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Abstract The process of macroinvertebrate drift in

streams is characterized by dislodgement, drift distance and

subsequent return to the bottom. While dislodgement is

well studied, the fate of drifting organisms is poorly

understood, especially concerning Trichoptera. Therefore,

the aim of the present study was to determine the ability of

six case-building Trichoptera species to return to the

stream bottom under different flow velocity conditions in a

laboratory flume. The selected species occur in North-West

European sandy lowland streams along a gradient from

lentic to lotic environments. We determined species

specific probability curves for both living and dead (con-

trol) specimens to return to the bottom from drift at dif-

ferent flow velocities and established species specific

return rates. Species on the lotic end of the gradient had

highest return rates at high flow velocity and used active

behaviour most efficiently to return to the bottom from

drift. The observed gradient of flow velocity tolerance and

species specific abilities to settle from drift indicate that, in

addition to dislodgement, the process of returning to the

bottom is of equal importance in determining flow velocity

tolerance of Trichoptera species.

Keywords Trichoptera � Drift � Return rates � Flow
velocity � Lowland streams

Introduction

Benthic invertebrates in streams are either sessile, move

around actively, or are passively being moved around by

the current. Weak stream flows may move invertebrates

that live on or in the upper layer of the substratum to a

limited extent, while strong flows can actually dislodge

them and initiate drift (Vogel 1994). Drift is regarded as

the dominant form of invertebrate movement in streams

(Waters 1972; Brittain and Eikeland 1988), travelling short

to long distances before returning to the stream bottom

(McLay 1970; Neves 1979).

Previous studies revealed that drift densities of most

species increase with increasing flow velocity (e.g. Corkum

et al. 1977; Fonseca and Hart 1996; Gibbins et al.

2005, 2010). Yet, dislodgement occurs at both high and

low flow velocity and can be initiated by multiple causes

(e.g. reviewed in Waters 1972; Brittain and Eikeland 1988;

Hart and Finelli 1999). Regardless of the cause of dis-

lodgement, drifting invertebrates will eventually need to

descend from the water column to prevent being washed

out of the system. Hence, the process of drift is charac-

terized by dislodgement, drift distance and subsequent

return to the bottom (Lancaster 2008). Yet, the fate of most

dislodged organisms is poorly understood (Palmer et al.

1996; Downes and Keough 1998; Lancaster 2008) and

abilities of invertebrates to use behavioural moves to end

drifting are scarcely documented (Lancaster et al. 2009; but

see Oldmeadow et al. 2010), despite the importance of

movements to colonize unexploited habitats (Rice et al.

2010). Thus for most species it remains unknown whether
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they passively return to the bottom from drift or use active

behavioural moves (Poff and Ward 1991; Oldmeadow et al.

2010).

Especially for caddisfly larvae, escape from drift has been

poorly documented. Therefore, the aim of this study was to

quantify flow velocity thresholds at which selected case

building Limnephilidae (Trichoptera), ranging from lotic to

lentic species, are able to return to the stream bottom. We

hypothesized that all species, being benthic invertebrates,

use active behavioural moves to do so, but that drifting

specimens of species from lotic environments can return to

the stream bottom at higher flow velocities than species from

lentic environments. To test this hypothesis, we performed

experiments in a controlled laboratory environment, in

which flow velocity was manipulated.

Materials and methods

Test species

The Limnephilidae are a relatively large family comprising

many species with large differences in ecology and distri-

bution, despite a high morphological similarity. Six species

of Limnephilidae were selected for this experiment: Lim-

nephilus lunatus (Curtis, 1834), Limnephilus rhombicus

(Linnaeus 1758), Anabolia nervosa (Curtis 1834), Halesus

radiatus (Curtis 1834), Chaetopteryx villosa (Fabricius

1798) and Micropterna sequax (McLachlan 1875). The

selected species occur in North-West European sandy low-

land streams along a gradient from lentic to lotic environ-

ments in the order listed above (Graf et al. 2006, 2008; Graf

and Schmidt-Kloiber 2011). For a detailed description of

their distribution see Verdonschot et al. (2014).

Fifth instar larvae were manually picked from sites

where large populations of the respective species occur.

Specimens were collected from the Warnsbornse beek,

Coldenhovense beek, Seelbeek and drainage ditches (the

Netherlands). Specimens were kept in an artificial rearing-

stream in separate compartments containing 200–300

conspecifics and a surplus of organic material (detritus,

leaves, twigs and plants) on a bottom of fine gravel and

sand. Food levels were kept high by adding extra leaves,

detritus and wheat fragments weekly. Environmental con-

ditions in the laboratory rearing-stream were kept constant

with a water temperature of 10 �C, a flow velocity range of

0.05–0.10 m/s and a day:night light regime of 16:8 h.

Experimental setup

The experiments were conducted in a channel, which is

part of a fully controlled recirculating laboratory flume

system with adjustable flow velocity. Water is stored in a

reservoir from which it is pumped through flow-homoge-

nizing lamellae to flow through the channel before

returning to the reservoir. The stream bed is comprised of

sand grains glued to acrylic plates whilst the sides of the

channel are smooth. All tests were conducted under con-

trolled treatment-specific flow velocities, constant water

temperature and light regime. The flow velocity treatments

ranged from 0.10 to 0.85 m/s in steps of 0.05 m/s. The

mean column velocity (i.e. 0.6 9 flow depth) of the flow

classes was continuously monitored at the centre of the

channel using an electromagnetic flow meter (SENSA RC2

ADS, model V6d).

Per test run, one specimen was released in the water

column at the entrance of the test section and monitored

while the flow velocity was kept constant. Control exper-

iments were performed with dead specimens. Test speci-

mens were free to move upstream and downstream after

release in the test section for a maximum of 6 min in each

test-run (Fig. 1). Preliminary tests showed that 6 min was

sufficient to ensure that specimens attached firmly and to

rule out secondary dislodgements. We tested 20 different

specimens (replicates) per species per flow velocity treat-

ment. Experiments were stopped if specimens reached the

lower end of the test section within the 6 min, which were

then classified as ‘lost by drift’.

Data analysis

Return rate (R) is defined by the number of specimens that

returned to the bottom from drift and remained on the

bottom of the test section during the 6 min. We set the flow

velocity intolerance threshold, the flow speed at which

specimens cannot return to the bottom, at R = 0.15. Below

R = 0.15, no more tests were performed at higher flow

velocities for that respective species. After each run, the

test specimen was killed in ethanol and the measurement

repeated with the dead specimen in order to perform the

control measurement.

Bayesian P-splines (see Supplementary appendix) and

credible intervals were derived from the return rates

(n = 20) at each of the tested flow velocity treatments per

species for both living and dead (control) animals. The

Bayesian P-splines are S-shaped probability curves calcu-

lated by a regression through the observations and illustrate

species-specific tolerance for flow velocity. The probability

curves consist of five phases: the flow velocity tolerance

range (R: 1.00–0.85), the tolerance threshold (R = 0.85),

the exponential phase of decreasing return to the bottom

(poor tolerance, R: 0.85–0.15), the intolerance threshold

(R = 0.15) and the intolerance range (R: 0.15–0.00)

(Fig. 2).
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Results

The probability curves showed that each species has a

specific tolerance for flow velocity (Fig. 3). The species

can be ordered along a range based on their tolerance

threshold (R[ 0.85) for flow velocity from low to high

tolerance: H. radiatus, L. lunatus, A. nervosa, L. rhombi-

cus, C. villosa, M. sequax. Based on the slope of the range

of poor tolerance, species can be ordered differently: L.

lunatus, A. nervosa, L. rhombicus, H. radiatus, C. villosa,

M. sequax. Further, the species were ranked in this order

(Fig. 3) based on their intolerance threshold (R[ 0.15).

The return rate (R)[ 0.85 was similar for live and dead

specimens (Fig. 4). For L. lunatus and L. rhombicus, there

was no difference between the intolerance thresholds

(R = 0.15) of live and dead specimens. The intolerance

threshold of dead A. nervosa was even higher than that of

live specimens. The other three species had higher living

intolerance threshold than the dead ones.

Comparison of the species specific ranges of tolerance

of living and dead individuals in one figure (Fig. 5) clearly

shows that behavioural movements of H. radiatus, C.

villosa and M. sequax were efficient, strongly enlarging the

flow velocity tolerance of these species.

Discussion

Lowland streams are multi-stressed environments in which

each stressor can be limiting for a species to survive

(Corkum 1992; Allan and Johnson 1997; Brosse et al.

2003; Weigel 2003; Ormerod et al. 2010). Hydromor-

phology, nevertheless, is considered a main stressor to

determine macroinvertebrate community composition in

European lowland streams (Hering et al. 2006; Feld and

Hering, 2007). It is challenging, though, to separate effects

of flow velocities from other disturbances, especially sed-

iment transport and altered habitat structure, since both

factors interact (Hynes 1970).

Trichoptera have a high diversity of traits and strategies,

they occur in all European ecoregions and in all types of

water bodies (Conti et al. 2014). More specifically, within

the family of Limnephilidae, the different species occur

along a wide range of flow velocities (Mérigoux and

Dolédec 2004; Dolédec et al. 2007; Sagnes et al. 2008;

Mérigoux et al. 2009). This difference is also reflected by

their drift numbers under different flow conditions (Gibbins

et al. 2005, 2010). Similar to other species groups (Ephe-

meroptera: Ciborowski et al. 1977; Gibbins et al.

2005, 2010; Simuliidae: Fonseca and Hart 1996), the

numbers of drifting trichopterans increase with increasing

flow velocity (Verdonschot et al. 2012). But besides dis-

lodgement, the process of drift is also characterized by drift

distance and subsequent return to the bottom. Therefore in

the present study, we tested whether increasing flow

velocity also affected the ability of species to return to the

stream bottom.

We selected five out of six species that Verdonschot

et al. (2012) tested and showed that the number of speci-

mens able to return to the stream bottom from drift

decreases with increasing flow velocity, and that only the

three truly lotic species showed successful active ‘return-

ing’ behaviour, such as by crawling and attaching. The

Fig. 1 Schematic overview of the experimental setup with the

laboratory flume viewed from above. Specimens were released in

drift at the upstream end (left in the figure). They can return to the

bottom and settle out on the bed (first arrow point), crawl over the

bottom (grey area) or may be dislodged again (second arrow in the

right)

Fig. 2 Hypothetical example of a probability curve (P-spline) that

shows the decreasing ability of a species to return to the bottom from

drift. In the probability curve, the tolerance range (R[ 0.85),the

tolerance threshold (R = 0.85), poor tolerance (0.85[R[ 0.15), the

intolerance threshold (R = 0.15) and the intolerance range

(R\ 0.15) are indicated

Flow velocity tolerance of lowland stream caddisfly larvae (Trichoptera) 421
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presently documented flow velocity tolerances also are

consistent with the test species’ classifications based on

current preference and longitudinal zonation (Verdonschot

et al. 2014). Even though all species occur in slow flowing

streams (0.2–0.3 m/s), only H. radiatus, C. villosa and M.

sequax are restricted to (slow) running waters, while L.

lunatus, L. rhombicus and A. nervosa also frequently

populate littoral habitats, in pools, lakes and bogs, and are

considered more limnophilous (Graf et al. 2006, 2008; Graf

and Schmidt-Kloiber 2011; Waringer and Graf 2011). The

latter authors also indicate thatM. sequax and C. villosa are

often found in springs and spring brooks and have more

affinity with flow than H. radiatus.

The tolerance threshold of 0.16–0.21 m/s we determined

for drifting specimens to return to the bottom overlaps the

flow velocity range that Schnauder et al. (2010) reported to

dislodge A. nervosa (0.125–0.193 m/s). The authors further

noted the species struggling to keep the case in position at

high flow velocity while remaining on the stream bed.

Likewise, our results showed that live specimens of A.

nervosa could not actively influence the return rate and did

not benefit from active behaviour.

The role of active movements in return rates from drift

is poorly documented as opposed to active resistance to

dislodgement. Some studies showed that Limnephilidae

species offered active resistance to dislodgement (Otto

1976; Waringer 1989), while studies that included many

species have observed a wide range of critical flow

velocities for dislodgement (Statzner et al. 1988; Sch-

nauder et al. 2010). In the current study, we showed that

Fig. 3 Probability curves (P-splines) of living Trichoptera larvae to return to the stream bottom from drift at different flow velocities. Each

figure shows the species specific mean tolerance threshold and intolerance threshold (in m/s) including credible intervals of active specimens
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flow velocity dependent return rates of Trichoptera were

species specific, both for live and dead specimens. The

latter observation indicates that case properties influence

return rates. The underlying cause and mechanism for the

observed differences of flow tolerance between species

requires further study, including case properties and/or

behavioural tactics. The importance of active behaviour is

indicated by the present observation that only three species

exhibiting high flow velocity tolerance showed additional

active behaviour to return to the bottom, such as trough

crawling and attaching.

Most studies that focussed on escaping drift tested

species of the order Ephemeroptera. Poff and Ward (1991),

for example, showed that some species could not control

drift as numbers fluctuated directly with flow velocity (e.g.

Paraleptophlebia heteronea and Ephemerella infrequens),

whilst other Ephemeroptera species could (e.g. Epeorus

longimanus and Baetis sp). In laboratory experiments, the

number of drifting Baetis vagans increased with increasing

flow velocity, opposite to Paraleptophlebia molli (Corkum

et al. 1977) and both Baetis rhodani and Ecdyonurus tor-

rentis were able to reduce drift distance by using active

behaviour, with species-specific responses depending on

hydrological conditions (Oldmeadow et al. 2010). The

three studies mentioned above observed that Ephe-

meroptera that occur in lotic environments are more

effective in their ability to return to the bed than species

that occur in lentic environments, as observed for the

Trichoptera in the current study. In contrast to Ephe-

meroptera larvae (Corkum et al. 1977; Poff and Ward,

Fig. 4 Probability curves (P-splines) of dead (control) Trichoptera larvae to return to the stream bottom from drift at different flow velocities.

Each figure shows the species-specific mean tolerance threshold and intolerance threshold (in m/s) including credible intervals of specimens
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1991; Oldmeadow et al. 2010), the Trichoptera tested in

this study showed no distinct swimming movements, but

active behavioural movements like crawling and attaching

were most beneficial for H. radiatus, C. villosa and M.

sequax.

Average flow velocities in Dutch lowland streams are

0.2–0.3 m/s (Tolkamp 1980; Verdonschot 1995). We

experimentally verified that M. sequax and C. villosa show

return rate tolerances within this range, whereas the other

four species showed lower tolerance limits. Especially, L.

lunatus cannot return to the bottom from drift at 0.3 m/s and

will therefore need low flow areas. The role of low flow areas

as refuges for drifting specimens to return to the bottom

requires further research. Other studies have shown that

refuges can reduce dislodgement probabilities of specimens

and enable them to resist dislodgement despite relatively

high shear stress (Lancaster and Hildrew 1993; Lancaster

1996; Gabel et al. 2008, 2012). The current observations

show that flow velocities of 0.6 m/s, which are often reached

during peak discharges in these lowland streams, are critical

for all species. This means that once dislodged, the speci-

mens cannot actively return to the bottom. Again, the role of

refugia can be important as they can passively ‘‘catch’’

drifting specimens. Only M. sequax and C. villosa can tol-

erate velocities of 0.6 m/s, so management of lowland

streams should try to prevent peak flows that exceed 0.6 m/s.

Conclusions

In this study we aimed to determine flow velocity thresh-

olds for Limnephilidae to escape from drift and return to

the bottom. We showed that the ability to return to the

bottom from drift and the effect of behaviour on this pro-

cess are species specific. Species on the lotic end of the

gradient had higher return rates at high flow velocity

treatments and used active behaviour more efficiently to

return to the bottom from drift than those on the lentic end

of the species gradient. We conclude that, in addition to

dislodging resistance, the ability to settle from drift is of

equal importance in determining flow velocity tolerance in

lowland stream Trichoptera species.
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