occupies approximately 15% of
Current Opinion in Microbiology 2017, 36:85–94 
the cell division cycle [87,88�]. In E. coli FtsZ and its

membrane tethers FtsA and ZipA have left the closing

septum well before the daughter cells are separated in

two different compartments. The cytoplasm is compart-

mentalized before the periplasm [89] and a subpopulation

of FtsN molecules together with FtsK, ZapB, and MatP

all remain at mid cell after FtsI and the FtsQLB complex

have left [87]. FtsK and MatP remain at midcell even

after the other five proteins have moved away (TdB

unpublished). By virtue of its role as a large integral

membrane complex involved in translocating DNA

trapped by the invaginating septum, and its persistence

at the division site, FtsK is a good candidate for driving

closure of the cytoplasmic membrane similar to the

activity of SpoIIIE during sporulation in B. subtilis [90].

Since the essential membrane binding domain of FtsK

can be bypassed by the FtsL* and FtsA* mutants [91], it

seems unlikely to be the only protein involved in mem-

brane closure. Also, the periplasmic part of FtsK is very

small and unlikely to play a significant role in the closure

of the peptidoglycan layer and outer membrane. An

alternative for this is the Tol-Pal system, which bridges

the entire cell envelope (inner membrane, cell wall, and

outer membrane). Tol-Pal is involved in the coordination

of concerted outer membrane and cell wall invagination

[92] and possibly in lipid retrogade transport [93]. TolB

follows the dynamics of FtsN (TdB unpublished) consis-

tent with a role in the later stages of division. Cell wall

cleavage between newly formed daughter cells is gov-

erned by the peptidoglycan hydrolases that are activated

by FtsEX [94–97]. In agreement, the amidase AmiC

localizes at midcell until daughter cell separation is com-

plete [98,99] (TdB unpublished). In Streptococcus pneu-
moniae the peptidoglycan hydrolase PcsB appears to serve

the same role as E. coli amidases. PcsB activity is stimu-

lated by the divisome proteins FtsEX, which transverses

the plasma membrane to activate PcsB on the outer

surface of the cell envelope. Once activated, PcsB mono-

mers interact with their counterparts in the opposing cell

to ‘unzip’ the intervening peptidoglycan linking the two

daughter cells [100,101].

Conclusion
The study of bacterial cell division and cell cycle regula-

tion has come a long way since Yukinori Hirota and

Antoinette Ryter attempted to make sense of a collection

of conditional E. coli mutants in the laboratory of François

Jacob [1��] (It is fitting that the field of bacterial cell

division has its origins in this lab, as it was Jacob who said

“Le rêve d’une bactérie doit devenir deux bactéries.” The
dream of a bacterium is to become two bacteria). Important as

it was, Bi and Lutkenhaus’ discovery that FtsZ forms a

ring was only a beginning [4��], raising a host of questions

that have kept many laboratories including our own busy

for a quarter century. While a good number of such

mysteries have been solved, many exciting questions—

including those highlighted above—remain unanswered.
www.sciencedirect.com
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Recent advances in imaging and image analysis have

made some of the questions tractable for the first time.

Others, particularly those that involve analysis of essential

and nearly essential factors, will require significant crea-

tivity and industry to solve. Despite these challenges, the

compelling nature of the subject matter coupled with the

well-known power of microbial genetics gives us confi-

dence that the field will continue to thrive and grow for

many years to come.
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