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Chapter 1

Introduction

The 2008 financial crisis has witnessed prices of assets traded on different exchange markets,
of various asset classes, from different geographical locations plunge simultaneously or in
close succession, causing serious problems for banks, insurance companies, and other finan-
cial institutions. It calls for models that account for the unconventional dependence structure
of asset prices beyond the classical paradigm. This doctoral dissertation contributes to the
modeling of the financial contagion phenomenon and the analysis of the impact of contagion
on financial investment decisions, hedging strategies, and asset prices.

Financial contagion loosely refers to the phenomenon that asset prices exhibit excess
cross-market linkages (especially on the downside) during economic downturns.1 Cross-
sectionally, the stochastic dependence among international equities in a financial crisis is
typically asymmetric and therefore cannot be captured by standard (linear, symmetric) corre-
lations. The class of mutually exciting jump-diffusion processes is a promising workhorse for
modeling financial contagion in continuous-time finance. Different from Lévy type models
that are widely applied in the literature, mutually exciting jumps are both cross-sectionally
and serially dependent. The class provides a parsimonious model of jump propagation, al-
lowing for cross-sectional asymmetry and serial dependence through time: a jump that takes
place in one asset market today leads to a higher probability of experiencing future jumps in
the same market as well as in other markets around the world.

Many investment and risk management implications derived from classical models are
no longer valid in the context of financial contagion. This raises many important question-
s. For example, when financial risks are contagious, how are investors compensated for the
systemic risks they are taking, to what extent should an investor diversify his/her equity port-
folio internationally, and how to deal with unhedgable risks, etc.? This thesis tries to address
these questions by reconsidering some of the classical problems in finance, most noticeably
asset pricing, portfolio choice, hedging, and valuation, in the presence of contagion.

Chapter 3 answers the question of how to optimally diversify the equity portfolio when
equity jump risk is contagious across geographical markets. Based on Fan [53], this chapter
analyzes the optimal equity portfolio choice problem in the classical Merton context [96]. We
propose to model the contagious financial market using mutually exciting jumps to account
for excess comovement during economic downturns led by the US market. The mutually
exciting jumps generate asymmetric jump excitation, thus allowing for some equity markets
to be more capable of spreading their risks than others. A typical example is that crashes
in the US get reflected quickly in Europe, while the reverse transmission may not be as
pronounced.

1See Forbes and Rigobon [62] for a discussion of various definitions of contagion.



CHAPTER 1. INTRODUCTION

Modeling asymmetric equity excitation is of significant empirical relevance. Literature
has found that the US equity market plays a unique role in the international financial mar-
ket. One example is that lagged US equity returns significantly predict returns in numerous
non-US countries, while lagged non-US returns display limited predictive ability for the US
returns. In our model, the leading role of the US equity market is characterized by hav-
ing a large cross-section excitor as the “source jump component”, the jump component that
transmits risks, and a small cross-section excitor as the “target jump component”, the jump
component that receives the transmission. The asymmetric excitation structure of the US
equity market indicates, on the one hand, its capability of spreading domestic jump risks
worldwide and on the other its resistance to foreign equity risk spillover.

We employ the martingale method to solve the optimal asset allocation problem and we
are able to derive closed form solutions. The optimal portfolio has two important features:
(1) It is sufficiently diversified, in the sense that it consists of a large number of individual
assets to diversify away idiosyncratic risks; (2) Instead of an optimally diversified equity
portfolio, as suggested in the classical asset allocation literature, the optimal portfolio for an
expected CRRA utility investor is biased towards the US, which is more capable of transmit-
ting equity jump risks worldwide, a phenomenon that we term “the US bias”. Intuitively, the
US bias arises because price jumps in the US are likely to get reflected in the world economy
by raising jump intensities of the other markets. Since the US equity drives jump intensities
more than other equity markets, the investor demands more US equity exposure to hedge
against the uncertainty in the jump intensities of global equity markets.

We apply the model to historical return data and find that excitation asymmetry can ex-
plain the observed US bias in the market portfolio. Neither Poisson jumps nor self exciting
jumps can produce the pattern of the US bias in the market portfolio. Only when jumps are
mutually exciting with an asymmetric excitation structure does the optimal portfolio exhibit
the US bias.

To focus on the international equity contagion, Chapter 3 assumes that investors hedge
away all currency risk when investing internationally. While this is feasible in theory, it may
not be the optimal way of handling exchange rate risk. Chapter 4, therefore, investigates
the currency hedging problem when investors invest in equities denominated in different
currencies. Here, based on Fan [54], we consider the optimal and equilibrium currency
hedging strategies in the context of equity and currency contagion.

Different from Chapter 3, one cannot simply add mutually exciting jumps to the classic
reduced-form model to produce the contagion between the equity market and the FX mar-
ket. As Backus et al. [11] point out, the change in exchange rate is effectively the ratio of
the change in pricing kernel processes of the two countries. Therefore the exchange rate
dynamics should be consistent with the pricing kernel specification. We propose a structural
model that prices equity risks and models currency dynamics consistently while generating
equity-currency contagion.

While complying with the foreign exchange literature findings, we allow the equity jump
component and currency jump components to be mutually exciting. An equity price jump
today increases the probability of experiencing further price jumps in the equity market as
well as the probability of the occurrence of currency jumps, and vice versa. The normal de-
pendence is captured by instantaneous covariance and the dependence during market turmoil
by jump excitation.

Besides being empirically relevant, this framework allows us to intuitively distinguish a
safe haven currency and an investment currency. The existing literature invariably refers to a
“safe-haven” currency as the currency with low covariance with equities. Nevertheless, the
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covariance between currency returns and equity returns can be time varying, and can even
change signs over time. Also, the 2008 crisis has seen many currencies that were not at the
center of the turmoil depreciated, even those which were regarded as safe-haven currencies
preceding the crisis. By contrast, we characterize the “safe-haven” currencies by a small
equity-currency excitor, indicating that a price plunge in the equity market is not likely to
trigger a depreciation of that currency.

We first solve the optimal asset allocation problem over the asset universe of equities, eq-
uity derivatives, and currencies. Unlike Chapter 3 where the equity market is asymptotically
complete, the market in this model is incomplete in the sense that there are more risk factors
than assets available. Solving the portfolio choice problem analytically in this incomplete
market is a more challenging task than that in Chapter 3. With careful specification, we are
able to solve for the optimal portfolio choice in closed form. We revisit Black’s equilibrium
currency hedging problem [15] by further imposing security market clearing conditions to
derive the equilibrium currency hedging strategies. We find that all else equal, investors have
a larger hedging ratio for investment currencies, those that are relatively more prone to equi-
ty market turmoil. The preference for the safe haven currencies cannot be readily replicated
using symmetric dependence measures, such as correlation.

In both cases (that is, equity portfolio optimization and currency hedging), ignoring fi-
nancial contagion leads to substantial utility loss and results in under-estimated risk exposure
that may have devastating consequences for institutional as well as individual investors, es-
pecially during financial crises.

While Chapter 3 and Chapter 4 look into the contagion phenomenon, either among geo-
graphical markets or asset classes, Chapter 5 focuses on another aspect of the financial crisis
– the emergence of arbitrage opportunities during the market turmoil. One of the unique phe-
nomena in the financial crisis is the breakdown of the Covered Interested rate Parity (CIP)
that is used to be taken for granted. Chapter 5 is based on my job market paper Fan [55]. The
industry has been puzzled by the deviations from CIP in 2007-2009, the magnitude of which
was unprecedented. Traditionally, a deviation from the parity of over 20 bps is regarded as
exploitable arbitrage profits. Let alone the 400 bps spike observed during the crisis.

We first establish that the currency basis (deviations from CIP) during the crisis has a
convex, downward sloping term structure curve for USD/EUR, USD/AUD, and USD/CAD
currency pairs. As a first theoretical attempt (to my knowledge) to price the currency basis,
we propose an asset pricing model that explicitly accounts for market liquidity risk, the risk
factor found to be relevant in the empirical literature.

In particular, we consider the position unwinding risk, the risk that investors may need
to exit the position to free the capital for liquidity preference. To exploit the CIP violation,
investors need to form a currency basis trade, which is a capital-intensive portfolio. It may
happen that before the maturity date, investors may need to exit the position in order to
free the capital in the cash market. Unfortunately, premature deposits and off-the-run bonds
(bonds which are not the newest issue) are usually sold at a lower price than on-the-run ones
(bonds of the latest issue) of the same kind. The arbitrageur, therefore, bears a liquidity
cost when the market liquidity is low (during which time the on-the-run/off-the-run spread
widens). We show that when we consider the position unwinding risk, the forward currency
rate given by the asset pricing model exceeds the CIP implied forward rate by the risk neutral
expectation of future liquidity cost weighted by the position unwinding probability, where
the future liquidity cost is measured by the on-the-run/off-the-run spread.

Our model nests as a special case the CIP, in the absence of liquidity risk. We show
numerically that the model is consistent with the empirical observation: (1) (on the time

3



CHAPTER 1. INTRODUCTION

series dimension) consistent with the empirical literature, liquidity risk contributes to a non-
negative currency basis; (2) (on the cross-section dimension) our model is able to produce a
convex, downward sloping term structure that closely resembles the reality.

This dissertation is organized as follows. Chapter 2 gives an overview of the existing
literature on the topics covered in Chapter 3, 4 and 5. Chapter 3 studies the optimal equity
portfolio choice problem under equity contagion across geographical markets, assuming that
all currency risks are hedged away. Chapter 4 investigates how investors can optimally hedge
currency risk when there is contagion between the equity market and the foreign exchange
market. Chapter 5 focuses on explaining the deviation from the covered interest rate parity
during the financial crisis.

4



Chapter 2

Overview of the literature

We define financial contagion according to Forbes and Rigobon [62]. The mutually exciting
jump process is used extensively as the workhorse to model asset prices in this dissertation.
The mutually exciting jump process is a multivariate version of the Hawkes process, which
was originally developed by Hawkes [76], Hawkes [77], and introduced in finance to model
the dynamics of asset returns by Aı̈t-Sahalia, Cacho-Diaz, and Laeven [6] and to model credit
default by Aı̈t-Sahalia, Laeven, and Pelizzon [5].

Chapter 3 and 4 belong to the international portfolio choice literature. Chapter 3 deals
with the optimal equity portfolio problem without exchange rate risks, assuming that in-
vestors fully hedge currency risks. Chapter 4 relaxes this assumption and takes into account
currency risks in international asset allocation. Chapter 5 is a study on the exchange rate
behavior, in particular, how it is related to limits to arbitrage in the capital market.

The modern portfolio theory can be traced back to the efficient frontier theory of Markowitz
[95]. On the basis of the single-period model of Markowitz [95], Merton [96] introduces the
intertemporal optimal portfolio choice in a continuous time framework. Since Solnik [111],
the potential benefits of investing internationally have been known to equity investors. The
majority of the literature on international equity portfolio optimization assumes that investors
will fully hedge currency risks when investing in the international market; thus currency risks
can be taken out of the story. The past two decades have seen many efforts to address the
portfolio optimization problem in richer stochastic environments of equity dynamics. To
name a few, Wachter [117] and Chacko and Viceira [32] solve in closed-form the consump-
tion and portfolio problem in a diffusion market with mean-reverting state variables; Liu
[90] solves the asset allocation problem for general diffusion return processes; Das and Up-
pal [42] and Aı̈t-Sahalia et al. [4] study the portfolio implications of systemic jumps under
constant investment opportunities; Liu et al. [92] look at the portfolio optimization problem
when both price and volatility can jump; Jin and Zhang [81] consider the asset allocation for
general Lévy processes.

Sophisticated as the models get, the extant literature on the equity portfolio optimization
has not been able to address the US bias, that is, investors tend to invest more in the US equi-
ty market than in the peripheral markets compared to classic portfolio predictions. Chapter 3
contributes to the international portfolio choice literature by (1) deriving the equity portfolio
implication analytically under the context of financial contagion, and (2) theoretically gen-
erating the US bias, that is, all else equal, investors hold more US equities than predictions
made by classic portfolio choice models.

To our knowledge, the existing models in the extant literature cannot produce a US bias
in portfolio choice. Sophisticated portfolio choice models that admit closed-form solutions
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often times focus on univariate settings with a single stock in the market. For instance, see
the stochastic volatility model solved by Liu [90], stochastic volatility with jumps model
proposed in Liu and Pan [91], the double jump model of Liu et al. [92], and Branger et al.
[21], who extend Liu and Pan [91] to allow for multiple jumps in volatility but stay within
the single stock framework. Since the dependence structure of international equities can be
nonlinear and asymmetric (see Ang and Chen [9], Christoffersen et al. [36]), the asymmetric
excitation feature cannot be replaced by stochastic volatility (see Buraschi et al. [27]) or
regime-switching models (see Ang and Bekaert [8]) even in a truly multivariate framework.

When it comes to international portfolio choice, the modeling of currency returns and
their interplay with equity risks is inevitable. The studies above make the simplified assump-
tion that all currency risks are hedged away. A more realistic approach would be to allow
investors to choose their optimal currency exposure. So far there has been no consensus on
how much currency risks to hedge or even whether to hedge currency risks at all. Empiri-
cal work has been carried out to answer this question. On the one hand, many studies have
found that hedging currency risks reduces portfolio risks. For example, Glen and Jorion [71]
investigate the benefits from currency hedging with forward contracts and find that currency
hedging significantly improves the performance of portfolios. Campbell et al. [28] consider
an investor with an exogenous portfolio of equities or bonds and ask how the investor can
use foreign currencies to manage the risk of the portfolio. They find that the correlations
between exchange rates and equity returns vary a lot across different currency pairs. On
the other hand, papers like De Roon et al. [45] conclude that currency hedging reduces the
volatility of portfolio returns at the cost of lower expected return and fatter tails of interna-
tional equity return distribution. On the extreme, Froot [67] claims that currency exposure
should be left unhedged for long-term investors based on the assumption that purchasing
power parity holds in the long run and exchange rates display mean reversion.

While there is an extensive literature on the exchange rate dynamics1, theoretical studies
that account for the interdependence between the capital market and the exchange rate mar-
ket are relatively scarce. One example is Bakshi et al. [12], who decompose the stochastic
discount factor (hence exchange rates) into interest rate risk, equity risk, and an orthogonal
component. A similar factor structure model can be found in Brusa et al. [26], who include
an equity factor, a carry factor, and a Dollar factor in modeling exchange rate dynamics. An-
other attempt is Lettau et al. [89], who propose to explain the currency return in a downside
risk capital asset pricing model by including a downside equity beta.

The interdependent structure between equity and currency has important implications on
international portfolio choice and optimal currency hedging strategies. The study on the the-
oretical multi-currency hedging in an equilibrium framework starts with Solnik [112], which
is expanded by Sercu [109], Stulz [113], Adler and Dumas [2], etc. While the literature on
modeling equity and exchange rate dynamics has grown fast in the past decade, relatively
little is known on the international portfolio choice with currency risks in more realistic sce-
narios. Some exceptions include Brown et al. [23], who study the optimal currency hedging
problem in the context of stochastic volatility, and Torres [115], who explores the optimal
portfolio choice problem in a Poissonian jump diffusion model.

One of the first attempts on the equilibrium currency hedging is made by Black [15], who

1Examples are the factor models proposed by Backus et al. [11], later extended by Lustig et al. [93] to
account for the cross section of carry trade returns. Bates [13] is one of the pioneers that include jumps in
stochastic volatility models to model exchange rate dynamics. Since then, FX models with jumps to capture
crash risk in currency returns can be found in Chernov et al. [35], Farhi and Gabaix [56], Farhi et al. [57], Carr
and Wu [30], Jurek [82]. Jumps in exchange rates have also been documented and studied using high frequency
data by Lahaye et al. [87], Chatrath et al. [34] and Lee and Wang [88], etc.
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assumes that equity returns and currency returns follow i.i.d. multivariate Gaussian distri-
bution. The paper derives a striking result: in equilibrium, every investor hedges the same
amount of any risky currency regardless of the investor’s home currency. This universal
currency hedging ratio depends only on the average risk tolerance and on total wealth and
total assets held by investors in each country. Surprisingly, Black’s universal hedging ratio
remains the prevailing opinion on currency hedging both in the industry and in academia
even 27 years after the paper was published. Among existing literature that studies the in-
ternational portfolio choice problem with currency risks, (conditional) covariance between
exchange rates and equity (bond) risks is used exclusively as the measure of interdependence
between currencies and other asset classes, despite the sophistication of the equity and the
foreign exchange market.

Chapter 4 aims to bridge this gap. We revisit Black’s equilibrium currency hedging prob-
lem under the context of equity-currency contagion. We propose a realistic model that gen-
erates equity-currency contagion, which enables a theoretical characterization of the “safe
haven” properties of a risky currency. We derive the equilibrium currency hedging strategies
under this context.

Having studied the portfolio implication with and without currency risks, Chapter 5 takes
a closer look at exchange rates behavior in the spot and derivatives market. In particular,
Chapter 5 studies the validity of the Covered Interest rate Parity. Early studies tend to agree
that the market is efficient in the sense that after taking into account data imperfections, brok-
age fees, and other transaction costs, the Covered Interest rate Parity holds.2 In a landmark
study, Taylor [114] documents small but potentially exploitable profitable arbitrage opportu-
nities during periods of turbulence. The recent financial crisis starting in late 2007 has again
witnessed an enormous breakdown of the CIP condition, leaving “arbitrage opportunities”
unexploited. Many papers have documented persistent and significant deviations from CIP
in various currency pairs using different interest rate instrument with different sampling fre-
quencies. Such studies include Baba et al. [10], Coffey et al. [37], Fong et al. [60], Genberg
et al. [69], Sarkar [107], Hui et al. [79], and Mancini-Griffoli and Ranaldo [94]. So far the
extant literature has been focusing on the time series behavior of the currency basis. The
cross section patterns of the currency basis remain relatively unexplored.

Chapter 5 tries to empirically study the cross section as well as time series behavior of
the deviations from CIP. Inspired by the stylized facts, this chapter proposes an asset pricing
model and shows how position unwinding risk and the on-the-run/off-the-run spread can
contribute to a nontrivial currency basis that resembles the reality.

2See Frenkel and Levich [66], Deardorff [46], Rhee and Chang [105], and the survey paper by Officer and
Willett [99].
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Chapter 3

Asymmetric Excitation and the US Bias
in Portfolio Choice1

3.1 Introduction
The potential benefits of international diversification have been known to equity investors
for long (see, for example, Solnik [111]). Nevertheless, the actual equity portfolios held by
investors appear to be far from optimally diversified as measured by classic models. The
equity home bias, for instance, is a well-recognized pattern of under-diversification. It refers
to the empirical finding that investors over-invest in domestic equities relative to the theo-
retically optimal investment portfolio. Since the seminal paper by French and Poterba [65],
there has been extensive research on the measurement and explanation of home bias. Infor-
mation asymmetry and familiarity are commonly offered as potential explanations for the
equity home bias.2

However, the equity home bias is only part of the under-diversification puzzle. It is a
well-documented fact that investors hold biased equity portfolios not only towards home
equities but also towards some other equities. Kang et al. [83] study the foreign ownership in
Japanese firms and find that investors hold foreign portfolios tilted towards large firms with
good accounting performance rather than those with better Sharpe ratios. Chan et al. [33]
show that markets that are more developed and larger in market capitalization attract more
foreign investors. Ferreira and Matos [58] study the preference of institutional investors
worldwide and conclude that institutional investors prefer firms that are cross-listed in the US
and constituents of the Morgan Stanley Capital International World Index. Bekaert and Wang
[14] compare actual country equity holdings to a theoretical optimal allocation given by the
CAPM framework and find that investors significantly over-invest in the US and under-invest
in Japan. Forbes [61] states that both size and liquidity contribute to the attractiveness of US
financial markets on top of the risk-return tradeoff. Diyarbakirlioglu [47] studies mutual
fund holdings and finds that investors’ foreign portfolios tend to be concentrated in large
stock markets and well-developed economies.

A related strand of the literature suggests that the US plays a special role in the interna-
tional financial market. For instance, King and Wadhwani [84] investigate high-frequency
returns for the US, Japan, and UK, and find that when New York opens, there is a jump in
the London price reflecting the information contained in the New York opening price. Eun
and Shim [52] employ a vector autoregression system and find that innovations in the US

1Professor Roger J. A. Laeven and Dr. Rob van den Goorbergh made helpful comments and suggestions.
2See, e.g., Epstein and Miao [51], Uppal and Wang [116], Bekaert and Wang [14], Boyle et al. [19].
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are rapidly transmitted to other markets whereas no single foreign market can significantly
explain US market movements. Similarly, Hamao, Masulis, and Ng [75] find significan-
t volatility spillover effects from New York to London and Tokyo but no price volatility
spillover effects to New York are observed. In a more recent paper, Rapach et al. [104] show
that lagged US equity returns significantly predict returns in numerous non-US countries,
while lagged non-US returns display limited predictive ability with respect to US returns.
They state that

“the lead-lag relationships are an important feature of international stock return
predictability, with the United States generally playing a leading role. . . . our
results call for an international asset pricing model that explicitly incorporates
the leading role of the United States.” (p. 1636)

3.1.1 Three-region market portfolio
Taking the perspective of a world investor, free from home bias, the actual international
market portfolio is not optimally diversified according to the classic asset allocation theory.
Figure 3.1 plots the dynamics of the Merton mean-variance portfolio (see Merton [96]) on
the left and of the (three-region) market portfolio on the right for US, Japanese, and European
equities over the period June 1996 to May 2015, with expected returns estimated over the
full sample and covariances estimated from an expanding window. We see that the market
portfolio is consistently over-weighting the US equity and under-weighting the other two.
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Figure 3.1: Market equity portfolio weights (right panel) and the Merton mean-variance equity port-
folio weights (left panel) on US, Japanese, and European equity markets from June 1996 to May
2015. The market portfolio weights are calculated by dividing the market values (US dollar denomi-
nated) of MSCI US, Japan, and Europe by their sum at each time point. The Merton mean-variance
portfolio is computed using excess log returns of MSCI indices over local risk-free rates. US 3-month
treasury bill rates, Japan base discount rates, and 3-month Euribor rates are used as proxies for the
local risk-free rates. Expected excess returns are fixed as the mean excess returns of the monthly total
return from January 1970 to May 2015. The variance matrices are estimated using daily MSCI price
index with an expanding window. Weights are normalized to add up to 1.

Acknowledging the fact that expected returns cannot be estimated statistically signifi-
cantly in samples of finite length (see Merton [98]), we can equivalently ask the question of
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what expected returns would explain the market weights, assuming that investors are mean-
variance optimizers and allocate their wealth among the equity markets of the US, Japan,
and Europe. Denote the portfolio weights on the (currency-hedged) risky assets by w and
the weights within the equity portfolio by w̄. Given the coefficient of relative risk aversion,
γ, the covariance matrix, Σ, and the expected excess log returns adjusted for half the vari-
ance, µ, a Merton mean-variance investor has optimal portfolio weight w = 1

γ
Σ−1µ. The

equity portfolio composition, however, is independent of the risk aversion coefficient γ, and
given by

w̄ =
w

w′ι
=

Σ−1µ

ι′Σ−1µ
,

with ι a vector of ones. Following French and Poterba [65], we calculate the implied ex-
pected excess returns which make a mean-variance investor hold the market equity portfolio.
We take Σ to be the estimated covariance matrix of excess log returns of MSCI indices in
the corresponding sample and calculate the implied expected excess log return that delivers
the observed market equity portfolio weights w̄. Table 3.1 compares the empirical mean
excess log returns with the implied expected excess log returns for different sample periods.
We normalize the implied expected excess log returns such that either the implied Japanese
return (JA as reference) or the implied European return (EU as reference) is the same as its
historical estimate. In the full sample estimate (Panel A), the implied expected excess log
return for US is over 9 percentage points higher than its empirical value when the Japanese
equity is used as reference, and is about 3 percentage points higher when the European e-
quity is used as reference. If we exclude the turbulent period of the global financial crisis
and terminate the sample at the end of 2006, we find the US implied return to be around 8
percentage points higher than the empirical counterpart when using the Japanese equity as
reference, and 3 percentage points higher when using the European equity as reference. It is
unlikely that the US equity can deliver such a high expected excess return consistently. In
other words, according to classic portfolio choice models, the risk return trade off of the US
equity is not good enough to attract as much investment as it does.

11
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Empirical vs. implied expected excess log returns (% per annum)

Panel A: Full sample

Empirical Implied Implied
(JA as reference) (EU as reference)

US 4.6 13.8 7.4
JA 3.7 3.7 1.4
EU 4.8 9.0 4.8

Panel B: Until the end of 2006

Empirical Implied Implied
(JA as reference) (EU as reference)

US 4.5 12.2 7.7
JA 4.5 4.5 2.5
EU 5.3 8.4 5.3

Table 3.1: Empirical and implied expected excess returns denoted in % per annum. Implied expected
excess returns are computed based on the market values of MSCI US, Japan, and Europe, and are
solutions of w̄ = Σ−1µ

ι′Σ−1µ
, with w̄ the observed market equity portfolio weights, ι a vector of ones, Σ

the estimated covariance matrix of excess log returns of MSCI indices using daily returns. Empirical
mean excess log returns are estimated using monthly MSCI total return indices over local risk-free
rates, for which US 3 month treasury bill rates, Japan base discount rates, and 3 month Euribor rates
are used as proxies. Both samples start in January 1972. Panel A reports the estimates using the full
sample and Panel B reports the estimates using the sample truncated at the end of 2006.

Figure 3.1 and Table 3.1 show that the question of why an equity market remains larger
(smaller) and more (less) attractive than others cannot be answered by differences in Sharpe
ratios alone. Forbes [61] also finds that the amount of foreign investment in the US cannot
be explained by standard portfolio allocation models and diversification motives, and puts
forward the question:

“Why are foreigners willing to invest an average of well over 5 billion every
day in the United States – especially given low returns relative to comparable
investments in other countries. . . ?” (p. 3)

It brings us to a phenomenon that is equally interesting as the home bias, and which we refer
to as the “US bias”, i.e., the extent to which a global investment portfolio over-weights US
equity compared to classic asset allocation models.

3.1.2 Contribution
Inspired by the empirical results from these strands of the literature, we propose a global
asset return model that explicitly takes into account the leading feature of the US equity
market. We model the lead-lag relation using asymmetric jump excitation, which allows a
price plunge in the US to get reflected in future prices of foreign equities but much less the
other way around.

Specifically, we model a contagious financial market with mutually exciting jumps to
account for excess comovement during economic downturns led by the US market. Differ-
ent from Lévy type models that are widely applied in the literature, mutually exciting jumps
are both cross sectionally and serially dependent, meaning that a large price movement that
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happens in the domestic market today increases the probability of experiencing further price
jumps in the same market in the future as well as the probability of experiencing price jumps
in other markets. There are two important indicators that measure the cross-sectional exci-
tation capability of an equity market – how much a domestic price crash can get reflected in
future foreign equity prices and how a foreign price crash can affect future domestic equity
prices. The empirical evidence mentioned earlier suggests that the excitation is typically not
symmetric. Consistent with the empirical findings, we allow for an asymmetric jump exci-
tation structure. The leading role of the US equity market is characterized by having a large
cross section excitor as the “source jump component” – the jump component that transmits
risks – and a small cross section excitor as the “target jump component” – the jump compo-
nent that receives transmission. The asymmetric excitation structure of the US equity market
indicates on the one hand its pronounced transmission of domestic jump risks worldwide and
on the other its limited susceptibility to foreign equity risk spillovers.

Apart from allowing for jump propagation, we deviate from the standard asset alloca-
tion literature in two respects. First, instead of using representative assets of every regional
market, we assume that each local market is made up of a large number of individual as-
sets, which are exposed to regional risk factors as well as idiosyncratic risks. While the
regional risk factors are systematic and cannot be diversified away, idiosyncratic risks can
be eliminated by holding a well-diversified portfolio. Second we adopt the factor investing
perspective and focus on allocation to risk factors rather than assets. Inspired by Ang [7],
who remarks that “factors are to assets what nutrients are to food; factor risks are the driving
force behind risk premiums”, we derive optimal portfolio exposure to risk factors instead of
optimal portfolio weights of each individual asset. In this way, thousands of assets reduce to
only a few manageable risk factors.

These specifications allow us to solve in closed form the portfolio optimization problem
with multiple regions and a large number of assets that are exposed to mutually exciting jump
risks, systematic Brownian risks, and idiosyncratic Brownian risks. The optimal portfolio
exploits the diversification benefits among independent risk factors, and at the same time
exploits the hedging potential within the dependence structure among risk factors and state
variables. As a result, the optimal portfolio in this high-dimensional contagious market: (1)
is sufficiently diversified, in the sense that it consists of a large number of individual assets
to diversify away idiosyncratic risks; and (2) is biased towards the US equity market as
compared to classic portfolio predictions. Intuitively, the US bias arises because price jumps
in the US are likely to get reflected in the world economy by raising jump intensities of the
other markets. Since the US equity drives jump intensities more than other equity markets,
the investor demands more US equity exposure in order to hedge against the uncertainty in
the jump intensities of global equity markets.

Generally speaking, incorporating jump risks brings three effects to traditional asset al-
location, where equities are assumed to be driven by Brownian motions alone. First, as
discovered by Das and Uppal [42] and Aı̈t-Sahalia et al. [4], the investment in risky assets
is smaller for an investor who accounts for jumps. This is due to the fact that, when a jump
occurs, wealth can drop significantly before the investor has a chance to adjust the portfolio
as he/she would when faced with Brownian risks. As a result, the investor prefers a small-
er leverage to stay on the safe side. Second, compared with the constant jump intensity
case, jump excitation increases the demand for risky assets. When a jump occurs, the state
variables that drive the world economy (jump intensities in this case) and the equity prices
move in opposite directions. To reduce the uncertainty in the state variables, the investor
should increase the exposure to risky assets in order to exploit the hedging potential in the
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jump components. This effect is first seen in Liu, Longstaff, and Pan [92], who show in a
univariate model, that jumps in volatility increase the optimal portfolio weight on the risky
asset. However, the implications of stochastic jump intensities in a multivariate setting are
not well explored, possibly due to the difficulty in formulating a flexible yet tractable model,
which yields analytical solutions for the optimal asset allocation. We extend the existing
non-Poissonian jump diffusion asset allocation literature to a multivariate setting using mu-
tually exciting jumps. The multivariate model gives rise to the third effect, the US bias,
meaning that, compared to the Merton mean-variance portfolio, an investor over-invests in
the US market whose jump component is more capable of exciting the jump components in
other markets but is less prone to be excited by the other jump components. We find that the
US bias arises when jump excitation is asymmetric, in which case jump components have
heterogeneous hedging potential against state variables. The investor thus tilts the portfolio
towards the US equity market for a more effective hedging. Ignoring price discontinuities or
the excitation nature of jumps results in substantial welfare losses. The first two effects are
known in the literature, while the third effect is the main finding of this paper.

We apply our model to historical prices of MSCI US, Japan, and Europe. We estimate the
parameters of our model using daily price data. We show that neither Poisson jumps nor self
exciting jumps are able to reproduce the pattern of the US bias in the market portfolio. Only
when jumps are mutually exciting with an asymmetric excitation matrix does the optimal
portfolio exhibit the US bias. The portfolio prediction generated by the mutually exciting
jump diffusion model closely resembles the risk profile of the market portfolio.

To our knowledge, an analytical characterization of the US bias using the lead-lag re-
lationships in international returns cannot be easily replicated by other existing portfolio
choice models in the literature. Sophisticated portfolio choice models that admit closed form
solutions often times focus on univariate settings with a single stock in the market. More-
over, even in a truly multivariate framework, the asymmetric feature cannot be replicated
by stochastic volatility nor regime-switching models (see Buraschi et al. [27]). The linear
correlation, as a measure of dependence used in such models, is a symmetric and contem-
poraneous relation, which does not allow for a lead-lag or asymmetric relation between two
equity markets. Ang and Bekaert [8] propose a regime-switching model to account for the
fact that correlations between international equity returns are higher during bear market-
s than during bull markets. While regime-switching models are able to account for excess
linear dependence during economic downturns, the dependence structure of international eq-
uities can be nonlinear and asymmetric. More importantly, Rapach et al. [104] show that US
shocks are only fully reflected in non-US equity prices with a lag. Therefore the dependence
structure of international equities goes beyond conditional linear correlations. The nonlin-
earity, asymmetry and lead-lag properties distinguish our asymmetric excitation model from
stochastic volatility and regime-switching models. We believe that the mutually exciting
jump diffusion model provides a natural, realistic and parsimonious way that gives rise to
this effect.

The remainder of this chapter is organized as follows. Chapter 3.2 postulates a model
of asset prices that generates lead-lag relations in international equity returns featuring mu-
tually exciting jumps. We solve for the optimal portfolio using the martingale method in a
market with a large number of individual assets. We show that the market is asymptotically
complete, in the sense that the optimal portfolio path can be closely tracked by investing in
a large basket of individual stocks to diversify away idiosyncratic risks. In Chapter 3.3, we
study the property of the optimal exposure to jump risks using comparative statics analysis
and show that the optimal portfolio exhibits the US bias. In Chapter 3.4, we quantify the
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certainty equivalent loss in terms of annualized returns if the investor were to ignore jump
excitation. Chapter 3.5 reports the calibration results and numerical findings. Chapter 3.6
concludes.

3.2 Optimal asset allocation in a contagious financial mar-
ket

In this section, we propose a model of asset prices that generates lead-lag relations in inter-
national returns. This is achieved by extending a pure diffusion process of asset returns to
include both cross sectionally and serially dependent jump components, namely, mutually
exciting jumps. We specify a general contagious financial market with mutually exciting
jumps in Chapter 3.2.1. In Chapter 3.2.2, we discuss the general features of the optimal
portfolio weights in this market. We impose additional structure on equity risk premiums in
Chapter 3.2.3, which enables us to solve the portfolio optimization problem in closed form
using the martingale approach in Chapter 3.2.4. In Chapter 3.2.5, we discuss the complete-
ness of the financial market.

3.2.1 A general model
We work in a filtered probability space (Ω,F , (Ft)0≤t≤T , P ) that satisfies the usual con-
ditions. Let Nt = (N1,t, . . . , Nn,t)

′ be mutually exciting jump processes with intensities
λi,t, i = 1, . . . , n: {

P [Ni,t+s −Ni,t = 0|Ft] = 1− λi,ts+ o(s);
P [Ni,t+s −Ni,t = 1|Ft] = λi,ts+ o(s);

(3.1)

and P [Ni,t+s −Ni,t > 1|Ft] = o(s), s > 0, where the intensities follow the exponentially
decaying dynamics

dλi,t = αi(λi,∞ − λi,t) dt+
n∑
j=1

βi,j dNj,t, αi, βi,j, λi,∞ ≥ 0, i, j = 1, . . . , n. (3.2)

The occurrence of a jump in component j at time t, i.e., dNj,t = 1, not only raises the
intensity of jump component j, λj,t, by a non-negative amount βj,j , but also increases the
intensities of other jump components, λi,t, i 6= j, by a non-negative amount βi,j . After being
excited, the intensity of each jump component λi,t mean reverts to the steady state λi,∞ at an
exponentially decaying rate αi, until it gets excited by a next jump occurrence.

In the remainder, we call β, defined as

β := (β1, . . . ,βn) =

β1,1 . . . β1,n
... . . . ...

βn,1 . . . βn,n

 ,

the excitation matrix; βi,i is called the self-excitor of jump component i; βi,j is called the
cross section excitor of jump component j, in which jump component j is called the source
jump component, and the jump component i is called the target jump component.

The unconditional expectation of the jump intensity is given by E[λt] = (I−β./(αι′))−1λ∞.
The intensity processes can be made stationary by imposing (I−β./(αι′))−1 > 0 [6]. Here,
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I is an n by n identity matrix; α,λ∞ are vectors of αi, λi,∞, i = 1, . . . , n, respectively; ι is
a column vector of ones. We adopt the convention of denoting vectors and matrices using
boldface characters to distinguish them from scalars. We use ◦ to denote element-wise mul-
tiplication of matrices and ./ to denote element-wise division. We use “,” for column breaks
and “;” for row breaks in a matrix. The pair (N, λ) is jointly Markov.

Let there be a risk-free asset S0
t , generating an instantaneous risk free return rt,

S0
t = S0

0 exp
(∫ t

0

rsds
)
, S0

0 > 0, t ∈ [0, T ].

We assume that each S0
t -deflated security price process is in the spaceH2 of adapted càdlàg

(hence, progressively measurable) and square integrable semi-martingale processes Si,t, i =
1, . . . ,m, following{

dSi,t
Si,t−

= µi,t dt+
∑m

j=1 σi,j,t dWj,t +
∑n

l=1 di,lzl,t dNl,t,

dλl,t = αl(λl,∞ − λl,t) dt+
∑n

j=1 βl,j dNj,t.
(3.3)

Here, µi,t > 0 is the (state-dependent) excess return of asset i; σi,j,t is the (state-dependent)
exposure of asset i to the Brownian risk Wj,t. Wt = (Wi,t, . . . ,Wm,t)

′ is a vector of standard
and independent Brownian motions. We use Si,t− to denote the left-limit of Si,t. The (i, j)th

entry of the instantaneous covariance matrix Σt is given by

Σt[i, j] =
m∑
k=1

σi,k,tσj,k,t. (3.4)

The exposure of asset i to jump component l is denoted by a constant di,l. The amplitude of
jump component l is denoted by zl,t, supposed to be i.i.d. random variables which determine
the percentage change in the asset price caused by an occurrence in jump component Nl at
time t. The jump amplitudes are assumed to be independent of all risk factors.

The mutually exciting jump diffusion model postulated in (3.3) is able to reproduce im-
portant stylized facts of asset returns. For example, the asset returns exhibit jump clustering
as a result of the time series excitation, and systemic jumps as a result of the cross section
excitation. The model generates lead-lag and asymmetric relations in international equity
returns. Unlike dependence generated by (stochastic) covariance, which is simultaneous and
symmetric in the sense that Covt(X1, X2) = Covt(X2, X1), contagion allows for lagged de-
pendence. The dependence structure can further be made asymmetric by setting βi,j 6= βj,i
to accommodate that some jump components have a larger potential to excite other jump
components. Equities with these jump components tend to lead international equity returns,
since a price plunge there can get reflected in future prices of other equities.

The model also generates excess comovement during market turmoil. During tranquil
periods, international asset returns are correlated through the instantaneous covariance Σt.
In periods of financial crises, initiated by the first few downside jumps, jump intensities build
up and give rise to clustered subsequent jumps in the initial market as well as in other markets
across the world, creating nonlinear excess tail dependence in economic downturns.

3.2.2 Optimal asset allocation
We consider an expected utility investor with power utility u(x) = 1

1−γx
1−γ, γ > 0. The

investor is given a non-stochastic initial endowment x0 > 0 to invest in the risk-free and risky
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assets. The investor neither consumes nor receives any intermediate income. Assume that
the investor can rebalance the portfolio in continuous time without incurring any transaction
costs. The objective is to maximize the expected utility over terminal wealth XT through
optimal continuous time trading. Denote the portfolio weights (percentage of wealth) of the
risky assets at time t by wt = (w1,t; . . . ;wm,t), 0 ≤ t ≤ T , assumed to be adapted càdlàg
processes, bounded in L2.3 We do not impose leverage restrictions, so the position on the
risk-free asset at time t, given by w0,t = 1 −

∑m
i=1wi,t, can be a negative amount. The

S0
t -deflated wealth process Xt is self-financing:

dXt

Xt−
=

m∑
i=1

wi,t
dSi,t
Si,t−

= w′tµt dt+w′tΣ
1/2
t dWt +

n∑
l=1

w′tdlzl,t dNl,t. (3.5)

Here, µt,dl are vectors containing µi,t and di,l introduced in Equation (3.3).
The asset allocation problem is formulated as

sup
{wt,0≤t≤T}

E[u(XT )|F0]. (3.6)

To solve the asset allocation problem, we initially employ stochastic control theory, follow-
ing Merton. Define the indirect utility function J at time t as

J(t, x,λ) = sup
{ws,t≤s≤T}

Et
[X1−γ

T

1− γ

]
,

where the expectation is conditional on the information available at time t.4 Then, employing
dynamic programming and the appropriate version of Itô’s Lemma, the Hamilton-Jacobi-
Bellman (HJB) equation reads (we omit the arguments t, x,λ of the function J when no
confusion is caused)

0 = sup
{ws,t≤s≤T}

{
Jt +w′tµtJxx+

1

2
w′tΣtwtJxxx

2 +
n∑
l=1

αl(λl,∞ − λl)Jλl

+
n∑
l=1

λlE[J(t, x(1 +w′tdlzl,t),λ+ βl)− J ]
}
, (3.7)

where we use Jt, Jx, Jλl to denote the partial derivatives of J(t, x,λ) with respect to t, x, λl
and similarly for the higher order derivatives. The expectation is taken over the jump ampli-
tude distribution of zl,t. βl denotes the excitor vector whenNl is the source jump component,
which is the lth column of the excitation matrix, βl = (β1l; . . . ; βnl).

It is known that the indirect utility function for a power utility investor can be written as

J(t, x,λ) =
x1−γ

1− γ
f(t,λ),

3Since portfolio weights cannot anticipate jumps, they are Ft− measurable and left continuous (cf. Aı̈t-
Sahalia and Hurd [3]).

4We sometimes denote the conditional expectation E[·|Ft] as Et[·]. We use the two notations interchange-
ably.
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where f(t,λ) is a deterministic function of time t and the value of the state variables λ.5

We substitute for this functional form in the HJB Equation (3.7), and solve the first order
condition with respect to wt to get the following implicit function that characterizes the
optimal portfolio weights w∗t . For 0 ≤ t ≤ T , the optimal portfolio weights w∗t solve

µt − γΣtw
∗
t +

n∑
l=1

f(t,λ+ βl)

f
λlE[(1 +w∗′t dlzt,l)

−γdlzt,l] = 0, (3.8)

with f(t,λ) satisfying

0 =ft + (1− γ)w∗′t µtf −
1

2
γ(1− γ)w∗′t Σtw

∗
t f +

n∑
l=1

αl(λl,∞ − λl)fλl

+
n∑
l=1

λlE[(1 +w∗′t dlzl,t)
1−γf(t,λ+ βl)− f ]. (3.9)

One can easily verify that the pair (w∗t , f(t,λ)) jointly determined by Equations (3.8) and
(3.9) satisfies the HJB Equation (3.7).

The optimal portfolio weights derived from Equation (3.8) can be decomposed into the
following components:

w∗t =
1

γ
Σ−1t µt︸ ︷︷ ︸

(I)

+
1

γ
Σ−1t

( n∑
l=1

λlMl,t︸ ︷︷ ︸
(II)

+
n∑
l=1

λl
f(t,λ+ βl)− f

f
Ml,t︸ ︷︷ ︸

(III)

)
, (3.10)

where
Ml,t := E[(1 +w∗′t dlzt,l)

−γdlzt,l].

The optimal portfolio weights consist of a mean-variance demand (I), a myopic buy-and-
hold demand (II), and an intertemporal hedging demand (III). The mean-variance demand (I)
is given by the mean-variance weights, exploiting diversification benefits of the instantaneous
covariance structure.

The myopic buy-and-hold demand (II) arises because the asset prices have discontinu-
ities. As explained by Liu et al. [92], unlike continuous fluctuations, jumps may occur before
the investor has the opportunity to adjust the portfolio. Jump risks, therefore, are similar to
“illiquidity risk”: the investor has to hold the asset until the jump has occurred. Observe that

Ml,t ∝ ∇wtE[u(Xt)− u(Xt−)|Nl,t −Nl,t− = 1].

5Since

J(t, cx,λ) = supEt,cx,λ
[ (cXT )

1−γ

1− γ

]
= c1−γ supEt,x,λ

[X1−γ
T

1− γ

]
= c1−γJ(t, x,λ),

we conclude that the value function is homogeneous of degree 1 − γ in the wealth level. Let c = 1
x . It holds

that
J(t, 1,λ) = x−(1−γ)J(t, x,λ).

Rearrange and get

J(t, x,λ) =
x1−γ

1− γ
f(t,λ),

where
f(t,λ) = (1− γ)J(t, 1,λ),

with terminal condition f(T,λ) = 1.
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E[u(Xt) − u(Xt−)|Nl,t − Nl,t− = 1] is the expected utility gain at time t conditional on an
occurrence in jump component l at time t . Therefore (II) is the expected marginal utility
increase induced by jump component l from investing in one unit of risky assets at time t.
The buy-and-hold demand is “myopic” in the sense that it does not take into account the
uncertainties of the future jump intensities.

The last term (III) is tailored to account for the fact that the jumps are mutually exciting.
Since the asset prices St and the state variables λt are both driven by jumps Nt, the risky
assets can be used to hedge future realizations of the state variables. Intuitively, the mean-
variance demand and the myopic buy-and-hold demand exploit the risk-return trade-off of
the risky assets, whereas the intertemporal hedging demand is only concerned with state
variable uncertainties.

All three components of the portfolio weights can be time-varying, but for different rea-
sons. The mean-variance demand (I) and myopic buy-and-hold demand (II) depend on the
spot values of the asset return parameters. Hence they change with the spot values instan-
taneously. The intertemporal hedging demand, on the other hand, depends not only on the
spot values of the asset return parameters, but also on how the returns and the state variables
evolve over the investment horizon. The information of future outcomes is contained in f(·),
which is horizon dependent.

Remark 3.1. In principle, one can allow the state variable λt, similar to equities, to follow
a jump diffusion process

dλt = y0(λt) dt+ y1(λt) dWt + y◦1(λt) dW ◦
t + y2 dNt, (3.11)

with appropriate regularity conditions on y0, y1, y◦1 , and y2. Here, W ◦
t is a m × 1 vector

of Brownian motions that are independent of Wt; y0(λt) is an n × 1 vector of drift terms;
y1(λt) and y◦1(λt) are both n×m matrices; y2 is an n×n matrix of constants. The optimal
portfolio weights in (3.10) would then include a fourth volatility hedging component (IV),
1
γ
y′1
∇λf
f

, in order to use the risky assets to hedge the common Brownian risks Wt in the
state variables. In this case, the model nests the stochastic volatility model of Liu [90], the
Poisson jump diffusion model in Das and Uppal [42] and Aı̈t-Sahalia et al. [4], the contagion
model in Aı̈t-Sahalia and Hurd [3], and the univariate double jump model in Liu et al. [92]
and Branger et al. [21]. Although jump-diffusion-driven state variables will in principle not
create additional difficulties in the technical analysis, we focus on the more parsimonious
mutually exciting jump diffusion model for simplicity. In case of mutually exciting jumps, it
holds that

y0(λt) = α ◦ (λ∞ − λt), y1(λt) = y◦1(λt) = 0, y2 = β.

The purpose of this paper is to evaluate the impact of excitation asymmetry on the optimal
portfolio choice, rather than to develop a general multivariate jump diffusion model to nest
existing models in the literature.

3.2.3 Proportional risk premium
In general, the function f(·) in Equation (3.8) does not admit an analytical expression. In
order to fully solve the asset allocation problem, we impose some additional structure, in
particular on the equity risk premium. Inspired by Aı̈t-Sahalia, Cacho-Diaz, and Laeven [6],
we propose a parsimonious model to focus on jump propagation through time and across dif-
ferent geographic markets. Let there be n regions with mi assets in region i. Let N1, . . . , Nn

represent regional jump components to capture large price drops in equity indices.
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Assume that each asset is only exposed to the jump risk of its own region but not to those
of the other regions. Equivalently, the jump exposure di,l in Equation (3.3) takes the form

di,l =

{
1, if i = l,

0, if i 6= l.

Even though jump components in “peripheral” markets do not influence “domestic” asset
prices directly, jump risks are systemic in the sense that they mutually excite. The jump
intensities λt follow

dλi,t = α(λi,∞ − λi,t) dt+
n∑
j=1

βi,j dNj,t, (3.12)

where for simplicity we assume that all jump intensities share the same mean-reversion rate
α, as in Aı̈t-Sahalia et al. [6].

We model the “normal” (day-to-day) covariances among regions by correlated Brownian
motions Ŵt = (Ŵ1,t, . . . , Ŵn,t)

′ given by

Ŵt = LWt.

Here, LL′ is a correlation matrix with ones on the diagonal and correlation coefficients
off-diagonal. Besides systematic Brownian risks, assets are also subject to idiosyncratic
fluctuations, captured by standard and independent Brownian motions Zt = (Zk

i,t), i =
1, . . . , n, k = 1, . . . ,mi, which are independent of the “regional” Brownian risks Wi,t, i =
1, . . . , n.

Following, among others, French and Poterba [65], we further assume that the repre-
sentative investor hedges 100% of the exchange rate risk using, say, forward exchange rate
contracts. The hedged return is given by

Rhedged
t = rt + (Rlocal

t − rlocal
t ),

where rt is the risk-free rate of a reference country and rlocal
t is the local risk-free rate.

In other words, the hedged excess log returns are computed as local returns denominated
in local currency over local risk-free rates. Taking as numeraire the risk-free asset S0

t =

S0
0 exp

( ∫ t
0
rsds

)
from a reference currency, we normalize all price processes as S0

t -deflated
prices henceforth. According to the Numeraire Invariance Theorem (see, for example, Duffie
[48]), such normalization places essentially no economic effects.

To focus on the effect of jump propagation on the optimal asset allocation, we assume,
for simplicity, that the expected return and volatility of equity prices are state independent.
Denote individual asset identities by superscripts and denote region identities by subscripts.
We suppose that the currency-hedged deflated price of a risky asset k from region i is in the
space S2 ∈ H2 containing Ski,t, i = 1, . . . , n, k = 1, . . . ,mi, t ∈ [0, T ], which follows

dSki,t
Ski,t−

= νki dZ
k
i,t + σki ( dŴi,t + ηi dt) + zki ( dNi,t − (1 + κi)λi,t dt), (3.13)

with constant σki , ηi, ν
k
i , κi ≥ 0 for all i, k. Within a given region, the price of any individual

asset k is driven by both region specific systematic risks, Ŵi,t, Ni,t, as well as idiosyncratic
risks, Zk

i,t.
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Following Cox and Ross [40] and Liu and Pan [91], we assume that the jump amplitudes
zki , i = 1, . . . , n, k = 1, . . . ,mi, are constant. In addition, we restrict that −1 < zki ≤ 0 to
rule out probability of ruin and to indicate that jumps are unfavorable events. Conditioning
on an occurrence in jump component Ni, each asset k in region i drops by a deterministic
amount. This assumption simplifies the analysis, allowing us to focus on the impact of
adverse rare events and the contagious nature of such events.

Comparing Equation (3.13) with Equation (3.3), we see that the drift term of asset k from
region i is a linear function of the state variable λi,t,

µki,t = σki ηi − zki (1 + κi)λi,t.

The covariance matrix Σ is constant over time and has the structure

Σt[p, p] =
(
σpi
)2

+
(
νpi
)2
, Σt[p, q] = ρi,jσ

p
i σ

p
j ,

where i, j are the regional markets to which asset p and asset q belongs, respectively, and ρi,j
is the [i, j]th entry of the correlation matrix LL′.

Equation (3.13) specifies dynamics under the physical measure P . If the market is free of
arbitrage, there exists an equivalent martingale measure Q, under which the expected excess
return of any S0

t -deflated risky asset is zero, i.e., EQ
[

dSki,t
Sk
i,t−

]
= 0. We start with specifying

a pricing kernel process that uniquely prices the three sources of risks: the idiosyncratic
Brownian risks, the systematic Brownian risks, and the jump risks. Next we show in Chapter
3.2.5 that the market is complete in the sense that any random payoff that is consistent with
this pricing kernel can be replicated by investing in the available assets in the market.

Define the systematic Brownian risk premium vector η = (η1; . . . ; ηn) and the jump risk
premium vector κ = (κ1; . . . ;κn). Following Liu and Pan [91], consider a pricing kernel
process πt given by

dπt
πt−

= −η′(LL′)−1 dŴt +
n∑
i=1

κi( dNi,t − λi,t dt), π0 = 1. (3.14)

It is clear from Equation (3.14) that π is a local martingale. If π is actually a martingale,
one can verify according to the Lenglart-Girsanov Theorem that π can serve as a Radon-
Nikodym derivative that changes the measure P to a risk neutral measure Q, under which
asset prices evolve according to

dSki,t
Ski,t−

= νki dZk,Q
i,t + σki dŴQ

i,t + zki ( dNQ
i,t − (1 + κi)λi,t dt), (3.15)

where ŴQ
i,t, Z

k,Q
i,t are standard Brownian motions under Q. The jump process NQ

i,t has inten-
sity (1 + κi)λi,t under Q, while the jump amplitude zki remains unchanged. Consequently,
Ski,t is a local martingale under risk measure Q.

The asset dynamics under P (Equation (3.13)) and those under Q (Equation (3.15)) re-
veal how the three types of risks are priced. First, similar to Merton [97], the idiosyncratic
risk Zt is assumed to be perfectly diversifiable. As a result, the market portfolio is free of
idiosyncratic Brownian risks and the market price of idiosyncratic Brownian risk Zt is zero.
Only systematic risks are priced.

Second, note that the Brownian risk ∆Ŵi,t has constant variance ∆, while the jump risk
∆Ni,t has variance λi,t∆ (approximately). Loosely speaking, we are assuming that the risk
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premium is proportional to the “risk” of the risk factors – the Brownian risk is compensated
with ηi∆ and the jump risk is compensated with κiλi,t∆. A similar jump risk premium
specification can be found in Pan [100], Liu et al. [92], and Boswijk et al. [18]. It implies
that the expected stock returns are increasing in the jump intensities λt. Intuitively, this risk
premium is sensible. During recessions, when there is a high probability of experiencing
large price drops, the investor is compensated by a better risk-return tradeoff. This jump
premia specification is consistent with the empirical estimation results in Bollerslev and
Todorov [16], who show that most peaks in the equity jump risk premia are associated with
events that mark the market turmoil, and also with Santa-Clara and Yan [106], who find that
the equilibrium equity risk premium is a function of the jump intensity. Furthermore, in
our model, the jump intensities under the risk neutral measure are larger than the physical
jump frequencies, an empirically relevant fact that has been confirmed in the non-parametric
estimation by Bollerslev and Todorov [16].

3.2.4 Optimal portfolio exposure to risk factors
We present the optimal portfolio results in this section from the perspective of a world rep-
resentative investor. In addition, different from the traditional portfolio choice literature that
solves for the optimal portfolio weights, we formulate the problem in terms of portfolio ex-
posure to risk factors. Essentially, this places no effects on the optimal wealth path, since
assets generate excess returns because of their underlying exposures to systematic risk fac-
tors (see Ang [7]). It turns out to be a more convenient approach in this case where there are
a few systematic risk factors but numerous assets that are bundles of such factors.

Problem 3.1. Suppose there are no arbitrage opportunities in the market introduced in
Chapter 3.2.3 and all assets are priced according to the pricing kernel given by Equation
(3.14). Let θZt be a

(∑n
i mj

)
× 1 vector process, and θWt ,θ

N
t = (θNit ), i = 1, . . . , n, be

n× 1 vector processes, which are adapted, càdlàg, and bounded in L2. Define the portfolio
optimization problem for an expected utility investor with power utility, u(x) = x1−γ

1−γ , γ > 0
as

sup
{θZt ,θWt ,θNt }

E0

[X1−γ
T

1− γ

]
, (3.16)

subject to the budget constraint:

dXt

Xt−
=θZ′t dZt + θW ′t ( dŴt + η dt) +

n∑
i=1

(
exp

(
θNit
)
− 1
)
( dNi,t − (1 + κi)λi,t dt).

(3.17)

We invoke the martingale method developed by Cox and Huang [39] to solve for the op-
timal portfolio exposure to risk factors. The main results are stated in the following proposi-
tion.

Proposition 3.1 (Optimal portfolio exposure to risk factors). Consider Problem 3.1. The
optimal portfolio exposure to risk factors is given by

θZ∗t =: θZ∗ = 0,

θW∗t =: θW∗ = 1
γ
(LL′)−1η,

θNi∗t = − 1
γ

log(1 + κi) + β′iB(t),

(3.18)
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and the indirect utility function at t = 0 is given by

J(0, x0,λ0) =
x1−γ0

1− γ
exp

(
γ(A(0) +B(0)′λ0)

)
. (3.19)

Here, A(t) andB(t) satisfy{
Ḃ(t) = γ−1

γ
κ+ αB(t)− (κ+ 1)

γ−1
γ ◦ eβ′B(t) + 1,

Ȧ(t) = γ−1
2γ
η′(LL′)−1η − αB′(t)λ∞,

(3.20)

with A(T ) = 0 andB(T ) = 0.

Notice that the optimal exposure to Brownian risks (both idiosyncratic and systematic)
is time-independent and that the optimal exposure to jump risks is a continuous determinis-
tic process. Therefore the optimal portfolio exposure to all risk factors satisfies the càdlàg
assumption.

Alternatively, we may also use the stochastic control method outlined in Chapter 3.2.2
with risk exposure (θZt ,θ

W
t ,θ

N
t ) as control variables. The HJB equation is given by

0 = sup
{θZt ,θWt ,θNt }

{
Jt +

(
θW ′t η −

n∑
i=1

(
exp

(
θNit
)
− 1
)
(1 + κi)λi,t

)
Jxx

+
1

2

(
θW ′t LL

′θWt + θZ′t θ
Z
t

)
Jxxx

2 +
n∑
l=1

α(λl,∞ − λl)Jλl

+
n∑
l=1

λl

(
J
(
t, x exp

(
θNlt
)
,λ+ βl

)
− J

)}
. (3.21)

From Proposition 3.1, we already know that the indirect utility is exponentially affine in jump
intensities. Let J(t, x,λ) = x1−γ

1−γ exp(A(t) + B(t)′λt). Plugging it into the HJB equation
and taking first order conditions with respect to θZt ,θ

W
t , θ

Ni
t , respectively, one can easily

show that the optimal risk exposure coincides with θZ∗,θW∗, θNi∗t given by Equation (3.18).
We next show that the optimal exposure to Brownian risks θW∗ given in Proposition 3.1

corresponds to the mean-variance demand. In particular, we show that the Merton mean-
variance portfolio has exposure θW∗ to systematic Brownian risks. Lemma 3.1 establishes
the connection between the optimal portfolio exposure to Brownian risks θW∗ and the Merton
mean-variance portfolio.

Lemma 3.1 (The Merton mean-variance portfolio). Let there be regional representative as-
sets which are free of idiosyncratic risks and jump risks, i.e., mi = 1, νki = zki = 0,∀k, i.
The representative assets therefore follow

dSi,t
Si,t

= σi( dŴi,t + ηi dt), i = 1, . . . , n.

Then, the optimal portfolio weightsw∗Merton of the Merton mean-variance portfolio are given
by

w∗Merton =
1

γ
Σ−1µ,

with Σ the covariance matrix given by Σ = σLL′σ′, and µ the expected excess return
vector given by µ = ση, where σ is a diagonal matrix with σi on the diagonals. In addition,
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the optimal exposure to systematic Brownian risks of the Merton mean-variance portfolio is
given by

θW∗Merton := σ′w∗Merton = θW∗ =
1

γ
(LL′)−1η.

There are three features of the optimal portfolio exposure we would like to point out.
First, the exposure to risk factors at time t, (θZ∗,θW∗,θN∗t ), is independent of the wealth
level xt and the realization of the state variables λt. Even if mutually exciting jumps give
rise to stochastic investment opportunities, under the assumption of proportional risk premia,
the optimal portfolio composition does not vary with the investor’s wealth or realizations of
the state variables that indicate economic cycles. In other words, there is no market timing
of the portfolio strategy. The independence of the wealth level is a result of the wealth
homogeneity property of the power utility. The optimal risk exposure being independent
of the realization of the state variables λt stems from the assumption that the jump risk
premium κiλi,t is a multiple of λi,t. (Proportional risk premia are a common assumption
in the literature.) In general, one may expect that when the current jump intensities λt are
high, the optimal portfolio exposure to jump risks should be low to stay away from the high
probability of a price plunge. In our model, the investor is rewarded proportionally to jump
intensities. When the probability of jump occurrences is high, the risk premium is also high
to the extent that the demand for the jump risk is independent of the jump intensity.

The second property of the optimal risk exposure is that, although state independent, the
optimal jump risk exposure is horizon dependent. In the special case where β = 0, the jumps
are not mutually exciting and the investment opportunities are constant. In this case, there
are no hedging incentives, hence no horizon dependence in the jump risk exposure. When
β 6= 0, the investment opportunities are stochastic, giving rise to incentives to hedge against
changes in the investment opportunities. Observe thatB(t) in Equation (3.19) measures the
sensitivity of the log indirect utility function to the values of the state variables, i.e.,

B(t) =
1

γ
∇λt log J(t, xt,λt).

The longer the investment horizon, the further away B(t) is from zero, implying a larger
impact of state variables on indirect utility, which in turn leads to a stronger motivation for
the investor to hedge against the changes in the state variables.

The third property of the optimal portfolio is that the optimal portfolio has no exposure
to idiosyncratic risks, i.e., θZ∗ = 0. Naturally, since the exposure to idiosyncratic risks are
not compensated by any risk premium, the investor stays away from these risk factors. In
practice, it means that the investor should invest in a large basket of assets in every region to
diversify away the idiosyncratic risks as much as possible.

3.2.5 Market completeness
In this section, we discuss the completeness property of the financial market. We show that
the market is asymptotically complete in the sense that the investor is able to construct the
optimal portfolio given in Proposition 3.1 by investing in a large number of assets in each
region. We start with a simplified setting where there are as many assets as risk factors and
no idiosyncratic risks.

Suppose for now that the idiosyncratic risks Zt are absent. Each region introduces two
risk factors – a systematic Brownian motion Ŵi,t and a jump component Ni,t. The following
lemma states that as long as there are two investable assets (which are not linearly dependent)
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from each region, we have a complete market in the sense that any no-arbitrage payoff path in
the space S2 defined above can be replicated. Denote the S0

t -deflated value of the replicating
portfolio at time t by Pt with weight wki,t on asset k of region i. It holds that

Pt =
n∑
i=1

mi∑
k=1

wki,tS
k
i,t, t ∈ [0.T ].

The following lemma states the complete market result.

Lemma 3.2 (Market completeness). Suppose the market is free of arbitrage opportunities,
with the pricing kernel given by Equation (3.14). Let there be two non-redundant assets (not
linearly dependent) from each region, consistently priced by the pricing kernel, which follow

dSki,t
Ski,t−

= νki dZk
i,t + σki ( dŴi,t + ηi dt) + zki ( dNi,t − (1 + κi)λi,t dt),

k = 1, 2, i = 1, . . . , n,

with νki ≡ 0,∀k, i. For any payoff {Ft} ∈ S2 which follows

dFt
Ft−

=
n∑
i=1

gi( dŴi,t + ηi dt) +
n∑
i=1

hi

(
dNi,t − (1 + κi)λi,t dt

)
, (3.22)

there exists a 2n × 1 vector wt containing portfolio weights, with wki,t being the weight on
asset k of region i, such that the resulting portfolio value Pt is equal to Ft almost surely, i.e.,

Pt = Ft, a.s. ∀t.

When assets are exposed to idiosyncratic risks, however, we need more than two assets
in each region so as to diversify away idiosyncratic risks. Let m = (m1, . . . ,mn) be a
vector containing mi as the number of available assets in region i. In fact, a similar result
as in Lemma 3.2 holds when the number of assets in each region goes to infinity. The next
proposition formalizes this result.

Proposition 3.2 (Asymptotic completeness). Let there be mi non-redundant assets (i.e., not
linearly dependent) in region i following:

dSki,t
Ski,t−

= νki dZk
i,t + σki ( dŴi,t + ηi dt) + zki ( dNi,t − (1 + κi)λi,t dt),

with νki ≥ 0,∀k, i. For any payoff {Ft} ∈ S2 which follows (3.22), there exist portfolio
weights wki,t, k = 1, . . . ,mi, i = 1, . . . , n, such that for any 0 ≤ t ≤ T , the replicating
portfolio Pt(m) satisfies

Pt(m)−→Ft,
with probability one, as the numbers of assets mi, i = 1, . . . , n, all go to infinity. As a result,
there exist portfolio weights wki,t, k = 1, . . . ,mi, i = 1, . . . , n, such that for any 0 ≤ t ≤ T ,

Pt(m)−→X∗t ,

with probability one, as the numbers of assets mi, i = 1, . . . , n, all go to infinity.

Proposition 3.2 shows that the investor is indeed able to construct the optimal portfolio
by investing in a large number of assets in each region. Appendix 3.B gives one explicit
example of how this can be done.
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3.3 Analysis of the optimal portfolio exposure to jump risks
and the effect of excitation asymmetry

In Chapter 3.2.2 we show that the optimal portfolio weights consist of a mean-variance de-
mand, a myopic buy-and-hold demand and an intertemporal hedging demand. In Lemma
3.1, we have seen that the optimal Brownian risk exposure θW∗ corresponds to the Merton
mean-variance demand. In this section, we analyze the properties of the optimal portfolio
exposure to jump risks. In Chapter 3.3.1, we decompose the jump risk exposure θN∗t into
a Poisson jump risk exposure and a contagion risk exposure. In Chapter 3.3.2, we conduct
comparative statics analysis of the contagion risk exposure with respect to jump risk param-
eters. In Chapter 3.3.3, we study the effect of excitation asymmetry on portfolio exposure to
jump risks. We show that the optimal portfolio can be biased towards an equity market when
the excitation structure is asymmetric.

3.3.1 Decomposition of exposure to jump risks

In this section we show that the jump risk exposure θN∗t can be decomposed into a Pois-
son jump risk exposure θJ which corresponds to the myopic buy-and-hold demand, and a
contagion risk exposure θCt which corresponds to the intertemporal hedging demand.

Note that the exposure to a jump component θNit is equal to log(1 +wi,tzi), where wi,t is
the portfolio weight, and zi < 0 is the jump amplitude. If the investor longs the asset, i.e.,
wi,t > 0, then it holds that θNit = log(1 +wi,tzi) < 0. The more negative the exposure is, the
more appealing the jump factor is to the investor. The portfolio exposure to the jump factor
of region i can be written as

θNi∗t = −1

γ
log(1 + κi) +

n∑
j=1

βj,iBj(t)

= −1

γ
log(1 + κi)︸ ︷︷ ︸

θJi

+

θ
tsi
t︷ ︸︸ ︷

βi,iBi(t) +
n∑
j 6=i

θ
csi,j
t︷ ︸︸ ︷

βj,iBj(t)︸ ︷︷ ︸
θ
Ci
t

=: θJi + θCit . (3.23)

The static component θJi is the portfolio exposure to Poisson jump risk. When β = 0, the
jumps are Poissonian with constant intensities, in which case the investor’s optimal portfolio
exposure to jump risks reduces to θJi . The exposure to Poisson jump risks does not take into
account the stochastic nature of the jump intensities and therefore plays the role of a myopic
buy-and-hold demand.

An interesting comparison is to see what happens when the uncertainties brought by the
jump risk are mimicked by Brownian motions that display the same mean and variance.
The jump factor ( dNi,t − (1 + κi)λi,t dt) has mean −κiλi,t dt and variance λi,t dt. The
instantaneous correlation between the jump components is 0. Consider instead a Brownian
motion with the same mean and variance. Then, the investor will have an exposure of

θ̂Ji = −1

γ
κi. (3.24)
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One can show that6

|θJi | < |θ̂Ji |.

It implies that the exposure to a risk factor is smaller when it is recognized as a Poisson
jump than a Brownian motion, given its mean (risk premium) and volatility (risk). In a sit-
uation where asset prices move continuously, the investor can rebalance the portfolio after
any infinitesimal changes in value to avoid large losses. However, since the investor cannot
anticipate jumps, his/her wealth can change substantially before the investor has an oppor-
tunity to perform any adjustment. For this reason, the investor is reluctant to take too much
risk exposure due to fear of disastrous events.

The horizon-dependent component θCit is the portfolio exposure to contagion risks. Be-
cause jump risk factors drive the latent state variables as well as the asset prices, risky assets
can be used to hedge against the uncertainties in the state variables. The hedging function
gives rise to the additional term in the optimal portfolio exposure to jump risks, θCit , which
can be understood as an intertemporal hedging demand for jump risks.

The contagion risk exposure, θCit , can be decomposed further into exposure to time series
contagion risk, θtsi

t , as a result of self excitation of jump component i, and exposure to cross
section contagion risk, θcsi,j

t , as a result of cross section excitation from jump component i to
jump component j, j 6= i.

3.3.2 Comparative statics analysis of the optimal portfolio exposure to
contagion risks

In this section, we numerically show how the optimal portfolio exposure to contagion risks
θCit depends on the stochastic characteristics of the jump intensities. Provided risks are com-
pensated properly so that investors long risky assets, then the exposure to Poisson jump risks
θJi is negative. The exposure to contagion risks increases the overall demand for jump risk
in region i, if it has the same sign as θJi . For a more insightful interpretation, we plot the
negative of the exposure to contagion risks of the jump component Ni, −θCi , at the begin-
ning of the investment horizon, understood as the hedging demand of the jump component.
We suppress the time subscript to indicate that the exposure to contagion risks is evaluated
at the beginning of the investment horizon. Larger hedging demand implies larger stake of
the region in the portfolio.

We illustrate the model in a two-region market and calculate the optimal portfolio expo-
sure to contagion risks given in Equation (3.23). We fix a set of base case parameter values
and conduct comparative statics analysis of parameters of the intensity processes. Specifi-
cally, we set the mean reversion rate at α = 21, the investment horizon at T = 1. We specify
a symmetric excitation matrix with reasonable values, β = (15, 3; 3, 15), according to the
parameter estimates in Aı̈t-Sahalia, Cacho-Diaz, and Laeven [6]. We also impose identical
jump risk premia κ1 = κ2 = 0.3, so that the jump components of the two regions are not
distinguishable. Then we only need to analyze the contagion exposure to one of the jump
components. This allows us to analyze how parameters affect contagion exposure as directly
as possible.

In addition, we fix the risk aversion parameter to be γ = 3. As noted by Liu [90], when
γ > 1, investors are more risk averse than those with a log utility function and choose to

6Note that both θJi and θ̂Ji are negative when the investor takes long positions. We have θJi > θ̂Ji , which
actually implies that θ̂Ji leads to larger exposure to jump risks. Therefore we compare absolute values to avoid
confusion.
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hedge against changes in the state variables. When γ < 1, investors not only forgo the
hedging potential, but seek the high risk premium by betting on the future outcome.7 The
comparative statics analysis in Figures 3.2 and 3.3 for investors with γ < 1 has opposite
patterns to those with γ > 1, as is the case in Liu and Pan [91] and Liu et al. [92]. Since it
is unlikely that investors have such small risk aversion, we restrict our analysis to the case
where γ > 1.
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Figure 3.2: Comparative statics analysis of the hedging demand of jump component 1, −θC1 . The
market consists of two regions with identical jump risk factors. The hedging demand of jump com-
ponent 1 (the other will be symmetric) is plotted as functions of elements in the excitation matrix β.
The base case parameters are α = 21, β = (15, 3; 3, 15), T = 1, κ1 = κ2 = 0.3, γ = 3.

7Note that the investors with 0 < γ < 1 are still risk averse.
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Figure 3.3: Comparative statics analysis of the hedging demand of jump component 1, −θC1 .
The market consists of two regions with identical jump risk factors. The hedging demand of jump
component 1 (the other will be symmetric) is plotted as functions of the mean reversion rate α,
jump risk premium κ1, risk aversion γ and investment horizon T . The base case parameters are
α = 21, β = (15, 3; 3, 15), T = 1, κ1 = κ2 = 0.3, γ = 3.

Figure 3.2 plots the hedging demand of jump component 1, −θC1 , as functions of ex-
citation parameters. The figure shows that increasing any element of the excitation matrix
β leads to increasing demand for jump component 1, whether it be the self excitor of jump
component 1, β1,1 (top left), the cross section excitor from jump component 1 to component
2, β2,1 (bottom left), the cross section excitor from jump component 2 to component 1, β1,2
(top right), or the self excitor of the opponent jump component β2,2 (bottom right). The
strongest increase in hedging demand occurs when β2,1 increases.

Figure 3.3 plots the hedging demand of jump component 1, −θC1 , as functions of the
mean reversion rate α (top left), jump risk premium κ1 (top right), risk aversion γ (bottom
left) and investment horizon T (bottom right). Larger risk premium and longer investment
horizon result in increasing jump risk demand. On the contrary, faster mean reversion rate
decreases the exposure to contagion risks and in turn decreases the demand for jump risk.
Interestingly, increasing the risk aversion first increases then decreases the hedging demand.

Since a jump occurrence moves asset prices and state variables in opposite directions,
jump excitation enables the risky assets to be used as a static hedge against the effects of
jumps in the state variables, as pointed out by Liu et al. [92]. For instance, an occurrence in
jump component i decreases the asset price (since zki < 0) but increases the state variables
λt by βi ≥ 0.8 When γ > 1, investors take extra exposure to jump risks to hedge changes in

8The fact that asset prices and jump intensities jump in different directions is essential to generate hedging
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the state variables to reduce uncertainties of the indirect utility.

Larger excitation and slower mean reversion imply that the jump intensity process (3.12)
is more volatile. As one may expect, the more uncertainty there is in the state variables,
the larger hedging incentive investors have. Larger risk premium results in larger exposure
to Poisson jump risks θJ , which leads to larger jump risks in the portfolio to be hedged.
Similarly, longer investment horizon leads to increased sensitivity of indirect utility to state
variables. In short, hedging demand rises when there are increasing uncertainties in investor’s
indirect utility.

The effect of increasing the risk aversion, however, is not clear. On the one hand, in-
creasing the risk aversion decreases the exposure to Poisson jump risk θJ , implying a smaller
amount to be hedged, thereby decreasing the hedging demand. On the other hand, a more
risk averse investor is more inclined to hedge against the changes in the state variables, and
has a larger hedging demand. The final result depends on which effect is larger. Figure 3.3
shows that the effect of increasing risk aversion is not monotone: it first increases the jump
risk demand and then reduces it.

3.3.3 The effect of asymmetric excitation

Interesting phenomena arise when the excitation structure becomes asymmetric. The excitor
βj,i, j 6= i, measures the excitation capability of jump component Ni as the source jump
component, i.e., how large an occurrence in Ni raises the intensities of another jump com-
ponent j. The excitor βi,j, j 6= i, on the other hand, measures the inclination to excitation
of jump component Ni as the target jump component, i.e., how large an occurrence in some
jump component j raises the intensity of Ni. As we see in reality, equity prices in other geo-
graphical markets usually crash in close succession with an equity plunge in the US, whereas
the transmission in the reverse order is not as often observed. It implies that βj,i > βi,j when
Ni represents the jump component in the US equity.

Recall from Equation (3.23) that θCi = βi,iBi +
∑n

j 6=i βj,iBj . The portfolio exposure
to contagion risks of jump component i depends on the potential of jump component i to
excite other jump components as well as itself. Observe that βj,i plays a different role from
βi,j in determining θCi: a larger cross section excitor βi,j leads to a larger increase in the
jump intensity of region i, and a larger portfolio exposure to the jump risk factor of region j
(instead of region i). Regions with comparable expected jump intensities may be weighted
differently in the optimal investment portfolio due to asymmetric excitation.

demand. If the equity jump zki > 0, investors take smaller exposure to jump risks as a result of jump excitation.
This result is consistent with Liu et al. [92].
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Figure 3.4: The hedging demand of the two jump components −θC1 (solid curve), −θC2 (dotted
curve) as functions of the cross section excitor β2,1. The excitation matrix is β = (18, 0;β2,1, β2,2).
We let β2,1 increase and find the corresponding β2,2 such that the expected jump intensities do not
vary with the excitation matrix. The jump risk premium is set to be equal with κ1 = κ2 = 0.3. The
other parameters are α = 21, γ = 3, T = 1. Given the choice of parameter values, the expected jump
intensity is E[λ1,t] = E[λ2,t] = 2.1.

Figure 3.4 gives a numerical illustration of the effect of excitation asymmetry in a two-
region market. The figure plots the hedging demand−θC1 (solid curve),−θC2 (dotted curve)
as functions of β2,1. It shows how the investor’s demand for jump risks changes as the
excitation structure becomes more asymmetric. We fix the first row of the excitation matrix
to be β1,1 = 18, β1,2 = 0. We close the excitation channel from region 2 to region 1 by
setting β1,2 = 0, so that the jump risk only propagates from region 1 to region 2 but not the
other way around. We let β2,1 increase while finding the corresponding β2,2 that delivers the
same unconditional expected jump intensity E[λ2,t]. As β2,1 increases, the excitation matrix
gets more asymmetric due to a larger difference between β2,1 and β1,2, strengthening the bias
towards region 1, with everything else (e.g., jump risk premia, expected jump intensities)
unchanged. We observe from the figure that jump component 1 becomes more appealing to
the investor as contagion becomes more asymmetric, while the jump components have the
same risk profile in all other aspects.

As mentioned in the previous section, jump excitation increases the demand for jump
risks because of their hedging potential. Consistent with this intuition, when jump com-
ponents have heterogeneous capabilities in raising jump intensities, the jump component
with a higher excitation capability is the more favorable risk factor due to its larger hedg-
ing potential against jump intensities. The end point on the x-axis in Figure 3.4 stands for
β = (18, 0; 15, 3), in which case an occurrence in jump component 1 raises λ1,t by 18, and
λ2,t by 15, while an occurrence in jump component 2 only raises λ2,t by 3. Apparently, jump
component 1 has a larger influence on the state variables (jump intensities) than jump com-
ponent 2 and consequently jump component 1 has the larger hedging potential. The investor
therefore tilts the portfolio towards region 1 for a more effective hedge of the state variables.
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One may expect that, everything else equal, the US equity will take a larger share in the in-
vestor’s portfolio as compared to the classic model predictions due to excitation asymmetry.

3.4 Utility loss of suboptimal trading strategies

In the previous sections we have shown that jump propagation changes the risk profile of the
optimal portfolio. In particular, we see that excitation asymmetry leads to larger investment
towards the equity market with the highest degree of transmission of jump risks. In this
section, we examine the utility loss for an investor who fails to construct the equity portfolio
optimally. We only focus on the case when the suboptimal portfolio is fully diversified,
i.e., θZ ≡ 0. A suboptimal portfolio is defined as the equity portfolio whose risk exposure
to the systematic Brownian and jump risk factors is different from the optimal exposure.
To quantify the utility loss of implementing suboptimal strategies, we adopt the measure
introduced in Liu and Pan [91]. The utility loss L of a suboptimal portfolio x̂ is defined as

L =
log x∗ − log x̂

T
, (3.25)

where x∗(x̂) is the certainty equivalent wealth of the optimal (suboptimal) portfolio strategy
defined as

x∗1−γ

1− γ
:= E0,x,λ

[XT (θW∗,θN∗)1−γ

1− γ

]
= J(0, x,λ),

x̂1−γ

1− γ
:= E0,x,λ

[XT (θ̂W , θ̂N)1−γ

1− γ

]
,

where XT (·, ·) emphasizes the dependence of the terminal wealth on the portfolio risk expo-
sure.

Effectively, L measures the loss in terms of the annualized, continuously compounded
return in certainty equivalent wealth of the suboptimal portfolio strategy. The larger L is, the
larger the utility loss of implementing the suboptimal portfolio strategy.

The next proposition computes the utility loss of implementing the portfolio strategy with
a suboptimal risk exposure (θ̂Wt , θ̂

N
t ).

Proposition 3.3 (Utility loss of suboptimal strategies). If the expected power utility investor
implements a suboptimal portfolio strategy with risk exposure (θ̂Wt , θ̂

N
t ), then the associated

utility loss is given by

L =
1

(1− γ)T

(
γA(0)− Â(0) + (γB(0)− B̂(0))′λ0

)
, (3.26)

whereB(0), A(0) are given by (3.20), and B̂(0), Â(0) can be solved from

˙̂
B(t) =(1− γ)(1 + κ) ◦ θ̂Nt + αB̂(t)− (θ̂Nt + 1)1−γ ◦ eβ′B̂ + 1, (3.27)

˙̂
A(t) =− (1− γ)

(
θ̂W ′t η −

1

2
θ̂W ′t LL

′θ̂Wt

)
− 1

2
(1− γ)2θ̂W ′t LL

′θ̂Wt − αB̂′λ∞, (3.28)

with B̂(T ) = 0, Â(T ) = 0.
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Two relevant cases are: (1) when the investor fails to recognize the exciting nature of
jump components and implements the portfolio strategy as if the equity price is generated by
Poisson jump diffusion, and (2) when the investor simply ignores the discontinuities in eq-
uity returns and implements the Merton mean-variance strategy. To calculate the utility loss
associated with these suboptimal strategies, according to Proposition 3.3, we simply substi-
tute for θ̂Wt in Equation (3.28) θW∗, and for θ̂Nt in Equation (3.27) we substitute θJ , θ̂J ,
respectively.

Figure 3.5 plots the utility loss of the aforementioned two cases as functions of the cur-
rency jump intensity (top left), jump risk premium κ1 (top right), risk aversion γ (bottom
left) and investment horizon T (bottom right). The utility loss when the investor incorrectly
recognizes the return generating model as Poisson jump diffusion (PJD) is plotted as the sol-
id curve, and the case when the investor incorrectly implements the Merton mean-variance
strategy is plotted as the dotted curve. Notice that the two curves move together, with the
PJD curve above the Merton curve most of the time.

Although neither the optimal portfolio nor the suboptimal portfolio depends on the real-
ization of the state variables, the investor’s utility over terminal wealth is dependent on the
current jump intensities. As a result, utility loss is sensitive to the current jump intensities,
as shown in the upper left panel of Figure 3.5. During a financial crisis, jump intensities
may build up to as large as 100 or higher as found by Aı̈t-Sahalia et al. [6]. Ignoring jump
excitation then costs a loss of over 40 percentage points in annualized portfolio returns.

The upper right panel plots the utility loss as a function of the jump risk premium, κ1.
The graph shows that the utility loss increases with the jump risk premium. For instance,
when the jump risk premium κ1 = 0.5 (which gives an equity jump premium of 5% as
estimated by Bollerslev and Todorov [16]), the expected annual return of a portfolio strategy
that does not account for jump excitation is 15 percentage points lower than that of the true
optimal portfolio. Recall from Figure 3.3 that the jump risk premium increases contagion
exposure. A larger jump risk premium leads to larger deviations from the optimal jump
exposure, which in turn leads to bigger utility loss. The same effect holds for the investment
horizon shown in the lower right panel.

The lower left panel plots the utility loss as a function of the risk aversion γ. When
γ = 1, the investor has log utility. Log utility investors are myopic, in the sense that they
only care about the current realization of the state variables, and therefore do not have an
incentive to hedge against future changes of the state variables. As a result, ignoring jump
excitation generates no utility loss in the PJD strategy for a log utility investor. The utility
loss of the Merton strategy, however, is nontrivial even when the investor has log utility. As
the investor becomes more risk averse, the utility losses of both suboptimal strategies start to
increase. This is because the more risk averse the investor is, the more concerned he/she is
about the changes in the state variables as a result of jump excitations. Therefore deviations
from the optimal portfolio lead to larger utility loss for more risk averse investors.

A surprising fact is that the utility loss of ignoring jump excitation is even larger than
that of ignoring jumps in total (except when γ is close to 1). In other words, if the true return
generating model is mutually exciting jump diffusion, then it is better for the investor not to
account for jumps at all than to recognize jumps but hold them for the wrong type. In Chapter
3.3.1, we have shown that the exposure to a risk factor is smaller when it is recognized as
a Poisson jump than a Brownian motion. However, when jumps are mutually exciting, the
investor increases the exposure to the jump risk factor in order to exploit the hedging potential
inherited. The Poisson jump diffusion strategy turns out to be too conservative.
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Figure 3.5: Utility loss in terms of the annualized continuously compounded return (% per annum)
if the investor incorrectly assumes β = 0 and implements the portfolio strategy as if the model is
Poisson jump diffusion (solid curve), or if the investor implements the Merton mean-variance strategy
(dotted curve). The “true” base case parameters are η = (0.3; 0.3), α = 21, T = 1, λ∞ =
(0.3; 0.3), κ = (0.3; 0.3), λt=0 = (2; 2), β = (15, 3; 3, 15), γ = 3. The top left panel plots the
utility loss as a function of the current value of the intensity of jump component 1, λ1,t=0, while all
other parameters remain the same. The top right graph plots the utility loss as a function of the risk
premium of jump component 1, κ1. The bottom left panel plots the utility loss as a function of the
risk aversion γ. The bottom right graph plots the utility loss as a function of the investment horizon
T .

3.5 Application to international equity returns
In this section, we estimate the mutually exciting jump diffusion model to index returns
of US, Japan, and Europe. We show that the under-diversification of the market portfolio,
especially the over-weighting of the US equity of the market portfolio compared to classic
asset allocation models, can be explained by an asymmetric excitation structure. In Appendix
3.C, we also show how the portfolio tilts towards the home market for country representative
investors who are ambiguity averse towards foreign equity markets. In Chapter 3.5.1, we
describe the equity index data we use in the empirical analysis. We disentangle jumps from
continuous returns and estimate the diffusion and jump parameters in Chapter 3.5.2. Chapter
3.5.3 compares the empirical market portfolio exposure to risk factors with model predictions
to show that excitation asymmetry is able to generate the observed US bias in the market
portfolio.
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3.5. APPLICATION TO INTERNATIONAL EQUITY RETURNS

3.5.1 Data

We consider three well-developed stock markets: the United States, Japan, and Europe, and
make the simplifying assumption that these regions represent the global financial market.
We choose these three equity markets because: (1) these equity markets have little barriers
to international investment; (2) these three equity markets already represented around 63%
of the world equity market capitalization by the end of 2012 according to the World Bank.
More markets could be included theoretically, but parameter estimation is likely to become
cumbersome. Therefore we do not go beyond three equity markets in the empirical analysis.9

We examine excess returns on Morgan Stanley Capital International (MSCI) indices of
US, Japan, and Europe, over local risk-free rates in local currencies. The MSCI indices
are value weighted stock indices. There are 642 individual stocks included in MSCI US
index, 314 stocks in MSCI Japan index, and 444 stocks in MSCI Europe index in May
2015. Expected returns are estimated as the sample mean of the log returns on the MSCI
total return index from Jan 1970 to May 2015. The total return index has been adjusted for
dividends and other noncash payments to shareholders. We estimate the covariance and jump
parameters using the daily price index from Jan 3, 1972 to May 29, 2015, a total of 11325
observations.10 Excitation parameters would not be estimated accurately on less frequent
data such as weekly or monthly data, since multiple jumps could happen within adjacent
observations. We use US 3-month Treasury bill rates, Japan base discount rates, 3-month
Euribor rates as proxies for the local risk-free rates of the three regions.11

Table 3.2 contains the descriptive statistics of the annualized excess log returns on MSCI
indices. Japan has the lowest mean return of 3.7% and Europe the highest with 4.8% on an
annual basis. Return volatilities vary from around 15% to 19%. Comparing the risk return
tradeoffs of these three major equity markets, the European market generates a fairly high
mean with the lowest volatility. By contrast, Japanese equity is characterized by the lowest
expected return and the highest volatility. In spite of the unfavorable risk-return tradeoff of
Japanese equity, the correlation between returns on the Japanese market and those on the US
market is as small as 0.11. The correlation between returns of Japan and Europe is also lower
than that between US and Europe. The relatively small dependence between the Japanese
market and the other two equity markets makes the Japanese equity a better candidate for
international diversification. All returns are left-skewed, implying larger extreme losses than
gains. For all regions, the excess kurtosis is substantially larger than 0, as would be caused
by jumps. Our econometric analysis requires a careful treatment of the time zone differ-
ences. We refer to Appendix 3.F for further details and robustness checks with respect to our
treatment of the time zones.

9Similar assumptions that a few representative markets make up the world economy are also made in, for
example, Ang and Bekaert [8], Uppal and Wang [116], Das and Uppal [42]. A more extensive empirical
analysis is beyond our scope and left to future research.

10We do not model dividends separately in our model. Preferably we would like to use daily returns on the
total return index in all estimations. Unfortunately, the daily data of total return of MSCI indices are only
available since 2001. We compare the sample covariance of the daily returns of price index and total return
index in the overlapping period. They turn out to be almost identical. The same holds for the jump intensities.
We conclude that on an index level, most variation in daily total return comes from price moves, not dividends.

11The 3-month Euribor rates are only available since 1999, after the Euro was introduced as an accounting
currency. We use 3-month Fibor rates, the German interbank offered rates, before the Euribor is available. The
two rates are almost identical during the overlapping period.
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Descriptive statistics of annualized excess log returns

US JA EU

Number of constituents 642 314 444
Mean 4.6% 3.7% 4.8%
Standard deviation 17.2% 18.9% 15.1%
Correlation 1 0.11 0.46

1 0.30
1

Skewness -1.04 -0.31 -0.40
Excess kurtosis 26.3 11.4 9.7

Table 3.2: Descriptive statistics of annualized excess log returns on MSCI indices over local risk-free
rates. The sample mean is computed using the monthly total return data from Jan 1970 to May 2015.
Higher moments are computed using daily price index data from Jan 3, 1972 to May 29, 2015.

3.5.2 Parameter estimation of nested models
The equity indices, by construction, are well diversified local portfolios of a large number of
individual assets. We henceforth assume that the equity indices are representative assets free
of idiosyncratic risks and follow the dynamics

dSi,t
Si,t−

= σi( dŴi,t + ηi dt) + zi( dNi,t − (1 + κi)λi,t dt), i = 1, 2, 3, (3.29)

with an instantaneous 3 by 3 covariance matrix of local portfolios Σ = σLL′σ, where σ is
a diagonal matrix with σi on the diagonals.

We consider the following nested models: the diffusion only model, the Poisson jump
diffusion model (PJD), the self exciting jump diffusion model (SEJD) and finally the full-
fledged mutually exciting jump diffusion model (MEJD). Table 3.3 lists nested models as
special cases of the mutually exciting jump diffusion model with proper parameter restric-
tions. If we restrict jump amplitudes z = (z1; z2; z3) = 0, i.e., asset prices do not jump at
all, we have the classic diffusion only model in which asset prices follow geometric Brow-
nian motions. The model becomes a Poisson jump diffusion model if β = 0, implying that
jumps do not excite and intensities are kept constant at the level λ∞. More generally, if we
only close the cross section excitation channels and restrict β to be a diagonal matrix, asset
prices will follow self exciting jump diffusion processes. In the most general case where no
restrictions are imposed, we have a full-fledged mutually exciting jump diffusion model.

Nested models as special cases

Nested models Parameter restrictions

Diffusion only z = 0
PJD α = 0, β = 0
SEJD β diagonal
MEJD none

Table 3.3: Nested models as special cases of the mutually exciting jump diffusion model with proper
parameter restrictions. “PJD” stands for the Poisson jump diffusion model; “SEJD” represents the
self exciting jump diffusion model; “MEJD” represents the mutually exciting jump diffusion model.
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We are going to estimate each model listed in Table 3.3 using the historical returns on M-
SCI indices. Parameter estimates of the diffusion only model can be easily obtained through
the first and second moments of the log returns reported as the summary statistics in Table
3.2. For jump diffusion models, similar to Liu et al. [92], we disentangle jumps from the
continuous part of log returns in order to estimate diffusion and jump parameters separate-
ly.12 We define truncation thresholds as negative three times the sample standard deviation.
Daily log returns that fall below the thresholds are regarded as jump returns. Figure 3.6 plots
the resulting jump occurrences in US, Japan, and EU. We observe jump clustering during
the Asian crisis (1997-1999), the stock market downturn (2002) and the Subprime mortgage
crisis (2007-2012).

1972 1977 1982 1987 1992 1997 2002 2007 2012

US
JA
EU

Figure 3.6: Filtered jump occurrences in US, Japan, and Europe. Each mark indicates a jump
occurrence. The top row stands for the jump occurrences in the US equity market, the middle row
Japan and the bottom row Europe. Daily log returns that fall below negative three times the sample
standard deviation are recorded as jump occurrences.

Parameter estimates of the nested jump diffusion models are reported in Table 3.4. Jump
amplitudes of log returns, log(1 +z), are estimated as the differences between average jump
returns and non-jump returns. In a Poisson jump diffusion model, the constant Poisson jump
intensities are obtained by dividing the sum of total jump occurrences detected in each M-
SCI return by the number of years. In case of self excitation and mutual excitation, jump
excitation parameters α,β are estimated using maximum likelihood, while λ∞ is estimated

12The parametrization of the mutually exciting jump diffusion model is rich and econometrically challeng-
ing. Ideally, we would like to apply the Generalized Method of Moments developed by Aı̈t-Sahalia et al. [6]
which minimizes the effects of the “Peso problem” inherited. However, given the 3-dimensional nature of
our problem, we use this somewhat crude two-step maximum likelihood approach to identify the excitation
structure of equity markets. A more refined econometric treatment is beyond the scope of this paper.
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Parameter estimates of nested jump diffusion models

Parameters PJD SEJD MEJD

σ

15.9% 0 0
0 17.5% 0
0 0 13.6%


LL′

 1 0.10 0.40
0.10 1 0.25
0.40 0.25 1


z

−4.9%
−5.0%
−4.0%


λ∞

1.7
2.0
2.6

 0.56
1.00
0.60

 0.44
0.74
0.32


α 0 17.7∗∗∗ 29.3∗∗∗

β 0

11.8∗∗∗ 0 0
0 8.8∗∗∗ 0
0 0 13.6∗∗∗

 12.6∗∗∗ 0.0 5.8∗∗∗

9.3∗∗∗ 7.4∗∗∗ 2.3
24.1∗∗∗ 2.7∗ 8.1∗∗∗


Table 3.4: Parameter estimates of nested jump diffusion models. “PJD” stands for the Poisson
jump diffusion model; “SEJD” represents the self exciting jump diffusion model; “MEJD” represents
the mutually exciting jump diffusion model. Each column is in the order of “US, Japan, Europe”.
∗, ∗∗, ∗∗∗ indicate significance at 95%, 97.5%, and 99.5% confidence levels, respectively.

iteratively such that the unconditional expected jump intensity E[λ] is equal to the average
jump occurrences per year. The algorithm of computing the likelihood functions is discussed
in Appendix 3.D. Having identified the jumps, we construct the truncated returns by remov-
ing detected jumps from returns. We regard the truncated data as being generated by the
continuous part of the model. We estimate the instantaneous volatility σ and the correlation
matrix LL′ from the truncated data for models with jumps.

We see from Table 3.4 that equities with higher volatility have larger jump amplitudes
but not necessarily more frequent jumps. This is not unreasonable since volatility measures
the variation in the bulk of the data, while jumps contribute to the very left tails of the return
distribution. Among three regions, the Japanese market has the largest jump amplitude, -
4.97%, with an average of 2.02 jumps per year. Europe has the smallest jump amplitude,
-4.07%, but has the most frequent jumps – average 2.63 jumps occur per year. The US
equity market has moderate jump amplitude and jump frequency. Jumps display statistically
significant self excitation as well as cross section excitation. The jump propagation from US
to the other two regions is significant and large in magnitude. The US, on the other hand, is
only excited by itself or the European market; the spillover effect from Japan to the US is
almost zero. The existence of cross section excitation between Japan and Europe is barely
significant. The estimated excitation structure is in line with the pairwise estimation results
in Aı̈t-Sahalia et al. [6], who show that the US always has a larger cross section excitor
as the source jump component than as the target jump component when paired with other
economies.
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3.5.3 Empirical vs. implied portfolio exposure to risk factors
In this section, we calculate the exposure to risk factors as predicted by the model and com-
pare this exposure to the risk exposure induced by the market portfolio.

First, we infer the market exposure to systematic risk factors using market portfolio
weights. Let Mt be the market equity portfolio. Denote by hi,t the weight on the local
equity index Si,t in the market equity portfolio Mt, with

∑
i hi,t = 1. We suppose that the

dynamics of Si,t are given by Equation (3.29). Thus, it holds that

dMt

Mt−
=

n∑
i=1

hi,t

( dSi,t
Si,t−

)
(3.30)

=
n∑
i=1

hi,t

(
σi( dŴi,t + ηi dt) + zi( dNi,t − (1 + κi)λi,t dt)

)
. (3.31)

In an equilibrium situation (with common beliefs), the dynamics of the market portfolio
Mt should reflect the dynamics of the optimal wealth X∗t of the representative investor. In
Chapter 3.2.4, we show that the optimal wealth for an expected power utility investor is given
by

dX∗t
X∗t−

=
n∑
i=1

{
θWi∗( dŴi,t + ηi dt) +

(
exp

(
θNi∗t

)
− 1
)
( dNi,t − (1 + κi)λi,t dt)

}
.

Thus, we should have that
dMt

Mt−
≈ dX∗t

X∗t−
. (3.32)

Notice that in reality we have an approximation instead of an equality here. As shown
in Chapter 3.2.5, the replicating portfolio converges to the optimal wealth process as the
number of assets goes to infinity. In reality, unfortunately, the equity indices are made up
of a finite number (although many) of individual assets. The market portfolio Mt, therefore,
would not be completely free of idiosyncratic risks.

Under this setting, Equation (3.32) implies the following approximation:{
θWi∗ ≈ σihi,t,

θNi∗t ≈ zihi,t.
(3.33)

Note that Equation (3.33) holds as long as assets follow jump diffusion processes, regardless
of whether the jumps are mutually exciting, self exciting or Poissonian.

Table 3.5 reports the normalized portfolio weights and (approximated) exposure to risk
factors, θW∗

ι′θW∗
and θN∗

ι′θN∗
, of the market portfolio. The market values (US dollar denominated)

of MSCI US, Japan, and Europe on May 29, 2015, (the last day in our sample) serve as a
proxy of the market portfolio. The portfolio weights are calculated by dividing the market
values of each region by the sum of the market values, so that the weights on US, Japan,
and Europe add up to 1. Risk exposure is calculated using approximation (3.33). Notice that
the portfolio exposure to Brownian risks and that to jump risks are similar, since a region
with higher volatility has on average a larger jump amplitude (see Table 3.4). Normalization
further narrows the differences. Both the US Brownian risks and jump risks comprise the
majority of the market portfolio. As we will see shortly, the over-exposure to US Brownian
risks stems from the high Brownian risk premium in the US, while the over-exposure to US
jump risks is due to the asymmetric excitation structure.
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Empirical market portfolio weights and exposure to risk factors

US JA EU

Portfolio weights 0.63 0.10 0.28
Exposure to systematic Brownian risks 0.65 0.11 0.24
Exposure to jump risks 0.66 0.10 0.24

Table 3.5: Empirical market portfolio weights and exposure to risk factors in May, 2015. The
market weights are computed from the MSCI market values. Risk exposures are calculated according
to Equation (3.33). Statistics are normalized to add up to 1 on the rows.

Next, we derive the model predicted risk exposure. As discussed in Chapter 3.3.1, the
optimal exposure to mutually exciting jumps can be decomposed into three components (see
Equation (3.23)): exposure to Poisson jump risks, exposure to time series contagion risks,
and exposure to cross section contagion risks. The optimal jump exposure predicted by any
nested model, as a result, is a combination of these components, depending on the stochastic
features of the jump factors. Table 3.6 lists the portfolio exposure to risk factors predicted by
nested models. Notice that although the term θts (exposure to time series contagion risks)
appears in the self exciting jump model as well as the mutually exciting jump model, they
have different values because the excitation matrices of SEJD and MEJD are different not
only in off-diagonal elements but also in diagonal elements (c.f. Table 3.4). For comparabil-
ity, we also include the risk exposure of a pure diffusion model. In a pure diffusion model,
the Brownian risk factors remain unchanged. Investors regard the jump factors as if they
were generated by Brownian motions. θ̂J , the exposure to “jump risk factors” when jump
components are recognized as (mimicked by) Brownian motions, is given by (3.24).

Optimal risk exposure of nested models

Nested models Brownian exposure Jump exposure

Diffusion only θW∗ θ̂J (Brownian mimicked)
PJD θW∗ θJ

SEJD θW∗ θJ + θts(βD)
MEJD θW∗ θJ + θts(β) + θcs(β)

Table 3.6: Model predicted exposure to risk factors. “PJD” stands for the Poisson jump diffusion
model; “SEJD” represents the self exciting jump diffusion model; “MEJD” represents the mutually
exciting jump diffusion model.

Because all models predict the same exposure to Brownian risks, θW∗, we focus on
the comparison of the model predictions on the exposure to jump risks. We calibrate the
Brownian risk premium η such that θW∗ is equal to the Brownian risk exposure of the market
portfolio. To do that, we first decompose the equity premium into variance premium and
jump premium. Let µ be the expected excess return: µ = E[ dSt./St− ] = E[log(St)] +
1
2
E[(log(St)−E[log(St)])

2].13 The total equity premium µ can therefore be divided into the

13We are aware of the fact that the first moment of equity returns cannot be consistently estimated using
a sample of 41 years alone. The main purpose here is to show that for given risk premium estimates, while
acknowledging this fact, the estimated excitation structure gives rise to the US bias observed in the market
portfolio. Other papers also use the empirical first moment for asset allocation purposes. See, among others,
French and Poterba [65], Liu et al. [92], Liu and Pan [91], Das and Uppal [42], and Jin and Zhang [81].
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variance premium and the jump premium:

µ = µvariance + µjump,

:= ση + (−κ ◦ z ◦ E[λt]). (3.34)

Since we consider the relative allocations to US, Japan, and Europe, η is only identified up
to a positive constant: η ∝ LL′ θW∗

ι′θW∗
.

Using (3.18), (3.33), and (3.34), the risk premium parameters reported in Table 3.7 are
calibrated according to

η = LL′
θW∗

ι′θW∗
, (3.35)

κ = (ση − µ)./z./E[λt]. (3.36)

As shown in Table 3.7, the market portfolio exposure to Brownian risk imposes a large
variance premium in the US and a small variance premium in Japan. The jump premium,
calculated as the equity premium less the variance premium, is comparable across regions,
with Japan having the largest jump premium and US the lowest.

Calibrated risk premium parameters

η κ Variance premium Jump premium Total equity premium

US 0.12 0.48 1.86 3.99 5.85
JA 0.04 0.47 0.63 4.62 5.25
EU 0.08 0.44 1.12 4.57 5.69

Table 3.7: Calibrated risk premium parameters and the corresponding variance and jump risk premi-
ums. The parameters η,κ are calibrated using Equations (3.35), (3.36). The variance and the jump
premium are calculated with (3.34) and are denoted in percentage per annum.

The jump risk premium in US reported in Table 3.7 is consistent with Pan [100], who
estimates the S&P 500 average mean excess rate of return demanded for the jump risk to
be 3.5% per year. The estimates of the jump risk premium from other papers can vary. For
instance, Bollerslev and Todorov [16] non-parametrically estimate the average US jump risk
premium to be approximately 5%. Santa-Clara and Yan [106] find that the jump risk pre-
mium is on average more than half of the total equity premium. In a self-exciting jump
diffusion model using the US equity and option data, Boswijk et al. [18] estimate the jump
risk premium to be around 8.82 times the spot jump intensity, implying a κ of the US mar-
ket of 0.79. The actual choice of risk premiums does not have a qualitative impact on the
presence of the US bias.

The property of no market timing of the optimal portfolio discussed in Chapter 3.2.4
allows us to construct unconditional optimal portfolios without having to estimate the latent
state variable process – jump intensities in our case. All portfolios are constructed using
static parameter estimates in Table 3.4.

Table 3.8 reports the optimal jump risk exposure under the four nested models for vari-
ous coefficients of relative risk aversion and investment horizons. Observe that when jumps
do not excite, the normalized exposure to jump risks does not change with investors’ risk
aversions or investment horizons. Compared to the prediction generated by the classic diffu-
sion only model, neither the jump itself nor jump self excitation has a noticeable impact on
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the relative jump risk allocation of the optimal portfolio. Although Poisson jumps and self
exciting jumps reduce or increase the total investment in risky assets, they barely affect the
composition within the equity portfolio. The diffusion only, no excitation as well as the self
excitation model predict comparable exposure to jump risks of the three regions.

When jumps are mutually exciting, investors demand more US jump exposure than the
cases of self excitation or no excitation. As either risk aversion or investment horizon in-
creases, the bias towards US jump factors becomes more prominent. Self exciting jumps,
which in fact have a symmetric excitation structure, are not able to generate the US bias. It is
only when an asymmetric excitation matrix β comes into play that we observe a shift from
Japanese jump risk factors to US jump risk factors. For example, when γ = 5, T = 10 (bold
cells), of the total jump exposure of the portfolio, around 58% comes from US, and only 14%
from Japan. Therefore we conclude that the serial dependence of jumps alone does not lead
to the US bias, but rather the excitation asymmetry contributes to the over-weighting of the
US equity market in the optimal portfolio.

It becomes clear that the over-exposure to the US Brownian risk is due to the large vari-
ance premium in the US (as shown in Table 3.7), while the over-exposure to the US jump
risk is due to the asymmetric excitation structure. If the over-exposure to the US jump factor
were, too, caused by a higher jump premium in the US, then we would observe the US bias
in the portfolio predictions of the other models as well. In fact, as we observe in Table 3.7,
US has the lowest jump premium but the largest demand. By contrast, Japan has the highest
jump premium but the lowest demand. This implies that the investor takes the largest stake
in the US jump factors not for its risk-return tradeoff but for its hedging potential.
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Model implied exposure to jump risks

Risk aversion Horizon Diffusion only PJD SEJD MEJD

1.5 month 0.35 0.35 0.35 0.38
0.34 0.34 0.33 0.31
0.32 0.32 0.32 0.31

quarter 0.35 0.35 0.35 0.41
0.34 0.34 0.32 0.28
0.32 0.32 0.33 0.31

10-year 0.35 0.35 0.34 0.43
0.34 0.34 0.30 0.27
0.32 0.32 0.35 0.30

3 month 0.35 0.35 0.35 0.42
0.34 0.34 0.32 0.28
0.32 0.32 0.33 0.30

quarter 0.35 0.35 0.35 0.49
0.34 0.34 0.30 0.22
0.32 0.32 0.35 0.29

10-year 0.35 0.35 0.34 0.53
0.34 0.34 0.24 0.18
0.32 0.32 0.42 0.29

5 month 0.35 0.35 0.35 0.43
0.34 0.34 0.32 0.27
0.32 0.32 0.33 0.30

quarter 0.35 0.35 0.35 0.52
0.34 0.34 0.29 0.19
0.32 0.32 0.36 0.29

10-year 0.35 0.35 0.32 0.58
0.34 0.34 0.19 0.14
0.32 0.32 0.49 0.28

Table 3.8: Optimal exposure to jump risks in a jump diffusion market where investors specify the
return generating process to be pure diffusion (“Diffusion only”), Poisson jump diffusion (“PJD”),
self exciting jump diffusion (“SEJD”) and mutually exciting jump diffusion (“MEJD”). Each column
is in the order of “US, Japan, Europe”. Parameter values are contained in Tables 3.4 and 3.7. The
figures are normalized so that the exposure to the three regions adds up to 1.

3.6 Conclusion

Inspired by the empirical findings that US equity plays a leading role in international stock
returns and that investors tend to over-invest in US equities compared to classic model im-
plications, we postulate a mutually exciting jump diffusion model for equity prices that (1)
accounts for the lead-lag relationships of international returns, and (2) theoretically generates
a US bias in a representative investor’s equity portfolio.

In particular, we allow for asymmetric jump excitation in international equity prices. We
show that the leading role of the US equity can be generated by having larger cross section
excitor(s) as the source jump component than the cross section excitor(s) as the target jump
component. We solve the asset allocation problem in closed form in this market using the
martingale approach and apply the theoretical results to historical returns on MSCI indices.
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We show that the optimal portfolio exhibits the US bias, i.e., US equity is over-weighted
compared to classic portfolio predictions.

The analytical nature of the solution helps establish the economic intuition of the opti-
mal portfolio risk exposure, which can be summarized into the following properties: (1) The
optimal portfolio is sufficiently diversified in the sense that it includes a large number of indi-
vidual stocks to diversify away idiosyncratic risks. (2) Similar to the Merton mean-variance
portfolio, it exploits the covariance structure of the Brownian risks. (3) The exposure to jump
risks includes exposure to Poisson jump risk and exposure to contagion risks. The former is
a risk-return tradeoff term and the latter is a hedging demand. (4) The portfolio exposure to
jump risks is biased towards US equity, which heavily transmits jump risks worldwide and
is much less prone to foreign equity markets turmoil. Using parameter estimates on MSCI
indices, we show that the US bias observed in the market portfolio can at least in part be
explained by excitation asymmetry.
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Appendices

3.A Proofs
Proof of Proposition 3.1. Since the market is free of arbitrage opportunities and admits a u-
nique martingale measure Q induced by Equation (3.14), the portfolio optimization problem
defined in (3.1) is equivalent to

sup
XT∈X

E0

[X1−γ
T

1− γ

]
,

where X is the set of admissible square integrable terminal wealths:

X = {XT is FT -measurable : E0[πTXT ] ≤ x0}.

The corresponding Lagrange function is constructed as

L =
X1−γ
T

1− γ
+ y(x0 − πTXT ).

The optimal terminal wealth X∗T can be derived by taking the first order condition with
respect to XT :

X∗T = (yπT )−
1
γ ,

where y is the Lagrange multiplier that satisfies E0[πTX
∗
T ] = x0, which implies that

y−
1
γ =

x0

E0[π
1−1/γ
T ]

.

Since at any time 0 ≤ t ≤ T the optimal wealth process satisfies the no arbitrage assumption
X∗t πt = Et[X∗TπT ], we have

X∗t =
Et[X∗TπT ]

πt
=

Et[y−
1
γ π

1− 1
γ

T ]

πt
=
x0
πt

Et
[
π
γ−1
γ

T

]
E0

[
π
γ−1
γ

T

] .
The solution requires the computation of the expected value of the exponential of a stochastic
integral. Let Mt := log(πt). It holds that

dMt =
dπt
πt
− 1

2

d〈πt〉
π2
t

=
(
− 1

2
η′(LL′)−1η −

n∑
i=1

κiλi,t

)
dt− η′(LL′)−1 dŴt +

n∑
i=1

log(1 + κi) dNi,t.

Write Yt = (Mt;λt). We have

dYt = µ(Yt) dt+ σ(Yt) dŴt + dNt.

Yt admits the affine structure:
µ(Yt) = K0 +K1Yt,

[σ(Yt)σ(Yt)
′]ij = [H0]ij + [H1]ij · Yt,

λi(Yt) = li0 + li1 · Yt,
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where

K0 =


−1

2
η′(LL′)−1η
αλ1,∞

...
αλn,∞

 , K1 =


0 −κ1 . . . −κn
0 −α . . . 0
...

... . . . ...
0 0 . . . −α

 ,

H0 =


η′(LL′)−1η 0 . . . 0

0 0 . . . 0
...

... . . . ...
0 0 . . . 0

 , H1 = 0,

li0 = 0, li1 = (0; ei), i = 1, . . . , n.

Here, ei denotes a vector of zeros with 1 at the ith entry. The jump transform ζ i(c) that deter-
mines the jump size distribution of jump component i is ζ i(c) = (1+κi)

c1 exp(
∑n

j=1 cj+1βj,i),
i = 1, . . . , n. According to Duffie et al. [50], the conditional expectation takes the form

Et
[
π
γ−1
γ

T

]
= π

γ−1
γ

t exp(A(t) +B′(t)λt),

where A(t) andB(t) satisfy{
Ḃ(t) = γ−1

γ
κ+ αB(t)− (κ+ 1)

γ−1
γ ◦ eβ′B(t) + 1,

Ȧ(t) = γ−1
2γ
η′(LL′)−1η − αB′(t)λ∞,

with A(T ) = 0,B(T ) = 0. Therefore it holds that

X∗t = x0π
−1/γ
t exp(A(t) +B′(t)λt − A(0)−B′(0)λ0),

from which we derive the SDE of the optimal wealth path

dX∗t
X∗t−

=
1

γ
η′(LL′)−1η dt+

1

γ
η′(LL′)−1 dŴt

+
n∑
l=1

(
(1 + κl)

− 1
γ exp(β′lB(t))− 1

)
( dNl,t − (1 + κl)λl,t dt)

= θW∗′( dŴt + η dt) +
n∑
l=1

(
exp

(
θNl∗t

)
− 1
)(

dNl,t − (1 + κl)λl,t dt
)
.

Proof of Lemma 3.1. The economy has constant investment opportunities with asset prices
generated by geometric Brownian motions. We can write the asset price dynamics in matrix
form as

diag(St)
−1 dSt = ση dt+ σ dŴt.

Then according to Merton [96], the portfolio weights are given by

w∗Merton =
1

γ
(σLL′σ′)−1ση.
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The portfolio wealth process follows

dX∗t
X∗t

= w∗′Mertonση dt+w∗′Mertonσ dŴt.

It holds that
θW∗Merton = σ′w∗Merton =

1

γ
(LL′)−1η = θW∗.

Proof of Lemma 3.2. To follow the price dynamics of {Ft} ∈ S2 given by Equation (3.22),
it requires that for every i = 1, . . . , n,{

wk=1
i,t σk=1

i + wk=2
i,t σk=2

i = gi,

wk=1
i,t zk=1

i + wk=2
i,t zk=2

i = hi.
(3.37)

Hence at time t, for every region i, we have two unknowns and two equations that are not
linearly dependent. We can solve for the weighting vector at any time t and replicate the
price dynamics of Ft. Since {Pt} and {Ft} are solutions to the same stochastic differential
equations, they are indistinguishable processes.

Proof of Proposition 3.2. Inspired by Merton [97], p. 137, the portfolio weights wki,t can be
restricted such that they satisfy {∑mi

k=1w
k
i,tσ

k
i = gi,∑mi

k=1w
k
i,tz

k
i = hi,

(3.38)

and can be represented as

wki,t =:
ωki,t
mi

, (3.39)

where ωki,t is a finite constant, independent of the total number of assets. The replicating
portfolio Pt thus follows

dPt
Pt−

=
n∑
i=1

gi( dŴi,t + ηi dt) +
n∑
i=1

hi( dNi,t − (1 + κi)λi,t dt) +
n∑
i=1

mi∑
k=1

wki,tν
k
i dZk

i,t

=
dFt
Ft−

+
n∑
i=1

dζi,t(mi),

where

dζi,t(mi) :=

mi∑
k

wki,tν
k
i dZk

i,t.

Let dεki,t = ωki,tν
k
i dZ

k
i,t. We have that

dζi,t(mi) =

mi∑
k

wki,tν
k
i dZk

i,t =

∑mi
k=1 dεki,t
mi

.

Note that dεki,t are independent, since each dZk
i,t represents the idiosyncratic risk of asset k

in region i. By the Law of Large Numbers, it holds that, for all i, with probability one,

dζi,t(mi)−→0,

which implies the stated result.
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CHAPTER 3. ASYMMETRIC EXCITATION AND THE US BIAS

Proof of Proposition 3.3. For a given well-diversified portfolio (i.e., free of idiosyncratic
risks), suppose its exposure to the systematic Brownian risks is θ̂Wt , and its exposure to the
jump risks is θ̂Nt . The wealth process is given by

d log X̂t =
(
− 1

2
θ̂W ′t LL′θ̂Wt + θ̂W ′t η −

n∑
l=1

(
eθ̂

Nl
t − 1

)
(1 + κi)λl,t

)
dt+ θ̂W ′t dŴt

+
n∑
l=1

θ̂Nlt dNi,t,

with X0 = x0. Similar to the proof of Proposition 3.1, we employ the formula in Duffie,
Pan, and Singleton [50] to evaluate the expected utility of terminal wealth and write Yt =
(log X̂t,λt). We have

dYt = µ(Yt) dt+ σ(Yt) dŴt + dNt.

Yt admits the affine structure:
µ(Yt) = K0 +K1Yt,

[σ(Yt)σ(Yt)
′]ij = [H0]ij + [H1]ij · Yt,

λi(Yt) = li0 + li1 · Yt,

where

K0 =


−1

2
θ̂W ′t LL

′θ̂Wt + θ̂W ′η
αλ1,∞

...
αλn,∞

 ,

K1 =


0 −(1 + κ1)

(
exp

(
θ̂Nit
)
− 1
)

. . . −(1 + κn)
(

exp
(
θ̂Nnt
)
− 1
)

0 −α . . . 0
...

... . . . ...
0 0 . . . −α

 ,

H0 =


θ̂W ′t LL

′θ̂Wt 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 0 . . . 0

 , H1 = 0,

li0 = 0, li1 = (0; ei), i = 1 . . . , n.

The jump transform ζ i(c) is given by ζ i(c) = exp
(
c1θ̂

Ni
t +

∑n
j=1 cj+1βj,i

)
, i = 1, . . . , n. The

conditional expectation takes the form

1

1− γ
E[X̂1−γ

T ] =
x1−γ0

1− γ
exp(Â(0) + B̂′(0)λ0), (3.40)

where

˙̂
B(t) =(1− γ)(κ+ 1) ◦

(
eθ̂

N
t − 1) + αB̂(t)− exp

(
(1− γ)θ̂Nt + β′B̂

)
+ 1,

˙̂
A(t) =− (1− γ)

(
θ̂W ′t η −

1

2
θ̂W ′t LL

′θ̂Wt

)
− 1

2
(1− γ)2θ̂W ′t LL

′θ̂Wt − αB̂′λ∞,
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3.B. PORTFOLIO CONSTRUCTION WITH A LARGE BASKET OF ASSETS

with B̂(T ) = 0, Â(T ) = 0. The certainty-equivalent wealth is

x̂0 = x0 exp
( 1

1− γ
(Â(0) + B̂′(0)λ0)

)
.

3.B Portfolio construction with a large basket of assets
In this section we demonstrate how to represent the portfolio weights by Equation (3.39) in
a given region, thereby completing the proof of Proposition 3.2.

Let (σk, νk, zk), k = 1, . . . ,m, characterize the price dynamics of individual asset k
in a given region (for which we omit the subscript denoting the region identify). First, we
randomly pair the m assets into m/2 pairs, denoted by p, p = 1, . . . ,m/2.14 For any pair p
with asset Sk, Sl, let ωkt , ω

l
t be the weights on assets Sk, Sl as if Sk, Sl make up the entire

portfolio in that region. Since the optimal regional portfolio produces the risk exposure f, g,
it holds that {

ωkt σ
k + ωltσ

l = f,

ωkt z
k + ωltz

l = g.

Since assets are not linearly dependent, the linear equation system has a unique solution for
ωkt , ω

l
t. Define the paired portfolio P p

t as

dP p
t := ωkt dSkt + ωlt dSlt.

It holds that the price of any paired portfolio Xp
t follows the dynamic of the local optimal

portfolio plus some tracking errors:

dP p
t

P p
t−

= f( dŴt + η dt) + g( dNt − (1 + κ)λt dt) + dζpt ,

where

dζpt := ωkt ν
k dZk

t + ωkt ν
k dZ l

t =: νpt dZp
t .

Here, dZp
t is the idiosyncratic Brownian motion of the paired portfolio, independent of all

other paired portfolios. The last equality of the previous equation holds in distribution.
Now that we havem/2 paired portfolios. Any weighted average of these paired portfolios

produces the optimal exposure to systematic risk factors. Denote the weights on the paired
portfolios by a(m) = (a1, . . . , am/2)′. The replicating portfolio Pt(m)is given by

dPt(m) = a(m)′ dP p
t .

For example, in an equal weighted scheme, each paired portfolio is assigned the same weight
ap = 2/m, p = 1, . . . ,m/2. Then asset k in the m-asset portfolio gets weight

wkt =
2ωkt
m

,

in which 2ωkt is independent of the number of asset m. We have therefore showed that the
representation proposed in (3.39) is indeed feasible.

14In case m is odd, we simply create a m+1 asset by, for example, Sm+1 = 1
2S

m+ 1
2S

m−1. Therefore we
assume m is even without loss of generality.
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CHAPTER 3. ASYMMETRIC EXCITATION AND THE US BIAS

3.C Portfolios that exhibit home bias
The mutually exciting jump diffusion model proposed in Chapter 3.2.3 allows for ambiguity
averse preferences, modeled by, for example, the multiple prior preferences proposed by
Gilboa and Schmeidler [70]. An investor from region i does not have the full knowledge of
the true probability law of asset prices. Instead of optimizing the expected utility under the
physical measure, the investor specifies plausible candidate ambiguity measures Gi ∈ G and
optimizes the expected utility under the worst case scenario:

sup
θW ,θNt

inf
Gi∈G

EG0 [u(XT )]. (3.41)

In general, Investors from different regions have different ambiguity levels towards other
regions. Equation (3.41) describes the optimization problem for an investor from region i
with ambiguity measure G. We omit the region identity i for notation simplicity.

In order to have a tractable solution, we further assume that ambiguity comes from pa-
rameter uncertainty. Instead of relying entirely on the point estimates of risk premiums, in-
vestors construct confidence intervals of parameter estimates, and optimize under the worst
case parameter values. Based on the pure diffusion model in Garlappi, Uppal, and Wang
[68], we restrict the Brownian risk premium η to lie within [η,η], and similarly, the jump
risk premium parameter κ to lie within [κ,κ]. Then we may characterize the ambiguity
measure G by ηG,κG and write G(ηG,κG), where

ηG ∈ [η,η], 0 ≤ η ≤ η ≤ η, [ηG]i = ηi, (3.42)

κG ∈ [κ,κ], 0 ≤ κ ≤ κ ≤ κ, [κG]i = κi. (3.43)

All operators are element-wise comparisons. The constraints (3.42) and (3.43) specify the
ambiguity level – the larger the sets [η,η], [κ,κ], the more ambiguity averse the investor is.
Nevertheless, however large the investor’s ambiguity aversion is, he/she has no ambiguity
towards the home equity, which is reflected through [ηG]i = ηi, [κ

G]i = κi. Since η ∈
[η,η],κ ∈ [κ,κ], the ambiguity sets contain the true measure P . Notice that the ambiguity
set G is convex and compact.

Under the ambiguity measure G(ηG,κG), asset k from region i follows the dynamics

dSki,t
Ski,t−

= σki ( dŴG
i,t + ηGi dt) + νki dZk,G

i,t + zi( dNG
i,t − (1 + κGi )λi,t dt),

where ŴG
i,t, Z

k,G
i,t are martingales under the ambiguity measure G, and NG

i,t, i = 1, . . . , n, are
mutually exciting jumps with intensities

(
1 + (κ− κG)

)
◦ λt under the ambiguity measure

G. Consistent with the asset dynamics under G is the measure change process dG
dP
|Ft= ξt

that follows

dξt
ξt−

= −(η − ηG)′(LL′)−1 dŴt +
n∑
i=1

(
κi − κGi

)(
dNi,t − λi,t dt

)
, ξ0 = 1. (3.44)

Expected utility is nested when the ambiguity set G is a singleton in which the physical
measure P is the only element. The optimal risk exposure θW∗,θN∗t derived in Proposition
3.1 can therefore be regarded as a special case of the more general function θW∗(ηG),θN∗t (κG),
when ηG = η, κG = κ. The following proposition is a generalization of Proposition 3.1 to
incorporate ambiguity averse preferences.
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3.C. PORTFOLIOS THAT EXHIBIT HOME BIAS

Proposition 3.4 (Optimal portfolio choice with ambiguity aversion). In a contagious econ-
omy with asset prices given by (3.13), suppose that a representative investor from a certain
region is ambiguity averse and aims to solve

sup
θW ,θNt

inf
G∈G

EG
[X1−γ

T

1− γ
|X0 = x0

]
, γ > 1, (3.45)

with
G =

{
G(ηG,κG) :

dG

dP

∣∣∣
Ft

= ξt

}
,

where ξt is given by (3.44). Then the optimal portfolio value X∗(η,κ) follows the dynamics

dX∗t
X∗t−

=θW∗(η)′( dŴt + η dt)

+
n∑
i=1

(
exp(θNi∗t (κ))− 1

)(
dNi,t − (1 + κi)λi,t dt

)
,

where the risk exposure is given by{
θW∗(η) = 1

γ
(LL′)−1η,

θN∗t (κ) = − 1
γ

log(1 + κ) + β′B(κ; t).
(3.46)

Here,B(κ; t) is given by

Ḃ(κ; t) =
γ − 1

γ
κ+ αB(κ; t)− (κ+ 1)

γ−1
γ ◦ eβ′B(κ;t) + 1, (3.47)

withB(κ;T ) = 0.

Proof of Proposition 3.4. Since any prior G ∈ G is equivalent to P , and G is by construction
convex and compact, it holds that15

sup
θW ,θNt

inf
G∈G

EG
[X1−γ

T

1− γ
|X0 = x0

]
= inf

G∈G
sup
θW ,θNt

EG
[X1−γ

T

1− γ
|X0 = x0

]
.

For a given measure, we first solve the inner supremum problem. The result in Proposition
3.1 can be directly applied. For any G(ηG,κG) ∈ G, the optimal portfolio exposure to risk
factors is given by {

θW∗(ηG) = 1
γ
(LL′)−1ηG,

θN∗t (κG) = − 1
γ

log(1 + κG) + β′B(κG; t).

where
Ḃ(κG; t) =

γ − 1

γ
κG + αB(κG; t)− (κG + 1)

γ−1
γ ◦ eβ′B(κG;t) + 1,

with B(κG;T ) = 0. Having solved the inner supremum problem, one can easily show that
the indirect utility function given in (3.19) is strictly decreasing in η,κ for η ≥ 0,κ ≥ 0.
Therefore it suffices to replace ηG by η, and κG by κ in θW∗(ηG),θN∗t (κG).

The proposition confirms that the results of Garlappi et al. [68], who find that ambiguity
aversion towards expected return in a pure diffusion market is equivalent to a lower risk
premium, can be readily extended to our jump diffusion model. The coexistence of home
bias and foreign bias found in investors’ equity portfolios can therefore be generated by
taking realistic values of the ambiguity parameters.

15The proof of this equality can be found in, for example, Theorem 2 of Schied and Wu [108].
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CHAPTER 3. ASYMMETRIC EXCITATION AND THE US BIAS

3.D Transition density of jump arrivals
We first give the algorithm of computing the log transition density function of jump arrivals
for the univariate case.

Algorithm 3.1 (Univariate). The algorithm of computing the transition densities for a uni-
variate self exciting jump process, given the K jump arrival times {u1, . . . , uK} within a
time span [0, T ], conditional on λ0 = λ∞, N0 = 0:

1. Set the initial conditions: u0 = 0, λt = λ∞, t ∈ [0, u−1 ] and k ∈ {1, 2, . . . , K}. Define
uK+1 := T .

2. Denote the log likelihood of observing a jump occurrence at time uk conditional on
the information available by time uk−1 by f(uk|Fk−1). It holds that

f(uk|Fk−1) = log λu−k
− Λ(k),

where

Λ(k) := − 1

α
(λuk−1

− λ∞)(e−α(uk−uk−1) − 1) + λ∞(uk − uk−1).

3. Record the jump intensity at uk to be

λuk = λu−k
+ β.

4. Compute the intensity just before the next jump arrival uk+1:

λu−k+1
= (λuk − λ∞)e−α(uk+1−uk) + λ∞.

5. Repeat step 2-4 until k = K.

6. The total log likelihood L is

L =
K∑
1

f(uk|Fk−1)− Λ(K + 1).

Proof. Given the kth jump arrival uk, k = 1, . . . , K, the intensity of the point process at
t ∈ [uk−1, uk] follows

dλt = α(λ∞ − λt) dt, uk−1 ≤ t < uk,

with
λuk = λu−k

+ β.

The differential equation admits the solution

λt =

{
(λuk−1

− λ∞)e−α(t−uk−1) + λ∞, if uk−1 ≤ t < uk,

(λuk−1
− λ∞)e−α(t−uk−1) + λ∞ + β, if t = uk.

Conditional on the jump arrival uk−1, until the next jump arrival, the point process is a time-
inhomogeneous Poisson jump process with exponentially decaying intensities. Denote the
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3.D. TRANSITION DENSITY OF JUMP ARRIVALS

probability of a jump occurrence at time uk and no jump occurrences between time uk−1 and
u−k by P(uk|Fuk−1

). It holds that

P(uk|Fuk−1
) = P(waiting time = (uk − uk−1)|Fuk−1

)

= λu−k
exp(−

∫ u−k

uk−1

λsds).

Define

Λ(k) :=

∫ u−k

uk−1

λs ds.

It holds that

Λ(k) =

∫ uk

uk−1

(
(λuk−1

− λ∞)e−α(t−uk−1) + λ∞

)
dt

= − 1

α
(λuk−1

− λ∞)(e−α(uk−uk−1) − 1) + λ∞(uk − uk−1).

When k = K + 1, the probability of no jump occurrences until T can be computed as

P(uK+1|FuK ) := P(Nuk+1
−Nuk = 0|Fuk)

= P(waiting time > (T − uK)|FuK )

= exp
(
−
∫ T

uK

λs ds
)

= exp(−Λ(K + 1)).

The algorithm can be easily generalized to a multivariate setting.

Algorithm 3.2 (Multivariate). The algorithm of computing the transition densities for a
D-dimensional multivariate mutually exciting jump process, given the K joint jump times
{u1, . . . , uK} within a time span [0, T ], conditional on λ0 = λ∞,N0 = 0:

1. Set the initial conditions: u0 = 0, λt = λ∞, t ∈ [0, u−1 ], and k ∈ {1, . . . , K}. Define
uK+1 := T .

2. Decide uk belongs to which jump component. Denote the jump component by d. The
log transition probability of uk is

f(uk|Fk−1) = log λd,u−k
−

D∑
j=1

Λ(k, j), (3.48)

where

Λ(k, j) := − 1

α
(λj,uk−1

− λj,∞)(e−α(uk−uk−1) − 1) + λj,∞(uk − uk−1). (3.49)

3. Record the jump intensity at uk to be

λuk = λu−k
+ βd,

where βd is the dth column of the excitation matrix β.
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4. Compute the intensities just before the next jump arrival uk+1: for j = 1, . . . , D,

λj,u−k+1
= (λj,uk − λj,∞)e−α(uk+1−uk) + λj,∞.

5. Repeat step 2-4 until k = K.

6. The total log likelihood L is

L =
K∑
1

f(uk|Fk−1)−
D∑
j=1

Λ(K + 1, j). (3.50)

3.E Small sample behavior

To examine the small sample behavior of the maximum likelihood estimators, we run 5,000
Monte Carlo simulation experiments. We set the data generating parameters (DGP) to be the
MEJD parameter estimates given in Table 3.4. We generate 43 years of jump arrivals using
the exact simulation algorithm proposed by Dassios and Zhao [43]. For each simulated
sample, we estimate α,β using the maximum likelihood, using the same starting values as
in the empirical estimation. Table 3.9 reports the mean, standard error and the quartiles of
the estimates.

MEJD estimation

α β1,1 β2,1 β31 β1,2 β2,2 β32 β13 β23 β33

DGP 29.3 12.6 9.3 24.1 0.0 7.4 2.7 5.8 2.3 8.1
Mean 29.6 11.8 9.4 24.5 0.3 7.0 2.7 5.7 2.5 7.6
Std 3.9 3.5 3.2 5.2 0.6 2.4 1.7 2.2 1.8 2.9
25% quantile 27.1 9.5 7.2 21.0 0.0 5.4 1.6 4.2 1.2 5.6
Median 29.5 12.0 9.3 24.2 0.0 7.0 2.6 5.6 2.3 7.5
75% quantile 32.1 14.2 11.5 27.9 0.4 8.6 3.8 7.1 3.6 9.5

Table 3.9: Mean and quartiles of parameter estimates from 5,000 Monte Carlo experiments.

3.F Robustness checks

Risk premium calibration

All parameters which are used to produce Table 3.8 are estimated from the historical data
except for the risk premium parameters η,κ. In this section, we vary the risk premium
parameters, while keeping the sum of the variance and jump premium equal to the historical
equity premium. We will see in Table 3.10 and 3.11 that varying the risk premiums does not
have a qualitative impact on the US bias.

Table 3.10 reports the model predicted jump exposure for different combinations of the
variance premium and the jump premium. The variance premium is restricted such that the
predicted Brownian exposure θW∗ coincides with the Brownian risk exposure of the market
portfolio.
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Optimal portfolio exposure to jump risks
(imposing θW∗ to be equal to the market portfolio exposure to Brownian risks)

Scenario VP JP Diffusion PJD SEJD MEJD

I 0.74 5.10 0.38 0.37 0.38 0.60
0.25 5.00 0.31 0.32 0.16 0.12
0.45 5.24 0.31 0.31 0.46 0.28

II 1.30 4.54 0.37 0.36 0.35 0.59
0.44 4.81 0.32 0.32 0.17 0.13
0.78 4.90 0.31 0.32 0.48 0.28

III 1.86 3.99 0.35 0.35 0.32 0.58
0.63 4.62 0.34 0.34 0.19 0.14
1.12 4.57 0.32 0.32 0.49 0.28

IV 2.79 3.06 0.31 0.31 0.27 0.55
0.94 4.31 0.37 0.36 0.24 0.17
1.68 4.01 0.32 0.32 0.49 0.29

V 3.72 2.13 0.26 0.27 0.22 0.49
1.25 4.00 0.41 0.40 0.29 0.21
2.23 3.45 0.33 0.33 0.49 0.29

Table 3.10: Model predicted jump exposure for different combinations of variance premiums (VP)
and the jump premiums (JP). The models under consideration are pure diffusion (“Diffusion”), Pois-
son jump diffusion (“PJD”), self exciting jump diffusion (“SEJD”) and mutually exciting jump dif-
fusion (“MEJD”). Within each scenario, every column is in the order of “US, Japan, Europe”. The
“Variance premium” and “Jump premium” are reported in percentage per annum. The sum of the vari-
ance premium and the jump premium is equal to the equity premium, which is held fixed at historical
levels. Variance premium is calibrated such that the model predicted Brownian exposure coincides
with that of the market portfolio. Parameter values are contained in Table 3.4 with γ = 5, T = 10.
The figures are normalized so that the exposure to the three regions adds up to 1.

Table 3.11 reports both the model predicted Brownian and jump exposure without im-
posing the restriction that the Brownian exposure θW∗ is equal to the Brownian risk exposure
of the market portfolio. Observe that given the variance premium, all four models predict the
same optimal Brownian risk exposure θW∗. We report the optimal risk exposure under equal
jump risk premiums across all regions (the first scenario), under equal variance premium
across all regions (the second scenario), and when the total equity premium in each region is
divided equally into the variance premium and jump premium (the third scenario).
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Optimal portfolio exposure to risk factors
(without imposing θW∗ to be equal to the market portfolio exposure to Brownian risks)

Scenario VP JP θW∗ Diffusion PJD SEJD MEJD

Equal 2.85 3.00 0.36 0.38 0.37 0.38 0.55
jump 2.25 3.00 0.26 0.32 0.32 0.23 0.16

premium 2.69 3.00 0.39 0.30 0.30 0.39 0.28
Equal 3.00 2.85 0.31 0.42 0.41 0.41 0.56

variance 3.00 2.25 0.32 0.27 0.28 0.20 0.15
premium 3.00 2.69 0.37 0.31 0.31 0.38 0.29

50-50 2.92 2.92 0.33 0.40 0.39 0.39 0.55
premium 2.62 2.62 0.29 0.30 0.30 0.22 0.16
division 2.84 2.84 0.37 0.31 0.31 0.39 0.29

Table 3.11: Model predicted portfolio exposure to Brownian and jump risk factors for different com-
binations of variance premiums (VP) and jump premiums (JP). The models under consideration are
pure diffusion (“Diffusion”), Poisson jump diffusion (“PJD”), self exciting jump diffusion (“SEJD”)
and mutually exciting jump diffusion (“MEJD”). Within each scenario, every column is in the order
of “US, Japan, Europe”. The “Variance premium” and “Jump premium” are reported in percentage
per annum. The sum of the variance premium and the jump premium is equal to the equity premium,
which is held fixed at historical levels. The first block reports the optimal risk exposure under equal
jump risk premiums across all regions; the second block reports the optimal risk exposure under e-
qual variance premium across all regions; the last block reports the optimal risk exposure when the
total equity premium in each region is divided equally into the variance premium and jump premium.
Parameter values are contained in Table 3.4 with γ = 5, T = 10. The figures are normalized so that
the exposure to the three regions adds up to 1.

Time zone differences

The econometric estimation is conducted using daily data on international equity returns.
To account for differences in market opening times, we re-estimate the excitation parameter
estimates by lagging the US returns by one day. Table 3.12 reports the resulting excitation
parameters of the SEJD and MEJD models. Observe that the SEJD parameters are not affect-
ed, because the SEJD model does not take into account the interdependence structure among
jumps. With respect to the parameter estimates of the MEJD model, compared to Table 3.4,
the self excitor of the US is smaller and not significant at the 95% level. Nevertheless, the
cross section excitors from the US to Japan and EU are statistically significant and large in
magnitude compared to the reverse directions.

56



3.F. ROBUSTNESS CHECKS

Excitation parameter estimates: US returns lagged by one day

SEJD MEJD

α 17.7∗∗∗ 30.9∗∗∗

β

11.8∗∗∗ 0 0
0 8.8∗∗∗ 0
0 0 13.6∗∗∗

  4.4 0.00 13.2∗∗∗

9.4∗∗∗ 7.8∗∗∗ 2.6
14.2∗∗∗ 3.5∗ 13.7∗∗∗


Table 3.12: Excitation parameter estimates when the US returns are lagged by one day. “SEJD”
represents the self exciting jump diffusion model and “MEJD” represents the mutually exciting jump
diffusion model. ∗, ∗∗, ∗∗∗ indicate significance at 95%, 97.5%, and 99.5% confidence levels, respec-
tively.

Sub-sample estimation

As a third robustness check, we estimate the excitation parameters over a subsample of the
full sample, excluding data from the first one-third of the sample. Table 3.13 reports the
subsample parameter estimates. The excitation structure is not qualitatively different from
the full-sample estimation results.

Excitation parameter estimates: latest two-thirds of the sample

SEJD MEJD

α 18.4∗∗∗ 32.8∗∗∗

β

12.1∗∗∗ 0 0
0 8.9∗∗∗ 0
0 0 13.4∗∗∗

 14.9∗∗∗ 0.00 6.6∗∗

9.0∗∗ 6.5∗∗ 2.8
24.2∗∗∗ 3.0 7.0∗∗∗


Table 3.13: Excitation parameter estimates over a subsample of the full sample, excluding the start-
ing one third of the sample. “SEJD” represents the self exciting jump diffusion model and “MEJD”
represents the mutually exciting jump diffusion model. ∗, ∗∗, ∗∗∗ indicate significance at 95%, 97.5%,
and 99.5% confidence levels, respectively.
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Chapter 4

Equilibrium Currency Hedging under
Equity-Currency Contagion1

4.1 Introduction

The last two decades witnessed several episodes of financial and currency crises, most no-
tably the 1994 Mexico peso crisis, the 1997 Asian crisis, the 1998 Russian crisis, the more
recent 2008 global financial crisis, and the subsequent 2009 European debt crisis. A com-
mon feature in these currency crises is that, among other things, the currency devaluation in
a crisis is usually accompanied by dramatic capital market drops. During the Asian crisis, for
instance, initiated by sharp currency devaluations in Southeast Asia, the Dow Jones Industri-
al Average plummets 554 points for its biggest point loss by then. Shortly after, the Korean
won hits a record low in December, followed by Indonesian rupiah’s free fall in January 1998
and the collapse of Russia’s financial system in mid-1998.

The equity-currency contagion is a well-documented phenomenon in the literature. For
example, Caramazza et al. [29] conclude that financial linkages are significant causes of
currency crises after controlling for the role of domestic and external fundamentals, trade
spillovers, and financial weaknesses in the affected countries. A strong financial linkage to
the crisis country of origin not only raises the probability of contagion substantially but also
helps explain the observed regional concentration of currency crises. Pesenti and Tille [102]
study the Asian currency crisis and find that while weak or unsustainable economic policies
provide a partial explanation of the currency crisis, they cannot account for the severity of the
crises. One also need to take into account the volatile capital markets.2 Fratzscher [64] finds
that the Latin American crisis in 1994-95 and the Asian crisis of 1997 spread across emerg-
ing markets are not primarily due to the weakness of those countries’ fundamentals but rather
to a high degree of financial interdependence among affected economies. Brunnermeier et al.
[25] link the crash risk of carry trade strategies to funding constraints of speculators, with
funding constraints measured by the implied volatility of the S&P 500 stock index. Fer-
reira Filipe and Suominen [59] investigate how the financial market conditions in a major
carry trade funding country, Japan, affect the global currency markets and currency trading
and find that funding risks in Japan (measured by the stock options implied volatility and
crash risk in the stock market in Japan) affect the global currency market. Consistent with

1Professor Roger J. A. Laeven made helpful comments and suggestions.
2Practitioners also share a similar view. For example, Bluford Putnam, the managing director and chief

economist at CME Group claims that the emerging market currency contagion in 2013-2014 was driven by
asset allocation shifts from emerging markets to US equities and other mature industrial markets.
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these findings, De Bock and de Carvalho Filho [44] find that during the risk-off episodes,
currency markets exhibit recurrent patterns, as the Japanese yen, Swiss franc, and US dollar
appreciate against other G-10 and emerging market currencies. Lettau et al. [89] study the
cross section of currency returns using the downside risk capital asset pricing model. They
find that high-yield currencies earn higher excess returns than low-yield currencies because
their co-movement with aggregate market returns is stronger conditional on bad market re-
turns than it is conditional on good market returns. Francis et al. [63] and Chernov et al.
[35] find that spillover from equity to currency market exists not only in mean but also in
volatility.

The interdependence between equities and currencies leads to the concept of “safe haven”
currencies and “investment currencies”. Ranaldo and Söderlind [103] define an asset to be
“safe haven” if it offers hedging benefits on average or in times of stress. They find that
safe haven currencies tend to have low yield but immune to market downturns. “Investment
currencies”, on the other hand, are like the mirror image of safe haven currencies – high
yield and high exposure to systemic risks. When the global market is in stress, investors tend
to move into safe haven currencies [31]. They identify safe haven currencies by regressing
currency returns on current or lagged risk factors such as stock returns and bond returns.
They conclude that the Swiss franc, the Japanese yen, and the British pound display safe
currency characteristics. Nevertheless, the covariance between currency returns and equity
returns can be time varying, and can even change signs over time. Cenedese [31] finds that
during periods of bear, volatile world equity markets, currencies provide different hedging
benefits than in bull markets. The 2008 financial crisis emerged as an important case study
where safe haven effects went against typical patterns partially in contrast with the results
of Ranaldo and Söderlind [103]. During the crisis, a large number of currencies that were
not at the center of the turmoil depreciated, even those which were regarded as safe haven
currencies preceding the crisis [85]. Habib and Stracca [74] study what makes a safe haven
currency in a systematic way and find that only a few factors are robust associated to a safe
haven status.

The interplay between the equity market and the currency market poses challenges on
optimal currency hedging. So far, there is no consensus on how much currency risks to
hedge and even whether to hedge currency risks at all. The complicated dependence structure
between the equity and currency returns calls for more realistic models that captures equity
and currency returns jointly. Indeed, as pointed out in Backus et al. [11], the gross return
of a foreign currency is the ratio of the return of the foreign stochastic discount factor and
that of the domestic one. As long as risk factors are compensated differently in the two
economies, priced risk factors that drive the equity returns should in principle drive exchange
rates. Therefore the equity market and the foreign exchange rate are interconnected in theory.
Modeling equity and exchange rate jointly is not only empirically interesting but also of
theoretical relevance.

We contribute to the equity-currency literature by bridging this gap. We revisit the
Black’s equilibrium currency hedging problem under the context of equity-currency conta-
gion. We propose a realistic model that generates equity-currency contagion, which enables
a theoretical characterization of the “safe haven” properties of a risky currency. We derive
the equilibrium currency hedging strategies under this context.

In particular, we propose a mutually exciting jump diffusion model to describe equity
and exchange rate processes jointly. In this model, an equity price jump today increases the
probability of experiencing further price jumps in the equity market in the future as well
as the probability of experiencing price jumps in the exchange rates, and similar for the
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exchange rate jumps. The model, therefore, produces a rich dependence structure between
equities and currencies – the normal dependence is captured by instantaneous covariance and
the dependence during market downturns is generated by jump excitation. Jump excitation is
a better candidate than time-varying covariance for two reasons in this case. First, although
there appears to be excess dependence between the equity market and the exchange rates,
the comovement is neither simultaneous nor certain. By mutually exciting jumps, a crash in
the equity market only increase the probability of future currency jumps. Second, investment
currencies, which are more prone to capital market turmoil, not necessarily have an equally
strong impact on equities as equities on them, especially during recessions. Dependence
generated by covariance is symmetric in nature, in the sense that if a currency were of the
“investment” type measured by covariance, then its movement should also impact the equity
market equally well. By capturing tail dependence using jump excitation, we allow for
asymmetric excitation structure, in which case a currency that barely influences the equity
market may respond to equity market downturns sharply.

While deviating from the log normal stochastic discount factors in the carry trade liter-
ature, the model complies with the foreign exchange literature findings that both global and
country-specific risk factors are essential ingredients to generate the observed carry trade
return patterns. In particular, our model is consistent with Brusa et al. [26], in which three
types factors are driving the stochastic discount factors – an equity factor that only drives the
equity, a currency factor which only appears in the currency returns, and an equity-currency
factor, which drives both the equity market and the foreign exchange rate. Our model can be
regarded as an extension and variation of Farhi et al. [57], where we allow the equity market
and the exchange rate to be mutually exciting, while maintaining the factor structure that
prevails the exchange rate literature.

We first solve the portfolio optimization problem with country-specific stocks and cur-
rencies in closed form in a partial equilibrium framework, taking equity and exchange rate
dynamics as given. To see the implication on the equilibrium currency hedging strategies
under the equity-currency contagion context, we impose security market clearing condition-
s. Our equilibrium currency hedging strategy differs from that of Black [15] in the following
aspects. Investors with different home currencies will have different hedging ratios towards
a risky currency in general. Moreover, all else equal, investors have a larger hedging ratio
for investment currencies, those that are prone to equity market turmoil than that for the safe
haven currencies, those that are less susceptible to equity market downturns.

This chapter is organized as follows: Chapter 4.2 proposes the equity and exchange
rate dynamics. We show that our model generates equity-currency contagion and complies
with the extant literature. Chapter 4.3 solves the optimal asset allocation problem in a partial
equilibrium framework. Chapter 4.4 studies the property of the optimal net currency weights.
Chapter 4.5 imposes the security market clearing conditions and derives the equilibrium
currency hedging strategies. Chapter 4.6 illustrates the safe haven bias, that is, all else equal,
investors will have a larger hedging ratio towards investment currencies than the safe haven
currencies. The preference towards safe haven currencies cannot be directly replicated using
linear correlation in classic models. Chapter 4.7 concludes.
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4.2 A parsimonious model that allows for equity-currency
contagion

In this section, we propose a model of equity and exchange rate dynamics that generates
equity-currency contagion. This is achieved by including both cross sectionally and seri-
ally dependent jump components, namely, mutually exciting jumps, in equity and currency
returns. We specify country-specific stocks, pricing kernels and exchange rates in Chapter
4.2.1. For market completeness, we also introduce country-specific stock derivatives. In
Chapter 4.2.2, we give the pricing formula for call options in this context. Chapter 4.2.3
discusses how our model relates to the factor models in the extant literature.

4.2.1 Set up
The equity market

In this section, we propose an equity-currency model that generates tail risk contagion be-
tween equity risk and currency risk. Let there be n + 1 countries. Each country has its own
currency. Let there be a risk free money market account, a country-specific stock index, and a
derivative written on the stock index in each country, all denominated in the domestic curren-
cy. We use superscript to denote in which currency the quantities are measured and subscript
to denote the referred object. Variables without a superscript are prices denominated in the
domestic currency. For instance, we denote the money market account of country i by Bi(t)
when denominated in currency i and Bj

i (t) when denominated in currency j. We adopt the
convention of denoting vectors and matrices using boldface characters to distinguish them
from scalars. It holds that

dBi(t) = Bi(t)ri(t) dt, (4.1)

where ri(t) is the continuously compounded risk free rate of country i at time t.
Suppose the country stocks are exposed to country-specific Brownian risks Wi, i =

0, . . . , n, and a global equity crash risk, modeled by a counting process Nm with intensi-
ty λm(t) at time t. Denote the domestic stock of of country i by Si. Si follows the dynamics

dSi(t)

Si(t−)
= ri(t) dt+ µsiλm(t) dt+ σsi

√
λm(t) dWi(t) + jsi( dNm(t)− λm(t) dt), (4.2)

where µsi is the expected excess return, and jsi is the jump amplitude of country i, assumed
to be a negative constant. The Brownian risk Wi, i = 0, . . . , n, are independent of the jump
risk Nm. The Brownian motions that drive the stocks of different countries are allowed to be
correlated. Denote the correlation between Wi and Wj by ρij .

In addition to the country stock, we introduce a stock option Oi(t) of the European type
in each country. If the market is free of arbitrage opportunities, there exists a risk neutral
measure Qi, under which

Oi(t) = EQit [g(Si(τ), λm(τ))],

for any t ≤ τ , where τ is the time to expiration.
The stock option provides exposure to the same risk factors as the stock return does. As

we will see later, the introduction of stock options completes the equity market in the sense
that (1) the risk premiums of the equity Brownian motions and the equity jump component
can be uniquely pinned down; (2) a portfolio that belongs to theH2 space with any exposure
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to the equity Brownian motions and jump component can be replicated using the stocks and
the stock options. To illustrate the latter point, as Liu and Pan [91] explain, one can start
with the stock and add out-of-the-money put options to the portfolio which provide more
exposure to jump risk, in order to separate exposure to jump risk from that to diffusive risk.

Let Ej
i (t) be the exchange rate between currency j and currency i, understood as the

currency j price per unit of currency i. We choose currency i = 0 as the base currency. A
superscript of 0 indicates denomination in the base currency.

If the exchange rate is stochastic, the money market account of country i is a risky in-
vestment for investor from country j, j 6= i. The money market account of country i denom-
inated in currency j has price Bj

i (t) = Bi(t)E
j
i (t). It holds that

dBj
i (t)

Bj
i (t)

= rj(t) +
dEj

i (t)

Ej
i (t)

.

Similarly, equity i denominated in currency j has price Sji (t) = Si(t)E
j
i (t) at time t. Define

the currency-hedged stock Ŝji (t) as

dŜji (t)

Ŝji (t)
=

dSji (t)

Sji (t)
−
( dBj

i (t)

Bj
i (t)

− dBj(t)

Bj(t)

)
. (4.3)

The currency-hedged stock i for investor j can be constructed by a continuously-rebalanced
portfolio that invests 100% in the unhedged stock i, borrowing 100% from country i and
lending domestically (to country j). Effectively, borrowing abroad and lending domestically
mimics a currency forward contract (see Campbell et al. [28]).

Define the currency-hedged global equity index as the weighted average of country s-
tocks. Denoted in the base currency, it holds that

M̂0 =
n∑
i=0

hiŜ
0
i , (4.4)

where hi is country i’s market capital as a proportion of the global capital, with
∑n

i=0 hi = 1.
Note that hi is a currency-independent variable.

The return on the global equity index in the base currency is given by

dM̂0(t)

M̂0(t−)
=

n∑
i=0

(
hiµ̂

0
si
λmdt+ σsi

√
λmdWi + ĵ0si(dNm − λmdt)

)
=: µ0

mλm dt+ σm
√
λm dWm + j0m( dNm − λm dt), (4.5)

where

σm
√
λmdWm(t) =

n∑
i=0

hiσsi
√
λmdWi(t), j0m =

n∑
i=1

hiĵ
0
si
.

Define σs as a diagonal matrix containing σsi , i = 0, . . . , n, on the diagonal, h a vector
containing hi, i = 0, . . . , n, and W (t) a vector containing Wi(t), i = 0, . . . , n. We can see
that Wm(t) = 1

σm
h′σsW (t), σm =

√
h′Σh. Here, Σ is the covariance matrix of the stock

returns of different countries. Define L as the Choleski decomposition of the correlation
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matrix, meaning that LL′ is a matrix with ones on the diagonal and correlation coefficients
off-diagonal,

LL′ =


1 ρ01 . . . ρ0n
ρ01 1 . . . ρ1n

...
... . . . ...

ρ0n ρ1n . . . 1

 .

It holds that Σ = σsLL
′σ′s.

Pricing kernel and exchange rate processes

The exchange rate return is effectively the ratio of the change in pricing kernel processes of
the two countries [11]. We first specify the pricing kernel process of each country and then
derive the consistent exchange rate process thereafter.

Following Pan [101], we specify the pricing kernel process of country i, i = 1, . . . , n, to
be of the following parametric form

dπi(t)

πi(t−)
=− (ri(t) dt+ ηi

√
λm(t) dWm(t) + vi

√
λi(t) dZi(t))

+ κi( dNm(t)− λm(t) dt) + (yi dNi(t)− E[yi]λi(t) dt). (4.6)

Here, the pricing kernel also prices risks that do not drive equity returns. We introduce two
new priced risk factors: one is a country-specific Brownian motion Zi, independent of other
risk factors as well as Zj, j 6= i; and the other is a jump component Ni with intensity λi(t)
at time t. In Equation (4.6), ηi, κi are equity Brownian and jump risk premium in country i;
vi is a constant that represents the risk premium of Brownian motion Zi; yi is allowed to be
a random variable.

The literature has shown that there are risk dimensions that influence currency returns
in international economies but are absent in a single-economy equity market.3 Our pricing
kernel specification (4.6) is consistent with that of Bakshi et al. [12] and Brusa et al. [26], in
that apart from domestic equity risk factors, the pricing kernel process of a country is also
driven by foreign equity risk factors and risk factors not spanned in the international equity
market.

Notice that the pricing kernel is driven by the global equity Brownian risk Wm and jump
risk Nm, rather than the country-specific ones (although the exposure to country-specific
equity risk factors can be further inferred). This is intuitive, the pricing kernel process πi
determines the risk premium of risky investment for investors in country i. Consistent with
the international CAPM (see Solnik [112]), only systematic equity risks are compensated. In
our case, the systematic equity risk factors are the Brownian risk Wm and jump risk Nm, as
those that drive the global equity index.

The equity jump component has deterministic a jump size and is compensated only with
the jump timing risk. Under the risk neutral measure, the jump component Nm has intensity
(1 + κi)λm under measure Qi. With respect to the currency jump component, if we restrict
that the jump risks are compensated for jump size risk but not for jump timing risk, as in Pan
[101], then only the jump size distribution changes under Qi (determined by the distribution
of yi) and the jump intensity remains the same after the measure change.

3See, for example, Brandt et al. [20].
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As a normalization, we assume that the base currency is free of currency-specific risks.
The pricing kernel process of the base country is given by

dπ0(t)

π0(t−)
=− η0

√
λm(t) dWm + κ0( dNm(t)− λm(t) dt), (4.7)

where η0, κ0 represent equity Brownian and jump risk premium in the base country. Expo-
sure to currency risks does not come with any risk premium in the base country since only
systematic equity risk factors are priced. In this sense, the base currency can be regarded as a
reserve currency. We refer to Appendix 4.B for more detail on the normalization in the base
country.

According to Backus et al. [11], if the international markets are integrated, exchange
rates reflect differences in pricing kernels in the associated markets,

E0
i (t) = πi(t)/π0(t), (4.8)

or, in SDE representation,

dE0
i (t)

E0
i (t
−)

=
(
r0(t)− ri(t) + η0(η0 − ηi)λm(t)

)
dt+ (η0 − ηi)

√
λm(t) dWm(t)

− vi
√
λi(t) dZi(t) +

κi − κ0
1 + κ0

( dNm(t)− λm(t) dt)

+ (yi dNi(t)− E[yi]λi(t) dt)

=:
(
r0(t)− ri(t) + µ0

ei
λm(t)

)
dt+ σei

√
λm(t) dWm(t)

− vi
√
λi(t) dZi(t) + j0ei( dNm(t)− λm(t) dt)

+ (yi dNi(t)− E[yi]λi(t) dt), (4.9)

where

µ0
ei

= η0(η0 − ηi)− κiji, σei = η0 − ηi, j0ei =
κi − κ0
1 + κ0

. (4.10)

Notice that we may kill the equity jump component in the exchange rate process by setting
κi = κ0,∀i. In other words, currencies are free of equity jump risks only if the equity jump
risk is compensated the same way in every market.

By the same token, the exchange rate between currency i and j, for all i, j, can be calcu-
lated using

Ej
i (t) = πi(t)/πj(t).

One can easily verify the triangular equality that Ej
i (t) = El

iE
j
l ,∀l. In other words, convert-

ing from currency i to currency j is the same as first converting to any currency l and then to
currency j.

It is clear from Equation (4.6) and (4.7) that πi, i = 0, . . . , n, are local martingales un-
der the real world measure. If πi are actually martingales, one can verify according to the
Lenglart-Girsanov Theorem that the pricing kernels can serve as the Radon-Nikodym deriva-
tives that change the physical measure P to risk neutral measures Qi, under which the global
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equity index and country stocks denominated in currency j follow

dM̂ j(t)

M̂ j(t−)
=
(
µ̂jm − ηjσm + ĵjmκj

)
λm(t) dt+ σm

√
λm(t) dWQj

m (t)

+ ĵjm( dN
Qj
m,t − (1 + κj)λm(t) dt),

dŜji (t)

Ŝji (t
−)

=
(
µ̂jsi −

ηj
σm

n∑
l=0

hlρilσsiσsl + ĵjsiκj
)
λm(t) dt+ σi

√
λm(t) dW

Qj
i (t)

+ ĵjsi( dN
Qj
m,t − (1 + κj)λm(t) dt),

where WQj
i is a standard Brownian motion under the risk neutral measure of country j, with

W
Qj
i (t) = Wi(t)− ηj

∫ t
0

√
λm(s) ds. The jump process NQj

m (t) has intensity (1 + κj)λm(t)

under the martingale measure Qj . In order that M̂ j(t), Ŝji (t) are local martingales under the
risk neutral measure of country j, it should hold that

{
µ̂jm = σmηj − κj ĵjm,
µ̂jsi =

ηj
σm

∑n
l=0 hlρilσsiσsl − κj ĵjsi .

(4.11)

Note that the expected excess return of a country’s stock consists of the risk premium of
(I) the country-specific Brownian risk, and (II) the global equity crash risk. In particular,∑n

l=0 hlρilσsiσsl is the instantaneous covariance between the returns of the market equity
and stock i. Then the premium for country-specific Brownian risk is the premium for the
market equity times the covariance between the market equity and stock i divided by the
instantaneous variance of the market equity. Similarly, the equity jump premium in stock i
is the ratio of the jump amplitude of stock i and that of the market equity. That is,

µ̂jsi = µ̂jsi(I) + µ̂jsi(II),

µ̂jsi(I) :=
ηj
σm

n∑
l=0

hlρilσsiσsl =
Cov(R̂j,c

i , R̂
j,c
m )

Var(R̂j,c
m )

µ̂jm(I),

µ̂jsi(II) := −κj ĵjsi =
ĵjsi
ĵjm
µ̂jm(II).

Here, R̂j,c
i , R̂

j,c
m denote the continuous part of the return of stock i and the market equity,

respectively. µ̂jsi(I) is the country-specific volatility risk premium that exhibits a CAPM
structure, and µ̂jsi(II) is the jump premium in stock i for investor j.

In addition, free of arbitrage opportunities implies that similar structure applies to the
expected excess return of countries’ derivatives,

µ̂joi =
ηj
σm

n∑
l=0

hlρilσoiσol − κj ĵjoi , ∀i, j.
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Equity-currency contagion

We allow for jump propagation between equity and currencies by letting Nm, Ni to be mu-
tually exciting with intensities λm(t), λi(t) that follow

dλm(t) = αm(λm,∞ − λm(t)) dt+ βm,m dNm(t) +
n∑
l=1

βl,m dNl(t),

dλi(t) = αi(λi,∞ − λi(t)) dt+ βm,i dNm(t) +
n∑
l=1

βl,i dNl(t),

where αm, αi, λm,∞, λi,∞, βi,m, βm,i, βi,j, βm,m ≥ 0, ∀i, j.
The occurrence of a jump in the equity market at time t, i.e., dNm(t) = 1, not only raises

the intensity of the equity jump component, λm(t), by a non-negative amount βm,m, but also
increases the intensity of the currency jump component, λi(t), by a non-negative amount
βm,i. After being excited, both equity jump intensity λm(t) and currency jump intensity
λi(t) mean revert to their respective steady state, λm,∞, λi,∞, at exponential decaying rates
αm, αi, until they get excited by a next jump occurrence.

In the remainder, we call β, defined as

β := (βm,β1, . . . ,βn) =


βm,m β1,m . . . βn,m
βm,1 β1,1 . . . βn,1

...
... . . . ...

βm,n β1,n . . . βn,n

 ,

the excitation matrix between equity and currency i; βm,m is called the equity self excitor; βi,i
is called the currency self excitor of currency i; βm,i is called the equity-currency excitor of
currency i, which measures the excitation from the equity jump component to the jump com-
ponent of currency i; βi,m is called the currency-equity excitor of currency i, which measures
the excitation from the jump component of currency i to the equity jump component.

Let λ(t) = (λm(t), λ1(t), . . . , λn(t))′. The unconditional expectation of the jump inten-
sity is given by

E[λ(t)] = (In − β./(αι′))−1λ∞,
where In is an n by n identity matrix; α,λ∞ are vectors of αi, λi,∞, i = m, 1, . . . , n, respec-
tively; ι is a column vector of all ones. The intensity processes can be made stationary by
imposing

(In − β./(αι′))−1 > 0.

This is a general yet parsimonious model which generates contagion between the equity
market and the foreign exchange market. The equity and currency model given in (4.2)
and (4.9) is a natural extension of the classic geometric Brownian motion models (see Solnik
[112], Black [15], Campbell et al. [28]). The model also generates stochastic volatility driven
by jump intensity processes.

The mutually exciting jump components in Equation (4.2) and (4.9) are able to produce
important stylized facts of equity-currency behavior. For example, the stock returns exhibit
jump clustering as a result of the time series excitation, and equity-currency contagion as
a consequence of the cross section excitation between these two asset classes. The market
equity and currencies have an instantaneous covariance of σmσeiλm(t), which is stochastic,
and increases when the equity market is in turmoil. This is consistent with the empirical
findings of stochastic covariance between the equity market and the foreign exchange market.
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In addition, during market downturns, equity market turbulence can lead to currency turmoil
and vice versa, thus creating a non-linear excess dependence between the equity market and
foreign exchange market.

The dependence generated by mutually exciting jumps has two distinctive features. The
first is that the dependence between equity and currency is not simultaneous. Under conta-
gious equity-currency risks, the exchange rate is likely to experience a jump in succession of
an equity market plunge. Different from the dependence generated by common risk factors,
the dependence of the extreme movements in these two markets is neither simultaneous nor
certain. The second property is that the model allows for asymmetric excitation: the impact
of an equity plunge on a currency value can be different from that of the currency depreci-
ation on the equity market. It allows for separate analysis on the two-way equity-currency
contagion. A currency whose value remains relatively stable during the equity market turbu-
lence (i.e., low equity-currency excitor) has the property of a safe haven currency.

4.2.2 Option pricing
Suppose the market is free of arbitrage. The price of an option Oj(t) written on stock Sj(t)
with payoff function f(Sj(τ)) is given by

Oj(t) = e−rj(τ−t)EQjt [f(Sj(τ))]. (4.12)

In this section, we consider the price of a standard call option on the domestic equity of each
country. Appendix 4.D also gives the pricing formula for put options and straddles. The
payoff function for the call option is given by

f(Sj(τ)) = (Sj(τ)−K)+ =: Cj(τ),

where K is the strike price.
The following proposition gives the call option price Cj(t), t ≤ τ, as a function of the

stock price and the equity jump intensity at time t.

Proposition 4.1. The call option price Cj(t), t ≤ τ, is given by

Cj(t) = G1,−1(− logK)−KG0,−1(− logK), (4.13)

where

Ga,b(w) =
1

2
ψt(a)− 1

π

∫ ∞
0

Im[e−iuwψt(a+ iub)]

u
du, (4.14)

with
ψt(u) = Sj(t)

u exp(P +Qλm(t)), (4.15)

Here, P = P(t),Q = Q(t),

d

dt
Q(t) =

(1
2
σ2ej + jej (1 + κj)

)
u+ αmQ(t)−

1

2
u2σ2ej − (1 + κj)

(
(1 + jej )

ueβm,mQ(t) − 1
)
,

d

dt
P(t) =− αmλm,∞Q(t).

with P(τ) = Q(τ) = 0.
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Therefore the dynamics of the option prices are given by

dOj(t)

Oj(t−)
=rj(t) dt+ µo(Sj(t), λm(t))λm(t) dt+ σo(Sj(t), λm(t))

√
λm(t) dWm(t)

+ jo(Sj(t), λm(t))( dNm(t)− λm(t) dt),

where

σoj(Sj(t), λm(t)) =
σmSj(t)

O(t−)

∂f(Sj(t), λm(t))

∂Sj(t)

∣∣∣∣
(Sj(t),λm(t))

,

joj(Sj(t), λm(t)) =
1

Oj(t−)

(
f
(
(1 + jsj)Sj(t), λm(t) + βm,m

)
− f

(
Sj(t), λm(t)

))
.

We will drop the arguments of µoj(Sj(t), λm(t)), σoj(Sj(t), λm(t)), joj(Sj(t), λm(t)) and
simply denote them by µoj(t), σoj(t) for notation simplicity, with the time t argument in-
dicating state dependence.

4.2.3 Relation to factor models
Should the jump factors Nm, Ni, i = 1, . . . , n, be Poissonian, the pricing kernel of country
i would admit an orthogonal decomposition into an equity component πmi and a currency
component πsi as in Bakshi et al. [12],

dπ
(m)
i (t)

π
(m)
i (t−)

= −ηi
√
λm dWm + κi( dNm(t)− λm dt),

dπ
(s)
i (t)

π
(s)
i (t−)

= −vi
√
λi dZi + (yi dNi(t)− E[yi]λi(t) dt),

πi,t = exp(−
∫ t
0
ri(s) ds)π

(m)
i (t)π

(s)
i (t).

(4.16)

Not all risk factors are priced in the pricing kernel of country j. The consequence of this
is that exchange rates of different currencies are exposed to different risk factors. Similar
assumptions regarding the pricing kernel (that the pricing kernels are driven by both global
factors and country-specific factors) can be found in Lustig et al. [93], Bakshi et al. [12], and
Farhi et al. [57].

The pricing kernel processes given in Equation (4.6) exhibit a factor structure. Consistent
with Bates [13] and Carr and Wu [30], the model has Gaussian and non-Gaussian factors.
We allow the pricing kernels to price risk factors other than equity risk factors, as in Bakshi
et al. [12].

Our model is also consistent with Brusa et al. [26], in which three global factors drive
the stochastic discount factors. The first is a global equity factor Nm which can be priced
the same way in every country by setting κi = κj, ∀i, j. In Brusa et al. [26], this factor does
not appear in the exchange rate process but drives the world equity return. The second is
a country-specific currency factor Ni. This factor only drives the exchange rate but not the
equity returns, capturing the crash risk in the carry trade. The third is a common factor Wm

that drives both equity and currency returns, mimicking the “dollar factor” in Brusa et al.
[26].

4.3 Optimal asset allocation
Let there be a representative investor from each country. In this section we define and solve
the optimal asset allocation problem for every investor. Instead of raw assets, which are
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foreign assets quoted in the domestic currency, we will work with currency-hedged asset
prices, which has a one-to-one correspondence to the raw prices. Chapter 4.3.1 derives the
dynamics of currency-hedged asset returns. Chapter 4.3.2 solves the asset allocation problem
in the universe of stocks, stock options and bonds from all contries. Chapter 4.3.3 presents
the Separation Theorem which states that the asset universe can be collapsed into a global
equity, a global derivative portfolio and countries’ bonds without incurring utility cost for
investors.

4.3.1 Returns on the currency-hedged assets

When investing in a foreign stock, the investor is faced with not only the equity risk but
also the currency risk. We will formulate the optimal asset allocation problem in terms of
currency-hedged assets instead of the original assets. There is a one-to-one correspondence
between the allocation strategy on the currency-hedged assets and that on the original assets.
In the extreme case, an unhedged position in foreign stock j corresponds to a long position in
currency j equal to the holding of stock j, whereas a fully hedged stock position corresponds
to a net zero position in that foreign currency.

Recall Equation (4.3), the return of currency-hedged stock j for investor i follows

dŜij(t)

Ŝij(t
−)

=
d(Sj(t)E

i
j(t))

Sij(t
−)Ei

j(t
−)
−
( dBi

j(t)

Bi
j(t
−)
− dBi(t)

Bi(t)

)
=:µ̂isjλm(t)dt+ σsj

√
λm(t) dWj(t) + ĵisj( dNm(t)− λm(t) dt).

And similar for the currency-hedged option returns,

dÔi
j(t)

Ôi
j(t
−)

=
d(Oj(t)E

i
j(t)

Oj(t−)Ei
j(t
−)
−
( dBi

j(t)

Bi
j(t
−)
− dBi(t)

Bi(t)

)
=:µ̂iojλm(t)dt+ σoj

√
λm(t)dWj(t) + ĵioj(dNm(t)− λm(t)dt).

One can easily work out that µ̂isj = µsj +
(σei−σej )σsj

σm

∑n
l=1 ρjlhlσsl , ĵisj = jsj(1 + jei),

µ̂ioj = µoj +
(σei−σej )σoj

σm

∑n
l=1 ρjlhlσel , ĵ

i
oj

= joj(1 + jei).

4.3.2 Solving the optimal asset allocation problem

Define the portfolio weights vector

ŵj(t) = (ŵjs0(t), . . . , ŵ
j
sn(t), ŵjo0(t), . . . , ŵ

j
on(t), ŵje0(t), . . . , ŵ

j
en(t))′,

to be a 3(n+1)×1 vectored process, which are adapted, càglàd, and bounded in L2. Problem
4.1 defines the asset allocation problem.

Problem 4.1. Let there be a representative investor from each country j with initial wealth
xj , who has expected power utility with risk aversion u(xj) = 1

1−γj x
1−γj
j , γj > 0,∀j. Each

investor is allowed to invest in foreign as well as domestic risk-free and (currency-hedged)
risky assets. Investors neither consume nor receive any intermediate income. Assume that
investors can rebalance their portfolios in continuous time without incurring any transaction
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costs. The objective is to maximize the expected utility over terminal wealth Xj(T ) through
optimal continuous time trading.

sup
ŵj

E0

[Xj(T )1−γj

1− γj

]
, (4.17)

subject to the budget constraint,

dXj(t)

Xj(t−)
=

n∑
i=0

ŵjsi
dŜji (t)

Ŝji (t
−)

+
n∑
i=0

ŵjoi
dÔj

i (t)

Ôj
i (t
−)

+
n∑
i=0

ŵjei
dBj

i (t)

Bj
i (t
−)
. (4.18)

Let J be the indirect utility function for investor j at time t = 0. Here, we drop the
investor’s identity j in the indirect utility function to avoid notation clustering.

J(t, x,λ) = sup
ŵj

E
[Xj(T )1−γj

1− γj

]
,

where x = Xj(t),λ = (λm(t), λ1(t), . . . , λn(t))′ are current values of the wealth and jump
intensities. Define θjwi , θ

j
n as the exposure to equity risk factors Wi, Nm in investor j’s port-

folio, {
θjwi = ŵjsiσsi + ŵjoiσoi +

∑n
l=1 ŵ

j
el
σelhiσsi/σm,

θjn =
∑n

i=0(ŵ
j
si
ĵjsi + ŵjoi ĵ

j
oi

) +
∑n

i=1 ŵ
j
ei
ĵjei .

(4.19)

Note that σeldWm = σel
∑n

i=0 hiσsi/σmdWi. Therefore σelhiσsi/σm is the exposure to
the Brownian motion Wi through investing in currency l. Write in matrix notation θjw =
(θjw0

, . . . , θjwn)′.
We are going to solve for the optimal θjw, θ

j
n, ŵ

j
ei
, i = 1, . . . , n, by first conjecturing

(which we later verify) that the indirect utility function is of the form

J(t, x,λ) =

(
xj
)1−γj

1− γj
exp(Pj(t) +Qj(t)

′λ), (4.20)

where Pj(t) andQj(t) are functions of time but not of the state variables x and λ.
The following proposition provides an analytical solution to the optimal portfolio strate-

gy.

Proposition 4.2. There exists a solution

ŵj(t) = (ŵjs0(t), . . . , ŵ
j
sn(t), ŵjo0(t), . . . , ŵ

j
on(t), ŵje0(t), . . . , ŵ

j
en(t))′

to Problem 4.1. The optimal portfolio weight is given by solving the following equations for
the elements of ŵj ,

−E[yi]− γjŵjeiv
2
i + eQ

′
jβiE[(1 + ŵjeiyi)

−γjyi] = 0, i = 1, . . . , n,

ŵjs0
...
ŵjsn
ŵjo0

...
ŵjon


=


σs0 0 . . . 0 σo0 0 . . . 0

0 σs1 . . . 0 0 σo1 . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . σsn 0 0 . . . σon
ĵjs0 ĵjs1 . . . ĵjsn ĵjo0 ĵjo1 . . . ĵjon



−1
θjw0
−
∑n

l=1 ŵ
j
el
σelh0σs0/σm

...
θjwn −

∑n
l=1 ŵ

j
el
σelhnσsn/σm

θjn −
∑n

l=1 ŵel ĵel

 ,

ŵje0 = 1−
∑n

l=0(ŵ
j
sl

+ ŵjol)−
∑n

l=1 ŵel ĵel ,

(4.21)
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where {
θjw =

ηj
γjσm

σ′sh,

θjn = (1 + κj)
− 1
γj exp( 1

γj
Q′jβm)− 1.

(4.22)

Here, ŵjei = ŵjei(t = 0), Qj = Qj(t = 0), in which Qj(t) = (Qj,m, Qj,1, . . . , Qj,n) is a
deterministic process defined by the ordinary differential equations, for i = 1, . . . , n,

Q̇j,m(t) =αmQj,m(t) +
γj − 1

2γj
η2j + (γj − 1)κj − γj(1 + κj)

γj−1

γj exp
( 1

γj
Qj(t)

′βm

)
+ γj

Q̇j,i(t) =αiQj,i(t) + (1− γj)ŵjei(t)E[yi] +
1

2
γj(1− γj)ŵjei(t)

2v2i (4.23)

− E[(1 + ŵjei(t)yi)
1−γj ] exp(Qj(t)

′βi) + 1,

Ṗj(t) =− (1− γj)rj − αmλm,∞Qj,m(t)−
n∑
i=1

αiλi,∞Qj,i(t).

with Pj(T ) = 0, Qj(T ) = 0.

From Proposition 4.2, the optimal portfolio weights for any investor can be calculated
by solving simultaneously a set of equations – Equation (4.21) and (4.23). Specifically, for
a given investor j, one starts with the terminal condition Qj(T ) = 0 to derive the optimal
weights at the terminal time T , ŵjei(T ), ∀i. Then go back a small time interval ∆, and
calculate Qj(T − ∆) using ŵjei(T ). Continue with the recursive algorithm until time zero.
A step size as small as a quarter of a day is enough to generate the desired accuracy. The
computation burden in Proposition 4.2 is almost negligible compared to numerically solving
the multi-dimensional HJB equation.

Here, ŵjei only measures the direct position on currency i in investor j’s portfolio. Even
if ŵjei = 0, investor j still indirectly invests in currency j through investing in the currency-
hedged stock j.

The pricing kernel of a country j only prices equity and currency j risks. Why would
investor j invest in a foreign currency whose risk is not compensated domestically? Espe-
cially for the base investor, who only earns risk premium through equity risks, it is tempting
to think that stocks and stock derivatives are sufficient assets to optimize his/her portfolio.
Why would the base investor directly invest in foreign currencies at all, apart from those for
currency hedging purposes? The answer lies in the fact that equity risk and currency risk
are contagious, making currency jump intensities stochastic state variables of the economy.
Investors would demand currency exposure to hedge state variable risks.

As one may expect, if the jump components were Poissonian, the base investor would not
invest in any foreign currency (provided that he/she has access to stocks and stock options).
In other words, the base investor would hedge 100% of the currency risk in his/her portfolio.4

One important distinction between the optimal currency hedging strategy predicted by
our model and that of Campbell et al. [28] is that the optimal currency demand in our model
is home currency dependent. In Campbell et al. [28], for example, the residents of both the
United States and Germany will have the same optimal demand for Australian dollar. In
our model, however, since the currency demand is generated through nonlinear dependence
between currencies and the equity market, investors from different home currencies would
have different demand for a foreign currency in general.

4Same would apply to investors from other countries if the market were complete. Since stocks and stock
derivatives are not sufficient to complete the market in a non-base country, we cannot draw the same conclusion
for other investors.
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4.3.3 The Separation Theorem
Solnik [112] proves a three-fund separation theorem in the context of a geometric Brownian
motion model. In particular, he shows that investors are indifferent between the country
stocks and a market equity index. Observe that in Equation (4.18), while there are n + 2
equity risk factors – (n + 1) country-specific Brownian risk factors and one global equity
jump factor) – there are 2(n + 1) equity assets (one stock and one stock option from each
country). One can also see from Equation (4.21) that the matrix to be inverted has full row
rank but not full column rank, indicating redundant equity assets.

The next theorem presents the n+ 1 + 2 fund separation result of our model.

Theorem 4.1. Every investor is indifferent between choosing portfolios from the original
3(n + 1) assets or from (n + 1) + 2 funds. From the perspective of investor j, a possible
choice for those funds is

• the market equity index (hedged against currency risk) M̂ j , as defined in Equation
(4.4).

• a portfolio of stock derivatives (hedged against currency risk) D̂j , defined as

D̂j =
n∑
i=0

kiÔ
j
i ,

with

(k0, . . . , kn)′ =
σ−1o σ

′
eh

ι′(σ−1o σ
′
eh)

, (4.24)

• the n+ 1 bonds of each country.

In light of Theorem 4.1, the investable asset universe for every investor is the n+1 bonds
of each country (the domestic bond is regarded as the risk-free asset), a currency-hedged
global equity index

dM̂ j(t)

M̂ j(t)
= µjmλm(t) dt+ σm

√
λm(t) dWm(t) + jjm( dNm(t)− λm(t) dt),

and a currency-hedged portfolio of stock derivatives

dD̂j(t)

D̂j(t)
= µjdλm(t) dt+ σd

√
λm(t) dWm(t) + jjd( dNm(t)− λm(t) dt),

with

σd =
σm

ι′(σ−1o σ
′
eh)

, jjd =
h′σeσ

−1
o

ι′(σ−1o σ
′
eh)

jjo .

We may redefine the optimal asset allocation problem in terms of the market equity,
market derivative portfolio and the bonds.

Problem 4.2. Let there be a representative investor from each country j, who has expected
power utility with risk aversion γj and aims to maximize his/her expected utility at time t = 0
through optimally investing:

sup
ŵj

E0

[Xj(T )1−γj

1− γj

]
, (4.25)
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subject to the budget constraint:

dXj(t)

Xj(t−)
=ŵjm

dM̂ j(t)

M̂ j(t−)
+ ŵjd

dD̂j(t)

D̂j(t−)
+

n∑
i=0

ŵjei
dBj

i (t)

Bj
i (t
−)
. (4.26)

The following proposition solves the above portfolio choice problem.

Proposition 4.3. The asset allocation problem in Problem 4.2 has a solution

ŵj = (ŵjm, ŵ
j
d, ŵ

j
e0
, . . . , ŵjen).

The optimal portfolio weight is given by solving the following nonlinear equation for ŵj ,
−E[yi]− γjŵjeiv

2
i + eQ

′βiE[(1 + ŵjeiyi)
−γjyi] = 0, i = 1, . . . , n,(

ŵjm
ŵjd

)
=

(
σm σo

ĵjm ĵjd

)−1(
θjm −

∑n
l=1 ŵ

j
el
σelh0σs0/σm

(1 + ĵjej)θ
j
n −

∑n
l=1 ŵ

j
el
jel

)
,

(4.27)

where {
θjm = 1

γj
ηj,

θjn = (1 + κj)
− 1
γj exp( 1

γj
Q′jβm)− 1.

(4.28)

Here, ŵjei = ŵjei(t = 0),Qj = Qj(t = 0), in whichQj(t) is a deterministic vectored process
given by Equation (4.23).

4.4 Properties

In Chapter 4.3.3 we show that the asset allocation problem boils down to optimally investing
in the global equity index, the global derivative portfolio and currencies. In this section, we
focus on the optimal weights on this simplified universe of assets (instead of the country-
specific stocks and derivatives), especially the optimal weights on currencies. In Chapter
4.4.1, we decompose the optimal net currency weight into four components, among which
the intertemporal hedging component is of particular interests. In Chapter 4.4.2, we conduct
comparative statics analysis of the intertemporal hedging demand with respect to jump risk
parameters.

4.4.1 Decompose the currency weight

Now that we have solved the asset allocation problem for investors from each country, we
study the property of the optimal net currency weights in their portfolios in this section.
Note that the solutions given by Proposition 4.3 are general results where exchange rates are
exposed to both the equity jump component and the currency-specific jump component. In
this section, we make the simplified assumption that ji = 0,∀i = 1, . . . , n, so that the equity
jump component Nm does not drive currency returns.

We can write the HJB equation in terms of portfolio weights on the global equity index,
the derivative portfolio and the risky currencies. We suppress the time dependence if no
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confusion is caused.

0 = sup
ŵj

{
Jt +

(
rj + ŵjm(µ̂jm − ĵjm)λm + ŵjd(µ̂

j
d − ĵ

j
d)λm +

n∑
i=1

ŵjei(µ̂
j
ei
λm − E[yi]λi)

)
Jxx

+ αm(λm,∞ − λm)Jλm +
n∑
i=1

αi(λi,∞ − λi)Jλi +
1

2

((
ŵjmσm

)2
λm +

(
ŵjdσd

)2
λm

+
n∑
i=1

(
ŵjei
)2

(σ2
ei
λm + v2i λi) + 2ŵjmŵ

j
dσmσdλm + 2

n∑
i=1

ŵjmŵ
j
ei
σmσeiλm

+
n∑
i=1

n\i∑
l=1

ŵjeiŵ
j
el
σeiσelλm + 2

n∑
i=1

ŵjdŵ
j
ei
σoσeiλm

)
Jxxx

2

+ λm

(
J
(
x(1 + ŵjmĵ

j
m + ŵjdĵ

j
d),λ+ βm

)
− J

)
+

n∑
i=1

λiE
[(
J
(
x(1 + ŵjeiyi),λ+ βi

)
− J

)]}
.

If ŵjm, ŵ
j
d, ŵ

j
ei

given by Proposition 4.3 are optimal, then by substituting J for its functional
form (4.20), ŵjei must satisfy the following first order conditions

0 =µ̂jeiλm − E[yi]λi − γj
(
ŵjdσdσeiλm + ŵjmσmσeiλm +

n∑
l=1

σelσeiλm

+ ŵjei(σ
2
ei
λm + v2i λi)

)
+ λie

Q′jβiE[(1 + ŵjeiyi)
−γjyi], (4.29)

=:aji − γj
(
ŵjdσid + ŵjmσim +

n∑
l=1

ŵjelσjl

)
+ λi(Yi − E[yi]) + λi(e

Q′jβi − 1)Yi,

where aji := µ̂jiλm is the expected excess return of currency i for investor j; σid := σdσeiλm
is the covariance between the derivative portfolio and currency i; σim := σmσeiλm is the
covariance between the market equity portfolio and currency i; σil := σeiσelλm is the covari-
ance between currency j and currency l; bi := σ2

ei
λm + v2i λi is the instantaneous variance of

currency i; and Yi := E[(1 + ŵjeiyi)
−γjyi] is the marginal utility increase induced by jump

component Ni from investing in one unit of foreign currency i.
Rearrange Equation (4.29) and get

ŵjei =
1

γjbi

{
aji︸︷︷︸
I

−γj(ŵjdσid + ŵjmσim +

n\i∑
l

ŵjelσei)︸ ︷︷ ︸
II

+ λiYi︸︷︷︸
III

+λi(e
Q′jβi − 1)Yi︸ ︷︷ ︸

IV

}
. (4.30)

The optimal portfolio weights consists of a risk premium demand (I), a risk management
demand (II), a myopic buy-and-hold demand (III), and an intertemporal hedging demand
(IV).

The risk premium demand (I) is determined by the expected excess return on investing
in foreign currency i. It is a return-driven demand. A larger expected excess return indicates
larger appreciation of the currency in expectation with respect to the domestic currency. The
risk management demand (II) exploits the diversification benefit of investing in the risky
currency. The diversification potential is measured by its covariance with the market equity,
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equity derivative portfolio and other risky currencies. This is the demand that has been exten-
sively studied in the international empirical finance literature. For example, Glen and Jorion
[71], Campbell et al. [28], and De Roon et al. [45] all base their currency hedging strategies
solely on the risk management demand (covariance with the market equity portfolio).

The myopic buy-and-hold demand (III) arises due to currency jumps. As explained by
Liu et al. [92], unlike continuous fluctuations, jumps may occur before the investor has the
opportunity to adjust the portfolio. Jump risks, therefore, are similar to “illiquidity risk”: the
investor has to hold the asset until the jump has occurred. Observe that

Y j
i ∝ ∇ŵjei

E[u(Xj(t))− u(Xj(t
−))|Ni(t)−Ni(t

−) = 1].

E[u(Xj(t))−u(Xj(t
−))|Ni(t)−Ni(t

−) = 1] is the expected utility gain at time t conditional
on an occurrence in jump component i at time t . Therefore (III) is the expected marginal
utility increase induced by jump component i from investing in one unit of currency i at time
t. The buy-and-hold demand is “myopic” in the sense that it does not take into account the
uncertainties of future jump intensities. Note that in case of γj = 0, meaning that the investor
is risk neutral, this term is zero.

The last term (IV) is tailored to account for the fact that the jumps are mutually excit-
ing. Since currency returns and state variables λ(t) are driven by the jump compoent Ni(t),
currency i can be used to hedge future realizations of the state variables.

As one may expect, currency weights predicted by special cases of our model are com-
binations of the decomposed terms. In particular, if the currency returns are independent of
equity returns, as assumed by Solnik [112], the risk management demand (II) of the currency
is zero. If the economy is free of jumps as in Sercu [109], Adler and Dumas [2], and Black
[15], both the myopic buy-and-hold demand (III) and the intertemporal hedging demand (IV)
are zero. If the jumps are Poissonian with constant jump intensities as in Torres [115], the
intertemporal hedging demand (IV) is zero.

4.4.2 Comparative statics

The risk premium demand, risk management demand and the buy-and-hold demand com-
ponents of the currency weights can be interpreted in a straightforward way by observing
Equation (4.30). One can immediately tell that the risk premium demand (I) increases when
the investor can earn a higher expected excess return from investing in the risky currency;
the risk management demand (II) is negative when there is positive correlation between oth-
er assets and the currency and positive otherwise; the buy-and-hold demand (III) is negative
when the currency jumps downward and positive otherwise.

The intertemporal hedging demand (IV), however, depends on the excitation structure
between the equity jump component and the currency jump component. To see how (IV) is
determined by the jump excitation parameters, we conduct comparative statics analysis in
Figure 4.1 and 4.2.

We consider three countries: a base country with the base currency, Country I, and Coun-
try II. We make the simplified assumption that these three countries represent the global
financial market. We denote the currencies from these countries by the base currency, Cur-
rency I, and Currency II, respectively. Similarly, we call the representative investors from
these countries the base investor, Investor I and Investor II, respectively.

Here, we only study the comparative statics of the optimal net weight on Currency I from
the perspective of the base investor. The behaviour of the optimal net weight on Currency
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I for investor II has a qualitatively similar pattern. To keep the analysis clean, we adopt a
deterministic currency jump size y1, y2 < 0 in this section.
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Figure 4.1: The intertemporal hedging demand (IV) of Currency I for the base investor as functions
of elements in the excitation matrix β. The base case parameters are η0 = 0.1, σm = 0.2, σd =
0.1, σe1 = σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.1, αm = α1 = α2 = 35, β =
(15, 6, 6; 6, 8, 0; 6, 0, 8), T = 1, κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3, λm =
λ1 = 2.
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Figure 4.2: The intertemporal hedging demand (IV) of Currency I for the base investor as functions
of the mean reversion rate αm (top left), equity jump risk premium κ0 (top right), risk aversion γ0
(bottom left) and investment horizon T (bottom right). The base case parameters are η0 = 0.1, σm =
0.2, σd = 0.1, σe1 = σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.1, αm = α1 = α2 =
35, β = (15, 6, 6; 6, 8, 0; 6, 0, 8), T = 1, κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 =
3, λm = λ1 = 2.

We plot the intertemporal hedging demand (IV) of Currency I for the base investor as
functions of elements in the excitation matrix β in Figure 4.1. The figure shows that increas-
ing any element of the excitation matrix β increases the hedging demand (IV) of Currency I
in the base investor’s portfolio, whether it be the self excitor of the market equity, βm,m (top
left), the equity-currency excitor, βm,1 (bottom left), the currency-equtiy excitor, β1,m (top
right), or the self excitor of Currency I, β1,1 (bottom right).

Figure 4.2 plots the intertemporal hedging demand (IV) of Currency I for the base in-
vestor as functions of the mean reversion rate αm (top left), equity jump risk premium κ0
(top right),5 domestic risk aversion γ0 (bottom left) and the investment horizon T (bottom
right). Larger jump risk premium and longer investment horizon result in increasing hedging
demand for Currency I. On the contrary, faster mean reversion rate decreases the hedging
demand for Currency I for the base investor. Interestingly, increasing the risk aversion first
increases then decreases the base investor’s hedging demand.

When y1 < 0, from the perspective of the base investor, the foreign currency jumps
downward, opposite to the jumps in equity and currency jump intensities. Currency I, there-
fore, can be used as a static hedge against the state variables. As a result, the base investor

5For every κ0, we maintain that κ0 = κ1 = κ2.
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has a positive hedging demand for Currency I. The larger the hedging potential the risky
currency has against the state variables, the larger the hedging demand.

The currency jump intensity process λ1(t) is more volatile under larger excitation and
slower mean reversion. As one may expect, the more uncertain the state variables are, the
larger hedging incentive investors have. Loosely speaking, as the equity jump risk premium
increases, more weight is assigned to the market equity, which leads to more jump risks to be
hedged. Similarly, longer investment horizon leads to increased sensitivity of indirect utility
to state variables. In short, hedging demand rises when there are increasing uncertainties in
the indirect utility.

The effect of increasing the risk aversion, however, is not clear. On the one hand, in-
creasing the risk aversion decreases the demand for Currency I in general, implying a small-
er amount to be hedged. On the other hand, a more risk averse investor is more inclined to
hedge the changes in the state variable, and may have a larger hedging demand consequent-
ly. The final result depends on which effect is larger. Figure 4.2 shows that the effect of
increasing risk aversion is not monotone: it first increases and then reduces the jump risk
demand.

An interesting phenomenon is that while the currency weight ŵjei does not display market
timing, its components do. Figure 4.3, 4.4 plot the volatility-scaled four components of the
weight on Currency I in the base investor’s portfolio as functions of the equity jump intensity
λm and the currency jump intensity λ1, respectively.
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Figure 4.3: Comparative statics of the components (I, II, III, IV) of the optimal net weight on
Currency I for the base investor as functions of the current equity jump intensity λm. The upper
left panel plots the risk premium demand I, the upper right panel plots the risk management de-
mand II, the bottom left panel plots the buy-and-hold demand III, and the bottom right panel plots
the intertemporal hedging demand IV. The base case parameters are η0 = 0.2, σm = 0.2, σd =
0.1, σe1 = σe2 = −0.1, v1 = v2 = 0.05, jm = −0.03, jd = 0.02, αm = α1 = α2 = 35, β =
(15, 6, 6; 6, 8, 0; 6, 0, 8), T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ = 3, λ1 = λ2 = 2.

Figure 4.3 plots the components of the optimal weight on Currency I for an investor
from the base country as functions of the current equity jump intensity λm. The figure
shows that the risk premium demand I (upper left panel) increases with the equity jump
intensity. Since the expected excess return is proportional to the jump intensity, larger jump
intensity increases the compensation for the base investor. It is not surprising that given the
negative covariance with other assets, the risk management component II (upper right panel)
decreases with the equity jump intensity. Larger equity intensity increases the covariance,
resulting in more negative risk management demand. Both the myopic buy-and-hold demand
III (bottom left) and the intertemporal hedging demand IV (bottom right) approach zero as
the equity jump intensity increases. Larger equity jump intensity increases the currency
volatility bi but leaves the myopic demand and intertemporal hedging demand unchanged.
Therefore after volatility scaling, both components approach zero as volatility increases.
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Figure 4.4: Comparative statics of the components (I, II, III, IV) of the optimal net weight on
Currency I for the base investor as functions of the current Currency I jump intensity λ1. The upper
left panel plots the speculation demand I, the upper right panel plots the risk management demand
II, the bottom left panel plots buy-and-hold demand III, and the bottom right panel plots the hedging
demand IV. The base case parameters are η0 = 0.2, σm = 0.2, σd = 0.1, σe1 = σe2 = −0.1, v1 =
v2 = 0.05, jm = −0.03, jd = 0.02, αm = α1 = α2 = 35, β = (15, 6, 6; 6, 8, 0; 6, 0, 8), T =
1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ = 3, λm = λ2 = 2.

Figure 4.4 plots the components of the optimal weight on Currency I for the base investor
as functions of the current currency jump intensity λ1. We see opposite patterns to Figure
4.3. Both the risk premium demand I (upper left) and the risk management demand II (upper
right) converge to zero as the currency jump intensity increases. This is because larger
currency jump intensity raises the currency volatility but does not affect the expected excess
return or covariance matrix. Both buy-and-hold demand III (bottom left) and intertemporal
hedging demand IV (bottom right) increase in absolute value as currency jump intensity
rises. This is because increasing the currency jump intensity magnifies the currency jump
effect, thereby increasing the demands related to the currency jump component.

4.5 Market equilibrium

This chapter derives the equilibrium currency hedging strategies. Previous to this chapter,
we work with the net currency weight ŵjei . The raw currency weights are given by the net
weights plus the implicit currency investment in the currency-hedged assets. In order to
calculate the equilibrium currency hedging strategy, one needs to get to the raw currency
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weights. In Chapter 4.5.1, we introduce market clearing conditions. We give equilibrium
currency hedging formula in Chapter 4.5.2.

4.5.1 Equilibrium condition
Denote country j’s wealth as a proportion to the world wealth as fj = Xj/M

j . Following
Wang [118] and Bongaerts et al. [17], Definition 4.1 defines the market equilibrium as the
condition that the security markets clear.

Definition 4.1 (Market Equilibrium). Market equilibrium consists of the asset price pro-
cesses (M j(t), Dj(t)) and the trading strategies (wj) for j = 0, . . . , n, such that investor
j’s expected utilities is maximized

wj = arg supE0

[Xj(T )1−γj

1− γj

]
,

subject to their respective wealth dynamics:

dXj(t)

Xj(t−)
=wjm

dM j(t)

M j(t−)
+ wjd

dDj(t)

Dj(t−)
+

n∑
l=0

wjel
dBj

l (t)

Bj
l (t
−)
, j = 0, . . . , n. (4.31)

and the security markets clear
∑n

i=0 fi = 1,∑n
i=0 hi = 1,∑n
i=0 fiw

i
d = 0,∑n

i=0 fiw
i
el

= 0, l = 0, . . . , n.

(4.32)

The first equation implies that the sum of the market capitalization of each country equals
the total market capitalization. The second condition says that the total capital in the market
comes from the wealth of nations. The third and fourth equations impose that the net supply
of the equity derivatives and bonds should be zero, meaning that the gross lending in the
stock derivatives and bonds should be equal to the gross borrowing.

The security market clearing conditions imply that the wealth distribution f , country’s
market capitalization h and each country’s share in the derivative portfolio need to be con-
sistent with the return dynamics of equity and exchange rate return dynamics.

In Chapter 4.3, we have derived the optimal asset allocation on currency-hedged assets.
The following lemma shows how to compute the weights on the raw assets from the weights
on the hedged assets.

Lemma 4.1. The portfolio weights on the currency-unhedged assets are given by

wjm = ŵjm, ŵjo = ŵjo, j = 0, . . . , n (4.33)

wjei = ŵjei − hiŵ
j
m − kiŵ

j
d, i, j = 1, . . . , n, i 6= j, (4.34)

wjej = 1 + ŵjej − hjŵ
j
m − kjŵ

j
d, i, j = 1, . . . , n, (4.35)

wje0 = −
( n∑
i=1

ŵjei + h0ŵ
j
m + k0ŵ

j
d

)
, j = 1, . . . , n. (4.36)

Therefore we can equivalently construct the market clearing conditions using the weights
on the currency-hedged assets.
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Theorem 4.2. For fi, hi ∈ [0, 1], Equation (4.32) is equivalent to

∑n
i=0 fi = 1,∑n
i=0 hi = 1,∑n
i=0 fiŵ

i
m = 1,∑n

i=0 fiŵ
i
d = 0,∑n

i=0 ŵ
i
ej
fi − hj + fj = 0, ∀j = 1, . . . , n.

(4.37)

4.5.2 Equilibrium currency hedging
In Black [15], the equilibrium hedging strategy of currency i for investor j is defined as the
negative of the investment on currency i per unit of the global equity index invested,

Hj
i := −

wjei
wjm

. (4.38)

In terms of weights on the currency-hedged assets, Equation (4.38) can be expressed as

Hj
i = −

ŵjei − (hiŵ
j
m + kiŵ

j
d)

ŵjm
. (4.39)

Proposition 4.4 (Black’s formula). If all prices follow geometric Brownian motion processes
and all investors have the same risk aversion coefficient γ, then the equilibrium hedging
strategy of currency i for any investor j, j 6= i is given by

Hj
i -Black = fi(1− 1/γ), ∀j 6= i. (4.40)

Equation (4.40) is the well-known universal hedging formula derived by Black [15]. The
two key implications are: (1) In equilibrium, every investor hedges the same amount of any
risky currency i regardless of his/her home currency j; (2) The universal currency hedging
ratio of currency i only depends on two variables: the coefficient of relative risk aversion
and the total wealth held by investors in country i. This means that the currency’s expected
excess return, volatility or correlation with the equity market do not have a direct impact on
the hedging ratio of the currency, as long as the wealth holdings and risk attitude are fixed.

4.6 Safe haven vs. investment currencies
In Ranaldo and Söderlind [103], a safe haven currency is a currency that offers hedging
benefits on average. For instance, Campbell et al. [28] show that Swiss franc and Euro are
negatively related to the equity market. However, correlations between currencies and the
equity market turn out to be unstable and may switch between positive and negative values
periodically. Even worse, during the 2007-2009 financial crisis, as Kohler [85] notes, “a large
number of currencies that were not at the center of the turmoil depreciated, even those which
were regarded as safe haven currencies preceding the crisis”. Ranaldo and Söderlind [103]
also confirm that safe haven effects went against typical patterns during the 2008 financial
crisis.

Therefore we focus on the alternative definition of safe haven currencies in Ranaldo and
Söderlind [103]: a currency is considered safe haven if it gives hedging benefits in times of
stress.
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We can intuitively distinguish a safe haven currency and an investment currency in our
framework. A safe haven currency provides a safe haven to investors during a recession.
Therefore a safe haven currency should be relatively immune to capital market turmoil. In
our model, the excitor βm,i measures how large a jump occurrence in the equity market Nm

raises the intensity of the currency jump component λi. A safe haven currency, therefore,
should have a relatively small βm,i. An investment currency, on the contrary, is like the
mirror image of safe haven currencies and is characterized by a relatively large βm,i. As a
consequence, a safe haven currency is not as prone to the equity market downturns as an
investment currency.

Whether a currency is of the “safe haven” type or “investment” type has important im-
plication in determining the optimal currency exposure. Observe that βm,i plays a different
role from βi,m in determining the currency demand. Recall that the intertemporal hedging
demand (IV) is a function of βi, in which βi,m and βm,i are not weighted symmetrically.
Therefore imagine a safe haven currency and an investment currency with identical risk pro-
file (including expected return, covariance, jump size, jump intensity, etc.) except that the
safe haven currency has smaller equity-currency excitor βm,i, the demand for these two risky
currencies would be in general different.

4.6.1 Equilibrium net currency weight

In this section, we are going to illustrate investors’ preferences towards the safe haven cur-
rency numerically. Similar to the numerical studies in Chapter 4.4.2, we consider a three-
currency scenario including a base currency.

Figure 4.5 and Figure 4.6 plot the equilibrium net weight on Currency I for the base
investor, ŵ0

e1
, when the equity-currency contagion structure changes, using the first Equa-

tion of (4.27). We fix the first and third row of the excitation matrix. The equity-currency
contagion structure for Currency II does not vary. In Figure 4.5, we let the equity-currency
excitor βm,1 increase while varying the currency self excitor β1,1 so that the expected jump
intensity E[λ1] is kept the same. Conversely in Figure 4.6, we let the currency-equity excitor
β1,m increase while varying the currency self excitor βm,m so that the expected equity jump
intensity E[λm] does not vary. The equilibrium net weights on Currency I are plotted in the
solid curves, and those on Currency II are depicted in dotted curves.
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Figure 4.5: Equilibrium net weight on Currency I (solid line) and II (dotted line) of the
base investor as a function of the equity-currency excitor βm,1. The equilibrium net currency
weight for the base investor is computed using Equation (4.27). The excitation matrix is β =
(15, 6, 6;βm,1, β1,1, 0; 6, 0, 8). We let βm,1 increase and find the corresponding β1,1 such that the
expected equity and currency jump intensities do not vary with the excitation matrix. All the other
parameters are kept constant at η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm = α1 = α2 =
35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

Jump excitation structure determines the intertemporal hedging demand for currencies.
The x-axis in Figure 4.5 starts with 0, indicating that an occurrence in the equity jump
component does not increase the probability of a depreciation of Currency I. In comparison,
at the end point of the x-axis, an occurrence in the equity jump component raises the jump
intensity λ1(t) by 6. As βm,1 increases, the impact of a price plunge in the equity market
on Currency I increases, making Currency I less safe haven. When Currency I moves away
from a safe haven currency and towards an investment currency, the base investor decreases
the net weight on Currency I and slightly increases that on the other risky currency, Currency
II.

Figure 4.6 plots the equilibrium net weight on Currency I (solid line) and II (dotted line)
of the base investor as a function of the currency-equity excitor β1,m. Similar to Figure 4.5,
the expected jump intensities of the equity and currencies are kept constant.
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Figure 4.6: Equilibrium net weight on Currency I (solid line) and II (dotted line) of the
base investor as a function of the currency-equity excitor β1,m. The equilibrium net currency
weight for the base investor is computed using Equation (4.27). The excitation matrix is β =
(βm,m, β1,m, 6; 6, 8, 0; 6, 0, 8). We let β1,m increase and find the corresponding β1,1 such that the
expected equity and currency jump intensities do not vary with the excitation matrix. All the other
parameters are kept constant at η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm = α1 = α2 =
35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

Note that in both Figure 4.5 and 4.6, the two non-base currencies have the same risk
profile (volatility, covariance with the equity, jump amplitude, expected jump intensity) ex-
cept the excitation structure with the equity market. Figure 4.5 shows what happens when
Currency I moves from a safe haven currency to an investment currency. When βm,1 is s-
mall, the currency has the safe haven characteristic thus is stable during market downturns.
As βm,1 increases, the currency becomes more liable to depreciate during the capital market
turmoil. We observe from the figure that the base investor demands more currency exposure
when the currency is of the safe haven type. In Figure 4.6, even though the dependence be-
tween the equity and Currency I increases all the same (just like Figure 4.5), the optimal net
currency weight displays an opposite pattern to Figure 4.5. Comparing Figure 4.5 and 4.6,
we conclude that when it comes to portfolio choices, the direction of excitation matters. In
particular, a currency is only safe haven when the equity-currency excitor is small.

4.6.2 Equilibrium currency hedging strategy
In this section, we study what happens to the equilibrium currency hedging strategy given in
Equation (4.39) as the equity-currency excitor increases.

For a cleaner illustration of the distinction between the equilibrium currency hedging
prediction of our model and that of Black [15], we fix the risk aversion parameter γ and the
wealth distribution vector f , such that the prediction of Black [15] is not affected by the
variation in the equity-currency contagion. The equilibrium needs to be restored at every
new excitor value. To do this, we allow the global equity index and derivative portfolio to be
endogenous. The detailed algorithm of finding and restoring the market equilibrium can be
found in Appendix 4.C.
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Figure 4.7 compares the equilibrium currency hedging ratio of our model to the univer-
sal hedging ratio given in Equation (4.40) of Black [15]. The left panel plots the model
prediction of the hedging ratio of currency I in equilibrium when Currency I moves from
a safe haven currency to an investment currency, using Equation (4.39). The hedging ratio
of Currency I for the base investor is plotted in the solid curve, while that for Investor II is
plotted in the dotted curve. The figure is produced in the same way as Figure 4.5 but with the
dependent variable being the hedging ratio of Currency I. We see that as Currency I becomes
more prone to equity market downturns, both investors from the base country and Country
II hedge a larger proportion of the risk of Currency I.

The right panel of Figure 4.7 plots the currency hedging prediction calculated using the
Black hedging formula (4.40). We see that the equilibrium currency hedging in the Black
model does not change when Currency I is no longer safe haven. Notice that in the right
panel, one curve is visible because the base investor and Investor II have the same hedging
ratio of Currency I, namely, the universal hedging ratio.
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Figure 4.7: Equilibrium hedging ratio of Currency I as a function of the equity-currency excitor
βm,1. The left panel plots the hedging ratio calculated by Equation (4.39). The hedging ratio for the
base investor is plotted in the solid curve, while that for Investor II is plotted in the dotted curve. The
right panel plots Black’s universal hedging ratio for Currency I (see Equation (4.40)). Here, one curve
is visible because the base investor and Investor II have the same hedging ratio. The excitation matrix
is β = (15, 6, 6;βm,1, β1,1, 0; 6, 0, 8). We let βm,1 increase and find the corresponding βm,m such
that the expected equity and currency jump intensities do not vary with the excitation matrix. The
following parameters are kept constant at η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm =
α1 = α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

Figure 4.8 plots the equilibrium hedging ratio of Currency I as a function of the currency-
equity excitor β1,m. Similar to Figure 4.7, we keep the risk aversion parameter γ, the wealth
distribution vector f , and the expected jump intensities constant. We see that increasing the
currency-equity excitor leads to opposite patterns as increasing the equity-currency excitor,
although both leads to larger equity-currency dependence. Similar to the right panel of Figure
4.7, increasing the currency-equity beta does not have an impact on the Black’s hedging
strategy.
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Figure 4.8: Equilibrium hedging ratio of Currency I as a function of the currency-equity excitor
β1,m. The left panel plots the hedging ratio calculated by Equation (4.39). The hedging ratio for
the base investor is plotted in the solid curve, while that for Investor II is plotted in the dotted curve.
The right panel plots Black’s universal hedging ratio for Currency I (see Equation (4.40)). Here, one
curve is visible because the base investor and Investor II have the same hedging ratio. The excitation
matrix is β = (15, 6, 6;β1,m, β1,1, 0; 6, 0, 8). We let β1,m increase and find the corresponding β1,1
such that the expected equity and currency jump intensities do not vary with the excitation matrix.
The following parameters are kept constant at η0 = 0.3, σe1 = σe2 = −0.1, v1 = v2 = 0.05, αm =
α1 = α2 = 35, T = 1, κ0 = κ1 = κ2 = 0.02, y1 = y2 = −2%, γ0 = γ1 = γ2 = 3.

In Figure 4.5, 4.6, 4.7, and 4.8, we use call options as the derivative assets. In Appendix
4.D, we show that if we use put options and straddles instead of call options, the patterns are
qualitatively similar.

All else equal, investors prefer safe haven currencies to investment currencies regardless
of their home currencies. The latter is more likely to go through a substantial depreciation
once the equity market experiences a price plunge. Investors with exposure to investment
currencies have to take the risk that the currency investment will go down during financial
crises. Exposure to safe haven currencies, however, can act as a shield to the equity invest-
ment: when the equity market is in turmoil, the value of the safe haven currencies typically
remains stable.

4.7 Conclusion

Inspired by the empirical findings that there exists risk spillover from the equity market to the
currency market, we revisit the classic equilibrium currency hedging problem established by
Solnik [112] and Black [15] under the context of equity-currency contagion. We postulate a
mutually exciting jump diffusion model to jointly model equity returns and currency returns.
Our model is consistent with the extant literature in that (1) the currency returns are subjected
to country-specific risk factors as well as global risk factors, and (2) currency returns are
subjected, but not limited, to equity risks. On top of these features, we further allow for
cross excitation among the equity jump component and the currency jump components.

We assume that the global market is integrated and free of arbitrage opportunities, in
which case the return of a currency is equal to the difference in the returns of the pricing
kernels of the two countries. We first solve analytically the asset allocation problem for every
representative investor in terms of the currency-hedged assets. We show that the optimal net
currency weights can be decomposed into four components: (1) a risk premium demand that
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earns the expected excess returns by taking currency risks, (2) a risk management demand
that exploits the diversification benefits embedded in the instantaneous covariance matrix
with other assets in the portfolio, (3) a myopic buy-and-hold demand which is induced by
discontinuities (jumps) in the returns, and (4) an intertemporal hedging demand that hedges
the state variable risks. The intertemporal hedging demand is a result of the mutually exciting
nature of the jump components. Loosely speaking, the intertemporal hedging demand for
currencies increases when there is more uncertainty in the state variables and when there is
more jump risk to hedge.

Next, we impose security market clearing conditions to derive the equilibrium currency
hedging strategy, defined as the negative of the investment on a risky currency per unit of
global equity index invested. Compared with the classic equilibrium currency hedging ratio
of Black [15], our prediction has two distinctive features. First, the universal hedging ratio
no longer holds: investors with different domestic currencies will have different currency
hedging ratios in general. Second, the dependence structure between the equity market and
the currency market does matter: everything else equal, investors hedge more investment
currency risk than the safe haven currency risk, whereas investors can be indifferent in Black
[15].
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Appendices

4.A Proofs
Proof for Proposition 4.1. Define

Xj(t) = log Sj(t),

ψ(u) = e−rj(τ−t)EQj [exp(uXj(τ))|Ft].
Under the risk neutral measure Qj of country j, the dynamics of Xj(t) follows

dXj(t) =
(
rj −

1

2
σ2
sj
λm(t)

)
dt+ σsj dW

Qj
j (t)

+ log(1 + jsj)( dNQj
m (t)− (1 + κj)λm(t) dt).

The jump process NQj
m (t) has intensity (1 + κj)λm(t) under the risk neutral measure of

country j. Duffie et al. [50] show that the price of a call option Cj(t) is given by

Cj(t) = G1,−1(− logKj)−KjG0,−1(− logKj),

where Ga,b(y) denotes the price of a security that pays eaXj(T ) at time T in case of bXj(t) ≤
y. The Fourier transform Ga,b(·) is defined as

Ga,b(u) :=

∫ +∞

−∞
eizydGa,b(y)

=EQjt [exp((a+ iub)Xj(T )]

=ψt(a+ iub).

Employ the Duffie et al. [50] transform analysis, define

K0 =

(
0

αmλ∞

)
, K1 =

(
0 −1

2
σ2
sj
− jsj(1 + κj)

0 −αm

)
,

(H1)11 = (0, σ2
sj

)′, H0 = 0,

l0 = 0, l1 = (0, 1 + κj)
′, θ(c) = exp

(
jsjc1 + c2βm,m

)
.

It holds that
ψt(u) = Sj(t)

u exp(P +Qλm(t)),

where P = P(t),Q = Q(t),

d

dt
Q(t) =

(1

2
σ2
sj

+ jsi(1 + κj)
)
u+ αmQ(t)− 1

2
u2σ2

sj

− (1 + κj)
(

(1 + jsj)
ueβm,mQ(t) − 1

)
,

d

dt
P(t) =− αmλm,∞Q(t).

Ga,b(y) can be recovered by applying the inverse Fourier transform formula

Ga,b(y) =
1

2
ψt(a)− 1

π

∫ ∞
0

Im[e−iuyψt(a+ iub)]

u
du.
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Proof of Proposition 4.2. Since the market is incomplete, we employ the stochastic control
method to solve the portfolio optimization problem. We can rewrite the budget constraint
(4.18), replacing the portfolio weight on stocks and stock options by the portfolio exposure
to equity risk factors, while keeping the portfolio weight on the foreign currency:

dXj(t)

Xj(t−)
=rj(t) dt+ θj′w

(√
λm dW +

1

σm
ηjh

′σs(LL
′)θjwλm dt

)
+ θjn( dNm − (1 + κj)λm dt) +

n∑
i=1

ŵjei(λi dt− vi
√
λi dZi + yi dNi − E[yi]λi dt).

Bellman’s optimality principle implies that

0 = sup
ŵj
AJ,

where A denotes the infinitesimal generator operator. The Hamilton-Jacobi-Bellman (HJB)
equation reads

0 = sup
θjw,θ

j
n,ŵ

j
ei

{
Jt +

(
rj + ηjh

′σs(LL
′)θjwλm/σm − θjn(1 + κj)λm −

n∑
i=1

ŵjeiE[yi]λi

)
Jxx

+ αm(λm,∞ − λm)Jλm +
n∑
i=1

αi(λi,∞ − λi)Jλi

+
1

2

(
θj′wLL

′θjwλm +
n∑
i=1

(ŵjeivi)
2λi

)
Jxxx

2

+ λm

(
J
(
x(1 + θjn),λ+ βm

)
− J

)
+

n∑
i=1

λiE
[
J
(
xj(1 + ŵeiyi),λ+ βi

)
− J

]}
.

We use Jt, Jx, Jλm , Jλi to denote the partial derivatives of J with respect to t, x, λm, λi, and
similarly for the higher order derivatives.

We take derivatives of J(t, x, λ) with respect to its arguments, substitute into the HJB
equation, and differentiate with respect to the portfolio risk exposure θjw, θ

j
n, and the currency

weights ŵjei , i = 1, . . . , n, to obtain the following first-order conditions:

0 =
1

σm
ηjh

′σs(LL
′)λm − γj(LL′)θjwλm, (4.41)

0 = −(1 + κj)λm + λme
Q′jβm(1 + θjn)−γj , (4.42)

0 = −E[yi]λi − γjŵjeiv
2
i λi + λie

Q′jβiE[(1 + ŵjeiyi)
−γjyi]. (4.43)

which results in Equation (4.21).
It should be noted that θjw, θ

j
n, ŵ

j
ei

are independent of Xt,λ(t) and are functions of Qj .
We now proceed to derive the ordinary differential equations for the time-varying coefficients
Pj(t) and Qj(t), under which the conjectured form (4.20) for the indirect utility function J
indeed satisfies the HJB equation. For this, we substitute (4.20), (4.41) and (4.42) into the
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HJB equation and obtain,

0 =Ṗj + Q̇j
′
λ+ (1− γj)

(
rj(t) + ηjh

′σs(LL
′)θjwλm/σm − (1 + κj)θ

j
nλm

−
n∑
i=1

ŵjeiE[yi]λi

)
+ αm(λm,∞ − λm)Qj,m +

n∑
i=1

αi(λi,∞ − λi)Qj,i

− 1

2
γj(1− γj)(θj′wLL′θjwλm +

n∑
i=1

(ŵjeivi)
2λi)

+ λm

(
(1 + θn)1−γ exp(Q′jβm)− 1

)
+

n∑
i=1

λi

(
E[(1 + ŵeiyi)

1−γj ] exp(Q′jβi)− 1
)
,

where Ṗj, Q̇j denote the derivatives of Pj(t), Qj(t) with respect to time t. The RHS of this
expression is an affine function in λm, λi. For this expression to hold for all λm, λi, the
constant term and the linear coefficients of λm, λi on the RHS must be set equal to zero
separately, which leads to the ordinary differential equation forQj(t) given in (4.23).

Proof of Theorem 4.1. By replacing the country-specific equities with a global market equi-
ty, Equation (4.21) can be written as

ŵjm
ŵjo0

...
ŵjon

 =


h0σs0 σo0 . . . 0

...
... . . . ...

hnσsn 0 . . . σon
jm jo0 . . . jon


−1

θjw0
−
∑n

i=1 ŵ
j
ei
σei

...
θjwn −

∑n
i=1 ŵ

j
ei
σei

θjn −
∑n

i=1 ŵ
j
ei
ĵjei

 . (4.44)

Notice that the matrix to be inverted is of full column rank. Therefore the equity weights
vector exists and is unique.

Next we show that all investors, regardless of their home currencies, will invest in the
same global derivative portfolio. Denote investor j’s position on the currency-hedged global
equity index by ŵjm. Multiplying each country equity’s weight in the market equity index,
we get hiŵjm which gives the weight on the country equities in investor j’s portfolio, i.e.,

hiŵ
j
m = ŵjsi .

Define σo as an (n + 1)× (n + 1) diagonal matrix with σoi on the diagonal. Further define
σe as an n× (n+ 1) matrix with with the [i, j]th element containing currency i’s exposure to
country j’s equity Brownian motion. The first equation of (4.19) implies that

σ′shŵ
j
m + σoŵ

j
o = θjw − σ′eŵj

e. (4.45)

Note that σe can be written as

σ′e =
(η0−η1

σm
σ′sh . . . η0−ηn

σm
σ′eh

)
.

In addition, Proposition 4.2 shows that

θjw =
ηj
σmγj

σ′sh.
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Therefore we have

σ′eŵ
j
e = σ′sh

(η0−η1
σm

. . . η0−ηn
σm

)
ŵj
e

=: (cŵj
e)σ

′
sh,

where c denote the 1× n vector
(η0−η1

σm
. . . η0−ηn

σm

)
. Equation (4.45) becomes(

ŵjm −
ηi

σmγj
+ cŵj

e

)
σ′sh+ σoŵ

j
o = 0,

from which we get

ŵj
o =

( ηi
σmγj

− ŵjm − cŵj
e

)
σ−1o σ

′
sh.

Notice that
(

ηi
σmγj

− wjm − cŵj
e

)
is a single number and σ−1o σ

′
sh is an (n + 1) × 1 vector.

Both terms are independent of the investor identity j. Therefore all investors will invest in
the same global derivative portfolio.

Proof for Lemma 4.1. The weights on the unhedged equity and equity derivatives should be
equal to the weights on the hedged ones,

wjm = ŵjm, wjd = ŵjd.

The raw weight on currency i, ŵjei should be the net currency weight ŵjej plus the currency
position embedded in the hedged assets,

wjei = ŵjei − hiŵ
j
m − kiŵ

j
d, j = 1, . . . , n.

The budget constraint (4.26) can be written as

dXj(t)

Xj(t−)
=ŵjm

dM̂ j(t)

M̂ j(t−)
+ ŵjd

dD̂j(t)

D̂j(t−)
+

n∑
i=1

ŵjei
dBj

i (t)

Bj
i (t
−)

+
(

1− ŵjm − ŵ
j
d −

n∑
i=1

ŵjei

) dBj
0(t)

Bj
0(t
−)

=ŵjm
dM j(t)

M j(t−)
+ ŵjd

dDj(t)

Dj(t−)
+

n\j∑
i=1

(
ŵjei − hiŵ

j
m − kiŵ

j
d

) dBj
i (t)

Bj
i (t
−)

−
(
h0ŵ

j
m + k0ŵ

j
d +

n∑
i=1

ŵjei

) dBj(t)

Bj(t−)
+
(

1 + ŵjej − hjŵ
j
m − kjŵ

j
d

) dBj(t)

Bj(t)
.

Collecting the coefficients of the raw asset returns, we get the desired equations in Lemma
4.1.

Proof for Theorem 4.2. The third equation is obtained by multiplying the third equation in
(4.32) by hj on both sides. And since wimhj = wisj , we get

∑n
i=0 fiŵ

i
m = 1. The other

equations can be easily verified by replacing the weights on the unhedged assets by the
hedged counterparts using Lemma 4.1.

Proof for Proposition 4.4. See Black Black [15].
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4.B Normalization in the base country
The pricing kernel specification of the base country can also be regarded as a normalization.
Suppose the jump components Nm, Ni were Poisson jumps with intensity λm and λi. Then
the assumption on the base currency can be regarded as a normalization without loss of
generality. To see this, observe the exchange rate of currency i against currency j,

dEj
i,t

Ej
i,t−

=
(
rj(t)− ri(t) + (µei − µej − σeiσej + σ2

ej
)λm + (v2j − E

[ y2j
1 + yj

]
)λj

)
dt

+ (σi − σj)
√
λm dWm(t)− vi

√
λi dZi(t) + vj

√
λj dZj(t)

+
jei − jej
1 + jej

( dNm(t)− λm(t) dt) + (yi dNi(t)− E[yi]λi(t) dt)

−
( yj

1 + yj
dNj(t)− E

[ yj
1 + yj

]
λj(t) dt

)
=
(
rj(t)− ri(t) + µ̄eiλ̄m

)
dt+ σ̄ei

√
λ̄m dW̄m(t) + v̄i

√
λ̄i dZ̄i(t)

+ (ȳi dN̄i(t)− E[ȳi]λ̄i(t) dt).

The global equity denominated in currency j is given by

d(M̂ j/E0
j )(t)

(M̂ j/E0
j )(t

−)
=rj(t) dt+

(
µm − σmσj − µj + σ2

j

)
λm(t) dt+ (v2j − E

[ y2j
1 + yj

]
)λj dt

+ (σm − σj)
√
λm(t) dWm(t)− vj

√
λj dZj +

jm − jj
1 + jj

( dNm(t)− λm(t) dt)

−
( yj

1 + yj
dNj − E

[ yj
1 + yj

]
λj dt

)
=:rj(t) dt+ µ̄mλ̄m dt+ σ̄m

√
λ̄m dW̄m + j̄m( dN̄m − λmdt).

Here, W̄m(t), Z̄i(t) are independent and standard Brownian motions. N̄m, N̄i are Poissonian
jumps with intensities λ̄m, λ̄i given by

λ̄m = λm + λj, λ̄i = λi + λj. (4.46)

In addition,

µ̄m =
(µm − σmσj + σ2

j )λm +
(
v2j − E

[
y2j

1+yj

])
λj

λm + λj
,

σ̄2
i =

(σi − σj)2λm + v2jλj

λi + λj
,

v̄i = v2i
λi

λi + λj
,

σ̄2
m =

(σm − σj)2λm + v2jλj

λm + λj
.

From which we see that currency j can be regarded as the base currency and the model can
be rewritten as the parametric form of Equation (4.7) by redefining the parameters.

The model proposed in Chapter 4.2.1, therefore, can be regarded as a natural extension of
the standard Poissonian jump diffusion model. We let the Poissonian jumps to be mutually
exciting to generate equity-currency contagion.
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4.C Numerical equilibrium calculation

In this section, we explain the numerical algorithms we use for the equilibrium calculations.
We will introduce the algorithm to find an initial equilibrium and the algorithm to restore the
equilibrium. To produce Figure 4.7 and Figure 4.8, we employ the former to find an initial
equilibrium. In particular, we take the return dynamics and investors’ preferences as given
and use Algorithm 4.1 to find the wealth distributor f and market capitalization ratio h that
clear the security market.

At every new excitor value, we use Algorithm 4.2 to restore the equilibrium. There, we
take the wealth distributor f and currency dynamics as given and find the equilibrium market
equity process.

Algorithm 4.1 (Algorithm to find an initial equilibrium). Let the equity returns and exchange
rate dynamics be given. The purpose is to find a wealth distributor f and a market capital
distributor h that clear the security markets. We use the following algorithm to find an initial
equilibrium, where Figure 4.7 and Figure 4.8 start with.

1. Solve for the optimal net currency holding ŵjei for each investor j = 0, . . . , n, and for
each currency i = 1, . . . , n, using Proposition 4.2.

2. According to the security market clearing conditions given by (4.37), the clearing of
the bonds market implies that

h− = ŵ0
ef + f−, (4.47)

where h− is a vector containing h1, . . . , hn; f− is a vector containing f1, . . . , fn; ŵe

is an n× (n+ 1) matrix defined as

ŵe =

ŵe1 . . . ŵne1
...

...
...

ŵen . . . ŵnen

 .

Here, since h = (1 − ι′h−,h−)′, f = (1 − ι′f−,f−)′, we see that the global equity
index composition vector h can be expressed as a function of the wealth distribution
vector f and the net currency holdings.

3. According to the third and forth equations of (4.37), the equity and derivative market
clearing condition imply that{

σm =
∑n

j=0 fjθ
j
m +

∑n
i=1 σei(fi − hi),

jm =
∑n

j=0(1 + jej)fjθ
j
n +

∑n
i=1 jei(fi − hi).

(4.48)

4. But the global equity index needs to be a weighted average of countries’ equities with
the weights h, therefore

σ2
m = h′Σh, jjm =

n∑
i=0

hijsi(1 + jej). (4.49)
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5. Substitute σm and jm on the LHS of Equation (4.49) by Equation (4.48) and get( n∑
j=0

fjθ
j
m +

n∑
i=1

σei(fi − hi)
)2

= h′Σh, (4.50)

n∑
j=0

(1 + jej)fjθ
j
n +

n∑
i=1

jei(fi − hi) =
n∑
i=0

hijsi(1 + jej), (4.51)

with h a function of f given by Equation (4.47). We hence arrive at two equations of
the vector f (which has n− 1 unknown elements). With carefully specified exogenous
parameters, one can easily find an n−dimensional simplex f ∈ Rn+1 such that the
above equations hold. Note that in case of n ≥ 2, the solution is not necessarily
unique.

6. Once a solution f to Equation (4.50) and (4.51) is found, one can calculate the corre-
sponding h using Equation (4.47).

Algorithm 4.2 (Algorithm to restore equilibrium). Let the international market be in equilib-
rium. Now we independently change the equity-currency excitor βm,i. The new equilibrium
is found as follows Variables that vary with βm,i are denoted by a bar to be distinguished
from the constant variables.

1. Solve for the new optimal net currency holdings ¯̂wjei for each investor j = 0, . . . , n,
and for each currency i = 1, . . . , n, using Proposition 4.3.

2. For fixed f , the bond market clearing condition implies that

h̄− = ¯̂wef + f−. (4.52)

3. From the perspective of the base investor, the equity and derivative market clearing
condition imply that{

σ̄m =
∑n

j=0 fjθ
j
m +

∑n
i=1 σei(fi − h̄i),

j̄jm =
∑n

j=0(1 + jej)fjθ
j
n +

∑n
i=1 jei(fi − h̄i).

(4.53)

4. But the global equity index needs to be a weighted average of countries’ equities with
the weights h,

σ̄2
m = h̄′Σ̄h̄, j̄jm =

n∑
i=0

h̄ij̄si(1 + jej), (4.54)

which leads to renewed countries’ stock volatility Σ̄ and jump amplitude j̄s, that are
compatible with Equation (4.53).

5. For the same type of the derivative contract, updated stock dynamics imply updated
option prices, which eventually leads to a new global derivative portfolio. Denote the
updated option parameters by σ̄o, j̄o. We have

σ̄d = k̄′Σ̄ok̄, j̄d =
n∑
i=0

h̄ij̄oi(1 + jei),

with

k̄ =
σ̄−1o σ̄

′
eh̄

ι′(σ̄−1o σ̄
′
eh̄)

.
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6. Calculate the new portfolio weights on the global equity index and global derivative
portfolio using(

w̄jm
w̄jd

)
=

(
σ̄m σ̄d
j̄m j̄d

)−1(
θjm −

∑n
i=1 w̄

j
ei
σei

(1 + jej)θ
j
n −

∑n
i=1

¯̂wjeijei

)
.

7. Calculate the new hedging strategy

H̄j
i := − w̄

j
i

w̄jm
= −

¯̂wji − h̄iw̄jm − k̄iw̄
j
d

w̄jm
.

4.D Robustness check
In this section, we show that the safe haven preferences in the equilibrium currency hedging
strategies is free of particular derivative contract chosen. The previous sections use call
options as derivative contracts and presents the safe-haven preference. In this section, we use
different derivative contracts and show that investors’ preferences for safe-haven currencies
in equilibrium are not affected qualitatively.

Similar to the call option price, the put option price Pj(t) with maturity τ and strike price
K is given by

Pj(t) = KG0,1(logK)−G1,1(logK), (4.55)

where Ga,b(·) can be calculated according to Equation (4.14) in Proposition 4.1.
Having priced the call and put options, we also consider a straddle. Inspired by Liu et al.

[92], we consider the following “delta-neutral” straddle:

Straddlej(t) = Cj(Sj(t), λm(t);K, τ) + Pj(Sj(t), λm(t);K, τ),

whereC and P are pricing formulae for call and put options with the same strike priceK and
time to expiration τ . As Liu et al. [92] comment, the “delta-neutral” straddle is made of call
and put options that are typically very close to the money, which can be used to intentionally
avoid deep out-of-the-money options due to liquidity issues.

Table 4.1 reports the equilibrium hedging ratio of Currency I and Currency II for the base
investor when different derivative contracts are used for a given equity-currency excitation
structure. The rows correspond to different derivative contracts. The first row reports the
hedging ratios when call options are used. The second row corresponds to put options and the
third row straddles. The three major columns are hedging ratios in different equity-currency
excitation scenarios. In case of “Large excitation”, Currency I and Currency II have the same
risk profile, including the excitation structure with the equity market. “Medium excitation”
refers to the case where the equity-currency excitor of Currency I is smaller than that in
the “Large excitation” scenario, while the excitation structure involving Currency II remains
unchanged from the “Large excitation” scenario. The equity-currency excitor of Currency I
is smallest in the “Small excitation” case. Across all three scenarios, the excitation structure
between the equity and Currency II does not vary. Also invariant are the expected jump
intensities of the equity jump component, Currency I jump component and Currency II jump
component.

The hedging ratio of Currency I is always the largest in case of “Large excitation” and
smallest in case of “Small excitation”, regardless of which derivative contracts are used. The
investor has a preference for the safe haven currency, in the sense that the more immune
the currency is to the equity turmoil, the less currency risk the investor hedges away in
equilibrium. This conclusion is robust regarding the derivative contracts chosen.
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Chapter 5

The Term Structure of the Currency
Basis

5.1 Introduction

Currency basis, defined as the difference between the currency forward premium (the loga-
rithm of the currency forward rate minus the logarithm of the spot exchange rate) and the in-
terest rate differential, is a term that has emerged only in recent years. Currency basis should
in theory be zero as ensured by the Covered Interest rate Parity (CIP) condition. However,
during the 2007-2009 financial crisis, this was not the case. The global financial crisis has
seen the currency basis between many foreign currencies and the US dollar amounted to
hundreds of basis points, beyond the explanation of transaction costs and data imperfection.
A statistically significant non-zero currency basis challenges the no arbitrage assumption.

To understand the link between the exclusion of the arbitrage opportunities and the CIP
condition, consider a USD/EUR forward contract. One can construct a currency basis trade
by entering a forward contract agreeing to buy US dollar using a pre-determined Euro price,
converting US dollar into Euro in the spot market, saving in the Euro money market, and
changing the Euro back to US dollar at maturity using the forward rate. Traditionally, it is
regarded as a risk-free trade, since there is no uncertainty about the trade – the interest rates
of the US and Europe and the forward exchange rate are known by the time the transaction
is made. In other words, the excess return of the currency basis trade should be zero. The
transaction in the cash market perfectly offsets the payoff in the derivatives market, implying
that the currency forward rate should be equal to the interest rate differentials of the two
countries. If the investor makes money as a result of such transactions, the profit will be
“risk free”.

Early studies tend to agree that the markets are efficient in the sense that after taking into
account data imperfections, brokage fees and other transaction costs, the covered interest rate
parity holds.1 In a landmark study, Taylor [114] documents small but potentially exploitable
profitable arbitrage opportunities during periods of turbulence. The recent financial crisis
starting in late 2007 has again witnessed a break down of the CIP condition, leaving “arbi-
trage opportunities” unexploited. Many papers have documented persistent and significant
deviations from CIP in various currency pairs using different interest rate instruments.2 So

1See Frenkel and Levich [66], Deardorff [46], Rhee and Chang [105], and the survey paper by Officer and
Willett [99].

2The documentation of the deviation from CIP in the 2007-2009 crisis can be found in Baba et al. [10],
Coffey et al. [37], Fong et al. [60], Genberg et al. [69], Sarkar [107], Hui et al. [79], and Mancini-Griffoli and
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far the extant literature has been focusing on the time series behavior of the currency basis.
Like interest rates, there exist different maturities for the currency basis. The term structure
of the currency basis is relatively less explored.

The first purpose of the paper is to empirically study the term structure of the currency
basis. We study the term structure through a panel of currency basis trade profits, constructed
as described before. Our data consist of daily zero-coupon bond returns of the US, Cana-
da, Australia and Europe, and FX spot and forward rates of US dollar vis-à-vis Australian
dollar (USD/AUD), Canadian dollar (USD/CAD), and Euro (USD/EUR), from August 2005
to June 2016. We construct an equally weighted portfolio of currency basis trades in the
aforementioned currencies. Specifically, we record the daily profit for a representative US
investor who borrows domestically, lends abroad, and hedges the currency risk using curren-
cy forward contracts. This way, we obtain a data panel of daily currency basis of different
maturities, averaged over three currency pairs. To offer a first impression of the term struc-
ture, we plot the annualized mean currency basis trade profits during the market turbulent
period in Figure 5.1. This figure, which is studied in more detail later in the paper, shows
that the US investor on average could make a larger profit by borrowing domestically and
lending abroad in the short term than in the long term. The profit from the currency basis
trade decreases as a convex function of time to maturity. Puzzling as it is that there exists a
statistically significant currency basis, more surprising is that we find a downward sloping
and convex shape of the term structure of currency basis during the financial crisis.
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Figure 5.1: The figure plots the sample mean of the returns (annualized) of an equally weighted port-
folio of currency basis trades of three currency paris – USD/AUD, USD/CAD, and USD/EUR, from
May 2007 to April 2009. The currency basis trade return for a particular currency pair is calculated
as the difference between the forward premium and the interest rate differentials of the US dollar and
the foreign country. The US dollar is regarded as the domestic currency.

The next question is why two contracts – the currency forward contract and the replica-

Ranaldo [94].
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5.1. INTRODUCTION

tion portfolio in the cash account – with essentially the same payoff would have different
prices? Or put differently, why would a currency basis trade, which seems to take no finan-
cial risk, earn a nontrivial excess return? Note that the currency forward contract is traded
over-the-counter in the derivatives market. If the investor forms a replication portfolio, the
transaction would be carried out in the cash market. The replication portfolio requires an
up-front investment of capital. By contrast, a forward contract in principle requires no pay-
ment by the time the contract is made.3 In other words, the derivatives market allows the
investor to leverage. With a relatively small initial outlay, the investor is able to take a large
speculative position [80]. While it may not lead to problems when the market is liquid, the
capital-intensive nature of the cash market may cause price deviations from the derivatives
market even with the same payoff when liquidity risk is high.

The capital constraint implicitly imposed by the cash market becomes binding when
we consider position unwinding risk, that is, the possibility that an investor needs to exit a
position before the contract matures. During tranquil periods, investors are seldom forced to
exit a position to free capital. When funding liquidity is tight, e.g., during a financial crisis,
however, arbitrageurs are more likely to exit the positions [110]. Such position unwinding
can be due to various reasons. For example, a mutual fund may sell securities because
it faces capital withdrawals from its shareholders [38]. A bank can increase its holdings
of cash sharply at the expense of other investment opportunities (such as lending) due to
liquidity preferences. Indeed, He et al. [78] show that from the last quarter of 2007 to the
first quarter of 2009, the cash and reserves of commercial banks grew almost tenfold, while
the total financial assets only increased by 20%. Shleifer and Vishny [110] also note that
fear of future fire sales encourages financial institutions to hoard cash rather than finance
investment, making cash-intensive investments less favorable.

In the derivatives market, position unwinding is relatively easy: the investor simply needs
to enter another forward contract with a third party, taking the opposite side to the original
contract. Suppose the investor replicates a forward contract in the cash market but needs to
free the capital before the maturity date for liquidity and unwind his position. He/She faces
the risk that the pre-mature bonds/deposits can only be sold at a lower price. For instance,
the old bonds usually have a lower price than the newly issued ones with the same time to
maturity, since they are less liquid.4

We propose an asset pricing model with position unwinding risk and show how position
unwinding risk and the on-the-run/off-the-run spread can contribute to a nontrivial currency
basis. In particular, we show that the possibility of a position unwinding event, the liquid-
ity differences of the fixed income markets of the two countries, and the interdependence
between the position unwinding event and market liquidity are key determinants of the mag-
nitude of the currency basis.

Indeed, the empirical literature finds liquidity risks to be the major driver of the currency
basis observed during market turmoil. Baba et al. [10] conclude that Dollar funding shortages
of non-US financial institutions were largely responsible for the large deviations from CIP
in 2007. As they explain,

...frequently reported were efforts by European financial institutions to secure
Dollar funds to support US conduits for which they had committed backup liq-

3Collateral may be required.
4In the deposit market, even worse, the investors are not allowed to withdraw pre-matured deposits, in

which case the liquidity loss is 100% of the asset price. However, considering that investors can borrow cash
pledging the deposits as collateral but with a haircut, we only consider the liquidity loss in the form of a
new-bond/old-bond spread without loss of generality.

101



CHAPTER 5. THE TERM STRUCTURE OF THE CURRENCY BASIS

uidity facilities. At the same time, the usual suppliers of Dollar funds to the inter-
bank market were looking to conserve their liquidity, due to their own growing
needs and increased concerns over counterparty credit risk.

In spite of the existing empirical studies, the questions (1) why there is a term structure of
the currency basis, (2) through which mechanism currency forward contracts are exposed to
liquidity risks, and (3) why these risk factors seem to be negligible during tranquil periods,
remain unexplored. The second purpose of the paper is to go one step further to the asset
pricing theory to see how, in a standard no arbitrage pricing model, market liquidity can
contribute to a nontrivial currency basis.

We therefore also contribute to the theoretical literature of the currency basis by answer-
ing these questions in an arbitrage-free asset pricing framework. Inspired by the empirical
literature, we consider liquidity risk in the form of position unwinding events and the on-the-
tun/off-the-run spread in our model.

Consider a forward contract deal with intermediate position unwinding. Suppose to-
day an investor enters a currency forward contract agreeing to buy Dollars with a certain
amount of Euros. To be able to deliver Euros at the maturity date, the investor starts with
an initial Dollar capital, converts it into Euro against the spot exchange rate, and buys a
Euro-denominated bond with the same time to maturity as the forward contract. At a certain
time before the contract matures, the investor may need to withdraw the capital in the Euro
cash market for additional liquidity. The investor therefore unwinds the forward contract by
entering a new forward contract to fulfil the original forward contract. By equating the initial
capital with the expected payoff under the risk neutral measure, we show that the currency
basis today is equal to the expectation of the future liquidity costs weighted by the position
unwinding probability, where the liquidity cost is measured by the price differences between
a new bond and an old bond with the same time to maturity.

To further derive the currency basis in explicit form, we impose structure on the position
unwinding intensity and the dynamics of the on-the-run/off-the-run spread. Consistent with
Goldreich et al. [72], we model the on-the-run/off-the-run spread as the risk neutral expec-
tation of future instantaneous liquidity risk. Inspired by the finding that market liquidity and
funding liquidity are linked,5 we model the position unwinding intensity as a factor process,
driven by liquidity state variables.

The convex and downward-sloping term structure of currency basis observed empirically
is informative on the nature of the instantaneous illiquidity process: they tend to impose a
larger impact on currency basis in the short term than in the long term. To be consistent
with this empirical observation, the instantaneous liquidity is modeled using mean reverting
processes.

We derive an explicit currency forward rate formula as a function of parameters that
characterize the instantaneous liquidity risk and the position unwinding intensity process.
In our model, violation of the CIP condition does not indicate risk-free profits. A non-
zero currency basis reflects potential liquidity costs the investor is bearing in the currency
basis trade. In case that either the probability of incurring a position unwinding event or
the liquidity premium attached to the new bonds is zero, we arrive at the CIP condition as a
special case.

We show that our model not only produces the time series variations of the currency
basis (high basis during crises and low basis in tranquil periods) but also delivers the convex
and downward sloping shape of the term structure. To our knowledge, this paper is the first

5See Brunnermeier and Pedersen [24], and Shleifer and Vishny [110].
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attempt to directly price the currency basis in a no arbitrage framework.
The rest of this chapter is organized as follows. Chapter 5.2 introduces the Covered

Interest rate Parity condition and how it implies no arbitrage. Chapter 5.3 documents the
term structure of the currency basis. Chapter 5.4 introduces the asset pricing model and
shows how market liquidity costs are reflected in the currency basis. Chapter 5.5 imposes
structure on the instantaneous liquidity process and the position unwinding intensity process
and derives an explicit formula for the currency basis. Chapter 5.6 calibrates the parameters
and shows numerically how our model is capable of matching the time series and cross
section patterns of the observed currency basis. Chapter 5.7 concludes.

5.2 The Covered Interest rate Parity
The currency forward contract is an agreement between two parties to exchange a certain
amount of currencies at a certain rate (forward rate) at a certain time (maturity date). A
currency forward contract is essentially a hedging tool that does not involve any upfront
cash payment. Currency forward contracts are not traded on a centralized exchange. They
are over-the-counter instruments and therefore can be tailored to a particular amount and
delivery period, unlike currency futures.

A well-known interest rate parity with the use of a currency forward contract is the Cov-
ered Interest rate Parity (CIP). Consider a currency forward contract at time twhich specifies
an exchange of F (t, T ) US dollar for 1 unit of foreign currency at maturity date T . The Cov-
ered Interest rate Parity refers to the following equation

f(t, T )− s(t) = (T − t)(r(t, T )− r∗(t, T )), (5.1)

where f(t, T ) is the logarithm of the forward rate F (t, T ); s(t) is the logarithm of the spot
exchange rate S(t); r(t, T ), r∗(t, T ) are the annualized continuously compounded risk free
return at time t with time to maturity T of the US and the foreign country, respectively.

To see why Equation (5.1) holds, consider a forward contract between Euro and US
dollar. Suppose at time t, Party B agrees to exchange Euro with Party A at a forward rate
F (t, T ) at time T (meaning that one Euro is worth F (t, T ) US dollar at time T ). From the
perspective of Party A, he can perfectly finance the contract by engaging in the following
trade. At time t, he converts 1 Dollar to 1/S(t) Euro and puts it in the Euro money market
account by, say, buying a Euro zero coupon bond that pays 1 Euro at time T with price
P ∗(t, T ) at time t. At the maturity date T , he has in total 1

S(t)P ∗(t,T )
Euros. He converts them

back to Dollars with the pre-specified forward rate and gets F (t,T )
S(t)P ∗(t,T )

Dollars. Since the
payoff of this transaction is certain – the spot exchange rate, the forward rate, the price of
the Dollar and Euro zero coupon bonds are all known at time t – the investor is taking no
risks. Therefore he should earn the Dollar risk free return. Using the Dollar-denominated
zero coupon bond as numeraire, it holds that

1

P (t, T )
=

1

P ∗(t, T )S(t)
F (t, T ), (5.2)

where P (t, T ) is the time t price of the US dollar-denominated zero coupon bond that pays
1 Dollar at time T . On the LHS of Equation (5.2), the investor starts with 1 Dollar as the
initial capital. On the RHS, the investor ends up with 1

P ∗(t,T )S(t)
F (t, T ) Dollar at time T .

Replacing P (t, T ) by exp(r(t, T )(T − t)), and P ∗(t, T ) by exp(r∗(t, T )(T − t)), Equation
(5.2) reduces to Equation (5.1).

103



CHAPTER 5. THE TERM STRUCTURE OF THE CURRENCY BASIS

5.3 Empirics: the cross-section of the currency basis

In this section, we are going to explore the currency basis empirically and study its stylized
facts both in the time series dimension and in the cross section dimension. We first introduce
some key concepts related to the currency basis in Chapter 5.3.1. Chapter 5.3.2 describes
the data we employ for the empirical analysis. We report the empirical statistics in Chapter
5.3.3.

5.3.1 Definitions

Currency forward premium Denote the (T − t)-year log forward exchange rate at time t
by f(t, T ). The currency forward premium is the difference between the logarithm of
the forward exchange rate and the spot exchange rate,

Forward Premium(t, T ) = f(t, T )− s(t).

(Annualized) Currency basis Denote the time t currency basis of maturity date T by
y(t, T ). It is defined as the (annualized) difference between the currency forward pre-
mium and the interest rate differential,

y(t, T ) :=
1

(T − t)

(
f(t, T )− s(t)

)
− (r(t, T )− r∗(t, T )). (5.3)

The Covered Interest rate Parity is equivalent to a zero currency basis. A non-zero
basis is traditionally regarded as a sign that one can make a sure profit by borrowing
one currency and saving in another, while hedging the currency risk with the forward
contract. Here, we assume zero transaction costs.

Term spread on the currency basis Fixing the current date t, the term spread of the curren-
cy basis of maturity date T1 and that of maturity T2, where T1 > T2, is the difference
between the annualized currency basis of the two maturities,

Term Spread(t;T1, T2) = y(t, T1)− y(t, T2).

Currency basis trade A currency basis trade is a currency forward contract and an offset-
ting cash portfolio. The forward contract allows the investor to buy currency A with
currency B at a future time T with a fixed rate F (t, T ). The investor converts currency
A into currency B using the spot exchange rate S(t) at time t and saves in the money
market of currency B. At time T , the investor withdraws the savings in currency B
and converts back to currency A using the forward contract. In short, a currency basis
trade is to lend a currency to another country today and hedge the currency risk using
the currency forward contract in the future. The excess return of the transaction is
therefore equal to the currency basis. The currency basis trade intends to profit from a
positive currency basis between currency A and B.

In the remainder, we use the term “currency basis”, “currency basis trade returns”, and
“deviations from CIP” interchangeably.
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5.3.2 Data

The forward and spot exchange rates can be easily collected from WM/Reuters. We obtain
forward exchange rates of the same maturity as the interest rates. All forward and spot ex-
change rates are sampled at 4 p.m. UK time. The 10-year forward exchange rate is typically
available since 2005. Therefore our sample starts in August 2005, by which time the 10
year forward rates become available for all currency pairs we are interested in, even though
interest rates data do go back to very early years. We also include the post-crisis periods to
act as a relatively “tranquil” period for better comparison. The sample starts from August
2005 and ends in June 2016.

To calculate the currency basis, we obtain interest rate data of different maturities of d-
ifferent countries. We study currency basis of Australian dollar vs. US dollar (USD/AUD),
Canadian dollar vs. US dollar (USD/CAD), and Euro vs. US dollar (USD/EUR). Interest
rates of longer maturities (2, 5, 10-year) are collected from the Thomson Reuters govern-
ment bond benchmark indices. We use government bond indices to get rid of the credit risk
premium in the long term interest rates. The benchmark indices of countries are based on the
selection rules and formulation recommended by EFFAS (European Federation of Financial
Analysis Societies). The benchmark index is formed using single bonds, usually the latest
issue. Consideration is also given to liquidity, yields, issue size and coupon rates, such that
the benchmark bonds are the most representative for a given maturity at each point in time.
The constituents of the index are reviewed daily by DataStream.

Interest rates of shorter (1, 3, 6, 12-month) terms of different countries are obtained from
different sources. Short term interest rates of Australia are bank accepted bill rates provided
by the Reserve Bank of Australia, reported in levels, percentage per annum. We collect
short term Canadian interest rates from the Bank of Canada, calculated using pricing data
of Canadian treasury bills. Euro interest rates are provided by the European Central Bank.
The yields are calculated based on government bonds issued in the Euro area (with changing
composition) with triple A ratings. US interest rates are based on treasuries with constant
maturity, obtained from the Federal Reserve Bank. For all countries, the interest rates include
1-month, 3-month, 6-month, 1-year, 2-year, 5-year, and 10-year maturities. We end up with
a balanced panel of interest rates containing daily observations of 7 maturities of 4 countries.
Sample mean and standard deviation of interest rates in these countries of different maturities
are reported in Table 5.1. During the sample period, all countries have an upward sloping
yield curve, except for Australia, whose yield curve has a slight smile shape.
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Mean and standard deviation of interest rates

Maturity 1m 3m 6m 1y 2y 5y 10y

US Mean 1.11 1.16 1.26 1.34 1.54 2.26 3.05
Std 1.78 1.80 1.83 1.77 1.62 1.30 1.01

AUS Mean 4.29 4.09 4.06 4.02 3.98 4.21 4.53
Std 1.67 1.67 1.72 1.70 1.57 1.44 1.18

CAN Mean 1.50 1.56 1.65 1.76 1.88 2.34 2.89
Std 1.36 1.38 1.40 1.38 1.27 1.15 0.99

EU Mean 1.13 1.16 1.19 1.27 1.44 2.01 2.77
Std 1.48 1.53 1.56 1.58 1.56 1.44 1.28

Table 5.1: The table reports the sample mean and standard deviation (Std) of interest rates of the US,
Australia (AUS), Canada (CAN) and Europe (EU) of one-month (1m), three-month (3m), six-month
(6m), one-year (1y), two-year (2y), five-year (5y) and 10-year (10y) maturities.

We construct currency basis trade returns, i.e., converting US dollar capital into a foreign
currency, investing in the government bonds of that foreign country and hedging the currency
risk with the forward contract of the same term. We calculate the currency basis of Australian
dollar, Canadian dollar and Euro against the US dollar for all maturities using Equation (5.3).
Figure 5.2 plots the currency basis of the three currency pairs of three-month maturity (at
which term the currency forward contract is the most liquid). Should CIP hold, the currency
basis between any currency pair would not exceed the range of trading costs. The transaction
cost associated with the CIP arbitrage trade has been estimated to be below 25 bps.6 This is
clearly contrary to what is observed in the market. From mid 2007 to mid 2009, the currency
basis of all three currency pairs stayed beyond 50 bps most of the time, and even went up to
as high as 450 bps in late 2008. The currency basis returned to the accepted level after 2010.

6The estimated transaction costs of engaging in currency basis trade is around 18 bps by Branson [22], and
15 bps by Frenkel and Levich [66].
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Figure 5.2: The figure plots the 3-month currency basis of Australian dollar against US dollar
(dashed line), Canadian dollar against US dollar (dotted line) and Euro against US dollar (solid line)
from August 2005 to June 2016.

To see how the currency basis covaries with the spot exchange rates, we plot the 3-month
currency basis (solid lines) with the logarithm of the spot FX rates (dashed lines) averaged
over USD/AUD, USD/CAD and USD/EUR in Figure 5.3. We normalize both series to have
mean zero and standard deviation 1 to facilitate comparison. We see that the spot exchange
rates have little comovement with the currency basis.
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Figure 5.3: The figure plots the average of the logarithm of the FX spot rates (dashed line) and the
3-month average currency basis of USD/AUD, USD/CAD, and USD/EUR from August 2005 to June
2016. Both series are normalized to have mean zero and standard deviation 1.

We admit that the data we employ for the empirical analysis on the currency basis have
limitations. A true deviation from CIP suggests making arbitrage profits without any fric-
tions. Ideally, the interest rate data and the exchange rate data used to calculate the CIP
deviation should be recorded at the same instant in time at which a trader could have dealt.
While the foreign exchange contracts are traded over-the-counter so that we can record spot
exchange rates and the forward rates at 4 p.m. London time, the interest rates of the fixed
income markets are end-of-the-day closing prices in each country, which suffer from time
zone differences. In addition, one needs to account for transaction costs incurred in forming
currency basis trades, including bid-ask spread, brokage fees and other associated costs. A
rigorous study on whether investors do make real-life profits through deviation from CIP is
beyond the scope of this paper. However, given the limitation of our data, a currency basis
beyond 50 bps and persistent for months can hardly be attributed to data imperfections.

5.3.3 The Term structure of the currency basis

We divide the sample into a period when the market is particularly turbulent (June 2007 –
December 2008) and a period when the market is relatively tranquil (August 2005 – May
2007 & January 2009 - June 2016). The summary statistics of the currency basis for the two
periods are reported in Table 5.2.

108



5.3. EMPIRICS: THE CROSS-SECTION OF THE CURRENCY BASIS

Panel A: Turbulent period: June, 2007 - December 2008

Maturity 1m 3m 6m 1y 2y 5y 10y

AUD Mean 153.64 110.45 76.29 41.58 6.06 -6.43 -3.71
Std 96.97 65.31 41.40 27.87 23.32 22.18 16.97
Skewness 2.07 1.81 2.10 1.91 0.75 0.81 0.61
Excess kurtosis 5.27 3.84 5.97 8.76 1.28 1.04 2.23

CAD Mean 60.23 66.94 58.00 52.84 37.63 27.82 9.12
Std 65.81 56.08 38.24 29.05 26.00 24.99 16.93
Skewness 1.18 1.40 1.73 2.03 1.85 2.35 1.68
Excess kurtosis 1.34 1.84 2.93 4.58 3.51 5.99 7.45

EUR Mean 103.08 87.08 57.15 46.46 55.00 62.52 55.66
Std 94.33 71.91 51.62 37.08 29.46 25.68 20.85
Skewness 2.54 2.55 2.40 1.84 1.61 1.27 12.24
Excess kurtosis 8.77 7.51 6.35 2.69 1.83 1.14 198.74

Portfolio Mean 105.65 88.16 63.81 46.96 32.90 27.97 20.36
Std 80.11 60.64 41.74 29.66 24.58 21.71 11.94
Skewness 2.16 1.89 2.05 1.78 1.62 1.54 2.90
Excess kurtosis 5.55 3.74 4.48 3.37 1.98 1.84 26.08

Panel B: Tranquil period: August, 2005 - May, 2007, January, 2009 - June, 2016

Maturity 1m 3m 6m 1y 2y 5y 10y

AUD Mean 18.23 6.05 0.51 -4.33 -21.07 -36.31 -45.42
Std 24.74 19.82 18.10 18.28 17.80 26.16 24.94
Skewness 0.51 1.08 0.81 0.57 -0.40 0.02 0.64
Excess kurtosis 0.12 0.75 0.25 -0.45 0.51 -0.49 1.12

CAD Mean 9.56 13.91 12.41 14.85 6.62 -2.37 -23.54
Std 17.51 16.98 15.49 16.98 18.78 26.51 23.51
Skewness 1.11 1.08 1.96 1.52 1.26 0.81 1.27
Excess kurtosis 1.87 1.19 6.27 3.35 2.17 0.54 1.30

EUR Mean 25.48 23.58 18.81 22.07 26.89 40.10 49.34
Std 19.26 13.80 12.25 15.00 19.34 25.75 22.31
Skewness 0.78 1.02 1.36 1.16 1.36 1.49 0.73
Excess kurtosis 1.19 3.22 5.49 3.91 2.83 2.27 0.66

Portfolio Mean 17.76 14.51 10.58 10.86 4.15 0.47 -6.19
Std 16.63 14.45 12.42 14.00 14.99 20.76 17.53
Skewness 1.10 1.31 1.61 1.33 1.40 1.14 1.42
Excess kurtosis 1.46 2.05 4.66 2.38 2.74 1.50 2.30

Table 5.2: The table reports sample moments of the currency basis of Australian dollar against US
dollar (AUD), Canadian dollar against US dollar (CAD) and Euro against US dollar (EUR) of one-
month (1m), three-month (3m), six-month (6m), one-year (1y), two-year (2y), five-year (5y) and
10-year (10y) maturities. Panel A reports the statistics during the market turbulent period, from June
2007 to December 2008. Panel B reports the statistics during the relatively tranquil periods, August
2005 – May 2007 and January 2009 – June 2016.

Clearly, the currency basis (at least for short maturities) during the turbulent period is too
substantial to be explained by transaction costs or data imperfections. One might wonder
why is a currency basis of 100 bps a large amount – 100 bps is no more than 1%, far below
the average returns of many asset classes. It is worth noting that in the absence of transaction
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costs, a positive currency basis implies a sure profit. In other words, a non-zero currency
basis, however small it is, suggests a Sharpe ratio of infinity.

More interestingly, the currency basis, like interest rates, displays term structure: at time
t, the returns from the currency basis trade of different maturities are in general different,
just like interest rates. All returns from the currency basis trades formed during the market
turbulent period have a downward sloping curve. By contrast, the term structure of the
currency basis trade returns during the tranquil period does not have a monotone shape.

To see how the currency basis behaves in the time series when maturities differ, Figure
5.4 plots the return of the equally weighted portfolio of currency basis trade with 1-month
(dashed line), 1-year (dotted line), and 5-year (solid line) maturity. There are three interesting
patterns we would like to point out. First, during the market turbulent period, the returns of
different maturities exhibit large comovement in the cross section. From the starting of the
sample up to mid-2009, returns of the shortest maturity (1-month) have the largest volatility.
The volatility of returns decreases when maturity gets longer. Despite volatility differences,
the returns of 1-month, 1-year, and 5-year maturity move together closely. Currency basis
trade returns reach their highest levels for all maturities after the Lehman Brother default,
which took place in September 2008.

Second, the time series of the currency basis displays volatility clustering. During the
market turbulent period, when the currency basis is the largest, its volatility is also the largest.
When the currency basis is small, the volatility stays low.

Third, after 2010, returns of the currency basis trade portfolio become much more per-
sistent with independent movements of relatively low volatility. The differences between
returns of different maturities shrink. The short-term currency basis trade returns, which dis-
play high volatility during the turbulent period, are almost indistinguishable from the longer
maturity returns. Currency basis trade no longer makes significant profits during the tranquil
period.
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Figure 5.4: The figure plots the returns of the equally weighted portfolio of currency basis trade with
1-month (dashed line), 1-year (dotted line), and 5-year (solid line) maturity from August 2005 to June
2016.

To gain better insights of the term structure of currency basis trade returns, Figure 5.5
plots the 10-year term spread of the three currency pairs over the sample period. From the
figure we observe that the term spread during the market turbulent period is negative most
of time, as one expects from a downward-sloping curve. The term spread fluctuates mildly
around zero since 2010. In short, the term spread is small (in absolute value) when currency
basis is small, and gets large (in absolute value) when the currency basis is large.
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Figure 5.5: The figure plots the 10-year term spread of the returns from the equally weighted port-
folio of currency basis trades from August 2005 to June 2016.

The patterns of the term spread, the time series and cross section features of the cur-
rency basis have important implications on theoretical modeling of the currency basis. We
summarize the empirical stylized facts as follows:

1. The currency basis is large during the crisis, and small during the tranquil periods.
And so is the term spread of the currency basis.

2. The currency basis displays volatility clustering: large currency basis tends to experi-
ence larger volatility, and vice versa.

3. The term structure of the currency basis during the financial crisis has a convex and
downward sloping shape.

5.4 Revisit the Covered Interest rate Parity
In this section, we are going to build a structural model to theoretically derive the currency
basis by taking into account additional sources of risks. Inspired by the extant literature,
which shows that liquidity risk can explain a large part of the abnormal currency basis ob-
served in the recent financial crisis, we are going to explore the channel through which
liquidity risk (or other potential risk factors) can contribute to a nontrivial currency basis.

Classic CIP condition states that since a currency forward contract is replicable, the cur-
rency forward rate should be given by

F̃ (t, T ) =
P ∗(t, T )

P (t, T )
S(t) = S(t) exp

(
(T − t)(r(t, T )− r∗(t, T ))

)
. (5.4)
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We refer to F̃ (t, T ) as the CIP implied forward rate. If the market is free of arbitrage oppor-
tunities, there exists a risk neutral measure Q, such that

0 = Et[S(T )− F̃ (t, T ))], (5.5)

where Et denotes the expectation under Q, conditional on the information available at time
t. Suppose an investor buys one unit of forward contract. The payoff he/she would get at
maturity is the difference between the forward rate and the spot exchange rate at time T .
Since there is no initial payment at time t when the contract is made, Equation (5.5) says that
risk neutral expectation of the payoff at maturity should be zero. One can show that the CIP
implied rate is a Q−martingale, implying

F̃ (t, T ) = Et[F̃ (u, T )], u ∈ (t, T ). (5.6)

Equation (5.5) shows that we can only replace the CIP implied rate by the market forward
rate if the contract is successfully carried until maturity. As Shleifer and Vishny [110] point
out, however, during a financial crisis, investors are more likely to exit their positions, either
unwillingly or intentionally.

Now consider the possibility of unwinding the forward contract at some intermediate
time u ∈ (t, T ]. Suppose at time t, Party B enters a currency forward contract with Party A,
agreeing to exchange F (t, T ) Dollar for 1 Euro at time T . To be able to deliver 1 Euro at time
T , Party A starts with an initial capital of S(t)P ∗(t, T ) Dollar and converts into Euro using
the spot exchange rate and saves in the Euro deposit account. At a certain time u, u ∈ (t, T ],
Party A may need to withdraw the Euro deposits for additional liquidity. Party A could
unwind the forward contract by entering a new forward contract with Party C, agreeing to
exchange F (u, T ) Dollar for 1 Euro at time T . This way, Party A can fulfil the contract
with Party B using the proceeds from party C at time T . At maturity time T , the difference
between F (t, T ) and F (u, T ) is a net gain to Party A. Figure 5.6 illustrates this process.

To allow for price differences between the recently issued and old bonds, we introduce
the bond price notation P (u; t, T ), u ∈ [t, T ], which is the price of the domestic zero-coupon
bond at time u that is issued at time t and matures at time T .

Free of arbitrage opportunities imply that under the risk neutral expectation, the input
capital (the lightly shaded term) should be equal to the total payoff (dark shaded terms) after
proper discount.
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Figure 5.6: Illustration of a forward contract transaction with intermediate position unwind-
ing. PartyA and PartyB sign a currency forward contract at time twith forward rate F (t, T ).
Party A has initial capital S(t)P ∗(t, T ) (lightly shaded on the very left) in the Euro deposit
account to finance this forward contract. At a certain time u, u ∈ (t, T ], Party A is faced with
a liquidity shock and need to withdraw the Euro deposit for additional liquidity. In order to
unwind the contract, Party A enters a new forward contract with Party C with forward rate
F (u, T ) that matures at time T . At time T , after fulfilling both contracts, Party A is left with
F (t, T )− F (u, T ) as the net Dollar gain.

We call the time u at which the investor has to withdraw deposits for additional liquidity
the position unwinding time. We suppose that the position unwinding time u has a risk-
neutral hazard rate process λ, which means that the process Λ, defined as 0 before the position
unwinding time and 1 afterwards, takes the following form

dΛt = (1− Λt)λt dt+ dM(t). (5.7)

Here,M(t) is a martingale process. λt measures the rate of occurring a position unwinding
event at time t, given that no such events have happened up to time t,

E[ dΛt|Λt = 0] = λt dt.

Note that Λt can also be represented using an indicator function Λt = 1{u≤t}. Using the
domestic bond as the numeraire, it holds that

S(t)P ∗(t, T )

P (t, T )
= Et

[
F (t, T )(1− ΛT ) +

∫ T

t

(S(u)P ∗(u; t, T )

P (u; t, T )
+ F (t, T )− F (u, T )

)
dΛs

]
.

(5.8)
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The left-hand-side of Equation (5.8) is the initial capital Party A starts with. The first term
on the right-hand-side is the payoff at maturity T if no intermediate position unwinding has
taken place. The second term on the right-hand-side of Equation (5.8) is the pay off at time
u if position unwinding happens at time u.

Rearrange Equation (5.8) to get

F (t, T ) = F̃ (t, T ) + Et
[ ∫ T

t

(
F (u, T )− S(u)P ∗(u; t, T )

P (u; t, T )

)
dΛu

]
. (5.9)

Equation (5.9) says that the currency forward rate is equal to the parity implied rate, plus any
expected loss incurred at the time of position unwinding. The loss at the time of position
unwinding is the difference between the current currency forward rate and the market value
of the cash account.

Now consider the case where the bonds at time u that are issued at time t and mature at
time T have the same price as the ones that are just issued at time u with the same maturity,

P (u; t, T ) = P (u;u, T ), P ∗(u; t, T ) = P ∗(u;u, T ),

in which case Equation (5.9) can be written as

F (t, T ) = F̃ (t, T ) + Et
[ ∫ T

t

(
F (u, T )− F̃ (u, T )

)
dΛu

]
.

Here, the currency forward rate is the implied rate plus any deviation from the parity in the
future before maturity. In this case, we can easily see that F (t, T ) = F̃ (t, T ) is a solution to
Equation (5.9). Therefore the position unwinding risk alone does not lead to deviations from
CIP.

Now we consider the more general case where the old bond does not necessarily have
the same price as the latest ones with the same time to maturity. Studies have shown that
old bonds are very often sold at a lower price than the most recent bonds. As Krishnamurthy
[86] notes, “One of the striking characteristics of the (long) bond sector is the high premium
attached to the new bond”.

The price difference between the old and the new bonds is known as the “on-the-run/off-
the-run spread”. The “on the run” bonds, which are the most recently issued, attract most
of the liquidity. When the new bonds are issued, the old bonds go “off the run” and become
much less liquid. The investor who holds the old bond may have to sell the bond at a lower
price (than the on-the-run ones) to compensate the buyer for the loss of liquidity.

Towards maturity, however, the prices of the on-the-run bonds and the off-the-run bonds
are expected to converge, as the remaining illiquidity in the off-the-run bonds decreases.
Indeed, the on-the-run and off-the-run spread can be significant enough that some hedge
funds trade such spread for profits. One example is the Long Term Capital Management.
One of the fund’s main strategy was to exploit any difference between the price of a newly
issued treasury bond and a similar one issued previously.

Yet a positive on-the-run/off-the-run spread itself does not lead to derivations from CIP.
Consider the case where the probability of incurring a position unwinding event before ma-
turity is zero,

Pt(Λu = 0) = 1, u ∈ [t, T ],

with P representing the probability under the risk neutral measure. In this case, the second
term on the RHS of Equation (5.9) is zero. Equation (5.9) therefore reduces to

F (t, T ) = F̃ (t, T ).
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If there are no intermediate liquidity shocks that force the investor into a position unwinding,
however large the on-the-run/off-the-run spread is, the currency forward rate would be equal
to the CIP implied rate. Therefore both the position unwinding risk and a nontrivial on-the-
run/off-the-run spread in the bond market are essential risk factors that cause the currency
forward rate to deviate from the parity condition. We postpone a formal discussion of the
CIP as a special case of our model to Chapter 5.5.3.

5.4.1 The currency basis formula
Equation (5.9) gives a recursive formula of the currency forward rate. Define Y (t, T ) as the
ratio between the forward rate and the CIP implied rate,

Y (t, T ) :=
F (t, T )

F̃ (t, T )
. (5.10)

In case CIP holds, Y (t, T ) should be equal to unity for all t, T .
We further define a liquidity discount factor L(u; t, T ) to capture the price difference

between the old bonds and the new ones, such that

P (u; t, T ) = P (u;u, T )L(u; t, T ), P ∗(u; t, T ) = P ∗(u;u, T )L∗(u; t, T ),

withL(u; t, T ), L∗(u; t, T ) ≤ 1, u ∈ [t, T ], L(T ; t, T ) = L∗(T ; t, T ) = 1. HereL(u; t, T ), L∗(u; t, T ) ≤
1 implies that the off-the-run bonds are traded at a cheaper price than the on-the-run ones
before the bond matures. At maturity, L(T ; t, T ) = L∗(T ; t, T ) = 1, indicating that the price
of the old bonds converge to that of the on-the-run ones towards maturity.

We can rewrite Equation (5.9) as

Y (t, T ) = 1 +
1

F̃ (t, T )
Et
[ ∫ T

t

F̃ (u, T )
(
Y (u, T )− L∗(u; t, T )

L(u; t, T )

)
dΛu

]
.

If the implied forward rate F̃ (t, T ) is independent of the liquidity risk L,L∗, and the
position unwinding risk Λ, then it holds that

Y (t, T ) =1 +
1

F̃ (t, T )

∫ T

t

Et[F̃ (u, T )]Et
[(
Y (u, T )− L∗(u; t, T )

L(u; t, T )

)
dΛu

]
=1 + Et

[ ∫ T

t

(
Y (u, T )− L∗(u; t, T )

L(u; t, T )

)
dΛu

]
. (5.11)

The last equality holds because of Equation (5.6).
The currency basis Y (t, T ) is expected to be a function of time t, the liquidity discount

factor L(u; t, T ), and the position unwinding intensity λ(t). For a given maturity T , Equation
(5.11) shows that the currency basis at time t is determined by two components. The first is
the expected difference in liquidity risks between the bank accounts of the two currencies at
the position unwinding time. The second is the expected future currency basis at the position
unwinding time.

We further assume that the liquidity discount factor L(u; t, T ) is only a function of the
current time u and maturity date T , but not a function of t.7

Note that Equation (5.11) is of a recursive form. Once the investor enters another for-
ward contract after the position unwinding, he can in principle repeat the same replication

7Later we show that this assumption is consistent with the literature.
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procedure all over again, which would expose him to the same position unwinding risk
in the remaining of the time to maturity. The recursive form of Equation (5.11) saves us
from modeling what happens after the first position unwinding, since any future forward rate
F (u, T ), u > t, must reflect all the risk the investor will be faced with during the remaining
life of the contract. Rewrite Equation (5.11) as

Y (t, T ) =1 + Et
[ ∫ t+dt

t

(
Y (u, T )− L∗(u)

L(u)

)
dΛu +

∫ T

t+dt

(
Y (u, T )− L∗(u)

L(u)

)
dΛu

]
=
(
Y (t, T )− L∗(t)

L(t)

)
λt dt+ Et

[ ∫ T

t+dt

(
Y (u, T )− L∗(u)

L(u)

)
dΛu

]
+ 1

=
(
Y (t, T )− L∗(u)

L(u)

)
λt dt+ Et[Y (t+ dt, T )]. (5.12)

Equation (5.12) implies that

AY (t, T ) + λtY − λt
L∗(t, T )

L(t, T )
= 0, Y (T, T ) = 1, (5.13)

where A is the infinitesimal generator acting on Y (t, T ).
Equation (5.13) characterizes the exponential of the currency basis by a stochastic par-

tial differential equation. The following proposition solves the stochastic partial differential
equation using standard techniques.

Proposition 5.1. Under technical conditions, using the Feynman-Kac formula, Y (t, T ;Xt)
can be represented using the conditional expectation

Y (t, T ) = −Et
[ ∫ T

t

exp
(∫ u

t

λ(v) dv
)L∗(u)

L(u)
λ(u) du

]
+ Et

[
exp

(∫ T

t

λ(v) dv
)
Y (T, T )

]
.

(5.14)

Recall that unless both the position unwinding risk and liquidity risk are present, the
currency basis would be zero. As a matter of fact, if the liquidity premium attached to
the new bonds are identical in the two countries, the currency basis is zero even if the on-
the-run/off-the-run spreads in both countries are nontrivial. The following lemma gives the
conditions under which CIP holds.

Lemma 5.1. If any of the following three situations applies, the currency forward rate sat-
isfies the Covered Interest rate Parity.

1. No intermediate position unwinding risk, i.e.,

P[u < T ] = 0.

2. The off-the-run bonds are always sold at the same price as the on-the-run bonds, i.e.,

L(u, T ) = L∗(u, T ) = 1, ∀u ∈ [t, T ].

3. The on-the-run/off-the-run spreads of the two countries are always equal, that is

L(u, T ) = L∗(u, T ), ∀u ∈ [t, T ].

Lemma 5.1 states that, in addition to the presence of both the position unwinding risk and
on-the-run/off-the-run spread, the differences in the spreads of the relevant countries are also
essential. This is intuitive, the currency forward rate, similar to the spot exchange rate, is by
definition a relative amount. Loosely speaking, it is the difference in liquidity that drives the
currency basis, not the market liquidity itself. This point is better illustrated in Corollary 5.1
later in Chapter 5.5.3.
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5.5 The explicit formula for the currency basis
In the previous section, we have shown that the currency basis can be nontrivial once there
are uncertainties (brought by market liquidity risk) in the currency basis trade. The uncer-
tainties of such a transaction come from two aspects: (1) Whether the investor could carry the
forward contract to maturity; (2) If a position unwinding event strikes, how much is the cash
account worth? To work out the currency basis formula in explicit form, we need to impose
structure on the position unwinding intensity process and the liquidity premium attached to
the new bonds. In this section, we propose parametric models to capture time series dynam-
ics of the liquidity process and the position unwinding intensity. The resulting currency basis
will be a function of the parameters that characterize these stochastic processes.

5.5.1 The on-the-run/off-the run spread

Following Goldreich et al. [72], at time u, the value of the illiquid bond is equal to the value
of the liquid bond discounted by the expected future liquidity risk,

L(u, T ) = Eu[exp
(
−
∫ T

u

q(s) ds
)

], (5.15)

where q(t) can be understood as the instantaneous illiquidity at time t. Just like an interest
rate of r reduces a cash flow’s value at a rate r per period, an instantaneous illiquidity q
reduces an old bond’s value (relative to the new ones) at a rate q per period.

Similar to Acharya and Pedersen [1], we assume the liquidity process (qt) follows Cox
et al. [41] (CIR) process,

dq(t) = a(b− q(t)) dt+ σ
√
q(t) dW (t). (5.16)

Here, a > 0 is the mean reversion rate; b > 0 is the long term average of the liquidity
level; σ

√
q(t), σ > 0 is the volatility; and W (t) is a standard Brownian motion under the

risk measure Q. The level of the liquidity q(t) drives the volatility of itself. When q(t)
is large, the market is relatively illiquid, reflected by a large on-the-run/off-the-run spread
and large currency basis ultimately. Large illiquidity leads to large volatility, generating
volatility clustering. When q(t) is very small, the volatility will also converge to zero to
prevent negative values of q(t).

Similarly, in the foreign country,

P ∗(u; t, T ) = P ∗(u;u, T )L∗(u, T ) = P ∗(u;u, T )EQ[exp
(
−
∫ T

u

q∗(s) ds
)

],

with

dq∗(t) = a∗(b∗ − q∗(t)) dt+ σ∗
√
q∗(t) dW ∗

t . (5.17)

Similarly, a∗, b∗, σ∗ are the mean reversion rate, long term steady state and volatility of the
instantaneous illiquidity of the foreign country, respectively.

Besides producing volatility clustering and preventing negative values, CIR process also
admits a tractable form of the liquidity discount factor L(u, T ).
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Proposition 5.2. Under the Assumptions (5.15), (5.16), (5.17), the liquidity risk discount
factor L is given by

L(u, T ) = exp(α + βq(u)), (5.18)

withα = 2ab
σ2

(
log
(
2de(a+d)(T−u)/2

)
− log

(
(a+ d)(exp(d(T − u))− 1) + 2d

))
,

β =
2
(
1−exp(d(T−u))

)
(a+d)(exp(d(T−u)−1))+2d

,
(5.19)

where d =
√
a2 + 2σ2. L∗(u, T ) can be calculated similarly using the corresponding pa-

rameters of the foreign country.

5.5.2 The position unwinding intensity
What usually compels an investor to unwind a position is the risk of hitting the funding
constraint. More often than not, the funding liquidity risk is likely to worsen when market
liquidity is at stake. Brunnermeier and Pedersen [24] show that market liquidity and in-
vestors’ funding liquidity are linked: when investors’ capital is abundant that there is no risk
of hitting the funding constraint hence no position unwinding, market liquidity is naturally
at its highest level. However, “when speculators hit their capital constraints or risk hitting
their capital constraints over the life of a trade then they reduce their positions and market
liquidity declines.”

Shleifer and Vishny [110] comment that “it can happen that arbitrageurs become more
likely to exit their positions, rather than doubling up, when prices are most wrong”. When
market liquidity is low, the on-the-run/off-the-run spread widens, which result in larger de-
viations from the parity. Shleifer and Vishny [110] state that it is highly likely that investors
reach their funding constraint at precisely the same time as prices move away from funda-
mental values and arbitrage opportunities improve. In case of currency basis trade, it implies
that position unwinding events are more likely to strike when the market liquidity is low,
reflected by a widened on-the-run/off-the-run spread.

To allow for dependence between the position unwinding events and market liquidity,
we further adopt a factor structure (see Duffie and Singleton [49]) to model the position
unwinding intensity λt,

λ(t) = λ0 + γ1q(t) + γ2q
∗(t). (5.20)

Here, γ1 and γ2 are loadings on the instantaneous illiquidity levels of the domestic and for-
eign countries. A positive γ1(γ2) implies that a rise in the domestic (foreign) illiquidity
increases the position unwinding likelihood. If γ1 = γ2 = 0, the arrival of position un-
winding events is independent of the domestic or foreign market liquidity. In this case, the
position unwinding intensity is a constant λ0. In principle, the position unwinding intensity
can be driven by other sources of uncertainty. We do not consider other stochastic drivers in
this model for simplicity.

5.5.3 The currency basis formula
The stochastic process of the position unwinding intensity and the on-the-run/off-the-run
spread enable us to derive the currency basis explicitly.
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Notice that the conditional expectation in Equation (5.14) falls into the “extended” trans-
form class of the affine processes introduced by Duffie et al. [50], which allows us to evaluate
the conditional expectation analytically. The following proposition derives the explicit cur-
rency basis up to integration.

Proposition 5.3 (The currency basis formula). Let the liquidity discount factor be given by
Equation (5.18) and the position unwinding intensity by (5.20). Suppose the realizations
of the domestic and foreign instantaneous illiquidity at time 0 are q, q∗, respectively. The
currency basis at time 0 with maturity date T is given by

y(0, T ) :=
1

T
log Y (0, T )

=
1

T
log
(

exp(R0 +R1q +R2q
∗)

−
∫ T

0

(λ0 + C +D1q +D2q
∗) exp(α∗ − α + A+B1q +B2q

∗) du
)
, (5.21)

with A = A(0), B1 = B1(0), B2 = B2(0), C = C(0), D1 = D1(0), D2 = D2(0), R0 =
R0(0), R1 = R1(0), R2 = R2(0), where

Ḃ1(t) = −γ1 + aB1(t)− 1
2
B2

1(t)σ2, B1(u) = −β,
Ḃ2(t) = −γ2 + a∗B2(t)− 1

2
B2

2(t)σ∗2, B2(u) = β∗,

Ȧ(t) = −λ0 − abB1(t)− a∗b∗B2(t), A(u) = 0,

Ḋ1(t) = aD1(t)−B1(t)D1(t)σ
2, D1(u) = γ1,

Ḋ2(t) = a∗D2(t)−B2(t)D2(t)σ
2, D2(u) = γ2,

Ċ(t) = −abD1(t)− a∗b∗D2(t), C(u) = 0,

Ṙ1(t) = −γ1 + aR1(t)− 1
2
R2

1(t)σ
2, R1(T ) = 0,

Ṙ2(t) = −γ2 + a∗R2(t)− 1
2
R2

2(t)σ
∗2, R2(T ) = 0,

Ṙ0(t) = −λ0 − abR1(t)− a∗b∗R2(t), R0(T ) = 0.

(5.22)

Here, α, α∗, β, β∗ are given by Proposition 5.2.

To compute the currency basis using Proposition 5.3, one needs to first compute the aux-
iliary deterministic processes A(t), B1(t), B2(t), C(t), D1(t), D2(t), R0(t), R1(t), and R2(t)
according to Equation (5.22). Starting with the terminal condition and working backwards,
one can easily solve the ordinary differential equations numerically.

Before we numerically calculate the currency basis, we first give an impression on what
the currency basis would be like in the simplest scenario with constant position unwinding
risk and instantaneous market illiquidity.

Corollary 5.1. In the special case where the market illiquidity of both countries are constant
at all times, i.e.,

q = b, q∗ = b∗, σ = σ∗ = 0,

and that the position unwinding intensity is a constant, i.e., γ1 = γ2 = 0, λ(t) = λ0,∀t, it
holds that

y(t, T ) =
1

T − t
log
(

exp(λ0(T−t))−
λ0

λ0 + q − q∗
(

exp((λ0+q−q∗)(T−t))−1
))
. (5.23)
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Interestingly, only the difference between the market illiquidity q − q∗ matters in this
case. Trivially, when q− q∗ = 0, Equation (5.23) is equal to 0. Write q− q∗ as ∆q, Equation
(5.23) implies that

Y (t, T ) = exp(λ0(T − t))−
λ0

λ0 + ∆q

(
exp((λ0 + ∆q)(T − t))− 1

)
.

The derivative of Y (t, T ) with respect to ∆q is given by

∂Y (t, T )

∂∆q
=

λ0
(λ0 + ∆q)2

(
exp((λ0 + ∆q)(T − t))

(
1− (λ0 + ∆q)(T − t)

)
− 1
)
. (5.24)

One can easily show that the function defined as f(x) = exp(x)(1 − x) has a supremum of
1. Therefore Equation (5.24) is negative for all possible values of ∆q, meaning that Y(t,T) is
a decreasing function of ∆q, with Y (t, T ) = 1 when ∆q = 0. This means that the currency
basis is positive when ∆q is negative and vice versa. The difference in market illiquidity
determines the direction of the currency basis of two countries: when the foreign market is
less liquid than the domestic market, the forward currency rate, quoted as the domestic price
of the foreign currency, contains a premium. Conversely, when the foreign market is more
liquid than the domestic market, the forward currency rate, quoted as the future foreign price
of the domestic currency, would contain a premium.

After witnessing the substantial currency basis in the market, there has been a heated dis-
cussion among institutional investors on whether to hedge US dollar risk, since it seems that
the forward exchange rate is higher than its fair value (implied rate) and therefore imposes a
cost on Dollar risk hedging. In this simplest model, the “perceived” extra hedging cost is the
liquidity cost a US investor asks for lending abroad.

5.6 Numerical illustrations
Given the highly non-linear form of the currency basis formula (5.21) and the fact that the
instantaneous liquidity process q(t), q∗(t) are latent state variables, one may expect the pa-
rameter identification to be a challenging task. The parametrization of this model is rich and
econometrically challenging. So far, all parameters are specified under the pricing measure
Q. A full estimation of the model entails parameter specification under the physical mea-
sure, which would result in even higher dimensions of the parameter space. We therefore
only calibrate the model parameters to match the cross-section patterns of the currency basis
observed empirically. A formal econometric treatment is beyond the scope of this study.

5.6.1 Model calibration

In this section, we will calibrate the parameters for the USD/EUR currency basis. In prin-
ciple, one can calibrate the other currency pairs in the same fashion. The mean reversion
parameter a, a∗ are determined to match the convex shape of the term structure. The long
term steady states b, b∗ are calibrated to match the currency basis at long maturities. The
volatility σ, σ∗ are determined to deliver the variations observed in the time series of the da-
ta. The position unwinding intensity loadings γ1, γ2 are set to match the magnitude of the
basis. The calibrated parameter values are reported in Table 5.3. The detailed calibration
procedure can be found in Appendix 5.B.
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Parameter calibration for USD/EUR currency basis

Panel A: Market illiquidity
dq(t) = a(b− q(t))dt+ σ

√
q(t)dW (t)

a 5.1 b 0.003 σ 0.1
a∗ 8.0 b∗ 0.005 σ∗ 0.2

Panel B: Position unwinding risk
λt = λ0 + γ1q(t) + γ2q

∗(t)

λ0 0.1 γ1 18.4 γ2 0.0

Table 5.3: The table reports the calibrated parameter values of the USD/EUR currency basis. The
mean reversion parameter a, a∗ are determined to match the convex shape of the term structure.
The long term steady states b, b∗ are calibrated to match the currency basis at long maturities. The
volatility σ, σ∗ are determined to deliver the variations observed in the time series. The position
unwinding intensity loadings γ1, γ2 are set to match the magnitude of the basis. Panel A reports the
parameters of the instantaneous illiquidity process. The position unwinding intensity parameters are
reported in Panel B.

We see that the mean reversion rates are large to ensure a downward sloping term struc-
ture. The steady states are relatively low to be negligible during tranquil periods. Both
shocks in illiquidity in the US market and foreign market raise the probability of a position
unwinding event.8

We can filter the instantaneous illiquidity process by

q̂(t) =
1

N

∑
mi

(logL(t, t+mi)− α̂(mi))/β̂(mi), (5.25)

where the summation is over all available maturities mi, i = 1, . . . ,mN . Here, α̂, β̂ are
calculated using Equation (5.19) with the calibrated parameter values â, b̂, σ̂. Figure 5.7
plots the standardized (with mean zero and a standard deviation of 1) 2-year on-the-run/off-
the-run spread of the US treasury and the filtered instantaneous illiquidity process of the US.
We see that the two processes co-move closely during the 2007-2010 financial crisis. The
instantaneous illiquidity, in particular, is high in market turbulence periods, e.g., the burst
of the internet bubble in early 2000, the 2002 Asian financial crisis and the 2008 financial
crisis.

8Since we do not match the time series moments of the currency basis and that the instantaneous illiquidity
processes are unobserved, one should not expect the parameters that deliver the cross-section patterns to be
unique. The parameter values reported in Table 5.3 are an example of a set of reasonable parameter values. It
is highly likely that another set of parameter values would deliver a similar term structure pattern.
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Figure 5.7: The figure plots the calibrated instantaneous illiquidity process against the 2-year on-
the-run/off-the-run spread of the US treasury. Both processes are normalized to have zero mean and
a standard deviation of 1. The instantaneous illiquidity process is filtered using Equation (5.25).

5.6.2 Comparative statics

In the remainder of this section, we numerically show how the currency basis depends on
the stochastic characteristics of the liquidity risk in the off-the-run bonds and the position
unwinding risk of investors. We compute the term structure of the currency basis between a
foreign currency and US dollar using Proposition 5.3 at different parameter values.

The shape of the term structure is jointly determined by the liquidity risk process as well
as the position unwinding risk process. Intuitively, in case of a high instantaneous illiquidity,
due to the mean reversion feature of the liquidity risk process, a liquidity shock impacts the
shorter maturities more than the longer ones. However, chances are that as time to maturity
gets longer, the position unwinding events take place and result in a substantial loss. When
maturity is short, a liquidity shock has not yet died out and could potentially lead to large
losses. When maturity is long, although the expected future liquidity risk is lower, there
could be a bigger chance of experiencing a position unwinding event. The eventual term
structure is a result of the competition of these two forces.
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Figure 5.8: The figure plots the term structure of the currency basis for different values of the mean
reversion rate of the instantaneous liquidity risk of the US (left panel) and of the foreign country (right
panel). The cases with slow mean reversion are plotted in the dashed lines, medium mean reversion
are plotted in the solid curves, and fast mean reversion are plotted in the dotted curves. The other
parameters are from Table 5.3, with the state variables q = 0.1, q∗ = 0.4.

Figure 5.8 plots the currency basis term structure for different values of the mean rever-
sion rate of the instantaneous liquidity risk in the US, a (left panel), and that in the foreign
country a∗ (right panel). On the left panel, the case of slow mean reversion, a = 1, is plotted
in the dashed line, the case of medium mean reversion, a = 5, is shown by the solid curve,
while the case of fast mean reversion, a = 10, is depicted using the dotted curves. In case
of slow mean reversion, the term structure of the currency basis is hump-shaped, in which
case the currency basis increases with time to maturity at the short end and reaches its peak
at round 1-year to maturity and then starts to decline. When mean reversion is fast enough,
the term structure is convex and monotonically decreasing. The faster the mean reversion is,
the more convex the term structure becomes.

When liquidity risk has a fast mean reversion rate, it is quickly pulled to the long term
level once it deviates. The fast mean reversion rate guarantees that the liquidity risk will die
out in the future even if there is uncertainty in the liquidity risk. Therefore, the short end
of the term structure is affected the most by a large liquidity shock. If the mean reversion
rate is not faster than the rate at which position unwinding risk increases with maturity, the
currency basis is an increasing function of time to maturity.
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Figure 5.9: The figure plots the term structure of the currency basis for different steady states of the
instantaneous liquidity risk of the US (left panel) and of the foreign country (right panel). The case
with low steady states b(b∗) = 0 is plotted in the dashed line, medium steady states b(b∗) = 0.001
is plotted in the solid curve, and high steady states b(b∗) = 0.003 is plotted in the dotted curve. The
other parameters are from Table 5.3, with the state variables q = 0.1, q∗ = 0.4.

While the mean reversion rate determines the shorter end of the term structure, the steady
state of liquidity b determines the longer end. Figure 5.9 plots the term structure for different
parameter values for the long term steady state of the instantaneous liquidity risk in the
US, b (left panel), and that in the foreign country, b∗ (right panel). In the long term, the
instantaneous liquidity risk is expected to stay at the level of its long term steady state.
Higher level of expected US liquidity risk drives the currency basis down, whereas higher
level of expected foreign liquidity risk drives the currency basis up.
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Figure 5.10: The figure plots the term structure of the currency basis for different coefficients of
the position unwinding intensity on the instantaneous liquidity risk of the US (left panel) and of the
foreign country (right panel). The case with low loadings γ1(γ2) = 0 is plotted in the dashed line,
medium loadings γ1(γ2) = 10 is plotted in the solid curve, and large loadings γ1(γ2) = 20 is plotted
in the dotted line. The other parameters are from Table 5.3, with the state variables q = 0.1, q∗ = 0.4.

Figure 5.10 plots the currency basis term structure for different coefficients of the position
unwinding intensity on the US instantaneous liquidity risk γ1 (left panel) and on the foreign
instantaneous liquidity risk γ2 (right panel). In case that the loading on the instantaneous
liquidity risk is not zero, investors face time-varying position unwinding risks. When either
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γ1 or γ2 is non-zero, the position unwinding intensity is also mean reverting. When a liquidity
shock arrives, not only liquidity risk shoots up and raises the short-term currency basis, the
probability that the investor would exit his/her position also increases sharply in the short
run. Increasing the coefficient of the position unwinding intensity on the liquidity risk of the
foreign country (right panel) has similar effects as increasing the coefficient on the liquidity
risk of the US (left panel). In both cases, the currency basis of short maturities has the largest
increase, resulting in a more convex and steeper curve of the term structure.
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Figure 5.11: The figure plots the term structure of the currency basis for different values of the
current instantaneous illiquidity level of the US (left panel) and of the foreign country (right panel).
Low current illiquidity cases are plotted in the dashed lines, medium illiquidity cases are plotted in
the solid curves, and large illiquidity cases are plotted in the dotted curves. The other parameters are
from Table 5.3, with the state variables q = 0.1 (right panel), q∗ = 0.4 (left panel).

Figure 5.11 plots the term structure of the currency basis for different values of the current
instantaneous illiquidity level of the US (left panel) and the foreign country (right panel).
Since liquidity risks will mean revert to their long term steady states, they affect currency
basis in the short term more than they do in the long term.

Note that in our choice of parametrization, the instantaneous illiquidity level in the for-
eign country only affects the potential losses in case of position unwinding. It does not,
however, increase the position unwinding probability itself (since γ2 = 0). The instanta-
neous illiquidity level in the US, by contrast, has two roles. First, it increases the on-the-
run/off-the-run spread in the US, narrowing the liquidity risk differences between the two
countries, thereby reducing the currency basis for short maturities. Second, higher instanta-
neous illiquidity level of the US leads to a higher position unwinding intensity, which tends
to raise the currency basis. Whether the currency basis goes up as a result of a current US
instantaneous illiquidity shock depends on which effect is larger. This explains why we see
the term structure with q = 0.3 is not so different from that with q = 0.2 on the left panel of
the curve. The increase in the current US instantaneous illiquidity reduces the liquidity risk
differences between the two countries but increases the position unwinding risk. The former
tends to increase the currency basis while the latter tends to reduce it. The two effects are
comparable, leaving the term structure relatively unchanged as compared to the case where
q = 0.2.
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5.7 Conclusion
This paper studies the behavior of the currency basis, i.e., deviations from the covered in-
terest rate parity condition. We conduct empirical analysis using Australian dollar vs. US
dollar, Canadian dollar vs. US dollar and Euro vs. US dollar. We first document the styl-
ized facts of the behavior of the currency basis during the market turbulent period as well
as during tranquil period. We establish that the term structure of the currency basis during
the financial crisis is downward sloping: the violation of the CIP is much more substantial
for short maturity forward contracts than for long term ones. The term structure during the
post-crisis period, however, does not have a monotone shape.

Inspired by the extant empirical literature, which finds liquidity risk to be a statistically
significant explanatory variable of the observed currency basis, we develop an asset pricing
model with no arbitrage opportunities to price the currency basis theoretically. To see how
investors are exposed to liquidity risk by entering a forward contract, consider an arbitrageur
who engages in a currency basis trade. At a certain time before the contract matures, the
investor may be forced to exit the position in order to free the capital in the cash market.
Since premature deposits and off-the-run bonds can only be sold at a lower price, the investor
incurs a liquidity cost when the market liquidity is low when he/she unwinds the position. We
show that when we consider the position unwinding risk, the forward currency rate given by
the asset pricing model exceeds the CIP implied forward rate by the risk neutral expectation
of future liquidity cost weighted by the position unwinding probability. Here, the future
liquidity cost is measured by the on-the-run/off-the-run spread.

In the special cases where either the position unwinding risk is absent, or the on-the-
run/off-the-run spread of the two countries are the same at all times (this includes the case
where the on-the-run/off-the-run spreads are zero in both countries), our model recovers the
CIP condition as a nested case.

We show that our model can not only produce the observed magnitude of the currency
basis but also generate the term structure of currency basis that resembles the reality. We
therefore contribute to the foreign exchange literature by (1) establishing that the term struc-
ture of the currency basis curve has a convex and downward-sloping shape and (2) putting
forward a no-arbitrage asset pricing model with liquidity risk. The currency basis predicted
by the model matches the observed patterns.
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Appendices

5.A Proofs
Proof of Proposition 5.1. When ab > σ, the liquidity process never touches 0. If we further
cap the liquidity process by a large number, for example, define q̄(t) = q(t) ∧ 10%, and
replace the unbounded process q(t) with the bounded process q̄(t), then, one can easily
verify that we can readily apply the Feynman-Kac formula (see, for example, Duffie [48])
and conclude that Equation (5.14) is the unique solution to Equation (5.12).

Proof of Lemma 5.1. 1. P[u < T ] =
∫ T
0
λ(t) dt = 0, then λ(t) = 0, t ∈ [0, T ). Equation

(5.14) therefore becomes

Y (t, T ) = Et[Y (T, T )] = 1,

implying that
F (t, T ) = F̃ (t, T ).

2. When the on-the-run/off-the-run spread is zero in the domestic country as well as the
foreign country, it holds that

L(u, T ) = L∗(u, T ) = 1.

Equation (5.14) reduces to

Y (t, T ) = −Et
[ ∫ T

t

exp
(∫ u

t

λ(v) dv
)
λ(u) du

]
+ Et

[
exp

(∫ T

t

λ(v) dv
)
Y (T, T )

]
.

(5.26)

Note that
d exp

(∫ u

t

λ(v) dv
)

= exp
(∫ u

t

λ(v) dv
)
λ(u) du.

Applying integration by part on the first term on the RHS of Equation (5.26), we have∫ T

t

exp
(∫ u

t

λ(v) dv
)
λ(u) du =

∫ T

t

1 d exp
(∫ u

t

λ(v) dv
)

= exp
(∫ u

t

λ(v) dv
)∣∣∣T

t
−
∫ T

t

exp
(∫ u

t

λ(v) dv
)

d1

= exp
(∫ T

t

λ(v) dv
)
− exp(0)

= exp
(∫ T

t

λ(v) dv
)
− 1.

Therefore Equation (5.26) can be written as

Y (t, T ) = −Et
[

exp
(∫ T

t

λ(v) dv
)
− 1
]

+ Et
[

exp
(∫ T

t

λ(v) dv
)]

= 1.

If L∗(u) = L(u),∀u, then Equation (5.14) reduces to Equation (5.26). The rest follows the
proof for the second condition when there is no on-the-run/off-the-run spread.
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5.A. PROOFS

Proof of Proposition 5.2. See Cox et al. [41].

Proof for Proposition 5.3. It holds that

E0

[
exp

(∫ u

0

λ(v) dv
)L∗(u, T )

L(u, T )
λ(u)

]
=E0

[
exp

(∫ u

0

λ(v) dv
)
λ(u) exp

(
α∗ + β∗q∗(u)− α− β − q(u)

)]
= exp

(
α∗ − α

)
E0

[
exp

(∫ u

0

λ(v) dv
)

exp
(
β∗q∗(u)− βq(u)

)
λ(u)

]
.

Write

E0

[
exp

(∫ u

0

λ(v) dv
)

exp
(
β∗q∗(u)− βq(u)

)
λ(u)

]
=E0

[
exp

(∫ u

0

λ(v) dv
)

exp
(
β∗q∗(u)− βq(u)

)
λ0

]
+ E0

[
exp

(∫ u

0

λ(v) dv
)

exp
(
β∗q∗(u)− βq(u)

)
(γ1q(u) + γ2q

∗(u))
]

:=λ0ψ + φ.

According to Duffie et al. [50], define

K0 =

(
ab
a∗b∗

)
,K1 =

(
−a 0
0 −a∗

)
,

ρ0 = −λ0, ρ1 = −(γ1, γ2),

H0 = 0, (H1)11 = (σ2, 0)′ , (H1)22 = (σ∗2, 0)′.

Then it holds that

ψ = exp(A+B′x(0)), φ = (C +D′x(0))ψ,

with A = A(0),B = B(0), C = C(0),D = D(0), where
Ḃ1(t) = −γ1 + aB1(t)− 1

2
B2

1(t)σ2, B1(u) = −β
Ḃ2(t) = −γ2 + a∗B2(t)− 1

2
B2

2(t)σ∗2, B2(u) = β∗

Ȧ(t) = −λ0 − abB1(t)− a∗b∗B2(t), A(u) = 0
Ḋ1(t) = aD1(t)−B1(t)D1(t)σ

2, D1(u) = γ1

Ḋ2(t) = a∗D2(t)−B2(t)D2(t)σ
2, D2(u) = γ2

Ċ(t) = −abD1(t)− a∗b∗D2(t), C(u) = 0.

Using the same formula, one can easily show that

E0

[
exp

(∫ T

0

λ(u) du
)]

= exp(R0 +R1q(0) +R2q
∗(0)),

with 
Ṙ1(t) = −γ1 + aR1(t)− 1

2
R2

1(t)σ
2, R1(T ) = 0

Ṙ2(t) = −γ2 + a∗R2(t)− 1
2
R2

2(t)σ
∗2, R2(T ) = 0

Ṙ0(t) = −λ0 − abR1(t)− a∗b∗R2(t), R0(T ) = 0.
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The currency basis formula is therefore

Y (0, T ) = exp(R0 +R1q +R2q
∗)

−
∫ T

0

(λ0 + C +D1q +D2q
∗) exp(α∗ − α + A+B1q +B2q

∗) du.

Proof of Corollary 5.1. In case of constant market illiquidity and position unwinding, we
may remove the expectation operator, since there is no uncertainty at time t. The liquidity
discount factor becomes

L(u, T ) = exp(−q(T − u)), L∗(u, T ) = exp(−q∗(T − u)).

Then Equation (5.14) becomes

Y (t, T ) = −
∫ T

t

exp
(
λ0(u− t)

)exp(−q∗(u− t))
exp(−q(u− t))

du+ exp(λ0(T − t))

= −λ0
∫ T

t

exp((λ0 + q − q∗)(u− t)) du+ exp(λ0(T − t))

= − λ0
λ0 + q − q∗

exp
(

(λ0 + q − q∗)(u− t)
)∣∣∣t

T
+ exp(λ0(T − t))

= exp(λ0(T − t))−
λ0

λ0 + q − q∗
(

exp
(

(λ0 + q − q∗)(T − t)
)
− 1
)
.

.

5.B Model Calibration
For parameter calibration, we also take advantage of the off-the-run yields of the US govern-
ment bonds. The off-the-run yields of the US treasuries are estimated by Gürkaynak et al.
[73]. The authors estimate a “synthetic” off-the-run US Treasury yield curve at a daily fre-
quency from 1961 to the present. The data is posted on the Federal Reserve website and is
updated regularly.9

We first calibrate the liquidity parameters of the US using bond prices. Define the param-
eter space Θ1 = {a, b, σ}. For notation convenience, we define time to maturity mi = Ti− t
and write L(t;mi) instead of L(t, T ). We first compute on-the-run/off-the-run spread on
each day for each maturity, using

l(t;mi) = logL(t;mi),

where L(t;m) is calculated as the ratio between the off-the-run and on-the-run bond prices.
Theoretically, according to Proposition 5.2, it holds that

l(t;mi) = α(mi) + β(mi)q(t).

9The data is available at http://www.federalreserve.gov/econresdata/feds/2006. In
the paper, the authors demonstrate how the on-the-run/off-the-run spread can be inferred using this dataset.
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5.B. MODEL CALIBRATION

Since the dependence between the observed spread and the unobserved latent illiquidity pro-
cess is linear, for any parameter candidates Θ̂1 = {â, b̂, σ̂}, we can find the latent illiquidity
process as the average of the implied latent states over all available maturities m in the data.

q̂(t; Θ̂1) =
1

N

∑
mi

(
l(t;mi)− α̂(mi, Θ̂1)

)
/β̂(mi, Θ̂1), (5.27)

where α̂(mi, Θ̂1), β̂(mi, Θ̂1) can be calculated using Equation (5.19) with the calibrated pa-
rameters Θ̂1. We are ready to define a calibrated on-the-run/off-the-run spread l̂(t;mi, Θ̂1)
as

l̂(t;mi, Θ̂1) = α̂(mi, Θ̂1) + β̂(mi, Θ̂1)q̂(t; Θ̂1).

The calibrated parameters can be obtained by minimizing the predicted spread and the
observed spread,

Θ̂1 = arg min
∑
mi,t

(
l̂(t;mi, Θ̂1)− l(t;mi)

)2
. (5.28)

Having obtained the parameter estimates Θ̂1, one can easily filter the latent states q̂(t; Θ̂1)
process according to Equation (5.27).

Unfortunately, the on-the-run/off-the-run spreads of other countries are not immediately
available. The liquidity process paramters a∗, b∗, σ∗ can only be identified using the currency
basis. To estimate the remaining parameters, we treat the latent illiquidity process in the
foreign country (q∗t ) as parameters and define the parameter space

Θ2 = {a∗, b∗, σ∗, γ1, γ2, λ0, (q∗t )}.

Using the calibrated parameters in the first step, we are ready to calculate the predicted
currency basis for a given Θ̂2, denoted by ŷ(t;mi, Θ̂1, q̂(t; Θ̂1), Θ̂2).

Similar to the first-step estimation, we minimize the squared pricing error,

Θ̂2 = arg min
∑
mi,t

(
ŷ(t;mi, Θ̂1, q̂(t; Θ̂1),Θ2)− y(t;mi)

)2
, (5.29)

over all available time t and maturity mi.
To enhance parameter calibration, the following practical issues are taken into account.

In particular, we impose the following restrictions: a(a∗) > 0, σ(σ∗) > 0, b(b∗) ≥ 0, λ0 >
0. The first two conditions ensure that both the mean reversion rate and the volatility of
instantaneous liquidity risk in all countries are positive, so that the model is well-defined.
By requiring a non-negative b(b∗), we make sure that the liquidity risk is always positive,
meaning that the off-the-run bond is always sold at a liquidity premium. The last restriction
means that the probability of a position unwinding event is non-negative.
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Summary

Title: Essays on International Portfolio Choice and Asset Pricing under Financial Contagion

The global financial crisis that took place in 2007-2009 has posed a challenge to the fi-
nancial modeling practice where classical models which have been widely applied no longer
work. In this doctoral dissertation, we revisit the most relevant financial problems, in partic-
ular, portfolio choice, hedging, and pricing, under the context of financial crises.

Chapter 3 and Chapter 4 investigate the equity portfolio choice and currency hedging
problem under financial contagion. We employ mutually exciting jumps to generate excess
cross-market linkages. We first analyze the optimal equity portfolio choice problem un-
der equity risk contagion across geographical markets, assuming exchange rate risk is fully
hedged away. Once allowing for excitation asymmetry, we find that, instead of an optimally
diversified equity portfolio, as suggested in the classic asset allocation literature, the optimal
portfolio for an expected CRRA utility investor is “under-diversified” in the sense that in-
vestors over-invest in the US, whose equity market is more capable of transmitting its jump
risks worldwide, a phenomenon that we term “the US bias”. Next, we relax the assumption
of 100% currency risk hedging and allow investors to choose their optimal currency expo-
sure. We revisit the equilibrium currency hedging problem under equity-currency contagion.
We show that in equilibrium, investors would hedge less “safe haven currency”, the currency
that is less susceptible to equity market turmoil.

Chapter 5 studies the market efficiency aspect of the financial crisis – the breakdown
of the covered interest rate parity in particular. We find that the currency basis during the
crisis has a convex and downward sloping term structure. We propose to explicitly account
for liquidity risk when pricing the currency forward contract. We show that the risk that
investors may need to exit the position to free the capital for liquidity preference during the
crisis can lead to a nontrivial currency basis.

In these cases, predictions made by models that account for financial crises are qualita-
tively different from those made by classic models. Ignoring the crisis phenomena can lead
to substantial losses for institutional and individual investors when a financial crisis strikes.





Samenvatting

Titel: Essays over Internationale Portefeuillekeuze en Activawaardering tijdens Financiële
Crises.

De wereldwijde financiële crisis in 2007-2009 heeft voor grote uitdagingen gezorgd in
het modelleren van financiële vraagstukken, aangezien de klassieke modellen, die op grote
schaal werden toegepast, niet meer werkten. In dit proefschrift kijken wij opnieuw naar de
meest relevante financiële problemen, in het bijzonder portefeuillekeuze, het afdekken van
financiële risico’s, en activawaardering ten tijden van financiële crises.

Hoofdstukken 3 en 4 onderzoeken de vraagstukken omtrent optimale aandelenporte-
feuillekeuze en de afdekking van valutarisico’s in de context van financieel besmettings-
gevaar. We gebruiken elkaar wederzijds versterkende sprongprocessen om sterke samenhang
tussen verschillende markten te genereren. We analyseren eerst het optimale aandelenporte-
feuillekeuzeprobleem, onder de aanname dat valutarisico voor beleggers volledig afgedekt
is, in de situatie dat er risicobesmettingsgevaar is tussen geografisch verschillende mark-
ten. Zodra we asymmetrie toelaten in de besmettingskanalen, vinden we dat een belegger
die zijn verwachte nut maximaliseert, onder de aanname van een CRRA nutsfunctie, een
“onder-gediversifieerde” portefeuille aanhoudt ten opzichte van de portefeuille die tot stand
zou komen in de klassieke activa allocatieliteratuur. In het bijzonder vinden we dat de be-
legger over-investeert in de VS, aangezien het aandelenmarktrisico in de VS zich makkeli-
jker verspreidt naar de rest van de wereld. Wij refereren naar deze observatie als de “VS
bias”. Vervolgens verzachten we de aanname dat er geen valutarisico’s zijn en staan we
toe dat beleggers hun blootstelling naar verschillende valutarisico’s zelf kunnen kiezen. We
beschouwen opnieuw het valutarisico afdekkingsprobleem in de context van internationale
portefeuillekeuze met besmettingsgevaar tussen aandelen-en valutarisico’s. We laten zien
dat in de evenwichtssituatie beleggers hun risico met betrekking tot “veilige haven valuta”,
de valuta die relatief immuun is voor onrust in de aandelenmarkt, minder afdekken.

Hoofdstuk 5 bestudeert de efficiëntie van markten gedurende financiële crises en in het
bijzonder de schending van de afgedekte rentegelijkheid. We vinden dat de valutabasis een
convexe en neerwaarts lopende termijnstructuur heeft tijdens de crisis. We stellen voor om
expliciet rekening te houden met liquiditeitsrisico bij het waarderen van valuta forward con-
tracten. We laten zien hoe het afwikkelen van posities en de on-the-run/off-the-run spreiding
bij kan dragen aan een niet-triviale valutabasis die overeenkomt met empirisch waargenomen
waarden.

In alle gevallen geldt dat de voorspellingen van modellen die rekening houden met fi-
nanciële crises kwalitatief anders zijn dan de voorspellingen van klassieke modellen. Het
niet in ogenschouw nemen van verschillende crisisaspecten kan leiden tot substantiële ver-
liezen voor zowel institutionele als individuele beleggers als een crisis zich daadwerkelijk
manifesteert.
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