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The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks
or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm
which combines the mesoscopic Green’s Function Reaction Dynamics (GFRD) method with explicit
stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the micro-
scopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)].
Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is
crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present
the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We
illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm,
we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will
open up the possibility for large scale simulations of protein signalling networks. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4977515]

I. INTRODUCTION

Complex systems such as biochemical networks in living
cells, catalytic reactions in, e.g., a fuel cell, surfactant/water/oil
mixtures, or self-assembling soft matter can be modeled
efficiently as reaction-diffusion systems. In such reaction-
diffusion systems, the spatial distribution of reactants and the
stochastic nature of their interactions are crucial for the sys-
tem’s macroscopic behaviour. At sufficiently low concentra-
tions, the time taken for the reactants to diffuse and randomly
find each other is much larger than the time required for the
reaction. For example, in cellular systems, the concentrations
of proteins are often in the nM − µM range. Experiments
indicate that proteins inside the living cell move by normal dif-
fusion1 with effective diffusion constants in the 1−10 µm2 s−1

range. This means that, with typical protein cross sections
of 10 nm, the time it takes for reactants to find each other
is on the order of milliseconds to seconds. This is often
much longer than the microsecond time scales on which the
actual association events occur once the particles have found
each other.2,3 Reaction-diffusion systems thus often exhibit
a strong separation of length and time scales, with the dif-
fusive search process happening on length and time scales
of microns and milliseconds to seconds, and the reactions
occurring on scales of nanometers and sub-milliseconds.3 Sim-
ulating such systems with conventional, brute-force simulation
techniques is notoriously difficult. Indeed, simulating cellular

a)Electronic mail: p.t.wolde@amolf.nl
b)Electronic mail: p.g.bolhuis@uva.nl

biochemical networks with straightforward brute-force Brow-
nian Dynamics (BD)4–7 often means that most CPU time is
spent on propagating the particles towards one another.8 To
overcome the inefficiency of straightforward BD requires spe-
cial techniques such as Green’s Function Reaction Dynamics
(GFRD).9,10

GFRD is a mesoscopic technique that decomposes the
many particle reaction diffusion problem into sets of one-
and two-body problems that can be solved analytically. This
is achieved by putting single particles and pairs of particles
in the so-called protective domains that do not overlap with
each other. For each of these domains, the reaction-diffusion
problem is solved analytically using Green’s functions. This
yields for each domain a next event type which can either
be a reaction in the domain or an escape from the domain,
as well as a next event time, i.e., the time at which this event
occurs. These events are put in a scheduler list which is updated
chronologically. This makes GFRD an asynchronous, event-
driven algorithm. Since stochastic processes in the individual
domains are independent of each other, GFRD is an exact
algorithm to simulate large reaction-diffusion systems. As
the particles make huge leaps in space and time in GFRD,
the computational effort in propagating the particles to one
another is greatly reduced, making GFRD orders of magni-
tude faster than brute force BD. However, the particles are
assumed to be idealized spheres interacting via an isotropic
potential and the reactions to occur according to intrinsic rates
in pair domains. Solving the Green’s function for reactive
events involving the complex anisotropic potentials required
for proper modeling of proteins or other molecules is extremely
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cumbersome and in fact most likely will reduce the efficiency
of the GFRD approach substantially. In contrast, straightfor-
ward BD is able to naturally simulate orientational dynam-
ics of protein particles with complex anisotropic (effective)
interactions.

This observation raises the question whether it is possi-
ble to combine the computational power of GFRD with the
microscopic detail of BD. In previous work, we introduced
a novel multi-scale scheme, called Molecular Dynamics-
GFRD (MD-GFRD), which combines GFRD with a micro-
scopic simulation technique such as deterministic molecu-
lar dynamics (MD), stochastic Langevin Dynamics (LD), or
Brownian Dynamics (BD).11 In this scheme, GFRD han-
dles diffusion of particles at the mesoscopic scale, while
MD, LD, or BD treats the particles that are coming close
to each other. In previous work and here, we limit ourselves
to BD, although the scheme can very easily formulated for
MD and LD. The multi-scale algorithm defines the micro-
and meso-scopic regions adaptively on the fly and switches
seamlessly between the two techniques based on predefined
scenarios.

In this work, we extend MD-GFRD to incorporate the ori-
entational dynamics of particles that interact via an anisotropic
potential. As in the original MD-GFRD technique,11 GFRD
is used for propagating the particles towards one another
when they are far apart. Once the particles are within a pre-
defined threshold distance from each other, the algorithm
switches to BD. The complex orientational dynamics, once
the particles are close together, is thus simulated with BD.
When the particles are bound, MD-GFRD could in princi-
ple continue to simulate these particles with BD. However,
in many cases, and typically in cellular systems, the parti-
cles are bound much longer than the time it takes to diffuse
and thermalise within the interaction well, meaning that dis-
sociation is a rare event. MD-GFRD exploits this separation
of time scales by treating the dissociation as a first order
reaction, with an intrinsic dissociation rate constant that has
been pre-determined. After dissociation, the particles can be
propagated again with GFRD. Importantly, however, after dis-
sociation, the particles do not immediately loose their orien-
tational memory, which means that they must be propagated
with Green’s functions that do not only describe the trans-
lational dynamics of the particles but also their orientational
dynamics. In this paper, we describe in detail how the MD-
GFRD scheme switches between MD and GFRD and how
this switching depends on the translational and orientational
dynamics of the particles. We also present the Green’s func-
tions that allow GFRD to simulate the particles’ orientational
dynamics.

The remainder of the paper is organized as follows: In
Sec. II we first give an overview of the MD-GFRD algo-
rithm. Then we describe how the algorithm simulates the
diffusion of particles with rotational degrees of freedom, both
for particles in BD and GFRD mode. We discuss how MD-
GFRD handles the association-dissociation reactions, and we
describe how it switches between BD and GFRD propagation.
In many systems, including that studied here, dissociation is a
rare event. This means that computing the intrinsic dissocia-
tion rate constant, as used by MD-GFRD, requires rare event

methodologies, like Transition Interface Sampling (TIS)12 and
Forward Flux Sampling (FFS).13 Here, we briefly describe
how we use FFS to pre-compute the dissociation rate con-
stant. We then illustrate the new technique by simulating the
association and dissociation of patchy particles. In many cases,
globular proteins can be coarse-grained as the so-called patchy
particles, where the complex binding sites are modeled as
patches on a spherical particle. These patchy particles also
play an important role in the modeling of soft matter.14,15 We
demonstrate that the algorithm reproduces quantities that can
be obtained analytically such as the equilibrium constants,
binding probabilities, and the power spectra of the binding
reactions. We end with a discussion of the performance of the
algorithm.

II. METHODS
A. Summary of multiscale approach

The MD-GFRD algorithm is a generic algorithm that
enables simulation of any reaction-diffusion system at the
particle level. It allows for mono-molecular reactions of the
type A → B + C + · · · and bi-molecular reactions of the type
A + B→ C + D + · · · . By combining these two reactions, any
complex biochemical network can be simulated. Here, how-
ever, we will limit ourselves to simple association-dissociation
reactions A + B� C. The MD-GFRD algorithm distinguishes
two types of particles as shown in Fig. 1: (1) BD particles
that are propagated collectively in a conventional, brute-force
manner using small time steps and (2) GFRD particles that
are updated asynchronously in an event-driven manner. Single
particles that are sufficiently far away from all other particles
according to a predefined cut-off distance are put into protec-
tive domains. For each of these domains, the algorithm deter-
mines, as in the conventional GFRD scheme,10 the next-event
type, which is either a mono-molecular decay reaction (such as
dissociation) or an exit of the particle from the domain and the
corresponding next-event time, which is when this next event
will happen. The next-event times of the respective GFRD
domains are put in a chronologically ordered event list, which

FIG. 1. MD-GFRD scheme: particles that are far away other particles are put
into a GFRD domain. For each GFRD domain, the next event time and type
is determined. These next event times are added to a chronologically ordered
event list and updated when the simulation time has reached the time of the
next event. Particles that are close to other particles are propagated collectively
with Brownian dynamics.
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is updated only when the simulation time has reached the time
of the first next event. The event-driven nature of GFRD allows
MD-GFRD to make large jumps in space and time when the
domains are large. It is the origin of the high efficiency of the
scheme.

The other particles are simulated explicitly with BD. This
part of the algorithm takes into account the forces between
the particles when they come within the interaction range of
the potential from each other. The BD propagation also nat-
urally simulates the association reaction A + B → C: two
particles A and B form the bound complex C when they enter
the well of the interaction potential. The two monomers A and
B in the dimer C could be propagated separately with BD,
but it is more efficient to propagate them as a single parti-
cle C. The dissociation of C into A and B is then treated as
a uni-molecular reaction event, which is added to the event
list.

BD propagation is continued until one of the following
events occurs: (i) the escape of a particle from a GFRD domain;
(ii) the decay of a GFRD particle, e.g., the dissociation of C
into A and B; (iii) a BD particle dissociates into its prod-
ucts, e.g., the dissociation of C into A and B; (iv) two BD
particles A and B bind each other to form a dimer species
C; (v) a BD particle comes too close to a GFRD domain so
that the GFRD domain must be burst, which means that a
position for the particle in that domain is generated at the
current simulation time; and (vi) a BD particle moves suf-
ficiently far away from all other BD particles and GFRD
domains, so that it can be put into a GFRD domain. These
six possible events are illustrated in Fig. 3. After the event has
been executed, the system is updated accordingly; for newly
formed GFRD domains, the next-event types and times are
determined and inserted into the event list. The propagation
of the BD particles is then resumed. The scheme becomes

particularly powerful when most particles are in GFRD
domains. A key objective is thus to keep the number of BD
particles to a minimum.

The multiscale method that we pursue here involves par-
ticles interacting via anisotropic potentials. This requires an
explicit BD integrator allowing rotational dynamics. More-
over, the GFRD part requires rotational Green’s functions. In
Secs. II B and II C we provide these ingredients, which consti-
tute the most salient differences of the novel scheme with the
previous isotropic MD-GFRD scheme.11 In Section II E, we
discuss in detail how the algorithm switches between GFRD
and BD. Secs. II D and II F describe how MD-GFRD handles
the dissociation events and how the dissociation rate con-
stant, needed in MD-GFRD, can be computed efficiently. In
Sec. II G, we describe the specific interaction potential used
to illustrate how orientations can be included in MD-GFRD.

B. Brownian dynamics of patchy particles

Brownian dynamics is used to simulate the solute parti-
cles at the microscopic scales. In this algorithm, the position
and the orientation of each solute particle in the BD regime are
updated based on the total force and torque acting on the par-
ticle. The force and torque contain a deterministic component,
which arises from the (solvent-mediated) interaction poten-
tial with the other solute particles and the frictional drag from
the solvent, and a stochastic component, originating from the
stochastic forces exerted by the solvent molecules. Although
the interactions between particles are anisotropic, we model
the particles as spheres of finite radius. We represent the rigid
body orientation of the particles using a four component unit
vector known as a quaternion, q = (q0, q1, q2, q3). The quater-
nion is an efficient encoding of the rotation matrix, A, given
by

A =



q0
2 + q1

2 − q2
2 − q3

2 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q0

2 − q1
2 + q2

2 − q3
2 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q0
2 − q1

2 − q2
2 + q3

2


,

which relates vectors in the stationary lab frame, ûs, to the
vectors in the moving body frame, ûb via

ûs = AT ûb. (1)

FIG. 2. Each particle may have one or more attractive regions on its sur-
face, called “patches,” that facilitate short ranged, highly directional attractive
interactions.

For example, the vectors ûb might point to the patches
on the surface of the particle which are fixed in the body
frame.

Each particle has a center of mass and one or more sticky
spots on its surface called “patches” (see Fig. 2). The particles
interact with each other both via a center of mass isotropic pair
potential and via a short ranged isotropic patch-patch inter-
action. We describe the anisotropic model potential that we
employ for illustrative purposes in detail in Sec. II G. We note
that the choice of potential is not limited to simple models. In
principle any other anisotropic complex potential can be used,
even an anisotropic protein-protein interaction derived from
all atom MD simulations.

The particles are propagated with the first order Brownian
dynamics integrator16 explained in Algorithm 1:
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Algorithm 1. The Brownian dynamics integrator16 used in our multi-
scale scheme. We consider n particles in three dimensions with center

of mass coordinates r= (r1>, . . ., rn>)
>
∈ ℝ3n, rj = (r j

1 , r j
2 , r j

3)
>
∈ ℝ3, and

rotational coordinates in the quaternion representation q=(q1>,. . ., qn>)
>
,

q j=(q j
0, q j

1, q j
2, q j

3)
>
∈ S3, such that |q j |= 1. Particles are characterized

by their mass m, the mass moment of inertia M = 8
15 mσ2, and the

translational and rotational friction coefficients, γ and Γ, respectively.
These parameters can differ among species. Note that γ and Γ as defined
in Ref. 16 contain an implicit dependence on m and M, respectively. In
the overdamped limit considered here, this dependence is cancelled by
factors of m and M that always appear together with γ and Γ. Further
more, δt is the time step used in the simulations, β = 1

kBT , ξk and η
j,l
k

are the independent and identically distributed (i.i.d.) Gaussian random
variables. f is the total force and F is obtained from total torque, which
follow from the interaction potential. Finally, we define three 4 × 4 matrices

S1 =



0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


, S2 =



0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


, S3 =



0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


.

The particle positions R and quaternions Q are updated as follows:
R0 = r, Q0 = q, |q j | = 1, j = 1, . . ., n,

Rk+1 = Rk +
δt
γm

f(Rk , Qk) +
√
δt

√
2

γβm
ξk ,

Y j
k =

δt
ΓM

Fj( Rk , Qk) +
√
δt

√
2
ΓβM

3∑
l==1

η
j,l
k Sl ,

Q j
k+1 = exp(Y j

k)Q j
k .

C. Green’s functions for rotations

GFRD handles the free diffusion of single particles. A
freely moving particle will undergo rotational as well as trans-
lational diffusion. Although the interactions between particles
are anisotropic, we model the particles as spheres of finite
radius for the purpose of modeling diffusion. This assumption
allows the decoupling of the rotational and translational dif-
fusion of isolated particles, which is possible since in MD-
GFRD the GFRD domains only contain single particles. The
Green’s functions for translational diffusion are given by the

Green’s functions for single particles inside single GFRD
domains, detailed in previous work.11 These Green’s functions
determine (probabilistically) when the particles escape from
their respective domains, or what their radial positions
inside the domains become when the domains are burst.
Although rotational motion does not influence the center-of-
mass dynamics of a freely diffusing particle, and hence cannot
cause escape from single domains, it is nonetheless impor-
tant to reproduce the decorrelation of orientations for particles
evolving under GFRD. For example, simply drawing orienta-
tions at random when a particle leaves a GFRD single domain
will lead to unphysically rapid decorrelation of orientations
when domains are short-lived and influence properties such as
rebinding probability.

More specifically, on bursting or escape from a single
domain, a new orientation Ω is drawn using the Green’s func-
tion G(Ω,Ω0, t), with Ω0 being the initial orientation and
t the time since domain formation. The Green’s functions,
expressed in terms of Euler angles α, β, γ, can be found in
the literature.17–19 For particles with spherically symmetric
diffusion tensors, the Green’s function is

G(α, β, γ, α0, β0, γ0, t) =
∞∑

L=0

L∑
K ,M=−L

2L + 1

8π2
D(L)∗

K ,M (α0, β0, γ0)

×D(L)
K ,M (α, β, γ) exp(−DrL(L + 1)t),

(2)

where Dr is the threefold degenerate eigenvalue of the dif-
fusion tensor, given by Dr = kBT/(8πηR3) for a particle of
radius R in a fluid of viscosity η. The quantities D(L)

K ,M (α, β, γ)

and its complex conjugate D(L)∗
K ,M (α, β, γ) are elements of the

Wigner rotation matrices17–19

D(L)
K ,M (α, β, γ) = exp(−iKα) d(L)

K ,M (β) exp(−iLγ), (3)

with

d(L)
K ,M (β) = ((L + K)!(L − K)!(L + M)!(L −M)!)1/2

min(L+M,L−K)∑
S=max(0,M−K)

(
(−1)K−M+S · [cos(β/2)]2L+M−K−2S[sin(β/2)]K−M+2S

(L + M − S)!S!(K −M + S)!(L − K − S)!

)
. (4)

For the purposes of clarity, we emphasize that the Euler angles
used here should be understood in the following way. If a
body frame B has an orientation Ω = (α, β, γ) with respect to
some reference frame F, then B can be obtained from F by the
following:

1. Rotating F around Fz by γ to give F ′.
2. Rotating F ′ around Fy by β to give F ′′.
3. Rotating F ′′ around Fz by α to give B.

Moreover, note that the Green’s functions are defined
without the Jacobian, so that (α, β, γ) should be drawn from
the distribution sin(β)G(α, β, γ, α0, β0, γ0, t).

Drawing directly from such a distribution is non-trivial.
However, rejection sampling can be used if the maximum of

sin(β)G(α, β, γ, α0, β0, γ0, t) is known. Physically, the most
likely orientation is always aligned with the initial direction,
which suggests a rejection scheme in which a trial orientation
(α, β, γ) is drawn uniformly from ([0, 2π], [0, π], [0, 2π]), and
accepted with a probability

sin(β)G(α, β, γ, α0, β0, γ0, t)
sin(β0)G(α0, β0, γ0, α0, β0, γ0, t)

,

with Euler angles defined with respect to the lab
frame. Unfortunately, the angular Jacobian implies that
sin(β)G(α, β, γ, α0, β0, γ0, t) is not in general maximized by
(α = α0, β = β0, γ = γ0), violating a requirement of rejection
sampling. It is true, however, that sin(β)G(α, β, γ, α0, β0, γ0, t)
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is maximized by (α = α0, β = β0, γ = γ0) if β0 = π/2,
α0 = 0, γ0 = 0. We therefore define a new reference frame F temp

for each calculation such that the particle initially has orien-
tation Ω0 = (0, π/2, 0) with respect to F temp. Using rejection
sampling, we can then obtain a new orientation Ω= (α, β, γ)
with respect to F temp. The particle orientation is updated by
first rotating the particle by −π/2 about the z-axis of the orig-
inal particle frame to obtain a particle aligned with F temp and
then performing rotations (α, β, γ) about the axes of F temp as
outlined above.

Even with rejection sampling, drawing from the distribu-
tion can be computationally challenging due to the costs of
evaluating Green’s functions. Eq. (2) has an infinite sum that
must be truncated; we perform truncation when new contri-
butions are smaller than the current value by a factor of 108.
To reduce the cost of the summations, we find it helpful to
tabulate factorials. We also note that terms in Eq. (2) can be
combined in complex conjugate pairs to eliminate imaginary
numbers during the calculation.

Accurate evaluation of the Green’s function is most
challenging when Dr t < 1, when G(α, β, γ, α0, β0, γ0, t) is
sharply peaked and many terms are needed. For small
Dr t, we use early rejection, discarding a large fraction of
draws of (α, β, γ) if (α, β − β0, γ) is large without evaluat-
ing G(α, β, γ, α0, β0, γ0, t), and compensating for this bias
at the acceptance stage. Finally, for values of Dr t < 0.05, we
use the approximate approach of rotating about a random axis

through an angle φ =
√
φ2

x + φ2
y + φ2

z , where φi are i.i.d. ran-
dom variables drawn from a Gaussian of mean 0 and variance
2Dr t.20

D. Handling the dissociation/association reaction
in MD-GFRD

While particles that are sufficiently far away from each
other can be propagated with GFRD, particles that are within
a pre-defined cutoff distance from each other will be prop-
agated with MD, or, as we restrict ourselves to here, BD.
As described in more detail in Sec. II E, this cut-off dis-
tance is beyond the range of the interaction potential, rc.
Indeed, the association between two particles, which is driven
by their inter-molecular attraction forces, is thus simulated
explicitly with BD. Also the dissociation reaction could in
principle be simulated with BD: we could explicitly simulate
the bound monomers in the dimer A-B, until they dissoci-
ate again into A and B. However, the bound state is typically
very stable: the time the particles spend inside the potential
well is typically much longer than the time it takes for the
particles to loose their orientation and thermalise inside the
well. Simulating these particles explicitly means that much
CPU time would be wasted on propagating them while they
simply rattle around each other inside the potential well.
In MD-GFRD, we therefore exploit that dissociation is a
rare event: when two BD particles meet a predefined cri-
terion signifying that they are deep inside the interaction
well, the two “reactants” A and B are replaced by species
C. In turn, the dissociation of C into A and B is treated as a
first-order reaction C→A + B with a dissociation rate con-
stant kd.

More specifically, when two BD particles come within
a distance such that their interaction energy E drops below
some predefined threshold Ebind, then the particles A and B
are replaced by a single particle of species C, with a position
that is given by the center-of-mass of the reactants A and B.
If space permits, the C particle is directly put into a GFRD
domain, which significantly speeds up the simulation. If there
is no space to construct a protective domain, the C particle
is propagated with BD. The C particle then diffuses, either
explicitly with BD or implicitly with GFRD, until it dissociates
again into the monomers A and B at a later time τd. Since the
interaction well is deep, τd will be exponentially distributed

qd(t) = kde−kdt . (5)

Knowing the dissociation rate constant kd, the time τd can thus
be sampled from

τd = −kdln(Rd), (6)

where Rd ∈ [0, 1] is a uniformly distributed random number.
The intrinsic dissociation rate constant kd could in princi-

ple be inferred from experiments. However, an approach that
is consistent with a brute-force simulation of the same model
is to obtain kd from a simulation that is performed prior to
the MD-GFRD simulation of interest. This pre-simulation can
then also be used to generate the distributions of the positions
and orientations of A and B at the moment of dissociation. In
the MD-GFRD simulation, the positions and orientations of the
particles at the moment of dissociation can then be sampled
from these distributions, respectively.

In our previous study on isotropic potentials, we deter-
mined kd by performing a brute force BD simulation of two
particles prior to the MD-GFRD simulations.11 However, the
particles in our model interact via an anisotropic interaction
potential. This anisotropic interaction is mediated via patches
on the surfaces of the particles, see Fig. 2. The range of the
patch-mediated interaction must be short, in order to provide a
strong anisotropy in the interaction. The short range, however,
means that the well of the patch-mediated potential must be
deep in order to induce significant binding: the depth of the
well, ∼25kBT , is much larger than that of isotropic particles,
∼5kBT . The deep well makes it very hard to obtain good statis-
tics in determining the distribution of dissociation times via
brute force simulations. However, it is possible to efficiently
compute the dissociation rate with rare event techniques such
as Transition Interface Sampling12 or Forward Flux Sampling
(FFS).13 Here we use the latter technique, which we describe
in Section II F.

E. Coupling BD and GFRD

Now that we have described how MD-GFRD simulates the
association and dissociation of two particles A and B, we will
discuss how the algorithm switches between BD and GFRD
when simulating many particles. At any one point in time, the
simulation consists of a set of isolated particles inside GFRD
domains that each has a radius of at least dmin and a set of par-
ticles that are propagated with BD and interact with each other
via a pair potential that has an interaction range rc. There is
also a chronologically ordered next-event list that contains the



114106-6 Vijaykumar et al. J. Chem. Phys. 146, 114106 (2017)

times at which the GFRD particles escape from their respec-
tive domains, and the times at which the respective particles
dissociate, be they in GFRD or BD mode. The particles that are
not inside GFRD domains are propagated with brute-force BD
until the first next-event happens. This event can be an event
from the next-event list, but it can also be the formation of a
GFRD domain or the bursting of a GFRD domain when a BD
particle comes too close it. After the event has been executed,
BD propagation is resumed.

Specifically, before each step of BD propagation, the
algorithm checks for the following events, as illustrated in
Fig. 3.

1. Escape from a GFRD domain

When the next event in the list is a particle that escapes
from a single domain that particle is put at a random center of
mass position on the surface of the domain, with an orientation
sampled from Eq. (2). The domain is removed and the particle
is put in BD mode. This event is shown in Fig. 3 I. Note that
at the next BD time step, the algorithm will check whether the
particle can be put into a protective GFRD domain again (see
Sec. II E 6).

2. Dissociation inside a GFRD domain

When the next event is a particle C inside a GFRD domain
decaying into its products at time t, the domain is burst and a

new radial position r for the reactant is generated according
to the normalized translational Green’s function p(r,t,|r0,t0)/S
(t � t0|r0), where r0 is the original position of the particle,
which is the center of the domain constructed at time t0, and S
(t � t0|r0) is the survival probability. The reactant is replaced
by its products, whose configuration is chosen at random from
the ensemble of configurations recorded at the moment of dis-
sociation, obtained in the FFS pre-simulation. This event is
shown in Fig. 3 II.

3. Dissociation of a BD particle

When the next event is the dissociation of a BD parti-
cle, the particle is replaced by its products, whose configu-
rations are chosen at random from the ensemble of config-
urations recorded at the moment of dissociation in the FFS
pre-simulation. This event is shown in Fig. 3 III.

4. Association of BD particles

When the pair potential energy between two particles
becomes smaller than a threshold energy, here taken to be
Ebind = �10kBT, the two particles are defined to be in the bound
state. The two particles are replaced by a single BD particle
at their center of mass. This event is shown in Fig. 3 IV. Note
that at the next BD step, the algorithm will check whether the
particle can be put into a GFRD domain, as described under
Sec. II E 6.

FIG. 3. At each BD time step, the algorithm checks whether BD should be interrupted. The BD propagation is halted when the time of the first next event occurs
before the global simulation time at the end of the time step. These next events can be any of the following: I. A particle escapes from a GFRD domain; the position
of the particle is updated to a randomly chosen point on the surface of the domain and the domain is removed. II. A particle dissociates inside a GFRD domain;
the domain bursts and the particle is updated to a position and orientation sampled using Green’s functions and is then replaced by its product particles. III. A BD
particle dissociates; it is replaced by its product particles. IV. The binding energy of two BD particles is below the binding threshold; the particles enter the bound
state and are replaced by a single product particle. V. The distance from a BD particle to a domain is smaller than dmin + rc; the neighboring domain is burst and
the position and orientation of the particle in this domain are updated. This particle may in turn burst another domain and this happens recursively until there is
no BD particle within a distance dmin + rc from any other domain. VI. a. The distance between a BD particle and its nearest neighbor is larger than dmin + rc in
case the nearest neighbor is a GFRD domain; a domain of radius r � rc is built on the BD particle. b. The distance between a BD particle and its nearest neighbor
is larger than 2dmin + rc in case the nearest neighbor is a BD particle; a domain of radius 0.5(r � rc) is built on the BD particle of interest. The inset shows the
procedure for determining the nearest neighbor, which is the GFRD domain or the BD particle with the closest interaction horizon to the (central green) particle
of interest: for BD particles, the relevant distance is the distance minus the sum of the minimum domain radius dmin and the potential interaction range rc, while
for a GFRD domain, the relevant distance is the distance to the surface of that domain minus rc. In the example configuration, the blue particle is the nearest
neighbor.
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5. Recursive domain bursting

When a BD particle comes at time t within a distance of
dmin + rc from the surface of a GFRD domain, the domain is
burst and a radial position r of the particle inside that domain
is drawn from the normalized translational Green’s function
p(r,t|r0,t0)/S(t � t0|r0), where t0 is the time and r0 the posi-
tion of the center of the domain when it was constructed, and
S(t � t0|r0) the survival probability. A new orientation of the
particles is sampled from Eq. (2). If this particle, after
updating its position, comes within a distance of dmin + rc

from another domain that domain is also burst. This may
lead to a cascade of domain bursting, which ceases when
no BD particle is within a distance of dmin + rc from
any GFRD domain. This event is shown in Fig. 3 V.
Note that domains are always at least rc apart from each
other.

6. Domain Construction

For each BD particle, the algorithm determines the near-
est neighbor, which is either another BD particle or a GFRD
domain. The procedure to determine the nearest-neighbor dis-
tance depends on whether the neighbor is a BD particle or a
GFRD domain, as shown in the inset of Fig. 3. A BD particle
is put into a GFRD domain when the distance r between the
particle and its nearest neighbor

(a) is larger than dmin + rc in case the nearest neighbor is
a GFRD domain. A domain of radius (r � rc) is built
around the particle of interest. This event is shown in
Fig. 3 VI a.

(b) is larger than 2dmin + rc in case the nearest neighbor
is a BD particle. A domain of radius 0.5(r � rc) is built
around the particle of interest. This allows enough space
to build a domain with a radius of at least dmin around
the neighbor, thus preventing the neighbor from prema-
turely bursting the newly built domain. This event is
shown in Fig. 3 VI b.

For the newly constructed domain, the tentative next-event
times for the respective tentative event types (e.g., dissocia-
tion and escape) are determined, and the event type with the
smallest tentative next-event time is added to the event list. To
achieve maximum efficiency, the minimal domain size dmin

should be as small as is practical.

F. Computing the dissociation rate with forward
flux sampling

The Forward Flux Sampling (FFS) algorithm enables
efficient evaluation of rare event kinetics. FFS uses a series
of interfaces between the reactant and the product states to
construct the transition path ensemble and calculate the cor-
responding transition rate. Each interface is defined by an
order parameter λ: the reactant state is defined by λ < λ−1

and the product state by λ > λn. The remaining interfaces
are defined by intermediate values of λ: (λ0 . . . λn−1). The
FFS technique requires that λi+1 > λi for all i, and all the
trajectories from reactant to product state pass through each
interface in succession as shown in Fig. 4. Trajectories start-
ing in the reactant state and reaching product state are rare,

FIG. 4. An illustration of the FFS method. An ensemble of transition paths
is generated by starting trial runs from randomly picked configurations on
interfaces, which are the end points of previous successful trial runs.

but trajectories starting at an interface and crossing the next
interface are more common. This is the central idea used in
FFS.13

Here we use the “direct” FFS variant, DFFS, to com-
pute the dissociation rate.21 In this process, the reactant
state is the bound A,B dimer, and the product state corre-
sponds to the dissociated dimer. For the purpose of sim-
ulating dissociation, we take an order parameter to deter-
mine the interfaces based on a combination of the energy
of interaction and the inter-particle distance. The reactant
bound state interface λ−1 is defined by a potential energy
Ebind, while the product state is defined by zero potential
energy in addition to an inter-particle distance larger than the
cutoff rc.

In the first step of FFS, a brute-force BD simulation is
performed to compute the flux φ of crossing the interface λ0

while coming from the bound state. This brute-force simu-
lation generates an ensemble of configurations at λ0. In the
next step, a trajectory is fired from a randomly chosen con-
figuration from this ensemble; this trajectory is then prop-
agated until it either hits the next interface λ1 or returns
to the reactant state (i.e., recrosses λ−1). This procedure is
repeated until a sufficiently large number of configurations
at the next interface λ1 is generated. The fraction of tra-
jectories that makes it from λ0 to λ1 yields the conditional
probability P(λ1 |λ0) that a trajectory that comes from the
bound state and crosses λ0 for the first time will subse-
quently reach λ1 instead of returning to the bound state.
This whole procedure is then repeated for all subsequent
interfaces until the final interface λn is reached, signify-
ing the fully dissociated pair. Under the assumption of rare
event kinetics, the intrinsic dissociation rate kd is then given
by12,13

kd = φ

n−1∏
i=0

P(λi+1 |λi). (7)

G. Illustrative anisotropic inter-particle potential

In this section, we describe the interaction potential
for the specific patchy-particle system. We reiterate that
our multi-scale scheme is independent of the choice of
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potential and can in principle be applied with arbitrarily
complex potentials.

For convenience, we split our inter-particle potentials
into three parts. Every pair of particles experiences a repul-
sive potential U rep(R) and an isotropic attractive potential
U isoAtt(R) based on the distance R between the centers of mass.
Additionally, each pair of complementary patches interacts
through an attractive potential Uatt(r) based on the distance
r between complementary patches (see Fig. 2). For a pair of
particles with a single pair of complementary patches,

U(R, r) = Urep(R) + UisoAtt(R) + Uatt(r). (8)

Mediating the attractive interactions through surface-based
patches naturally captures short-range contact interactions.

It is common to use 12-6 Lennard-Jones or related poten-
tials in biomolecular modeling. Although the r�6 depen-
dence is required for van der Waals interactions between
atoms and even between larger entities, in general there is
no fundamental reason to choose this functional form in
case of complex effective interactions between biomolecules,
e.g., hydrophobic interactions. In preliminary simulations,
we observed that using Lennard-Jones potentials leads to
numerical difficulties, forcing the use of extremely small time
steps. The underlying reason is that Lennard-Jones poten-
tials have a large curvature close to the minimum of the
bound state, a situation for which the Brownian integrator
is poorly suited. This effect is exacerbated by the use of
short-ranged anisotropic attractions between particles, which
reduces the entropy of the bound state and must be com-
pensated for by stronger attractive potentials, in order to
model realistic equilibrium binding constants. Stronger attrac-
tive potentials lead to larger second derivatives of the poten-
tial. Moreover, requiring potentials to be short-ranged and
orientation-specific implies variation over short length and
angular scales, again increasing the second derivatives of the
potential.

Instead of using a Lennard-Jones type potential, we there-
fore illustrate our method using piece-wise quadratic poten-
tials similar to those employed elsewhere.22 These poten-
tials give us more control over the shape, and allow for
easier integration with potentials that are short-ranged and
highly orientation-specific. We stress that using an alter-
native potential that is more challenging for the integra-
tor would not remove the advantages of the multi-scale
scheme.

FIG. 5. Inter-particle interactions. Total interaction potential Urep(R)
+ U isoAtt(R) + Uatt(R � 2dpatch) for two particles with perfectly aligned com-
plementary patches, and the total interaction potential Urep(R) + U isoAtt(R)
+ Uatt(R + 2dpatch) when the complementary patches are completely mis-
aligned. The existence of patches introduces an attractive bound state with the
particles in close contact.

U rep(R), U isoAtt(R), and Uatt(r) have the form

Ui(x) =




ε i(1 − ai

(
x
σ

)2
) if x < x?i ,

ε ibi(
xc

i
σ −

x
σ )2 if x?i < x < xc

i ,

0 otherwise,

(9)

with i = rep, isoAtt, att, respectively. The overall strength ε i,
the length scale σ (i.e., the particle diameter), the stiffness
ai, and the parameter x?i , which combined with ai determines
the range of the potential, are free parameters. Cut-offs xc

i
and smoothing parameters bi are fixed by requiring continu-
ity and differentiability at x?i . For our illustrative purposes,
we take the following parameters: ε rep = 100kBT, arep = 1,
and R∗rep = 0.85σ, implying brep = 2.6036 and Rc

rep = 1.1764σ;
εatt = 20kBT , aatt = 20, and r∗att = 0.1σ, implying batt = 5 and
rc

att = 0.5σ; and ε isoAtt = 10kBT, aisoAtt = 1, and R∗isoAtt = 0.85σ,
implying brep = 2.6036 and Rc

rep = 1.1764σ.
In Fig. 5, we plot the resulting total inter-particle poten-

tial as a function of distance R when the two complementary
patches are aligned to face each other so that r =R−σ. A nar-
row attractive well corresponding to the two particles being
in close contact is evident. For comparison, we also show

FIG. 6. Total potential Urep(R)
+ U isoAtt(R) + Uatt(r) for two particles
with complementary patches. (a) Poten-
tial as a function of the distance between
centres of mass R and alignment
of patches with inter-particle vector, θ1
and θ2 (see definition in Fig. 2), given
θ1 = θ2. (b) Potential as a function
of θ1, θ2 given R= 1.1σ. Note the
relatively narrow range of orientations
over which strong bonding occurs.
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the total inter-particle potential as a function of R when the
two complementary patches are misaligned to face opposite
each other so that r =R +σ. In this case, the patches do not
contribute to the interaction; the non-specific, isotropic part
of the potential, however, still gives rise to a weak attraction.
In Fig. 6, we demonstrate the orientational dependence of the
attractive potential, showing that the attractive interaction is
highly sensitive to misalignment. We note that our choice of
potential makes truncation at short distances relatively trivial.
This is helpful in allowing rapid switching to GFRD domains
once the particles are separated.

For our model potential, the interaction range is set
rc = 1.6σ, where the pair potential in Eq. (8) has vanished.
Moreover, in the MD-GFRD simulations, we set the mini-
mum domain size dmin = 0.5σ and the particle diameter to
σ = 5nm.

III. RESULTS AND DISCUSSION

We test the MD-GFRD simulation using the patchy-
particle model described in Section II G. In the simulations,
there are three species of particles, A, B, and C, which react
according to

A + B� C. (10)

The system specific parameters of the simulation are as
follows: The particle diameter is σ = 5 nm, the time
step δt = 0.1 ns, the mass of the particle is m = 50 kDa,
the mass moment of inertia M = 8

15 mσ2, the translational
and rotational diffusion constants are Dt = 1 µm2/s and
Dr = 1.6× 107rad2/s for all particles, the translational and rota-
tional friction coefficients are γ = kBT

Dtm
and Γ= kBT

DrM , respec-

tively, where kB = 1.38× 10−23 JK−1 is the Boltzmann constant
and T = 300 K is the temperature of the system. To check if
our Green’s function and BD correctly describe the rotational
motion of isolated particles, we have measured the correlation
function of the dot product of the patch vector at a given time t
with the initial patch vector. This correlation function decays
as e−2Dr t , where Dr = kBT/ΓM, as expected.

In Sec. III A we first present the results of the FFS-BD
pre-simulation used to determine the value of the intrinsic
dissociation rate kd. Next, using the value of kd, we perform
MD-GFRD simulations in which we compute the probability
that A and B are bound, as a function of system size. We com-
pare the results against Monte Carlo simulations and analytical
expressions. In Subsection III C, we compute the power spec-
tra for the binding process. Finally, we discuss the performance
of the algorithm.

A. Rate constant determination
using FFS-BD pre-simulation

As explained in Sec. II D, it is advantageous to treat the
dimer A-B as a single particle C, which then can dissociate
again into A and B with an intrinsic rate kd. We used direct
FFS to precompute the intrinsic rate constant kd . The interfaces
λi are defined in terms of the interaction energy, as shown in
Fig. 7. The bound state interface λ−1 was defined by U(R, r)
<−10kBT ; the dissociated state final interface λ5 was set
at a distance R= 1.6σ. Five intermediate interfaces were set

FIG. 7. FFS interfaces were defined by the potential energy: λ0 = −10kBT ,
λ1 = −2.5kBT , λ2 = −0.75kBT , λ3 = −0.025kBT , and λ4 = −0.0075kBT .
The final interface λ5 was defined by zero energy and a distance R > 1.6σ.
Using these interfaces as starting points for successive trial runs, the particles
are driven from the bound to the unbound state.

at, respectively, λ0 =−10kBT , λ1 =−2.5kBT , λ2 =−0.75kBT ,
λ3 =−0.025kBT , and λ4 =−0.0075kBT . A straightforward BD
trajectory created 100 000 configurations at the first interface.
Subsequently, performing direct FFS yielded 20 000 configu-
rations for each successive interface. Using Eq. (7), we find that
for the intrinsic dissociation rate constant kd = 4.66 s�1. The
configurations at the final interface can be used to draw from
when performing the dissociation step in the MD-GFRD, see
Sec. II E 2.

B. Bimolecular reactions

To test the multi-scale scheme, we simulate the bi-
molecular reaction shown in Eq. (10). In these simulations,
we start off with two species of particles A and B, each hav-
ing one patch on its surface. An A particle can react with a B
particle to form a dimer. Also, a C particle can dissociate to
form one A and one B, with an intrinsic rate kd that has been
pre-computed using FFS (see Sec. III A). We assume that the
mixture is ideal: only species A and B have an attractive inter-
action U(R,r). All other interaction potentials between pairs
A-A, B-B, C-C, C-A, and C-B are repulsive only. We test the
scheme for two different scenarios, one starting with a single
A and a single B particle and the second starting with two A
and two B particles. The simulation results are compared with
Monte Carlo simulations of the same model and with analytical
expressions.

In the first case, one particle of species A and one particle
of species B, each having one patch, are put in a cubic box
of volume V, with periodic boundary conditions. This means
that the number of C particles, NC , is either zero or one. From
the computed time average of NC , we calculate the probability
Pb that the A particle is bound to B. We repeat this procedure
for different box sizes. In Fig. 8 we compare the value of Pb
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FIG. 8. The probability Pb that a particle A is bound to a particle B, as a
function of the volume of the box. Simulations are performed with one A
particle and one B particle in the box. The points with the error bars are the
results of the MD-GFRD simulations and the Monte Carlo simulation. These
results are validated with the analytical prediction of Eq. (11). It is seen that the
agreement is very good. The translational and rotational diffusion constants,
which are not important for the value of Pb, are 1 µm2/s and 1.6×107 rad2/s.

obtained using the new MD-GFRD algorithm to the results
obtained from Monte Carlo simulations of the same system.
The figure also shows the analytical result

Pb =
〈NC〉

NA
=

kon

kon + Vkoff
=

φ(V )
φ(V ) + 1

, (11)

where 〈NC〉 is the average of NC and φ(V ) is the ratio of the
probability that an A particle is bound versus unbound

φ(V ) =
kon

Vkoff
=

Keq

V
, (12)

where kon and koff are the effective association and dissociation
rates, respectively, and Keq is the equilibrium constant

Keq =

∫
dR

∫
dû1

∫
dû2e−βV (R,r(R,û1,û2)), (13)

where U(R, r(R, û1û2)) is the interaction potential given by
Eq. (8), with R the inter-particle vector, R the magnitude of R,
and r the distance between the patches of the particles, which
depends on R and the orientation of the two particles denoted
by the patch vectors in the stationary lab frame, û1 and û2,
respectively, given by Eq. (1). Solving Eq. (13) analytically is
not possible for the complex anisotropic potential used here.
However, recently we have shown how in one TIS/FFS simu-
lation both the association rate kon and the dissociation rate koff

can be computed,23 which then allows us to obtain Keq from
Eq. (12). Applying this technique to this potential revealed
that kon = 0.135 µm3 s−1 and koff = 1.384 s�1. Fig. 8 shows that
the results of the MD-GFRD simulations agree very well with
both the results of the Monte Carlo simulations and with the
analytical predictions.

In the second test, we start with 2 A particles and 2 B parti-
cles, which can again interact via the same interaction potential
to form species C. We can analytically compute the probability
that an A particle is bound to a B particle by carefully summing

over all possible configurations24

Pb =
φ(V ) + φ(V )2

2(0.25 + φ(V ) + φ(V )2

2 )
, (14)

where φ(V ) is given by Eq. (12). The results of the MD-GFRD
simulations, the Monte Carlo simulations, and the analytical
prediction are shown in Fig. 9. It is seen that the agreement is
very good.

C. Power spectrum

We can use MD-GFRD to compute the power spectrum
Pn(ω) of the time trace of the binding state n(t) of two parti-
cles, switching between the bound state with n(t) = 1 and the
unbound state with n(t) = 0. The dotted line in Fig. 10 shows
the result. We expect that this power spectrum is given by that
of a random telegraph process25

P(ω) =
2µPb(1 − Pb)

µ2 + ω2
, (15)

where ω is the frequency, µ= kon/V + koff is the renormal-
ized/effective decay rate, and Pb = kon/(kon + Vkoff) is the
binding probability. To predict the power spectrum, we thus
need the effective association rate kon and the effective disso-
ciation rate koff. As described in Sec. III B, these rates can be
computed in a single TIS/FFS simulation.23 Using the com-
puted values of the rate constants in combination with Eq. (15),
we arrive at the analytical prediction of the solid line in Fig. 10.
It is seen that the agreement with the MD-GFRD simulation
results is excellent. MD-GFRD thus not only reproduces mean
quantities but also successfully predicts dynamic quantities.

FIG. 9. The probability Pb that a particle A is bound to a particle B, as a
function of the volume of the box. Simulations are performed starting with
two A particles and two B particles in the box. The points with the error
bars show the results of the new MD-GFRD scheme and the Monte Carlo
simulations. These results are validated with the analytical prediction of
Eq. (14). It is seen that the agreement is very good. The translational and
rotational diffusion constants, which are not important for the value of Pb, are
1 µm2/s and 1.6 × 107 rad2/s.
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FIG. 10. MD-GFRD successfully predicts the power spectrum Pn(ω) of
the binding state n(t) of two particles switching between the bound state
n(t)= 1 and the unbound state n(t) = 0. The dotted line shows the results
of the MD-GFRD simulations, while the solid line shows the analytical pre-
diction of Eq. 15, where the association rate kon and dissociation rate koff
have been computed from a single FFS simulation as described in Ref. 23.
Two particles, one of each species A and B, were simulated in a box of side
length 100σ.

D. Performance

The motivation to combine GFRD and MD into a multi-
scale scheme is the computational speed up it can provide.
Unlike brute force Brownian dynamics which spends a lot
of CPU time in propagating the particles toward each other,
GFRD makes large jumps in space and time when the par-
ticles are far apart from each other and the GFRD domains
are large. The computational power of GFRD can thus espe-
cially be reaped when the particles are often far apart, which
is the case when the concentrations are low. This can be seen

FIG. 11. The CPU time to simulate 1 ms real time as a function of the con-
centration of A and B, for MD-GFRD (solid line) and BD (dashed line). The
concentration is varied by changing the volume of the simulation box, while
the number of particles is kept constant at NA = NB = 5. It is seen that in
the biologically relevant concentration range of nanomolar to micromolar, the
performance of MD-GFRD is much better than that of brute-force BD, but
at higher concentrations, the relative performance of MD-GFRD goes down.
This is because at higher concentrations, the particles will be close to each
other, and the system cannot capitalize on the potential of MD-GFRD to make
large jumps in time and space.

in Fig. 11, which shows a comparison of MD-GFRD against
brute force BD as a function of concentration. It is seen that
MD-GFRD is much more efficient than brute force BD, espe-
cially when the concentrations are below a µM. However, for
high concentrations, the performance of MD-GFRD becomes
comparable to that of BD. In this regime, the particles are
often so close together that no big jumps in time and space can
be made. Interestingly, however, the crossover happens only
at a mM concentration, which means that for most biologi-
cally relevant concentrations, MD-GFRD is much faster than
brute-force BD.

We performed a profiling of the code to establish the
overhead associated with the GFRD checks. To determine
the percentage of the total time the code spends in building
domains and updating positions, the code was first profiled for
a low concentration where all the particles are in GFRD. In that
case, 50% of the time is spent on nearest neighbour searches
and the other 50% is spent on constructing and bursting the
domains and updating particles. To determine the overhead
associated with GFRD compared to a brute force BD sim-
ulation, we profiled the code for a high concentration such
that all the particles are in the BD regime. The code spends
60% of the total time integrating the BD particles (neighbour
searches, force calculations, torque calculations, and updating
position and orientation) and 40% of the time attempting to
build domains on these BD particles. The overhead associated
with the nearest neighbour searches can be decreased, if the
code is optimised such that the nearest neighbour search is
performed just once for both the BD and GFRD.

IV. CONCLUSION

In this work, we extended the MD-GFRD scheme11 to
include the orientational dynamics of the particles, enabling
the simulation of reaction and diffusion of particles that inter-
act via anisotropic interaction potentials. This opens up the
possibility to treat a whole class of interesting problems.
Biomolecules such as proteins and DNA typically interact with
each other via anisotropic potentials. In some cases of biolog-
ical interest, the dynamics at short length and time scales can
be integrated out.3,26–28 For example, a gene regulatory pro-
tein that has just dissociated from its promoter on the DNA
either rapidly rebinds the DNA or rapidly escapes into the
bulk, where it will loose its orientation; conversely, a new pro-
tein tends to arrive at the promoter from the bulk in a random
orientation. In these cases, we expect that the regulatory pro-
teins can be modeled as isotropic particles that interact with
the DNA via effective rate constants, which take into account
the anisotropy of the interaction. However, it is now well estab-
lished that in many systems the dynamics at molecular length
and time scales, arising from, e.g., enzyme-substrate rebind-
ings, can qualitatively change the macroscopic behavior of
the system at cellular length scales.10,29 This phenomenon can
occur in biochemical networks with multi-site protein modi-
fication, which are omnipresent in cellular biology.10 In such
systems, the orientational dynamics cannot be integrated out:
the probability that an enzyme which has dissociated from its
substrate molecule rebinds to another site on the same substrate
molecule to chemically modify it will depend in a non-trivial
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manner on the translational and orientational diffusion con-
stants of the particles, their size, and the distance between the
patches on the substrate. The MD-GFRD scheme presented
here now makes it possible to study the interplay between the
microscopic dynamics at the molecular scale and the network
dynamics at the cellular scale in this large class of systems.

In addition, the MD-GFRD scheme could more generally
be used for soft matter self-assembly where building blocks
that are diffusing in the dilute solution come together and bind
occasionally to form large complexes and structures.14

While the MD-GFRD scheme has been set up for simulat-
ing 3D bulk solutions, in principle the method can be extended
to include other geometries, where GFRD includes reaction
and diffusion in 1D and 2D.30–32

Finally, we note that in our multiscale MD-GFRD algo-
rithm, we assume that the interaction potentials are short
ranged, which is usually the case in a highly screened envi-
ronment such as the living cell. Moreover, the algorithm,
similar to most algorithms to simulate biochemical networks
in time and space, assumes that the particles move by nor-
mal diffusion,4,5,7,33,34 as indeed experiments suggest proteins
do inside the living cell.1 The algorithm cannot straightfor-
wardly treat long-range hydrodynamics interactions, which
can be of importance under certain (non-equilibrium) condi-
tions. For future work, it would be of interest to study whether
hydrodynamic interactions could be included in MD-GFRD,
for instance, via the Oseen tensor approximation.
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5J. Lipková, K. C. Zygalakis, S. J. Chapman, and R. Erban, J. Appl. Math.
71, 714 (2011).

6M. B. Flegg, S. J. Chapman, and R. Erban, J. R. Soc., Interface 9, 859
(2012).
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