
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences

Bergstra, J.A.; Middelburg, C.A.
DOI
10.7561/SACS.2016.2.125
Publication date
2016
Document Version
Final published version
Published in
Scientific Annals of Computer Science
License
Unspecified

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2016). A Hoare-Like Logic of Asserted Single-Pass
Instruction Sequences. Scientific Annals of Computer Science, 26(2), 125-156.
https://doi.org/10.7561/SACS.2016.2.125

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.7561/SACS.2016.2.125
https://dare.uva.nl/personal/pure/en/publications/a-hoarelike-logic-of-asserted-singlepass-instruction-sequences(173df408-9403-4f9a-9a11-d184df6ed90d).html
https://doi.org/10.7561/SACS.2016.2.125

Scientific Annals of Computer Science vol. 26 (2), 2016, pp. 125–156

doi: 10.7561/SACS.2016.2.125

A Hoare-Like Logic of
Asserted Single-Pass Instruction Sequences

J.A. Bergstra1, C.A. Middelburg1

Abstract

We present a formal system for proving the partial correctness of
a single-pass instruction sequence as considered in program algebra
by decomposition into proofs of the partial correctness of segments of
the single-pass instruction sequence concerned. The system is similar
to Hoare logics, but takes into account that, by the presence of jump
instructions, segments of single-pass instruction sequences may have
multiple entry points and multiple exit points. It is intended to support
a sound general understanding of the issues with Hoare-like logics for
low-level programming languages.

Keywords: Hoare logic, asserted single-pass instruction sequence,
soundness, completeness in the sense of Cook.

1 Introduction

In [15], Hoare introduced a kind of formal system for proving the partial cor-
rectness of a program by decomposition into proofs of the partial correctness
of segments of the program concerned. Formal systems of this kind are now
known as Hoare logics. The programs considered in [15] are programs in a
simple high-level programming language without goto statements. Hoare
logics for this simple high-level programming language and extensions of it
without goto statements have been extensively studied since (see e.g. [8, 9, 11]
for individual studies and [1] for a survey). Hoare logics and Hoare-like

1Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, the Netherlands, E-mail: {J.A.Bergstra,C.A.Middelburg}@uva.nl.

126 J.A. Bergstra, C.A. Middelburg

logics for simple high-level programming languages with goto statements
have been studied since as well (see e.g. [12, 10, 25]).

Work on Hoare-like logics for low-level programming languages started
only recently. All the work that we know of takes ad hoc restrictions and
features of machine- or assembly-level programs into account (see e.g. [19]) or
abstracts in an ad hoc way from instruction sequences as found in low-level
programs (see e.g. [21]). We consider it important for a sound understanding
of the issues in this area to give consideration to generality and faithfulness
of abstraction instead. This is what motivated us to do the work presented
in this paper.

We present a Hoare-like logic for single-pass instruction sequences
as considered in [2]. The instruction sequences in question are finite or
eventually periodic infinite sequences of instructions of which each instruction
is executed at most once and can be dropped after it has been executed
or jumped over. We will come back to the choice for those instruction
sequences. The presented Hoare-like logic has to take into account that, by
the presence of jump instructions, segments of instruction sequences may
have multiple entry points and multiple exit points. Because of this, it is
closer to the inductive assertion method for program flowcharts introduced
by Floyd in [14] than most other Hoare and Hoare-like logics.

The asserted programs of the form {P}S {Q} of Hoare logics are re-
placed in the presented Hoare-like logic by asserted instruction sequences of
the form {b :P}S {e :Q}, where b and e are a positive natural number and a
natural number, respectively. P and Q are regular pre- and post-conditions.
That is, they concern the input-output behaviour of the instruction sequence
segment S. Loosely speaking, b represents the additional pre-condition that
execution enters the instruction sequence segment S at its bth instruction
and, if e is positive, e represents the additional post-condition that either
execution exits the instruction sequence segment S by going to the eth in-
struction following it or becomes inactive in S. In the case that e equals zero,
e represents the additional post-condition that execution either terminates
or becomes inactive in S (instructions sequences with explicit termination
instructions are considered).

The form of the asserted instruction sequences is inspired by [25].
However, under the interpretation of [25], e would represent the additional
post-condition that execution reaches the eth instruction following the first
instruction of the instruction sequence segment concerned. Because this
may be an instruction before the first instruction following the segment,

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 127

this interpretation allows of asserted instruction sequences that concern the
internals of the segment. For this reason, we consider this interpretation not
conducive to compositional proofs.

In other related work, e.g. in [21], the additional pre- and post-condition
represented by b and e must be explicitly formulated and conjoined with
the regular pre- and post-condition, respectively. This alternative reduces
the conciseness of pre- and post-conditions considerably. Moreover, an effect
ensuing from this alternative is that assertions can be formulated in which
aspects of input-output behaviour and flow of execution are combined in
ways that are unnecessary for proving partial correctness. For these reasons,
we decided not to opt for this alternative.

There is a tendency in work on Hoare-like logics to use a separation
logic instead of classical first-order logic for pre- and post-conditions to deal
with programs that alter data structures (see e.g. [20]). This tendency is
also found in work on Hoare-like logics for low-level programming languages
(see e.g. [17]). Because our intention is to present a Hoare-like logic that
supports a sound general understanding of the issues with Hoare-like logics
for low-level programming languages, we believe that we should stick to
classical first-order logic until it proves to be inadequate. This is the reason
why classical first-order logic is used for pre- and post-conditions in this
paper.

As mentioned before, the presented Hoare-like logic concerns single-pass
instruction sequences as considered in [2]. It is often said that a program is
an instruction sequence and, if this characterization has any value, it must be
the case that it is somehow easier to understand the concept of an instruction
sequence than to understand the concept of a program. The first objective
of the work on instruction sequences that started with [2], and of which an
enumeration is available at [18], is to understand the concept of a program.
The basis of all this work is an algebraic theory of single-pass instruction
sequences, called program algebra, and an algebraic theory of mathematical
objects that represent in a direct way the behaviours produced by instruction
sequences under execution, called basic thread algebra.2 The body of theory
developed through this work is such that its use as a conceptual preparation
for programming is practically feasible.

The notion of an instruction sequence appears in the work in question as
a mathematical abstraction for which the rationale is based on the objective

2In [2], basic thread algebra is introduced under the name basic polarized process
algebra.

128 J.A. Bergstra, C.A. Middelburg

mentioned above. In this capacity, instruction sequences constitute a primary
field of investigation in programming comparable to propositions in logic
and rational numbers in arithmetic. The structure of the mathematical
abstraction at issue has been determined in advance with the hope of
applying it in diverse circumstances where in each case the fit may be
less than perfect. Until now, this work has, among other things, yielded
an approach to computational complexity where program size is used as
complexity measure, a contribution to the conceptual analysis of the notion
of an algorithm, and new insights into such diverse issues as the halting
problem, garbage collection, program parallelization for the purpose of
explicit multi-threading and virus detection.

Judging by our experience gained in the work referred to above, we
think that generality and faithfulness of abstraction are well taken into
consideration in a Hoare-like logic for single-pass instruction sequences as
considered in [2]. This explains the choice for those instruction sequences.
As in the work referred to above, the work presented in this paper is carried
out in the setting of program algebra and basic thread algebra.

This paper is organized as follows. First, we give a survey of program
algebra and basic thread algebra (Section 2) and a survey of the extension of
basic thread algebra that is used in this paper (Section 3). Next, we present
a Hoare-like logic of asserted single-pass instruction sequences (Section 4),
give an example of its use (Section 5), and show that it is sound and complete
in the sense of Cook (Section 6). Finally, we make some concluding remarks
(Section 7).

Some familiarity with algebraic specification is assumed in this paper.
The relevant notions are explained in handbook chapters and books on
algebraic specification, e.g. [13, 22, 23, 26].

The preliminaries to the work presented in this paper (Sections 2
and 3) are almost the same as the preliminaries to the work presented in [7]
and earlier papers. For this reason, there is some text overlap with those
papers. Apart from the preliminaries, the material in this paper is new. A
comprehensive introduction to what is surveyed in the preliminary sections
can among other things be found in [5].

2 Program Algebra and Basic Thread Algebra

In this section, we give a survey of PGA (ProGram Algebra) and BTA (Basic
Thread Algebra) and make precise in the setting of BTA which behaviours are

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 129

produced by the instruction sequences considered in PGA under execution.
The greater part of this section originates from [6].

In PGA, it is assumed that there is a fixed but arbitrary set A of basic
instructions. The intuition is that the execution of a basic instruction may
modify a state and produces a reply at its completion. The possible replies
are f and t. The actual reply is generally state-dependent. The set A is the
basis for the set of instructions that may occur in the instruction sequences
considered in PGA. The elements of the latter set are called primitive
instructions. There are five kinds of primitive instructions:

• for each a ∈ A, a plain basic instruction a;

• for each a ∈ A, a positive test instruction +a;

• for each a ∈ A, a negative test instruction −a;

• for each l ∈ N, a forward jump instruction #l;

• a termination instruction !.

We write I for the set of all primitive instructions.

On execution of an instruction sequence, these primitive instructions
have the following effects:

• the effect of a positive test instruction +a is that basic instruction a is
executed and execution proceeds with the next primitive instruction if
t is produced and otherwise the next primitive instruction is skipped
and execution proceeds with the primitive instruction following the
skipped one — if there is no primitive instruction to proceed with,
execution becomes inactive;

• the effect of a negative test instruction −a is the same as the effect of
+a, but with the role of the value produced reversed;

• the effect of a plain basic instruction a is the same as the effect of +a,
but execution always proceeds as if t is produced;

• the effect of a forward jump instruction #l is that execution proceeds
with the lth next primitive instruction — if l equals 0 or there is no
primitive instruction to proceed with, execution becomes inactive;

• the effect of the termination instruction ! is that execution terminates.

130 J.A. Bergstra, C.A. Middelburg

Execution becomes inactive if no more basic instructions are executed, but
execution does not terminate.

PGA has one sort: the sort IS of instruction sequences. We make this
sort explicit to anticipate the need for many-sortedness later on. To build
terms of sort IS, PGA has the following constants and operators:

• for each u ∈ I, the instruction constant u :→ IS ;

• the binary concatenation operator ; : IS× IS→ IS ;

• the unary repetition operator ω : IS→ IS .

Terms of sort IS are built as usual in the one-sorted case.3 We assume that
there are infinitely many variables of sort IS, including X,Y, Z. We use
infix notation for concatenation and postfix notation for repetition. Hence,
taking these notational conventions into account, the syntax of closed terms
of sort IS can be defined in Backus-Naur style as follows:

CT ::= a | +a | −a | #l | ! | CT ; CT | CTω ,

where a ∈ A and l ∈ N.
A closed PGA term is considered to denote a non-empty, finite or even-

tually periodic infinite sequence of primitive instructions.4 The instruction
sequence denoted by a closed term of the form t ; t′ is the instruction se-
quence denoted by t concatenated with the instruction sequence denoted by
t′. The instruction sequence denoted by a closed term of the form tω is the
instruction sequence denoted by t concatenated infinitely many times with
itself. A simple example of a closed PGA term is

(+a ; #2 ; #3 ; b ; !)ω .

On execution of the instruction sequence denoted by this term, first the
basic instruction a is executed repeatedly until its execution produces the
reply t, next the basic instruction b is executed, and after that execution
terminates.

Closed PGA terms are considered equal if they represent the same
instruction sequence. The axioms for instruction sequence equivalence are
given in Table 1. In this table, n stands for an arbitrary positive natural

3Notice that all PGA term are of sort IS.
4An eventually periodic infinite sequence is an infinite sequence with only finitely many

distinct suffixes.

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 131

Table 1: Axioms of PGA
(X ; Y) ; Z = X ; (Y ; Z) PGA1

(Xn)ω = Xω PGA2

Xω ; Y = Xω PGA3

(X ; Y)ω = X ; (Y ;X)ω PGA4

number. For each natural number n, the term tn, where t is a PGA term, is
defined by induction on n as follows: t0 = #0, t1 = t, and tn+2 = t ; tn+1.
Some simple examples of equations derivable from the axioms of PGA are

(a ; b)ω ; ! = a ; (b ; a)ω ,

+a ; (b ; (−c ; #2 ; !)ω)ω = +a ; b ; (−c ; #2 ; !)ω .

A typical model of PGA is the model in which:

• the domain is the set of all finite and eventually periodic infinite
sequences over the set I of primitive instructions;

• the operation associated with ; is concatenation;

• the operation associated with ω is the operation ω defined as follows:

– if U is a finite sequence over I, then Uω is the unique infinite
sequence U ′ such that U concatenated n times with itself is a
proper prefix of U ′ for each n ∈ N;

– if U is an infinite sequence over I, then Uω is U .

We confine ourselves to this model of PGA, which is an initial model of
PGA, for the interpretation of PGA terms. In the sequel, we use the term
PGA instruction sequence for the elements of the domain of this model and
write len(t), where t is a closed PGA term denoting a finite PGA instruction
sequence, for the length of the PGA instruction sequence denoted by t. We
stipulate that len(t) = ω if t is a closed PGA term denoting an infinite
instruction sequence, where n < ω for all n ∈ N.

Below, we will use BTA to make precise which behaviours are produced
by PGA instruction sequences under execution.

In BTA, it is assumed that a fixed but arbitrary set A of basic actions
has been given. The objects considered in BTA are called threads. A

132 J.A. Bergstra, C.A. Middelburg

thread represents a behaviour which consists of performing basic actions in
a sequential fashion. Upon each basic action performed, a reply from an
execution environment determines how the thread proceeds. The possible
replies are the values f and t.

BTA has one sort: the sort T of threads. We make this sort explicit to
anticipate the need for many-sortedness later on. To build terms of sort T,
BTA has the following constants and operators:

• the inaction constant D :→T;

• the termination constant S :→T;

• for each a ∈ A, the binary postconditional composition operator �a�
: T×T→ T.

Terms of sort T are built as usual in the one-sorted case. We assume that
there are infinitely many variables of sort T, including x, y. We use infix
notation for postconditional composition. We introduce basic action prefixing
as an abbreviation: a ◦ t, where t is a BTA term, abbreviates t�a� t. We
identify expressions of the form a ◦ t with the BTA term they stand for.

The thread denoted by a closed term of the form t �a� t′ will first
perform a, and then proceed as the thread denoted by t if the reply from
the execution environment is t and proceed as the thread denoted by t′ if
the reply from the execution environment is f. The thread denoted by S
will do no more than terminate and the thread denoted by D will become
inactive. A simple example of a closed BTA term is

(b ◦ S) �a� D .

This term denotes the thread that first performs basic action a, if the reply
from the execution environment on performing a is t, next performs the
basic action b and after that terminates, and if the reply from the execution
environment on performing a is f, next becomes inactive.

Closed BTA terms are considered equal if they are syntactically the
same. Therefore, BTA has no axioms.

Each closed BTA term denotes a finite thread, i.e. a thread with a finite
upper bound to the number of basic actions that it can perform. Infinite
threads, i.e. threads without a finite upper bound to the number of basic
actions that it can perform, can be defined by means of a set of recursion
equations (see e.g. [4]). We are only interested in models of BTA in which

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 133

Table 2: Axioms for the thread extraction operator

|a| = a ◦ D
|a ;X| = a ◦ |X|
|+a| = a ◦ D
|+a ;X| = |X|�a� |#2 ;X|
|−a| = a ◦ D
|−a ;X| = |#2 ;X|�a� |X|

|#l| = D

|#0 ;X| = D

|#1 ;X| = |X|
|#l + 2 ; u| = D

|#l + 2 ; u ;X| = |#l + 1 ;X|
|!| = S

|! ;X| = S

sets of recursion equations have unique solutions, such as the projective limit
model of BTA presented in [5]. We confine ourselves to this model of BTA,
which has an initial model of BTA as a submodel, for the interpretation of
BTA terms. In the sequel, we use the term BTA thread or simply thread for
the elements of the domain of this model.

Regular threads, i.e. finite or infinite threads that can only be in a
finite number of states, can be defined by means of a finite set of recursion
equations. The behaviours produced by PGA instruction sequences under
execution are exactly the behaviours represented by regular threads, with
the basic instructions taken for basic actions. The behaviours produced
by finite PGA instruction sequences under execution are the behaviours
represented by finite threads.

We combine PGA with BTA and extend the combination with the
thread extraction operator | | : IS→ T, the axioms given in Table 2, and the
rule that |X| = D if X has an infinite chain of forward jumps beginning at
its first primitive instruction.5 In Table 2, a stands for an arbitrary basic
instruction from A, u stands for an arbitrary primitive instruction from
I, and l stands for an arbitrary natural number from N. For each closed
PGA term t, |t| denotes the behaviour produced by the instruction sequence
denoted by t under execution.

A simple example of thread extraction is

|+a ; #2 ; #3 ; b ; !| = (b ◦ S) �a� D ,

In the case of infinite instruction sequences, thread extraction yields threads

5This rule, which can be formalized using an auxiliary structural congruence predicate
(see e.g. [3]), is unnecessary when considering only finite PGA instruction sequences.

134 J.A. Bergstra, C.A. Middelburg

definable by means of a set of recursion equations. For example,

|(+a ; #2 ; #3 ; b ; !)ω|

is the solution of the set of recursion equations that consists of the single
equation

x = (b ◦ S) �a� x .

3 Interaction of Threads with Services

Services are objects that represent the behaviours exhibited by components of
execution environments of instruction sequences at a high level of abstraction.
A service is able to process certain methods. The processing of a method
may involve a change of the service. At completion of the processing of a
method, the service produces a reply value. For example, a service may be
able to process methods for pushing a natural number on a stack (push:n),
popping the top element from the stack (pop), and testing whether the top
element of the stack equals a natural number (topeq:n). Processing of a
pushing method or a popping method changes the service and produces the
reply value t if no stack underflow occurs and f otherwise. Processing of a
testing method does not change the service and produces the reply value t if
the test succeeds and f otherwise.

Execution environments are considered to provide a family of uniquely-
named services. A thread may interact with the named services from the
service family provided by an execution environment. That is, a thread may
perform a basic action for the purpose of requesting a named service to
process a method and to return a reply value at completion of the processing
of the method. In this section, we extend BTA with services, service families,
a composition operator for service families, and an operator that is concerned
with this kind of interaction. This section originates from [4].

In SFA, the algebraic theory of service families introduced below, it
is assumed that a fixed but arbitrary set M of methods has been given.
Moreover, the following is assumed with respect to services:

• a signature ΣS has been given that includes the following sorts:

– the sort S of services;

– the sort R of replies;

and the following constants and operators:

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 135

– the empty service constant δ :→ S;

– the reply constants f, t, d :→R;

– for each m ∈M, the derived service operator ∂
∂m : S→ S;

– for each m ∈M, the service reply operator %m : S→ R;

• a minimal ΣS-algebra S has been given in which f, t, and d are
mutually different, and

–
∧
m∈M

∂
∂m(z) = z ∧ %m(z) = d ⇒ z = δ holds;

– for each m ∈M, ∂
∂m(z) = δ ⇔ %m(z) = d holds.

The intuition concerning ∂
∂m and %m is that on a request to service s

to process method m:

• if %m(s) 6= d, s processes m, produces the reply %m(s), and then
proceeds as ∂

∂m(s);

• if %m(s) = d, s is not able to process method m and proceeds as δ.

The empty service δ itself is unable to process any method.
The actual services could, for example, be the natural number stack

services sketched at the beginning of this section. In that case, we take
the set {NNSσ | σ ∈ N∗} of natural number stack services as the set S of
services and, for each m ∈M, we take the functions ∂

∂m and %m such that
(n, n′ ∈ N, σ ∈ N∗):6

∂
∂push:n(NNSσ) = NNSnσ ,
∂

∂pop(NNSn′σ) = NNSσ ,
∂

∂pop(NNS ε) = NNS ε ,
∂

∂topeq:n(NNSn′σ) = NNSn′σ ,

∂
∂topeq:n(NNS ε) = NNS ε ,
∂
∂m(NNSσ) = δ if m /∈MNNS ,

%push:n(NNSσ) = t ,

%pop(NNSn′σ) = t ,

%pop(NNS ε) = f ,

%topeq:n(NNSn′σ) = t if n = n′ ,

%topeq:n(NNSn′σ) = f if n 6= n′ ,

%topeq:n(NNS ε) = f ,

%m(NNSσ) = d if m /∈MNNS ,

where MNNS = {push:n | n ∈ N} ∪ {pop} ∪ {topeq:n | n ∈ N}.
It is also assumed that a fixed but arbitrary set F of foci has been

given. Foci play the role of names of services in a service family.

6We write ε for the empty sequence and nσ for the sequence σ with n prepended to it.

136 J.A. Bergstra, C.A. Middelburg

Table 3: Axioms of SFA
u⊕ ∅ = u SFC1

u⊕ v = v ⊕ u SFC2

(u⊕ v)⊕ w = u⊕ (v ⊕ w) SFC3

f.z ⊕ f.z′ = f.δ SFC4

∂F (∅) = ∅ SFE1

∂F (f.z) = ∅ if f ∈ F SFE2

∂F (f.z) = f.z if f /∈ F SFE3

∂F (u⊕ v) = ∂F (u)⊕ ∂F (v) SFE4

SFA has the sorts, constants and operators from ΣS and in addition
the sort SF of service families and the following constant and operators:

• the empty service family constant ∅ :→ SF;

• for each f ∈ F , the unary singleton service family operator f. : S→
SF;

• the binary service family composition operator ⊕ : SF× SF→ SF;

• for each F ⊆ F , the unary encapsulation operator ∂F : SF→ SF.

We assume that there are infinitely many variables of sort S, including z,
and infinitely many variables of sort SF, including u, v, w. Terms are built
as usual in the many-sorted case (see e.g. [22, 26]). We use prefix notation
for the singleton service family operators and infix notation for the service
family composition operator. We write ⊕n

i=1 ti, where t1, . . . , tn are terms
of sort SF, for the term t1 ⊕ . . .⊕ tn.

The service family denoted by ∅ is the empty service family. The service
family denoted by a closed term of the form f.t consists of one named service
only, the service concerned is the service denoted by t, and the name of
this service is f . The service family denoted by a closed term of the form
t⊕ t′ consists of all named services that belong to either the service family
denoted by t or the service family denoted by t′. In the case where a named
service from the service family denoted by t and a named service from the
service family denoted by t′ have the same name, they collapse to an empty
service with the name concerned. The service family denoted by a closed
term of the form ∂F (t) consists of all named services with a name not in F
that belong to the service family denoted by t.

The axioms of SFA are given in Table 3. In this table, f stands for an
arbitrary focus from F and F stands for an arbitrary subset of F . These
axioms simply formalize the informal explanation given above.

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 137

Table 4: Axioms for the apply operator

S • u = u A1

D • u = ∅ A2

(x� f.m� y) • ∂{f}(u) = ∅ A3

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = x • (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = t A4

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = y • (f. ∂
∂m t⊕ ∂{f}(u)) if %m(t) = f A5

(x� f.m� y) • (f.t⊕ ∂{f}(u)) = ∅ if %m(t) = d A6

For the set A of basic actions, we now take the set {f.m | f ∈ F ,
m ∈M}. Performing a basic action f.m is taken as making a request to the
service named f to process method m.

We combine BTA with SFA and extend the combination with the
following operator:

• the binary apply operator • : T× SF→ SF;

and the axioms given in Table 4. In this table, f stands for an arbitrary
focus from F , m stands for an arbitrary method fromM, and t stands for an
arbitrary term of sort S. The axioms formalize the informal explanation given
below and in addition stipulate what is the result of apply if inappropriate
foci or methods are involved. We use infix notation for the apply operator.

The service family denoted by a closed term of the form t • t′ is the
service family that results from processing the method of each basic action
performed by the thread denoted by t by the service in the service family
denoted by t′ with the focus of the basic action as its name if such a service
exists. When the method of a basic action performed by a thread is processed
by a service, the service changes in accordance with the method concerned
and the thread reduces to one of the two threads that it can possibly proceed
with dependent on the reply value produced by the service.

In the case of the stack services described earlier in this section, the
following two equations are simple examples of derivable equations:

((nns.pop ◦ S) �nns.topeq:0� S) • nns.NNS 0σ = nns.NNSσ ,

((nns.pop ◦ S) �nns.topeq:0� S) • nns.NNS 1σ = nns.NNS 1σ .

138 J.A. Bergstra, C.A. Middelburg

4 Hoare-Like Logic for PGA7

In this section, we introduce a formal system for proving the partial cor-
rectness of instruction sequences as considered in PGA. Unlike segments of
programs written in the high-level programming languages for which Hoare
logics have been developed, segments of single-pass instruction sequences
may have multiple entry points and multiple exit points. Therefore, the
asserted programs of the form {P}S {Q} of Hoare logics fall short in the
case of single-pass instruction sequences. The formulas in the formal system
introduced here will be called asserted instruction sequences.

We will look upon foci as (program) variables. This is justified by the
fact that foci are names of objects that may be modified on execution of an
instruction sequence. The objects concerned are services. What is assumed
here with respect to services is the same as in Section 3. This means that
a signature ΣS that includes specific sorts, constants and operators and a
minimal ΣS-algebra S that satisfies specific conditions have been given.

In the formal system introduced here, classical first-order logic with
equality is used for pre- and post-conditions. The particular choice of log-
ical constants, connectives and quantifiers does not matter. However, for
convenience, it is assumed that the following is included: (a) the constants
T (for truth) and F (for falsity), (b) the connectives ¬ (for negation), ∧ (for
conjunction), ∨ (for disjunction), and ⇒ (for implication), (c) the quantifiers
∀ (for universal quantification) and ∃ (for existential quantification).

We write LS for the many-sorted first-order language with equality over
the signature ΣS where free variables of sort S belong to the set F . Moreover,
we write CIS for the set of all closed terms of sort IS in the case where the
set {f.m | f ∈ F ,m ∈M} is taken as the set A of basic instructions.

An asserted instruction sequence is a formula of the form {b:P}S {e:Q},
where S ∈ CIS, P,Q ∈ LS , b ∈ N+, and e ∈ N.8 The intuitive meaning of an
asserted instruction sequence {b : P}S {e :Q} is as follows:

• if b ≤ len(S) and e > 0, the intuitive meaning is:

if execution enters the instruction sequence segment S at its
bth instruction and P holds when execution enters S, then
either execution becomes inactive in S or execution exits

7The term “Hoare-like logic”, which stands for “logic like Hoare” if taken literally, is
widely used since 1981 with the meaning “logic like Hoare logic” and we conform to this
usage.

8We write N+ for the set {n ∈ N | n > 0}.

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 139

S by going to the eth instruction following S and Q holds
when execution exits S;

• if b ≤ len(S) and e = 0, the intuitive meaning is:

if execution enters the instruction sequence segment S at
its bth instruction and P holds when execution enters S,
then either execution becomes inactive in S or execution
terminates in S and Q holds when execution terminates
in S;9

• if b > len(S), an intuitive meaning is lacking.

For convenience, we did not exclude the case where b > len(S). Instead, we
made the choice that any asserted instruction sequence {b :P}S {e :Q} with
b > len(S) does not hold (irrespective of the choice of S).

Before we make precise what it means that an asserted instruction
sequence holds in S, we introduce some special terminology and notation.

In the setting of PGA, what we mean by a state is a function from a
finite subset of F to the interpretation of sort S in S. Let F ⊂ F be such
that F is finite. Then a state representing term for F with respect to S is a
closed term t of sort SF for which, for all f ∈ F , ∂{f}(t) = t does not hold
in the free extension of S to a model of SFA. Notice that ∂{f}(t) = t does
not hold iff the interpretation of t is a service family to which a service with
name f belongs. Let P ∈ LS , and let F ′ be the set all foci that belong to
the free variables of P . Then a state representing term for P with respect
to S is a closed term t of sort SF that is a state representing term for F ′

with respect to S. Let S ∈ CIS, and let F ′′ be the set all foci that occur in
S. Then a state representing term for S with respect to S is a closed term t
of sort SF that is a state representing term for F ′′ with respect to S.

We write P [t], where t is a state representing term for P with respect to
S, for P with, for each f ∈ F , all free occurrences of f replaced by a closed
term t′ of sort S such that t = f.t′ ⊕ ∂{f}(t) holds in the free extension of S
to a model of SFA. Thus, the interpretation of the term t′ replacing the free
occurrences of f is the service associated with f in the state represented
by t. Notice that an equation between terms of sort SF holds in the free
extension of S to a model of SFA iff it is derivable from the axioms of SFA.

9Recall that execution becomes inactive if no more basic instructions are executed, but
execution does not terminate.

140 J.A. Bergstra, C.A. Middelburg

We write |S|b,0 for |#b ; S| and |S|b,e, where e > 0, for |#b ; S ; σ(e)|
where, for each n > 0, σ(n) is defined by induction on n as follows: σ(1) = !
and σ(n + 1) = #0 ; σ(n). In the case where b ≤ len(S) ≤ ω and e > 0,
the thread denoted by |S|b,e represents the behaviour that differs from the
behaviour produced by the instruction sequence segment S in isolation if
execution enters the segment at its bth instruction only by terminating
instead of becoming inactive if execution exits the segment by going to the
eth instruction following it. This adaptation of the behaviour is a technicality
by which it is possible to obtain the state at the time that execution exits
the segment by means of the apply operation •.

An asserted instruction sequence {b : P}S {e :Q} holds in S, written
S |= {b : P}S {e :Q}, if b ≤ len(S) and for all closed terms t and t′ of sort
SF that are state representing terms for P , Q, and S with respect to S:

S |= P [t] impliesMS |= |S|b,e′ • t = ∅ for all e′ ∈ N with e 6= e′

and
S |= P [t] andMS |= |S|b,e • t = t′ imply S |= Q[t′],

whereMS is the model of the combination of PGA, BTA, and SFA extended
with the thread extraction operator, the apply operator, and the axioms for
these operators such that the restrictions to the signatures of PGA, BTA,
and SFA are the initial model of PGA, the projective limit model of BTA,
and the free extension of S to a model of SFA, respectively. The existence
of such a model follows from the fact that the signatures of PGA, BTA, and
SFA are disjoint by the amalgamation result about expansions presented as
Theorem 6.1.1 in [16] (adapted to the many-sorted case). The occurrences
of S in the above definition can be replaced byMS .

Notice that for all S ∈ CIS, Q ∈ LS , b ∈ N+ with b ≤ len(S), and
e ∈ N, S |= {b : F}S {e :Q}. However, there exist S ∈ CIS, P ∈ LS , b ∈ N+

with b ≤ len(S), and e ∈ N such that S 6|= {b : P}S {e : T}. This is the case
because, if execution enters the instruction sequence segment S at its bth
instruction and P holds when execution enters S, then there may be no
unique way in which execution exits S and, if there is a unique way, it may
be by going to another than the eth instruction following S.

We could have dealt with the above-mentioned non-uniqueness by sup-
porting multiple exit points in asserted instruction sequences. In that case, we
would have asserted instruction sequences of the form {b:P}S {e1, . . . , en :Q}
satisfying S |= {b : P}S {e1, . . . , en : Q} iff S |= {b : P}S {ei : Q} for all
i ∈ {1, . . . , n}. This means that it is sufficient to add to the axioms and rules
of inference of our Hoare-like logic (introduced below) the rules of inference

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 141

corresponding to this equivalence. These additional rules are such that noth-
ing gets lost if {b : P}S {e1, . . . , en :Q} is simply considered a shorthand for
the set {{b : P}S {ei :Q} | i ∈ {1, . . . , n}} of asserted instruction sequences.

The axioms and rules of inference of our Hoare-like logic of asserted
single-pass instruction sequences are given in Table 5. In this table, S, S1, S2
stand for arbitrary closed terms from CIS, P, P ′, P1, P2, . . ., Q,Q

′, Q1, Q2, . . .,
and R stand for arbitrary formulas from LS , b, b1, b2, . . . stand for arbitrary
positive natural numbers, e, i stand for arbitrary natural numbers, x, y stand
for arbitrary variables of some sort in ΣS , f stands for an arbitrary focus
from F , and m stands for an arbitrary method from M. Moreover, var(P)
denotes the set all foci that belong to the free variables of P and var(S)
denotes the set of all foci that occur in S. We write Ψ `′ φ, where Ψ is a finite
set of asserted instruction sequences and φ is an asserted instruction sequence,
for provability of φ from Ψ without applications of the repetition rule (R5).

The axioms concern the smallest instruction sequence segments, namely
single instructions. Axioms A1–A8 are similar to the assignment axiom
found in most Hoare logics. They are somewhat more complicated than
the assignment axiom because they concern instructions that may cause
execution to become inactive and, in case of axioms A3–A8, instructions
that have two exit points. Axioms A9–A11, which concern jump instructions
and the termination instruction, are very simple and speak for themselves.

Concatenation needs four rules because instruction sequence segments
may be prefixed or suffixed by redundant instruction sequence segments in
several ways. Rule R1 concerns the obvious case, namely the case where
execution enters the whole by entering the first instruction sequence segment
and execution exits the whole by exiting the second instruction sequence
segment. Rule R2 concerns the case where execution exits the whole by exit-
ing the first instruction sequence segment. Rule R3 concerns the case where
execution becomes inactive or terminates in the whole by doing so in the first
instruction sequence segment. Rule R4 concerns the case where execution
enters the whole by entering the second instruction sequence segment.

The repetition rule (rule R5) is reminiscent of the recursion rule found
in Hoare logics for high-level programming languages that covers calls of
(parameterless) recursive procedures (see e.g. [1]). This rule is actually a rule
schema: there is an instance of this rule for each k, n > 0 with k ≤ n. In
many cases, the instance for k = 1 and n = 1 suffices. The need for the rules
R6–R9 is not clear at first sight, but without them the presented formal
system would be incomplete. Although these rules do not explicitly deal

142 J.A. Bergstra, C.A. Middelburg

Table 5: Hoare-Like Logic of Asserted Single-Pass Instruction Sequences

Basic Instruction Axioms:

A1 : {1 : %m(f) 6= d ∧ P [∂
∂m (f)/f]} f.m {1 : P}

A2 : {1 : %m(f) = d} f.m {0 : F}
Positive Test Instruction Axioms:

A3 : {1 : %m(f) = t ∧ P [∂
∂m (f)/f]}+f.m {1 : P}

A4 : {1 : %m(f) = f ∧ P [∂
∂m (f)/f]}+f.m {2 : P}

A5 : {1 : %m(f) = d}+f.m {0 : F}
Negative Test Instruction Axioms:

A6 : {1 : %m(f) = t ∧ P [∂
∂m (f)/f]}−f.m {2 : P}

A7 : {1 : %m(f) = f ∧ P [∂
∂m (f)/f]}−f.m {1 : P}

A8 : {1 : %m(f) = d}−f.m {0 : F}
Forward Jump Instruction Axioms:

A9 : {1 : P}#i+1{i+1 : P} A10 : {1 : T}#0 {0 : F}
Termination Instruction Axiom:

A11 : {1 : P} !{0 : P}
Concatenation Rules:

R1 :
{b : P}S1 {i :Q}, {i :Q}S2 {e :R}

{b : P}S1 ; S2 {e :R} i > 0

R2 :
{b : P}S1 {e+len(S2) :Q}
{b : P}S1 ; S2 {e :Q} e > 0 R3 :

{b : P}S1 {0 :Q}
{b : P}S1 ; S2 {0 :Q}

R4 :
{b : P}S2 {e :Q}

{b+len(S1) : P}S1 ; S2 {e :Q}
Repetition Rule (for each k, n > 0 with k ≤ n):

R5 :

{b1 : P1}Sω {0 :Q1}, . . . , {bn : Pn}Sω {0 :Qn} `′ {b1 : P1}S ; Sω {0 :Q1}
...

{b1 : P1}Sω {0 :Q1}, . . . , {bn : Pn}Sω {0 :Qn} `′ {bn : Pn}S ; Sω {0 :Qn}
{bk : Pk}Sω {0 :Qk}

Alternatives Rule:

R6 :
{b : P}S {e :R}, {b :Q}S {e :R}

{b : P ∨Q}S {e :R}
Invariance Rule:

R7 :
{b : P}S {e :Q}

{b : P ∧R}S {e :Q ∧R} var(R) ∩ var(S) = ∅

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 143

Table 5: (Continued)

Elimination Rule:

R8 :
{b : P}S {e :Q}
{b : ∃x • P}S {e :Q} {x} ∩ (var(S) ∪ var(Q)) = ∅

Substitution Rule:

R9 :
{b : P}S {e :Q}

{b : P [y/x]}S {e :Q[y/x]} {x} ∩ var(S) = ∅, {y} ∩ var(S) = ∅

Consequence Rule:

R10 :
P ⇒ P ′, {b : P ′}S {e :Q′}, Q′ ⇒ Q

{b : P}S {e :Q}

with repetition, they would not be needed for completeness in the absence
of repetition.

The consequence rule (rule R10) is found in one form or another in
all Hoare logics and Hoare-like logics. This rule allows to make use of
formulas from LS that hold in S to strengthen pre-conditions and weaken
post-conditions.

Because there is no rule of inference to deal with nested repetitions,
it seems at first sight that we cannot have a completeness result for the
presented Hoare-like logic. However, a closer look at this matter yields
something different. The crux is that the following rule of inference is
derivable from rules R3 and R5:

{b : P}S {0 :Q}
{b : P}Sω {0 :Q} .

We have the following result:

Theorem 1 Let Th(S) be the set of all formulas of LS that hold in S.
Then, for each S ∈ CIS, P,Q ∈ LS , and b ∈ N+, S |= {b : P}S {0 :Q} only
if there exists an S′ ∈ CIS in which the repetition operator occurs at most
once such that (a) S |= {b : P}S′ {0 :Q} and (b) Th(S) ` {b : P}S′ {0 :Q}
implies Th(S) ` {b : P}S {0 :Q}.

Proof: Let S ∈ CIS be such that the repetition operator occurs at least
once in S. Then the following properties follow directly from the definitions
involved ((1) and (2)) and the presented Hoare-like logic ((3) and (4)):

(1) S |= {b : P}S ; T {0 :Q} implies S |= {b : P}S {0 :Q};

144 J.A. Bergstra, C.A. Middelburg

(2) S |= {b : P}Sω {0 :Q} implies S |= {b : P}S {0 :Q};

(3) Th(S) ` {b : P}S {0 :Q} implies Th(S) ` {b : P}S ; T {0 :Q};

(4) Th(S) ` {b : P}S {0 :Q} implies Th(S) ` {b : P}Sω {0 :Q}.

Using these properties, the theorem is easily proved by induction on the
number of occurrences of the repetition operator in S. 2

As a corollary of Theorem 1 we have that a completeness result for the set
of all closed PGA terms of sort IS in which the repetition operator occurs at
most once entails a completeness result for the set of all closed PGA terms
of sort IS.

5 Example

In this section, we give an example of the use of the Hoare-like logic of asserted
single-pass instruction sequences presented in Section 4. The example has
only been chosen because it is simple and shows applications of most axioms
and rules of inference of this Hoare-like logic (including R6 and R8).

For S, we take an algebra of services that make up unbounded natural
number counters. Each natural number counter service is able to process
methods to increment the content of the counter by one (incr), to decrement
the content of the counter by one (decr), and to test whether the content of
the counter is zero (iszero). The derived service and service reply operations
for these methods are as to be expected. ΣS includes the sort N of natural
numbers, the constant 0 :→ N, and the unary operators succ : N → N,
pred : N→ N, and nnc : N→ S. The interpretation of N, 0, succ, and pred
are as to be expected. The interpretation of nnc is the function that maps
each natural number n to the service that makes up a counter whose content
is n.

We claim that the closed PGA term (−c.iszero;#2;!;c.decr)ω denotes
an instruction sequence for setting the counter made up by service c to zero.
That is, we claim {1 : T} (−c.iszero ; #2 ; ! ; c.decr)ω {0 : c = nnc(0)}. We
prove this by means of the axioms and rules of inference given in Table 5.

It is sufficient to prove

(1) {1 : c = nnc(0)∨ c = nnc(n+ 1)} (−c.iszero ; #2 ; ! ; c.decr)ω {0 : c =
nnc(0)}

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 145

because the claim follows from (1) by R8 and R10.
First, we prove {1 : c = nnc(0)}−c.iszero ; #2 ; ! ; c.decr{0 : c = nnc(0)}:

(2) {1 : c = nnc(0)}−c.iszero{2 : c = nnc(0)}
by A6;

(3) {1 : c = nnc(0)}−c.iszero ; #2 {1 : c = nnc(0)}
from (2) by A9 and R2;

(4) {1 : c = nnc(0)}−c.iszero ; #2 ; !{0 : c = nnc(0)}
from (3) by A11 and R1;

(5) {1 : c = nnc(0)}−c.iszero ; #2 ; ! ; c.decr{0 : c = nnc(0)}
from (4) by A1 and R3.

Next, we prove {1 : c = nnc(n + 1)}−c.iszero ; #2 ; ! ; c.decr{0 : c =
nnc(n)}:

(6) {1 : c = nnc(n+ 1)}−c.iszero{1 : c = nnc(n+ 1)}
by A6;

(7) {1 : c = nnc(n+ 1)}−c.iszero ; #2 {2 : c = nnc(n+ 1)}
from (6) by A9 and R1;

(8) {1 : c = nnc(n+ 1)}−c.iszero ; #2 ; !{1 : c = nnc(n+ 1)}
from (7) by A11 and R2;

(9) {1 : c = nnc(n+ 1)}−c.iszero ; #2 ; ! ; c.decr{0 : c = nnc(n)}
from (8) by A1, R10 and R1.

Assuming (1), we prove

{1 : c = nnc(0) ∨ c = nnc(n+ 1)}
−c.iszero ; #2 ; ! ; c.decr ; (−c.iszero ; #2 ; ! ; c.decr)ω

{0 : c = nnc(0)}:

(a) {1 : c = nnc(0)}
−c.iszero ; #2 ; ! ; c.decr ; (−c.iszero ; #2 ; ! ; c.decr)ω

{0 : c = nnc(0)}
from (5) by R3;

(b) {1 : c = nnc(n+ 1)}
−c.iszero ; #2 ; ! ; c.decr ; (−c.iszero ; #2 ; ! ; c.decr)ω

{0 : c = nnc(0)}
from (9) by R1;

146 J.A. Bergstra, C.A. Middelburg

(c) {1 : c = nnc(0) ∨ c = nnc(n+ 1)}
−c.iszero ; #2 ; ! ; c.decr ; (−c.iszero ; #2 ; ! ; c.decr)ω

{0 : c = nnc(0)}
from (a) and (b) by R6.

Because (c) has been derived assuming (1), (1) now follows by R5.

The example given above illustrates that proving instruction sequences
correct can be quite tedious, even in a simple case. This can be largely
attributed to the fact that instruction sequences do not need to be structured
programs and not to the particular Hoare-like logic used. A verification
condition generator and a proof assistant are anyhow indispensable when
proving realistic instruction sequences correct.

6 Soundness and Completeness

This section is concerned with the soundness and completeness of the Hoare-
like logic of asserted single-pass instruction sequences presented in Section 4.
It was assumed in Section 4 that a signature ΣS that includes specific sorts,
constants and operators and a minimal ΣS-algebra S that satisfies specific
conditions had been given. In this section, we intend to establish soundness
and completeness for all algebras that could have been given. It is useful to
introduce a name for these algebras: service algebras.

In this section, we write Th(S), where S is a service algebra, for the
set of all formulas of LS that hold in S.

The proof of the soundness theorem for the presented Hoare-like logic
given below (Theorem 2) will make use of the following two lemmas. Recall
that `′ stands for provability without applications of the repetition rule.

Lemma 1 Let S be a service algebra, and let k, n ∈ N+ be such that k ≤ n.
Then, for each S, S′ ∈ CIS, P1, . . . , Pn, Q1, . . . , Qn ∈ LS , and b1, . . . , bn ∈
N+, if {b1 :P1}Sω {0:Q1}, . . . , {bn :Pn}Sω {0:Qn} `′ {bk :Pk}S ; Sω {0:Qk}
then {b1 : P1}S′ {0 :Q1}, . . . , {bn : Pn}S′ {0 :Qn} `′ {bk : Pk}S ; S′ {0 :Qk}.

Proof: This is easily proved by induction on the length of proofs, case
distinction on the axiom applied in the basis step, and case distinction on
the rule of inference last applied in the inductive step. 2

An important corollary of Lemma 1 is that, for all i ∈ N and k ∈ N+ with
k ≤ n, {b1 :P1}Sω {0:Q1}, . . . , {bn :Pn}Sω {0:Qn} `′ {bk :Pk}S ; Sω {0:Qk}

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 147

only if {b1 :P1}Si {0 :Q1}, . . . , {bn :Pn}Si {0 :Qn} `′ {bk :Pk}Si+1 {0 :Qk}.

Lemma 2 For each service algebra S, set of asserted instruction sequences
Ψ, and asserted instruction sequence φ, Th(S) ∪Ψ `′ φ only if S |= ψ for
all ψ ∈ Ψ implies S |= φ.

Proof: This is easily proved by induction on the length of proofs, case
distinction on the axiom applied in the basis step, and case distinction on
the rule of inference last applied in the inductive step. 2

Lemma 2 expresses that, if the repetition rule is dropped, the axioms and
inference rules of the presented Hoare-like logic are strongly sound.

The following theorem is the soundness theorem for the presented
Hoare-like logic.

Theorem 2 For each service algebra S and asserted instruction sequence
φ, Th(S) ` φ implies S |= φ.

Proof: This is proved by induction on the length of proofs, case distinction
on the axiom applied in the basis step, and case distinction on the rule of
inference last applied in the inductive step. The only difficult case is the
repetition rule (R5). We will only outline the proof for this case.

The following properties follow directly from the definition ofMS :

(1) MS |= |S0 ; #0b|b,0 • t = ∅;

(2) MS |= |Sω|b,0 • t = t′ iff there exists an j > 0 such that:

for all k ≥ j,MS |= |Sk ; #0b|b,0 • t = t′,

for all k < j,MS |= |Sk ; #0b|b,0 • t = ∅.

These properties could be largely proved in a formal way if the combined
algebraic theory ofMS developed in Sections 2 and 3 would be extended
with projection operators and axioms for them as in [4].

The following properties follow directly from properties (1) and (2):

(a) S |= {b : P}S0 ; #0b {0 :Q};

(b) S |= {b : P}Sω {0 :Q} iff, for all i ≥ 0, S |= {b : P}Si ; #0b {0 :Q}.

148 J.A. Bergstra, C.A. Middelburg

Let k, n ∈ N+ be such that k ≤ n, and let S ∈ CIS, P1, . . . , Pn,
Q1, . . . , Qn ∈ LS , and b1, . . . , bn ∈ N+. Then, from the hypotheses of
R5 and Lemmas 1 and 2, it follows immediately that, for all i ≥ 0,
S |= {b1 : P1}Si ; #0b {0 :Q1} and . . . and S |= {bn : Pn}Si ; #0b {0 : Qn}
implies S |= {bk : Pk}Si+1 ; #0b {0 :Qk}. From this and property (a), it fol-
lows by induction on i that, for all i ≥ 0, S |= {bk :Pk}Si ; #0b {0:Qk}. From
this and property (b), it follows immediately that S |= {bk : Pk}Sω {0 :Qk}.
This completes the proof for the case of the repetition rule. 2

The line of the proof of Theorem 2 for the case that the rule of inference last
applied is R5 is reminiscent of the line of the soundness proof in [9] for the
case that the rule of inference last applied is the recursion rule for calls of
recursive procedures. In the proof of Theorem 2, Si ; #0b is used instead of
Si to guarantee that b is never greater than the length of the approximations
of Sω.

There is a problem with establishing completeness for all service al-
gebras. In the completeness proof, it has to be assumed that, for each
service algebra S, necessary intermediate conditions can be expressed in LS .
Therefore, completeness will only be established for all service algebras that
are sufficiently expressive.

Let S be a service algebra, and let S ∈ CIS, P,Q ∈ LS , b ∈ N+ and
e ∈ N. Then Q expresses the strongest post-condition of P and S for b
and e on S if S |= {b : P}S {e : T} and, for each state representing term
t′ for P , Q, and S with respect to S, S |= Q[t′] iff there exists a state
representing term t for P , Q, and S with respect to S such that S |= P [t]
andMS |= |S|b,e • t = t′.

Let S be a service algebra. Then the language LS is expressive for CIS on
S if, for each S ∈ CIS, P ∈ LS , b ∈ N+, and e ∈ N with S |= {b :P}S {e :T},
there exists a Q ∈ LS such that Q expresses the strongest post-condition of
P and S for b and e on S.

In the above definitions, S |= {b : P}S {e : T} is used to express that
there exists a post-condition of P and S for b and e on S.

The following remarks about the existence of strongest post-conditions
may be useful for a clear understanding of the matter. For each S ∈ CIS,
P ∈ LS , and b ∈ N+, one of the following is the case regarding the existence
of a strongest post-condition:

(1) there is no e ∈ N for which there exists a strongest post-condition of
P and S for b and e;

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 149

(2) there is exactly one e ∈ N for which there exists a strongest post-
condition of P and S for b and e and the strongest post-condition
concerned is not equivalent to F;

(3) there is more than one e ∈ N for which there exists a strongest post-
condition of P and S for b and e and the strongest post-condition
concerned is equivalent to F.

We say that execution is convergent in S if it does not become inactive in
S. Terminating in S is one way in which execution may be convergent in
S, exiting S by going to the eth instruction following S is another way in
which execution may be convergent in S, and exiting S by going to the e′th
instruction following S, where e′ 6= e, is still another way in which execution
may be convergent in S. Now, (1) is the case if there is more than one way
in which execution may be convergent in S, (2) is the case if there is exactly
one way in which execution may be convergent in S, and (3) is the case if
there is no way in which execution may be convergent in S.

The proof of the completeness theorem for the presented Hoare-like
logic given below (Theorem 3) will make use of the following four lemmas.

Lemma 3 Let S be a service algebra. Then, for each S ∈ CIS, P,Q ∈ LS ,
b ∈ N+, and e ∈ N, S |= {b : P}Sω {e :Q} only if e = 0.

Proof: This is proved by distinguishing two cases: the repetition operator
does not occur in S and the repetition operator occurs in S. The former
case is easily proved by induction on len(S). The latter case follows directly
from the following corollary of the proof of Lemma 2.6 from [5]: for each
S ∈ CIS in which the repetition operator occurs, there exists an S′ in which
the repetition operator does not occur such that |S|b,e = |S′ω|b,e. 2

Lemma 3 tells us that execution never exits an instruction sequence segment
of the form Sω.

The following lemma expresses that the axioms and rules of inference
of the presented Hoare-like logic are complete for all instruction sequence
segments of the form Sω only if they are complete for all instruction sequence
segments.

Lemma 4 Let S be a service algebra such that LS is expressive for CIS
on S. Assume that, for each S ∈ CIS, P,Q ∈ LS , b ∈ N+, and e ∈ N,
S |= {b : P}Sω {e : Q} implies Th(S) ` {b : P}Sω {e : Q}. Then, for each
S ∈ CIS, P,Q ∈ LS , b ∈ N+, and e ∈ N, S |= {b : P}S {e : Q} implies
Th(S) ` {b : P}S {e :Q}.

150 J.A. Bergstra, C.A. Middelburg

Proof: This is proved by induction on the structure of S. The cases
that S is a single instructions follow, with the exception of the termination
instruction after a case distinction, directly from one of the axioms (A1–A11)
and the consequence rule (R10). The case that S is of the form S′ω follows
immediately from the assumption. What is left is the case that S is of the
form S1 ; S2.

If S |= {b :P}S1 ; S2 {e :Q}, then it follows from the definitions involved
that:

(1) if b ≤ len(S1): for some n > 0, there exist P1, R1, . . . , Pn, Rn ∈ LS
and i1, . . . , in ∈ N+ such that S |= P ⇒ P1 ∨ . . . ∨ Pn and, for each j
with 1 ≤ j ≤ n, Rj expresses the strongest post-condition of Pj and
S1 for b and ij on S and one of the following is the case:

(a) 1 ≤ ij ≤ len(S2),
S |= {b : Pj}S1 {ij :Rj}, and S |= {ij :Rj}S2 {e :Q};

(b) ij = len(S2) + e, e > 0,
S |= {b : Pj}S1 {ij :Rj}, and S |= Rj ⇒ Q;

(c) ij = 0, e = 0,
S |= {b : Pj}S1 {ij :Rj}, and S |= Rj ⇒ Q;

(2) if b > len(S1): S |= {b− len(S1) : P}S2 {e :Q}.

Case (1) is proved by distinguishing two subcases: the repetition operator
does not occur in S1 and the repetition operator occurs in S1. The former
subcase is easily proved by induction on len(S1). The latter subcase follows
directly from the above-mentioned corollary of the proof of Lemma 2.6
from [5] and Lemma 3. In either subcase, the existence of Rj ’s that express
the strongest post-conditions needed is guaranteed by the expressiveness
property of LS . Case (2) follows directly from the definitions involved.

In case (1), Th(S) ` {b : P}S1 ; S2 {e : Q} follows directly by the in-
duction hypothesis, the first three concatenation rules (R1–R3), and the
alternatives rule (R6). In case (2), it follows directly by the induction
hypothesis and the last concatenation rule (R4). 2

The next lemma tells us that the axioms and inference rules of the
presented Hoare-like logic is complete if provability can be identified with
provability from a particular set of asserted single-pass instruction sequences;
and the second next lemma expresses that the asserted single-pass instruction
sequences concerned are provable.

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 151

Lemma 5 Let S be a service algebra such that LS is expressive for CIS
on S. For each S ∈ CIS, let xS1 , . . . , x

S
nS
∈ F and yS1 , . . . , y

S
nS
∈ F be

such that var(S) = {xS1 , . . . , xSnS
} and var(S) ∩ {yS1 , . . . , ySnS

} = ∅. For
each S ∈ CIS and b ∈ N+, let P ′S be xS1 = yS1 ∧ . . . ∧ xSnS

= ySnS
, and

let Q′S,b ∈ LS be such that Q′S,b expresses the strongest post-condition of

P ′S and Sω for b and 0 on S. For each S ∈ CIS and b ∈ N+, let ubS,b =
max{b′ ∈ N+ | b′ = b∨#b′ occurs in S}. Then, for each S′ ∈ CIS, P,Q ∈ LS ,
and b ∈ N+, S |= {b : P}S′ {0 :Q} implies Th(S)∪ {{b′ : P ′S}Sω {0 :Q′S,b′} |
b′ ≤ ubS′,b ∧ Sω is a subterm of S′} ` {b : P}S′ {0 :Q}.

Proof: This is proved by induction on the structure of S′. The cases that
S′ is a single instruction follow directly from one of the axioms (A2, A5, A8,
A10, A11) and the consequence rule (R10). The case that S′ is of the form
S1 ; S2 is proved, using the induction hypothesis, in the same way as the
case of concatenation in the proof of Lemma 4. What is left is the case that
S′ is of the form Sω.

In the case that S′ is of the form Sω, it suffices to show that, for
each S ∈ CIS, P,Q ∈ LS , and b ∈ N+, S |= {b : P}Sω {0 : Q} implies
Th(S) ∪ {{b : P ′S}Sω {0 :Q′S,b}} ` {b : P}Sω {0 :Q}.

Let S ∈ CIS, P,Q ∈ LS , and b ∈ N+, and let z1, . . . , znS ∈ F be
such that (var(S) ∪ var(P) ∪ var(Q) ∪ {y1, . . . , ynS}) ∩ {z1, . . . , znS} = ∅.
Moreover, let P1 be P [z1/y

S
1] . . . [znS/y

S
nS

], let Q1 be Q[z1/y
S
1] . . . [znS/y

S
nS

],
and let P2 be P1[y

S
1 /x

S
1] . . . [ySnS

/xSnS
]. In the rest of this proof, a state

representing term is a closed term of sort SF that is a state representing
term for P , Q, S, and {yS1 , . . . , ySnS

} ∪ {z1, . . . , znS} with respect to S.
Assume S |= {b : P}Sω {0 :Q}.

From {b:P ′S}Sω {0:Q′S,b}, it follows that {b:P ′S∧P2}Sω {0:Q′S,b∧P2} (∗)
by the invariance rule (R7). We now show that S |= (Q′S,b ∧ P2) ⇒ Q1.

Let t′ be a state representing term. Assume S |= (Q′S,b ∧P2)[t′]. By the
definition of Q′S,b, there exists a state representing term t such that S |= P ′S [t]
andMS |= |Sω|b,0 •t = t′ andMS |= |S|b,e′ •t = ∅ for all e′ ∈ N with e 6= e′.
Suppose S |= (¬ P2)[t]. From this, the just-mentioned properties of t, and
the soundness of the invariance rule, it follows that S |= (¬ P2)[t

′]. This
contradicts the assumption that S |= (Q′S ∧P2)[t′]. Consequently, S |= P2[t].
From this, the first of the above-mentioned properties of t, and the fact that
S |= (P ′S ∧ P2) ⇒ P1, it follows that S |= P1[t]. From this, the assumption
that S |= {b : P}Sω {0 :Q}, and the soundness of the substitution rule (R9),
it follows that S |= Q1[t

′]. This proves that S |= (Q′S,b ∧ P2) ⇒ Q1 (∗∗).
From (∗) and (∗∗), it now follows by the consequence rule (R10) that

152 J.A. Bergstra, C.A. Middelburg

{b : P ′S ∧ P2}Sω {0 :Q1}. From this, it follows by the elimination rule (R8)
that {b : ∃yS1 , . . . , ySnS

• (P ′S ∧ P2)}Sω {0 :Q1}. From this and the fact that
S |= P1 ⇒ ∃yS1 , . . . , ySnS

• (P ′S ∧ P2), it follows that {b : P1}Sω {0 : Q1} by
the consequence rule. From this, it follows that {b : P}Sω {0 : Q} by the
substitution rule. 2

Lemma 6 Let S and, for each S ∈ CIS and b ∈ N+, P ′S, and Q′S,b be as in

Lemma 5. Then, for each S ∈ CIS and b ∈ N+, Th(S) ` {b :P ′S}Sω {0:Q′S,b}.

Proof: Let S ∈ CIS and b ∈ N+. Then, by the definition of Q′S,b, S |=
{b :P ′S}Sω {0 :Q′S,b}. From this, it follows that S |= {b :P ′S}S ; Sω {0 :Q′S,b}
because |Sω|b,0 = |S ; Sω|b,0. From this and Lemma 5, it follows that
Th(S) ∪ {{b′ : P ′S}Sω {0 : Q′S,b′} | b′ ≤ ubS;Sω ,b} ` {b : P ′S}S ; Sω {0 : Q′S,b},
where ubS,b is defined as in Lemma 5. Because we have proved this for an
arbitrary b, it follows by the repetition rule that Th(S) ` {b:P ′S}Sω {0:Q′S,b}.
2

The lines of the proofs of Lemmas 5 and 6, which are mostly concerned
with repetition, are reminiscent of the lines of the proofs of Lemmas 1 and 2
from [1], which are mostly concerned with calls of (parameterless) recursive
procedures.

The following theorem is the completeness theorem for the presented
Hoare-like logic. The weak form of completeness that can be proved is known
as completeness in the sense of Cook because this notion of completeness
originates from Cook [11].

Theorem 3 For each service algebra S such that LS is expressive for CIS
on S and each asserted instruction sequence φ, S |= φ implies Th(S) ` φ.

Proof: This result is an immediate consequence of Lemmas 3–6. 2

7 Concluding Remarks

We have presented a Hoare-like logic for proving the partial correctness of
a single-pass instruction sequence as considered in program algebra and
have shown that it is sound and complete in the sense of Cook. We have
extended the asserted programs of Hoare logics with two natural numbers
which represent conditions on how execution enters and exits an instruction
sequence. By that we have prevented that pre- and post-conditions can be
formulated in which aspects of input-output behaviour and flow of execution

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 153

are combined in ways that are unnecessary for proving (partial) correctness
of instruction sequences. We believe that by the way in which we have
extended the asserted programs of Hoare logics, the presented Hoare-like
logic remains as close to Hoare logics as possible in the case where program
segments with multiple entry points and multiple exit points have to be
dealt with.

In contrast with most related work, we have neither taken ad hoc
restrictions and features of machine- or assembly-level programs into account
nor abstracted in an ad hoc way from instruction sequences as found in
low-level programs. Moreover, unlike some related work, we have stuck
to classical first-order logic for pre- and post-conditions. In particular,
the separating conjunction and separating implication connectives from
separation logics [20] are not used in pre- and post-conditions Because of
this, most related work, including the work reported upon in [17, 19, 21], is
only loosely related.

Most closely related is the work reported upon in [24, 25]. The form
of asserted instruction sequences is inspired by [25]. However, as explained
in Section 1, their interpretation differs somewhat. Moreover, no attention
is paid to soundness and completeness issues in [25]. An asserted program
from [24] corresponds essentially to a set of asserted instruction sequences
concerning the same instruction sequence fragment. The particular form of
these asserted programs has the effect that proofs using the program logic
from [24] involve a lot of auxiliary label manipulation.

References

[1] K. R. Apt. Ten years of Hoare’s logic: A survey - Part I. ACM
Transactions on Programming Languages and Systems, 3(4):431–483,
1981. doi:10.1145/357146.357150.

[2] J. A. Bergstra and M. E. Loots. Program algebra for sequential code.
Journal of Logic and Algebraic Programming, 51(2):125–156, 2002. doi:
10.1016/S1567-8326(02)00018-8.

[3] J. A. Bergstra and C. A. Middelburg. Program algebra with a jump-
shift instruction. Journal of Applied Logic, 6(4):553–563, 2008. doi:

10.1016/j.jal.2008.07.001.

http://dx.doi.org/10.1145/357146.357150
http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1016/S1567-8326(02)00018-8
http://dx.doi.org/10.1016/j.jal.2008.07.001
http://dx.doi.org/10.1016/j.jal.2008.07.001

154 J.A. Bergstra, C.A. Middelburg

[4] J. A. Bergstra and C. A. Middelburg. Instruction sequence process-
ing operators. Acta Informatica, 49(3):139–172, 2012. doi:10.1007/

s00236-012-0154-2.

[5] J. A. Bergstra and C. A. Middelburg. Instruction Sequences for Com-
puter Science, volume 2 of Atlantis Studies in Computing. Atlantis
Press, Amsterdam, 2012. doi:10.2991/978-94-91216-65-7.

[6] J. A. Bergstra and C. A. Middelburg. Instruction sequence based non-
uniform complexity classes. Scientific Annals of Computer Science,
24(1):47–89, 2014. doi:10.7561/SACS.2014.1.47.

[7] J. A. Bergstra and C. A. Middelburg. On instruction sets for Boolean
registers in program algebra. Scientific Annals of Computer Science,
26(1):1–26, 2016. doi:10.7561/SACS.2016.1.1.

[8] J. A. Bergstra and J. V. Tucker. Two theorems about the completeness
of Hoare’s logic. Information Processing Letters, 15(4):143–149, 1982.
doi:10.1016/0020-0190(82)90095-3.

[9] E. M. Clarke. Programming language constructs for which it is im-
possible to obtain good Hoare axiom systems. Journal of the ACM,
26(1):129–147, 1979. doi:10.1145/322108.322121.

[10] M. Clint and C. A. R. Hoare. Program proving: Jumps and functions.
Acta Informatica, 1(3):214–224, 1972. doi:10.1007/BF00288686.

[11] S. A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal of Computing, 7(1):70–90, 1978.
doi:10.1137/0207005.

[12] A. de Bruin. Goto statements: Semantics and deduction systems. Acta
Informatica, 15(4):385–424, 1981. doi:10.1007/BF00264536.

[13] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I:
Equations and Initial Semantics, volume 6 of EATCS Monographs.
Springer-Verlag, Berlin, 1985. doi:10.1007/978-3-642-69962-7.

[14] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19–32. American Mathematical
Society, 1967.

http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.1007/s00236-012-0154-2
http://dx.doi.org/10.2991/978-94-91216-65-7
http://dx.doi.org/10.7561/SACS.2014.1.47
http://dx.doi.org/10.7561/SACS.2016.1.1
http://dx.doi.org/10.1016/0020-0190(82)90095-3
http://dx.doi.org/10.1145/322108.322121
http://dx.doi.org/10.1007/BF00288686
http://dx.doi.org/10.1137/0207005
http://dx.doi.org/10.1007/BF00264536
http://dx.doi.org/10.1007/978-3-642-69962-7

A Hoare-Like Logic of Asserted Single-Pass Instruction Sequences 155

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 583, 1969. doi:10.1145/

363235.363259.

[16] W. A. Hodges. Model Theory, volume 42 of Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, Cambridge, 1993.

[17] J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic
for low-level code. In POPL 2013, pages 301–314. ACM Press, 2013.
doi:10.1145/2480359.2429105.

[18] C. A. Middelburg. Instruction sequences as a theme in computer science.
https://instructionsequence.wordpress.com/, 2015.

[19] M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically modelled
machine code. In O. Grumberg and M. Huth, editors, TACAS 2007,
volume 4424 of Lecture Notes in Computer Science, pages 568–582.
Springer-Verlag, 2007. doi:10.1007/978-3-540-71209-1_44.

[20] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS 2002, pages 55–74. IEEE Computer Society Press,
2002.

[21] A. Saabas and T. Uustalu. A compositional natural semantics and
Hoare logic for low-level languages. Theoretical Computer Science,
373(3):273–302, 2007. doi:10.1016/j.tcs.2006.12.020.

[22] D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano,
H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations
of Systems Specification, pages 13–30. Springer-Verlag, Berlin, 1999.
doi:10.1007/978-3-642-59851-7_2.

[23] D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and
Formal Software Development. Monographs in Theoretical Computer
Science, An EATCS Series. Springer-Verlag, Berlin, 2012. doi:10.

1007/978-3-642-17336-3.

[24] G. Tan and A. W. Appel. A compositional logic for control flow. In
E. A. Emerson and K. S. Namjoshi, editors, VMCAI 2006, volume 3855
of Lecture Notes in Computer Science, pages 80–94. Springer-Verlag,
2006. doi:10.1007/11609773_6.

http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/2480359.2429105
http://dx.doi.org/10.1007/978-3-540-71209-1_44
http://dx.doi.org/10.1016/j.tcs.2006.12.020
http://dx.doi.org/10.1007/978-3-642-59851-7_2
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/978-3-642-17336-3
http://dx.doi.org/10.1007/11609773_6

156 J.A. Bergstra, C.A. Middelburg

[25] A. Wang. An axiomatic basis for proving total correctness of goto-
programs. BIT Numerical Mathematics, 16(1):88–102, 1976. doi:

10.1007/BF01940782.

[26] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 675–788. Elsevier,
Amsterdam, 1990.

c© Scientific Annals of Computer Science 2016

http://dx.doi.org/10.1007/BF01940782
http://dx.doi.org/10.1007/BF01940782

	Introduction
	Program Algebra and Basic Thread Algebra
	Interaction of Threads with Services
	Hoare-Like Logic for PGA
	Example
	Soundness and Completeness
	Concluding Remarks

