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Abstract

Much research has been devoted to the classification of folk
songs, revealing that variants are recognised based on salient
melodic segments, such as phrases and motifs, while other
musical material in a melody might vary considerably. In
order to judge similarity of melodies on the level of melodic
segments, a successful similarity measure is needed which will
allow finding occurrences of melodic segments in folk songs
reliably. The present study compares several such similarity
measures from different music research domains: correlation
distance, city block distance, Euclidean distance, local align-
ment, wavelet transform and structure induction. We evaluate
the measures against annotations of phrase occurrences in
a corpus of Dutch folk songs, observing whether the mea-
sures detect annotated occurrences at the correct positions.
Moreover, we investigate the influence of music represen-
tation on the success of the various measures, and analyse
the robustness of the most successful measures over subsets
of the data. Our results reveal that structure induction is a
promising approach, but that local alignment and city block
distance perform even better when applied to adjusted music
representations. These three methods can be combined to find
occurrences with increased precision.

Keywords: symbolic, music similarity, segments,
occurrences, pattern matching

1. Introduction

A large body of computational music research has been
devoted to the study of variation of folk songs in order to
understand what characterises a specific folk style (e.g.

Correspondence: Berit Janssen, Meertens Institute, PO Box 10855, 1001 EW Amsterdam, the Netherlands. Email: berit.janssen@gmail.com

Juhász, 2006; Conklin & Anagnostopoulou, 2011), or to study
change in an oral tradition (e.g. Bronson, 1950; Louhivuori,
1990; Olthof, Janssen, & Honing, 2015). In particular, a very
active area of research is the automatic comparison of folk
song melodies, with the aim of reproducing human judge-
ments of relationships between songs (e.g. Eerola, Jäärvinen,
Louhivuori, & Toiviainen, 2001; Garbers et al., 2007; Mül-
lensiefen & Frieler, 2007; Hillewaere, Manderick, & Conklin,
2009; Bade, Nürnberger, Stober, Garbers, & Wiering, 2009;
Boot, Volk, & de Haas, 2016). Recent evidence shows that
human listeners do not so much recognise folk songs by virtue
of their global structure, but instead focus on the presence or
absence of short melodic segments, such as motifs and phrases
(Volk & van Kranenburg, 2012).

The present article compares a number of similarity mea-
sures as potential computational approaches to locate melodic
segments in symbolic representations of folk song variants.
We investigate six existing similarity measures suggested by
studies in ethnomusicology and music information retrieval
as promising approaches to find occurrences.

In computational ethnomusicology, various measures for
comparing folk song melodies have been proposed: as such,
correlation distance (Scherrer & Scherrer, 1971), city block
distance and Euclidean distance (Steinbeck, 1982) have been
considered promising. Research on melodic similarity in folk
songs also showed that alignment measures can be used to
find related melodies in a large corpus of folk songs (van
Kranenburg et al., 2013).

As this paper focuses on similarity of melodic segments
rather than whole melodies, recent research in musical pattern
discovery is also of particular interest. Two well-performing
measures in the associated MIREX challenge of 2014 (Velarde
& Meredith, 2014; Meredith, 2014) have shown success when
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Finding Occurrences of Melodic Segments 119

evaluated on the Johannes Keppler University segments Test
Database (JKUPDT).1 We test whether the underlying simi-
larity measures of the pattern discovery methods also perform
well in finding occurrences of melodic segments.

The six measures investigated in this paper were used in a
previous study and evaluated against binary labels of occur-
rence and non-occurrence. In this article, we evaluate not only
whether occurrences are detected correctly, but also whether
they are found in the correct position. Moreover, we evaluate
on a bigger data-set, namely the Annotated Corpus of the
Meertens Tune Collections, MTC-ANN 2.0 (van Kranenburg,
Janssen, & Volk, 2016).

Two measures compared in our previous study–B-spline
alignment (Urbano, Lloréns, Morato, & Sánchez-Cuadrado,
2011) and Implication-Realization structure alignment
(Grachten, Arcos, & López de Mántaras, 2005)—were not
evaluated in this study as in their current implementation,
they do not allow determining the positions of occurrences
in a melody.

We present an overview of the compared similarity mea-
sures in Table 1, with their abbreviation used throughout the
article, and bibliographical references to the relevant papers.

We evaluate the measures by comparison to phrase anno-
tations by three domain experts on a selection of folk songs,
produced specifically for this purpose. We employ the simi-
larity measures and the annotations to address four research
questions:

Q1 Which of the proposed similarity measures
performs best at finding occurrences of melodic
segments in folk songs?

Q2 Folk songs are often notated in different octaves or
keys, or in different meters, as exemplified by two
variants displayed in Figure 1. How can the result-
ing transposition and time dilation differences best
be resolved? Does a different music representation
improve the performance of similarity measures?

Q3 Can a combination of the best-performing measures
improve agreement with human annotations?

Q4 Our folk song corpus contains distinct groups of
variants. How robust are the best-performing mea-
sures to such subgroups within the data-set?

The remainder of this paper is organised as follows: first,
we describe our corpus of folk songs, which has annotations
of phrase occurrences. Next, we give details on the compared
similarity measures, and the methods used to implement the
similarity measures, and to evaluate them. In Section 5, we
perform an overall comparison of the six similarity measures
(Q1). Section 6 addresses the influence of transposition and
time dilation on the results (Q2). Section 7 introduces a com-
bined measure based on the best-performing similarity mea-
sures and music representations (Q3), and Section 8 investi-

1http://www.music-ir.org/mirex/wiki/2014:Discovery_of_
Repeated_Themes_%26_Sections_Results

Fig. 1. The first phrase of two variants of a folk song, notated at
different octaves and in different meters. Similarity comparison of
the pitches and durations might lead to no agreement between the
two variants, even though they are clearly very related.

gates the robustness of the best measures towards variation
in the data-set (Q4). The evidence from our results leads to
a number of concluding remarks and incentives for future
research.

2. Material

We evaluate the similarity measures on a corpus of Dutch
folk songs, MTC-ANN 2.0, which is part of the Meertens Tune
Collections (van Kranenburg, de Bruin, & Grijp, 2014). MTC-
ANN 2.0 contains 360 melodies from Dutch oral tradition,
which have mostly been transcribed from recordings, while
some have been digitised from song books. Various metadata
have been added to the folk songs by domain experts. The
melodies have been categorised into groups of variants, or
tune families, considered to have descended from the same
ancestor melody (Bayard, 1950). We parse the **kern files
as provided by MTC-ANN 2.0 and transform the melodies
and segments into the required music representations using
music21 (Cuthbert et al., 2010).

Even though MTC-ANN 2.0 comprises very well docu-
mented data, there are some difficulties to overcome when
comparing the digitised melodies computationally. Most im-
portantly, the transcription choices between variants may be
different: where one melody may have been notated in 3/4,
and with a melodic range from D4 to G4, another transcriber
may have chosen a 6/8 meter, and a melodic range from D3
to G3, as shown in Figure 1. This means that notes which are
perceptually very similar might be hard to match based on the
digitised transcriptions. Musical similarity measures might be
sensitive to these differences, unless they are transposition or
time dilation invariant, i.e. work equally well under different
pitch transpositions or meters.

For the corpus of 360 melodies categorised into 26 tune
families, we asked three Dutch folk song experts to annotate
similarity relationships between phrases within tune families.
The annotators all have a musicological background, and had
worked with the folk song collection for at least some months
previous to the annotation procedure. They annotated 1891
phrases in total. The phrases contain, on average, nine notes,
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120 B. Janssen et al.

Fig. 2. An example for two melodies from the same tune family with annotations. The first phrase of each melody is labelled with the same letter
(A), but different numbers, indicating that the phrases are ‘related but varied’, the second phrase is labelled B0 in both melodies, indicating that
the phrases are ‘almost identical’.

with a standard deviation of two notes. The data-set with its
numerous annotations is publicly available.2

For each tune family, the annotators compared all the
phrases within the tune family with each other, and gave
each phrase a label consisting of a letter and a number. If
two phrases were considered ‘almost identical’, they received
exactly the same label; if they were considered ‘related but
varied’, they received the same letter, but different numbers;
and if two phrases were considered ‘different’, they received
different letters (cf. an annotation example in Figure 2).

The three domain experts worked independently on the
same data, annotating each tune family separately, in an order
that they could choose themselves. To investigate the sub-
jectivity of similarity judgements, we measure the agreement
between the three annotators on pairwise phrase similarity
using Fleiss’ Kappa, which yields κ = 0.76, constituting
substantial agreement.

The annotation was organised in this way to guarantee that
the task was feasible: checking for instances of each phrase in
a tune family in all its variants (27,182 comparisons) would
have been much more time-consuming than assigning labels to
the 1891 phrases, based on their similarity. Moreover, the three
levels of annotation facilitate evaluation for two goals: finding
only almost identical occurrences, and finding also varied
occurrences. These two goals might require quite different
approaches. In the present paper, we focus on finding ‘almost
identical’ occurrences.

3. Compared similarity measures

In this section, we present the six compared similarity mea-
sures, describing the music representations used for each mea-
sure. We describe the measures in three subgroups: first,
measures comparing equal-length note sequences; second,
measures comparing variable-length note sequences; third,
measures comparing more abstract representations of the
melody.

Some measures use note duration next to pitch information,
whereas others discard the note duration, which is the easiest
way of dealing with time dilation differences. Therefore, we

2http://www.liederenbank.nl/mtc/

distinguish between music representation as pitch sequences,
which discard the durations of notes, and duration-weighted
pitch sequences, which repeat a given pitch depending on the
length of the notes. We represent a crotchet or quarter note by
16 pitch values, a quaver or eighth note by 8 pitch values and
so on. Onsets of small duration units, especially triplets, may
fall between these sampling points, which shift their onset
slightly in the representation. Structure induction requires a
music representation in onset, pitch pairs.

In order to deal with transposition differences in folk songs,
van Kranenburg et al. (2013) transpose melodies to the same
key using pitch histogram intersection. We take a similar ap-
proach. For each melody, a pitch histogram is computed with
MIDI note numbers as bins, with the count of each note num-
ber weighted by its total duration in a melody. The pitch
histogram intersection of two histograms hs and ht , with shift
σ , is defined as

PHI(hs, ht , σ ) =
r∑

k=1

min(hs,k+σ , ht,k), (1)

where k denotes the index of the bin, and r the total number of
bins. We define a non-existing bin to have value zero. For each
tune family, we randomly pick one reference melody and for
each other melody in the tune family we compute the σ that
yields a maximum value for the histogram intersection, and
transpose that melody by σ semitones. This process results in
pitch-adjusted sequences.

To test how the choice of reference melody affects the
results of pitch histogram intersection, we performed the pro-
cedure 100 times, with a randomly picked reference melody
per tune family in every iteration. We compare the resulting
pitch differences between tune family variants with pitch dif-
ferences as a result of manually adjusted pitches, available
through the MTC-ANN-2.0 data-set. We compare all 2822
pairs of tune family variants. On average, pitch histogram
intersection adjusts 93.3% of the melody pairs correctly, so the
procedure succeeds in the vast majority of cases. The standard
deviation of the success rate is 2.4%, which is low enough to
conclude that it does not matter greatly which melody is picked
as a reference melody for the pitch histogram intersection
procedure.
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Finding Occurrences of Melodic Segments 121

Table 1. An overview of the measures for music similarity compared
in this research, with information on the authors and year of the
related publication.

Abbreviation Similarity measure Authors

CD Correlation distance (Scherrer & Scherrer, 1971)
CBD City-block distance (Steinbeck, 1982)
ED Euclidean distance (Steinbeck, 1982)
LA Local alignment (van Kranenburg et al., 2013)
SIAM Structure induction (Meredith, 2014)
WT Wavelet transform (Velarde & Meredith, 2014)

3.1 Similarity measures comparing equal-length note
sequences

To describe the following three measures, we refer to two
melodic segments q and p of length n, which have elements
qi and pi . The measures described in this section are distance
measures, such that lower values of dist(q, p) indicate higher
similarity. Finding an occurrence of a melodic segment within
a melody with a fixed-length similarity measure is achieved
through the comparison of the query segment against all possi-
ble segments of the same length in the melody. The candidate
segments with maximal similarity to the query segment are
retained as matches, and the positions of these matches within
the match melody are saved along with the achieved similarity.
The implementation of the fixed-length similarity measures in
Python is available online.3 It uses the spatial.distance library
of scipy (Oliphant, 2007).

Scherrer and Scherrer (1971) suggest correlation distance to
compare folk song melodies, represented as duration-
weighted pitch sequences. Correlation distance is independent
of the transposition and melodic range of a melody, but in the
current music representation, it is affected by time dilation
differences.

dist(q, p) = 1 −
∑n

i=1(qi − q̄)(pi − p̄)√∑n
i=1(qi − q̄)2

√∑n
i=1(pi − p̄)2

(2)

Steinbeck (1982) proposes two similarity metrics for the
classification of folk song melodies: city block distance
(Equation 3) and Euclidean distance (Equation 4). He suggests
to compare pitch sequences with these similarity measures,
next to various other features of melodies such as their range
and the number of notes in a melody (p. 251f.). As we are
interested in finding occurrences of segments rather than com-
paring whole melodies, we compare pitch sequences, based
on the pitch distances between each note in the sequence.

dist(q, p) =
n∑

i=1

|qi − pi | (3)

dist(q, p) =
√√√√ n∑

i=1

(qi − pi )2 (4)

3https://github.com/BeritJanssen/MelodicOccurrences

City block distance and Euclidean distance are not trans-
position invariant, but as they are applied to pitch sequences,
time dilation differences have minor influence. All the equal-
length measures in this section will be influenced by varia-
tions introducing more notes into a melodic segment, such as
melodic ornamentation. Variable-length similarity measures,
discussed in the following section, can deal with such varia-
tions more effectively.

3.2 Similarity measures comparing variable-length note
sequences

To formalise the following two measures, we refer to a melodic
segment q of length n and a melody s of length m, with
elements qi and s j . The measures described in this section
are similarity measures, such that higher values of sim(q, s)
indicate higher similarity. The implementation of these meth-
ods in Python is available online.3

Mongeau and Sankoff (1990) suggest the use of alignment
methods for measuring music similarity, and they have been
proven to work well for folk songs (van Kranenburg et al.,
2013). We apply local alignment (Smith & Waterman, 1981),
which returns the similarity of the segments within a given
melody which matches the query best.

To compute the optimal local alignment, a matrix A is
recursively filled according to equation 5. The matrix is ini-
tialised as A(i, 0) = 0, i ∈ {0, . . . , n}, and A(0, j) = 0, j ∈
{0, . . . , m}. Winsertion and Wdeletion define the weights for in-
serting an element from melody s into segment q , and for
deleting an element from segment q , respectively. subs(qi , s j )

is the substitution function, which gives a weight depending
on the similarity of the notes qi and s j .

A(i, j) = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(i − 1, j − 1) + subs(qi , s j )

A(i, j − 1) + Winsertion

A(i − 1, j) + Wdeletion

0

(5)

We apply local alignment to pitch-adjusted sequences. In
this representation, local alignment is not affected by trans-
position differences, and it should be robust with respect to
time dilation. For the insertion and deletion weights, we use
Winsertion = Wdeletion = −0.5, and we define the substitution
score as

subs(qi , s j ) =
{

1 if qi = s j

−1 otherwise
. (6)

The insertion and deletion weights are chosen to be equal,
and to be smaller than the weight of a substitution with a
different pitch; substitution with the same pitch is rewarded.
Effectively, this means that the alignment matrix will have
non-zero values only if substitutions with the same pitch occur.

The local alignment score is the maximum value in the
alignment matrix A. This maximum value can appear in more
than one cell of the alignment matrix due to phrase repetition.
This means that several matches can be associated with a
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given local alignment score. To determine the positions of
the matches associated with the maximum alignment score,
we register for each cell of the alignment matrix whether
its value was caused by insertion, deletion or substitution.
We backtrace the alignment from every cell containing the
maximal alignment score, which we take as the end position
of a match, continuing until encountering a cell containing
zero, which is taken as the begin position of a match.

We normalise the maximal alignment score by the number
of notes n in the query segment, which gives us the similarity
of the detected match with the query segment.

sim(q, s) = 1

n
max

i, j
(A(i, j)) (7)

Structure induction algorithms (Meredith, 2006) formalise
a melody as a set of points in a space defined by note on-
set and pitch, and perform well for musical pattern discov-
ery (Meredith, 2014). They measure the difference between
melodic segments through so-called translation vectors. The
translation vector T between points in two melodic segments
can be seen as the difference between the points qi and s j in
onset, pitch space. As such, it is transposition invariant, but
will be influenced by time dilation differences.

T =
(

qi,onset

qi,pitch

)
−

(
s j,onset

s j,pitch

)
(8)

The maximally translatable pattern (MTP) of a translation
vector T for two melodies q and s is then defined as the set of
melody points qi which can be transformed to melody points
s j with the translation vector T.

MTP(q, s, T) = {qi |qi ∈ q ∧ qi + T ∈ s} (9)

We use the pattern matching method SIAM, defining the
similarity of two melodies as the largest set match achievable
through translation with any vector, normalised by the length
n of the query melody:

sim(q, s) = 1

n
max

T
|MTP(q, s, T)| (10)

The maximally translatable patterns leading to highest sim-
ilarity are selected as matches, and their positions are deter-
mined through checking the onsets of the first and last notes
of the MTPs.

3.3 Similarity measures comparing abstract representa-
tions

Wavelet transform converts a pitch sequence into a more ab-
stract representation prior to comparison. We apply wavelet
transform to each query segment q and melody s in the data-set
prior to searching for matches.

Velarde et al. (2013) use wavelet coefficients to compare
melodies: melodic segments are transformed with the Haar
wavelet, at the scale of quarter notes. The wavelet coefficients
indicate whether there is a contour change at a given mo-
ment in the melody, and similarity between two melodies is

computed through city block distance of their wavelet coeffi-
cients. The method achieved considerable success for pattern
discovery (Velarde & Meredith, 2014).

We use the authors’ Matlab implementation to compute
wavelet coefficients of duration-weighted pitch sequences.
An example for an excerpt from a melody and the associated
wavelet coefficients can be found in Figure 3. In accordance
with Velarde and Meredith’s procedure, we use city block
distance to compare wavelet coefficients of query segment
and match candidates, retaining similarity and position infor-
mation of matches as described in Section 3.1.

Through the choice of music representation and comparison
of the wavelet coefficients, this is an equal-length similarity
measure sensitive to time dilation; however, it is transposition
invariant.

4. Evaluation

For the evaluation, we distinguish three concepts: match, in-
stance and occurrence.Amatch is a note sequence in a melody
s at which maximum similarity with the query segment q is
achieved, as detected by one of the similarity measures. An
occurrence is a match whose similarity score exceeds a given
threshold. An instance of a query phrase in a melody is given
if the annotators indicate that a query phrase q is found within
a given melody s. There can be multiple matches, occurrences
and instances of a query phrase in a given melody due to phrase
repetitions.

We evaluate each of the 1890 phrases in the data-set as
query segments. Using the various similarity measures, we
detect for each query segment q , per tune family, its matches
in every melody s, excluding the melody from which the query
segment was taken. As we are interested in the positions of the
matches, we then determine which notes belong to the match.
We assign to each note in a melody belonging to a match
the similarity score of that match; the other notes receive an
arbitrary score which for each measure exceeds the largest
(CD, CBD, ED, WT) or smallest (LA, SIAM) similarity values
of all matches.

Different thresholds on the similarity measures determine
which notes are selected as constituting occurrences. Notes
from matches with similarity values below (for the distance
measures CD, CBD, ED, and WT) or above (for LA and
SIAM) are considered as belonging to occurrences. We vary
the similarity threshold for each measure stepwise from the
matches’ minimum similarity to maximum similarity, and for
each step compare the retained occurrences to the human
annotations.

We evaluate the occurrences against the annotations of ‘al-
most identical’ instances of the query segments in all melodies
from the same tune family. As we would like to know which
instances of query phrases most annotators agree on, we com-
bine the three annotators’ judgements into a majority vote: if
for a given query segment q in one melody t , two or more
annotators agree that a phrase p with exactly the same label
(letter and number) appears in another melody s of the same
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Finding Occurrences of Melodic Segments 123

Fig. 3. The first two phrases of a melody from the tune family ‘Daar ging een heer 1’, with the values of the Haar wavelet coefficient underneath.

tune family, we consider phrase p’s notes to constitute an
instance of query segment q in s.

Conversely, if there is no such phrase in melody s to which
two or more annotators have assigned exactly the same label
as q , the notes of melody s do not represent any instances of
that phrase. This means that the phrases considered ‘related
but varied’ are not treated as instances of the query segment
for the purpose of this study. The query phrases are compared
against a total of 1,264,752 notes, of which 169,615 constitute
instances of the query phrases.

All the notes which annotators consider to constitute in-
stances of a query phrase are positive cases (P), all other notes
are negative cases (N ). The notes that a similarity measure
with a given threshold detects as part of an occurrence are
the positive predictions (P P), all other notes are negative
predictions (N P). We define the intersection of P and P P ,
i.e. the notes which constitute an occurrence according to both
a similarity measure with a given threshold and the majority
of the annotators, as true positives (T P). True negatives (T N )
are the notes which both annotators and similarity measures do
not find to constitute an occurrence, i.e. the intersection of N
and N P . False positives (F P) are defined as the intersection
of N and P P , and false negatives (F N ) as the intersection of
P and N P .

We summarise the relationship between true positives and
false positives for each measure in a receiver-operating char-
acteristic (ROC) curve with the threshold as parameter and
the axes defined by true positive rate (tpr) and false positive
rate (fpr). The greater the area under the ROC curve (AUC),
the better positive cases are separable from negative cases.

We would like to know the optimal similarity threshold
for each measure to retrieve as many as possible notes an-
notated as instances correctly (high recall), and retrieving as
few as possible irrelevant notes (high precision). A common
approach to strike this balance is the F1-score, the harmonic
mean of precision and recall. However, as our data have a
strong bias (86.6%) towards negative cases, the F1-score is
not an adequate criterion, as it focuses on true positives only.
Therefore, we evaluate both positive and negative cases with
sensitivity, specificity, positive and negative predictive values,
and optimise the similarity threshold with respect to all these
values through Matthews’ correlation coefficient (Matthews,
1975).

Sensitivity, or recall, is equal to the true positive rate. It is
defined as the number of true positives, divided by all positive
cases, i.e. the number of notes correctly detected as part of
occurrences, divided by all notes considered by annotators to
constitute instances of query phrases.

SEN = T P

P
(11)

Specificity, or true negative rate, is defined as the number of
true negatives, divided by all negative cases, i.e. is the number
of notes which are correctly labelled as not belonging to an
occurrence, divided by all notes considered by annotators to
not belong to any occurrences.

SPC = T N

N
= 1 − fpr (12)

The positive predictive value, or precision, is defined as
the number of true positives, divided by all positive predicted
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124 B. Janssen et al.

cases, i.e. the number of all relevant notes labelled as part
of an occurrence, divided by all notes detected to constitute
occurrences by the similarity measure.

PPV = T P

P P
(13)

The negative predictive value is defined as the number of
true negatives, divided by all negative predicted cases, i.e.
the number of notes correctly labelled as not belonging to an
occurrence, divided by all notes not constituting an occurrence
according to the similarity measure.

NPV = T N

N P
(14)

To maximise both true positive and true negative rates, i.e.
sensitivity and specificity, their sum should be as large as pos-
sible. The same goes for the positive and negative predictive
values, the sum of which should be as large as possible. Powers
(2007) suggests the measures informedness and markedness,
which are zero for random performance, and one for perfect
performance:

INF = SEN + SPC − 1 (15)

MRK = PPV + NPV − 1 (16)

Moreover, informedness and markedness are the compo-
nent regression coefficients of Matthews’ correlation coeffi-
cient φ, which is a good way of describing the overall agree-
ment between a predictor and the ground truth (Powers, 2007).
φ = 1.0 for perfect agreement between ground truth and
predictors, φ = 0.0 for random performance, and φ = −1.0
if there is a complete disagreement between ground truth
and predictors, such that every positive case is a negative
prediction, and vice versa.

φ = √
INF · MRK (17)

4.1 Glass ceiling

As our ground truth is defined as the majority vote of three
annotators, we analyse the agreement of the three annotators
with the majority vote. This gives us an indication of the ‘glass
ceiling’ of the task, or how much agreement with the ground
truth is maximally achievable. If the annotators do not per-
fectly agree on occurrences in our data-set, it is not realistic to
expect that a similarity measure can achieve perfect agreement
with the current ground truth (Flexer & Grill, 2016).

Table 2 shows that all annotators show similar agreement
(measured by Matthews’ correlation coefficient) with the an-
notators’majority vote. There are individual differences, how-
ever: for example, annotator 3 shows lower sensitivity, which
is counter-balanced by a higher positive predictive value. This
means that this annotator misses some of the occurrences on
which the two other annotators agree, but finds almost no
spurious occurrences.

The closer the compared similarity measures get to the
annotators’ agreement with the majority vote of φ � 0.86, the

better we take them to be at finding occurrences of melodic
segments in folk song melodies.

4.2 Baselines

Next to the best possible performance, we would like to know
what a very naive approach would do, and introduce two
baselines: one which considers every note as part of an occur-
rence (always), leading to perfect sensitivity, and a baseline
which considers no note as part of an occurrence (never),
leading to perfect specificity. The positive predictive value
of always and the negative predictive value of never reflect
the aforementioned bias towards negative cases; the respec-
tive other predictive values are zero as there are no negative
predictions for always, and no positive predictions for never.
As informedness is 0.0 in both cases, Matthews’ correlation
coefficient also leads to φ = 0.0, meaning both have random
agreement with the ground truth.

5. Comparison of similarity measures

Presently, we compare the previously described six similar-
ity measures applied to the music representations for which
they were proposed. The results suggest some answers to our
first research question (Q1), i.e. which of the measures best
serves the purpose of finding correct occurrences of melodic
segments in folk songs.

5.1 Results

Figure 4 shows the ROC curves of the six compared measures,
which reflect the true positive rate versus the false positive
rate of the measures over a range of similarity thresholds. The
higher and sharper the ‘elbow’ in the upper left corner, the
better a measure can separate between positive and negative
cases. Chance-level performance would be on the diagonal
connecting zero true and false positive rates to full true and
false positive rates.

The straightness of the curves on the right is caused by
the fact that a considerable amount of the notes annotated
as instances are not found by the measures. The ROC curve
interpolates between considering all matches found by a given
measure as occurrences, and considering all notes in the data-
set as constituting occurrences, leading to tpr = f pr = 1.0.

For each measure, we report the area under the ROC curve
to numerically represent the difference between the curves in
Figure 4. Moreover, we select the similarity threshold which
maximises Matthews’ correlation coefficient, and report the
associated φ, sensitivity, specificity, positive and negative pre-
dictive values. These measures are summarised in Table 3.

Table 3 shows that all of the compared measures agree much
better with the ground truth than the baselines (always and
never), but do not reach the level of the annotator agreement
with the majority vote (cf. Table 2). Of the six measures,
wavelet transform (WT) achieves least agreement with the
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Finding Occurrences of Melodic Segments 125

Table 2. The glass ceiling (top), or the annotators’ agreement with the majority vote, and the majority vote agreement of the baselines (bottom),
assuming every note (always) or no note (never) to be an occurrence. We report Matthews’ correlation coefficient (φ) for the overall agreement,
and the associated sensitivity (SEN), specificity (SPC), positive and negative predictive values (PPV, NPV).

φ SEN SPC PPV NPV

Annotator
Annotator1 0.877 0.900 0.982 0.887 0.985
Annotator2 0.865 0.913 0.976 0.855 0.986
Annotator3 0.861 0.815 0.993 0.947 0.972

Baseline
always 0.0 1.0 0.0 0.134 0.0
never 0.0 0.0 1.0 0.0 0.866

Fig. 4. The ROC curves for the various similarity measures, showing the increase of false positive rate against the increase of the true positive
rate, with the threshold as parameter.

Table 3. Results of the compared similarity measures: area under the ROC curve (AUC), maximal φ correlation coefficient with associated
sensitivity (SEN), specificity (SPC), positive and negative predictive values (PPV, NPV).

Measure AUC φ SEN SPC PPV NPV

WT 0.731 0.459 0.367 0.976 0.703 0.909
ED 0.764 0.468 0.482 0.948 0.589 0.922
CBD 0.774 0.499 0.425 0.973 0.708 0.916
CD 0.797 0.503 0.414 0.977 0.732 0.915
LA 0.859 0.621 0.646 0.956 0.695 0.946
SIAM 0.870 0.665 0.632 0.973 0.787 0.945

annotators, followed by the distance measures suggested in
the field of ethnomusicology (ED, CBD and CD). Local align-

ment (LA) and structure induction (SIAM) agree best with the
majority vote and achieve Matthews’ correlation coefficients
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126 B. Janssen et al.

of around φ = 0.621 and φ = 0.665, respectively. This is
still much lower than the annotator agreement, but shows that
the measures find most relevant occurrences, while producing
less spurious than relevant results.

5.2 Discussion

With the present results, the distance measures Euclidean dis-
tance and city block distance (ED, CBD) do not seem to
be promising candidates for finding occurrences of melodic
segments in melodies. Still, while they do not achieve high
agreement as measured in φ, they perform widely above the
baselines. The relatively higher success of correlation distance
(CD) is most likely to be attributed to the more fine-grained
music representation in the form of duration-weighted pitch
sequences, which reflect the duration of the notes.

It is surprising that the performance of wavelet transform
(WT) lies below the other compared similarity measures, as in
our previous study (Janssen, van Kranenburg, & Volk, 2015)
which evaluated occurrences without taking their positions
into account, it performed better than the distance measures.
The low sensitivity, mainly responsible for the low maximal
φ, is caused to a large extent by undetected phrase repetitions.
As wavelet coefficients represent contour change in the pitch
sequence, identical phrases with the same pitch sequence rep-
resentation may have different wavelet transforms, depending
on notes preceding the first note of a phrase, as illustrated in
Figure 3. Therefore, in only 10% of the melodies with more
than one instance of a given query phrase, wavelet finds more
than one occurrence.

Local alignment (LA) and structure induction (SIAM) per-
form better than the before-mentioned measures. One reason
for this might be that they are both variable-length similarity
measures, and therefore deal with slight rhythmic variation
and ornamentation more effectively. Moreover, both are trans-
position invariant: local alignment due to the pitch adjustment
performed on the pitch sequence, structure induction due to the
fact that it finds transpositions between pitches by definition.

From the present results, it is not possible to differentiate
whether the best-performing measures do well because their
comparison method is effective, or because of the music rep-
resentations they use. It also seems that duration information
might improve performance, as SIAM and CD, with duration
information, perform comparatively well. Moreover, in re-
spect to duration, time dilation differences might still affect the
results negatively, and a music representation which attempts
to correct these differences might improve results of the best
measures even further.

The next section therefore compares different music rep-
resentations for the compared measures, which gives clearer
insights as to which of the observed differences in the present
comparison are due to the measures themselves, and which
differences can be overcome with different music representa-
tions. This also allows us to perform another comparison of
the similarity measures with optimised music representations.

6. Dealing with transposition and time dilation
differences

The automatic comparison of folk song melodies is impeded
by transposition and time dilation differences of the transcrip-
tions, as illustrated in Figure 1. It remains an open question
which music representation can best resolve these differences
(research question Q2 in the introduction). Therefore, we com-
pare seven different music representations here, applied to
each of the similarity measures as appropriate.

6.1 Music representations

In the previous section, four similarity measures used a pitch
sequence (P) as music representation, which does not resolve
transposition differences, and does not take the duration of
notes into account. To solve the problem of transposition
differences, two approaches are conceivable: a music rep-
resentation consisting of sequences of pitch intervals (PI),
i.e. sequences of differences between successive pitches, and
pitch-adjusted sequences (PA), as described and used for local
alignment in the previous section.

With respect to the representation of duration, we have
already seen the use of pitch and onset tuples (PO) for structure
induction, and duration-weighted pitch sequences (DW) for
correlation distance and wavelet transform in the previous
section. The latter representation can of course also be com-
bined with pitch adjustment, and the resulting representation
(PADW) will be compared, too.

To solve the problem of time dilation differences, we test
whether time dilation differences can be corrected through
automatic comparison of duration value frequencies, analo-
gous to pitch adjustment. To this end, we calculate duration
histograms, in which seven duration bins are filled with the
count of each duration. Only durations which are in 2:1 integer
ratios are considered, as other durations, such as punctuated
rhythms or triplets, would not allow easy scaling. The smallest
considered duration is a hemidemisemiquaver, or 64th note,
and all doublings of this duration are considered up to a semi-
breve, or whole note. Analogous to Equation 1, we define the
duration histogram intersection of two duration histograms ht

and hs , with a total number of r duration bins k:

DH I (ht , hs, σ ) =
r∑

k=1

min(ht,k+σ , hs,k), (18)

For each tune family, we randomly pick one reference melody
and for each other melody in the tune family we compute
the shift σ that yields a maximum value for the histogram
intersection, and use that σ to calculate the multiplier of the
onsets of melody t with relation to melody s:

Mult (t, s) = 2σ (19)

We also tested the influence of the randomly picked refer-
ence melodies on the results of duration histogram intersection
by running the procedure 100 times, and comparing against
annotated duration adjustments. Of the 2822 pairs of tune
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Finding Occurrences of Melodic Segments 127

family variants, 66.5% were adjusted in the same way as
annotated. This means that a third of the pairs are adjusted
incorrectly, so it is an open question whether duration adjust-
ment improves results, in spite of its rather high error rate. At
any rate, the low standard deviation of 1.3% of the success
rate means that it does not matter greatly which melodies are
picked as reference melodies.

The result of this procedure leads us to a music representa-
tion which is pitch and duration adjusted (DA). We also make
use of the metadata of the Annotated Corpus to find out the
hand-adjusted (HA) optimal transposition and time dilation of
each melody. Hand-adjustment is not feasible for a large col-
lection of folk songs, but is a useful reference for comparison
with the automatically adjusted music representations.

Wavelet transform and structure induction (WT, SIAM)
are defined for specific representations, namely a duration-
weighted pitch sequence (DW) and pitch/onset tuples (PO), re-
spectively. As such, not all music representations are applica-
ble for these measures. For WT, only duration-weighted pitch
sequences and adjustments thereof are tested (DW, PADW,
DA, HA). For SIAM, the duration adjustment and hand ad-
justment (DA, HA) are applied to the pitch/onset tuples, which
differ slightly from the DA and HA representations in the
other measures, in which duration weighed pitch sequences
are adjusted.

6.2 Results

From Figure 5, it can be seen that music representation has
considerable influence on the success of the similarity mea-
sures. Overall, most music representations show better per-
formance than the pitch sequence representation (P). The only
exception is the pitch interval representation (PI): attempting
to resolve transposition differences between songs through
pitch intervals deteriorates performance.

Duration information (DW) improves the performance of
some distance measures and local alignment (LA, CD, CBD,
ED), as does pitch adjustment (PA). A combination of the
two (PADW) improves these measures even further. Duration
adjustment (DA) of the duration-weighted sequences gives a
slight advantage for some measures (CBD, LA), but does not
seem to affect the other measures much (ED, CD, WT, SIAM).

The difference with the hand-adjusted (HA) representation,
resulting in the best performance for all measures, shows
that automatic adjustment is not completely able to resolve
transposition and time dilation differences. A full overview
of all music representations and measures, with the resulting
AUC as well as maximal φ with associated retrieval measures,
can be found in Table A1 in the Appendix.

Figure 6 shows another comparison of ROC curves for the
six similarity measures, with optimised music representations.
We pick for each measure the music representation which
results in the highest AUC. As we could not improve some
measures (CD, SIAM) through other music representations,
their curves are identical to those in Figure 4. We find that a
number of measures (ED-DA, CBD-DA) perform much better

than before as a result of the corrections for transposition and
time dilation differences. Local alignment (LA-DA) and city
block distance (CBD-DA) even outperform SIAM with these
adjustments.

In Table 4, we report the area under the ROC curve for
all measures with optimised music representations, as well
as the maximised φ correlation coefficient with associated
sensitivity, specificity, positive and negative predictive values.

With optimised music representation, local alignment and
city block distance achieve values for φ close to that of struc-
ture induction (SIAM). The differences among these three
measures can mainly be found in their sensitivity and posi-
tive predictive values, as SIAM and CBD-DA achieve lower
sensitivity than LA-DA, but compensate by higher positive
predictive values.

Euclidean distance is also improved considerably through
duration and pitch adjustment; however, its φ is somewhat
lower than that of the aforementioned measures. Correlation
distance and wavelet transform could not be much improved
through any of the tested music representations, and remain
at relatively low φ values.

6.3 Discussion

The present section shows that transposition and time dilation
differences have considerable influence on the results of sev-
eral of the compared measures (CBD, ED, LA). We conclude
that the relative success of local alignment in the previous
section was caused by its pitch-adjusted music representation,
and that city block distance and Euclidean distance perform
much better on a pitch-adjusted representation. However, local
alignment achieves slightly higher AUC than the distance
measures for each representation, showing that it is the most
effective overall.

As wavelet transform, correlation distance and structure in-
duction (WT, CD, SIAM) are already defined as transposition
invariant, they cannot be improved through pitch adjustment.
Wavelet transform is improved through duration adjustment to
some extent. The similarity threshold associated with maximal
agreement φ is stricter for the duration-adjusted case, i.e.
fewer matches are considered occurrences, accounting for
higher positive predictive value but lower sensitivity (cf. Table
A1). This leads us to the conclusion that the drawback of
wavelet transform observed in the previous section, i.e. that
it may miss phrase repetitions within a melody, cannot be
resolved through our strategy for duration adjustment.

Correlation distance and structure induction perform
slightly worse with duration adjustment as compared to their
original music representation (cf. Table A1). For both mea-
sures, the similarity threshold associated with maximal agree-
mentφ is not affected by duration adjustment. Duration adjust-
ment increases the number of occurrences for both measures.
As some of these occurrences are true positives, this leads to
higher sensitivity. Inversely, we have seen that about a third
of the automatic adjustments are incorrect, and these mis-
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128 B. Janssen et al.

Fig. 5. The area under the ROC curves (AUC) of the similarity measures for different music representations: pitch interval (PI), pitch (P),
duration weighted (DW), pitch adjusted (PA), pitch adjusted and duration weighted (PADW), metrically adjusted (DA), hand adjusted (HA),
and pitch/onset (PO). For wavelet transform (WT) and structure induction (SIAM), not all music representations are applicable, and only SIAM
uses the pitch/onset representation.

Fig. 6. The ROC curves for the various similarity measures with optimised music representations, showing the increase of false positive rate
against the increase of the true positive rate, with the threshold as parameter.
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Finding Occurrences of Melodic Segments 129

Table 4. Results of the similarity measures with optimised music representations: area under the ROC curve (AUC), maximal φ correlation
coefficient with associated sensitivity (SEN), specificity (SPC), positive and negative predictive values (PPV, NPV).

Measure AUC φ SEN SPC PPV NPV

WT-DA 0.736 0.454 0.320 0.985 0.772 0.903
CD 0.797 0.503 0.414 0.977 0.732 0.915
ED-DA 0.851 0.610 0.627 0.957 0.693 0.943
SIAM 0.870 0.665 0.632 0.973 0.787 0.945
CBD-DA 0.872 0.663 0.608 0.978 0.808 0.942
LA-DA 0.875 0.668 0.675 0.965 0.748 0.950

adjustments produce false positives, decreasing the positive
predictive value.

In summary, we can observe that transposition differences
can be adequately resolved through pitch histogram intersec-
tion, while a better way of adjusting duration is needed, as the
present approach of duration histogram intersection leads to
many errors, and improves the performance only slightly or
even not at all.

Based on our comparison of similarity measures with op-
timised music representations, city block distance and lo-
cal alignment with pitch and duration adjustment, and struc-
ture induction (CBD-DA, LA-DA, SIAM) are the best ap-
proaches to finding occurrences of melodic segments in folk
song melodies. None of them reach the level of agreement
with the majority vote as the human annotators (cf. Table 2),
however.

This leads to the question whether a combination of the best-
performing measures might show better performance than the
individual measures. This question will be investigated in the
following section.

7. Combination of the best-performing measures

We combine the three best-performing measures (CBD-DA,
LA-DA, SIAM), observing whether this combination
improves performance, addressing Q3 from the introduction.

7.1 Method

For each measure, we retain only those matches which exceed
the best similarity threshold, obtained from optimisation with
respect to φ. For CBD-DA, matches with dist (q, p) ≤ 0.98,
for LA-DA, matches with sim(q, s) ≥ 0.55, and for SIAM,
matches with sim(q, s) ≥ 0.58 are retained.

We combine the three best similarity measures in the same
way as we combine the annotators’ judgements to a majority
vote. To this end, we redefine the notion of occurrence: we
consider only those notes to constitute an occurrence which
two or more measures detect as part of a match, given the
respective measures’ optimal similarity thresholds. We in-
vestigate how well this combined measure agrees with the
annotators’ majority vote.

Table 5. Results of a combined similarity measure from SIAM, CBD-
DAand LA-DA, represented by the maximal φ correlation coefficient
with associated sensitivity (SEN), specificity (SPC), positive and
negative predictive values (PPV, NPV).

φ SEN SPC PPV NPV

0.703 0.648 0.981 0.84 0.947

7.2 Results

Table 5 presents Matthews’correlation coefficient, sensitivity,
specificity, positive and negative predictive values of the com-
bined measure. The agreement φ = 0.703 is higher than that
of the individual measures, and outperforms the hand-adjusted
music representations of all individual measures.

7.3 Discussion

The combined measure’s increased performance is mainly
caused by its positive predictive value (P PV = 0.84), which
is considerably higher than the values achieved by any individ-
ual measure, and close to the values of two of the annotators.
The sensitivity SE N = 0.648 is comparable to that of the
individual measures, so it is still a lot lower than the annotators’
sensitivity, meaning that the combined measure still misses
more instances of melodic segments than human experts.

Based on our study, we find that the combined measure
is the best currently achievable method for detecting occur-
rences of melodic segments automatically. However, we as-
sume the same optimal threshold of the individual similarity
measures over the whole data-set. This would be inappropriate
if there were subgroups of the tested melodies which necessi-
tate higher or lower thresholds to achieve optimal agreement
with the annotations. Moreover, the agreement is also likely
to vary in different subgroups of melodies, leading to different
error rates, depending on the selection of melodies tested.

Therefore, in the next section, we proceed to test how leav-
ing out tune families from the data-set affects the optimised
similarity threshold of the three best-performing measures,
and how much the agreement with the ground truth varies
depending on the evaluated tune family.
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130 B. Janssen et al.

8. Optimisation and performance of similarity
measures for data subsets

In the present section, we investigate whether subgroups of
our data-set affect the optimised threshold of the three best-
performing similarity measures (LA-DA, CBD-DAand SIAM)
to such an extent that it is inappropriate to assume one optimal
threshold for the whole data-set. Moreover, we observe the
variation of the agreement φ with the ground truth, depend-
ing on the evaluated subset. This analysis addresses research
question Q4 from the introduction.

As the tune families form relatively homogenous subgroups
of melodies within the Annotated Corpus, we use the 26 tune
families as subsets. This has the disadvantage that the subsets
have different sizes, but the advantage of knowing a priori that
the subsets are different by human definition.

8.1 Method

For each of the 26 tune families, we optimise the similarity
threshold for each measure, leaving that tune family out of
the data-set. For this ‘leave one tune family out’ procedure,
we remove the matches from the tune family under consid-
eration from the data-set, and vary the similarity threshold in
this reduced data-set, selecting the threshold that maximises
Matthews’ correlation coefficient φ with the ground truth.

Next, we use this ‘leave one tune family out’ optimised
threshold to detect occurrences in the considered tune family,
and observe the resulting agreement (φtf ) with the ground
truth of this tune family. This gives us a different value φtf for
the 26 tune families. Ideally, we would like φ to be high on
average, and show small variance.

For comparison of the optimised thresholds thres after leav-
ing out one tune family, we standardise them, using the arith-
metic mean and standard deviation of all similarity scores
produced by a given measure.

thresstd = thres − sim

SD(sim)
(20)

As a result, the standardised threshold thresstd is mapped
into a space centred on 0, representing the average similarity
score, and in which each unit represents one standard deviation
of the similarity scores SD(sim). As city block distance has
similarity values ranging from 0 ≤ dist ≤ 5.29, while local
alignment and structure induction are bounded by the interval
sim = (0, 1], the standardisation allows better interpretation
of the differences between optimised thresholds.

To compare the variation in agreement φtf of the individual
measures, the combined measure and the annotators with the
ground truth, we use a Tukey box and whiskers plot (Tukey,
1977), in which the median is indicated by a horizontal line,
and the first (25%) and third (75%) quartiles of the data by
the horizontal edges of the box. All data exceeding the first
and third quartiles by no more than 1.5 times the inter-quartile
range are represented by vertical lines. All data outside this
range are considered outliers and plotted as individual dots.

8.2 Similarity thresholds

The thresholds vary very little when specific tune families are
left out of the optimisation procedure: most ‘leave one tune
family out’ optimisations result in the same optimal threshold
as the optimisations on the full data-set in the previous sec-
tion, indicated by black stripes in Figure 7. There are some
minor deviations, but none larger than 0.3 standard deviations,
noticeable in SIAM’s thresholds.

8.3 Agreement with ground truth

The agreement with the ground truth, measured in the tune
family-dependent Matthews’ correlation coefficient φtf , de-
pends greatly on the considered tune family, as can be seen
in Figure 8. This is true especially for the similarity measures
SIAM and CBD-DA, which result in a wide range of values
for φtf , while LA-DA shows less variation in φtf .

The combined measure (COMB) achieves consistently
higher agreement with the ground truth than the measures
of which it is composed, as can be seen in its higher mean
(indicated by a horizontal line in the box plot), though its
variation between 0.45 < φtf < 0.83, depending on the
evaluated tune family, is considerable.

The annotators are more consistent than the similarity mea-
sures overall, but there are some remarkable outliers for all
of them, some as low as φtf = 0.47, which is comparable to
some of poorest algorithmic results.

8.4 Discussion

The thresholds vary little when leaving out tune families from
the optimisation procedure (cf. Figure 7), indicating that it is
reasonable to assume the same optimal similarity threshold
throughout the whole data-set. This means that the combined
measure can also be applied with one similarity threshold per
measure to the whole data-set.

The variation in agreement when evaluated against the tune
families separately (cf. Figure 8) indicates that SIAM and
CBD-DA are less robust towards differences between tune
families than LA-DA and the combined measure.

Less variation in φtf means that a measure is more consis-
tent with respect to the number of errors it produces, regardless
of the tune family under consideration. Neither any of the
individual measures, nor the combined measure shows enough
consistency that a computational folk song study using them
should consider the error constant over all subsets of a folk
song corpus.

As the annotators also show considerable variation in their
agreement with the majority vote, it is unlikely that a compu-
tational method can find occurrences in this folk song corpus
without producing variable amounts of errors, depending on
the evaluated tune family.

9. Conclusion

We have investigated the success of six similarity measures
at finding occurrences of melodic segments in folk songs. We
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Finding Occurrences of Melodic Segments 131

Fig. 7. The thresholds resulting from ‘leave one tune family out’ optimisation. The black stripes indicate the threshold of the optimisation of
the full data-set. All of the measures’ thresholds are close to each other.

Fig. 8. The agreement (in φ) of the three similarity measures and the annotators with the majority vote, evaluated separately for each tune family.
The similarity measures show more variation than the annotators, even though there are also some remarkable low outliers for the annotators.

D
ow

nl
oa

de
d 

by
 [

U
V

A
 U

ni
ve

rs
ite

its
bi

bl
io

th
ee

k 
SZ

] 
at

 0
7:

25
 1

0 
N

ov
em

be
r 

20
17

 



132 B. Janssen et al.

tested how well the similarity measures would find occur-
rences of phrases, evaluating their results against the majority
vote of three annotators’ judgements of phrase occurrences
in Dutch folk songs. We summarise the answers to the four
research questions posed in the introduction, and conclude
with some steps for future work.

Regarding the question of which similarity measure is best
suited for finding occurrences (Q1), our results of Section
5 indicate that structure induction and local alignment are
the most successful approaches for this task given the music
representation for which they were defined. However, when
duration as well as pitch information is supplied, and time
dilation and transposition are corrected, city block distance
performs even slightly better than structure induction, and
the results of local alignment can be improved, as shown in
Section 6.

We show that the performance of all similarity measures can
be improved when time dilation and transposition differences
between folk songs are adjusted (Q2, Section 6). The best
way to adjust pitch differences automatically is histogram
intersection, leading to much improved results. Providing in-
formation on the duration as well as pitch of compared notes
improves the success of all measures considerably, but time
dilation differences remain a problem. Our approach to adjust
durations automatically through histogram intersection led to
slight improvement for some measures, but no improvement
for others.

A combination of the best-performing measures (SIAM,
CBD-DA, LA-DA) does indeed perform better than each mea-
sure individually (Q3), and is the best measure arising from
our comparison. It produces about 16% spurious results, close
to the values of human annotators. However, the combined
measure misses about a third of the relevant instances of
query segments, whereas the annotators miss only around
10%. In consequence, the combined measure is not a re-
placement for human judgements on melodic occurrences, but
to our knowledge produces the best results with the current
similarity measures and music representations.

In Section 8, we show that the agreement of the three best-
performing similarity measures with the ground truth differs
depending on the evaluated tune family (Q4). However, we
also show that human annotators show almost as much vari-
ation. Our optimisation of the similarity threshold on subsets
of the full data-set also leads to almost no change in the
selected similarity thresholds of SIAM, CBD-DAand LA-DA,
meaning that it is appropriate to assume the same threshold for
the whole data-set. Yet, in statistical analyses of occurrences
detected by these measures or the combined measure, it would
be inappropriate to assume the same error rate throughout the
whole data-set. When categories within a music collection
are defined, as is the case with tune families in the Meertens
Tune Collections, it is therefore advisable to make use of these
categories and to assume different error terms for each of them.

Further research into alternative similarity measures and
better ways of representing musical information is needed to
improve the success of computational detection of melodic

occurrences. Our research on music representation indicates
that better methods to adjust time dilation differences will lead
to much improved results. Moreover, other weighting schemes
for local alignment still need to be explored. Another area
of improvement is the combination of the judgements from
different similarity measures into one combined measure, for
which more successful ways than the currently used majority
vote approach may be found.

The annotations used in this study distinguish between two
levels of instances, those which are ‘related but varied’ and
those which are ‘almost identical’. We have focused on the
latter category in the current study; it would be interesting
to see whether the best-performing similarity measures of
this study and their combination would also work best for
the ‘related but varied’ category, and if so, in how much the
optimal similarity thresholds would be affected.

It is also important to validate our findings in different
folk song corpora, and in different genres. Unfortunately, no
comparable annotations on occurrences in folk songs exist to
our knowledge.Annotations in works of Classical music, used
as validation sets for pattern discovery, might be an interesting
ground of comparison. More annotation data and comparative
research are needed to overcome some of the challenges we
have presented in finding occurrences of melodic segments in
folk songs, and in melodies from other genres, and to ascertain
the robustness of computational methods.
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Appendix A.

Table A1 shows the influence of music representations on all the compared measures.

Table A1. Area under ROC curve, maximal φ correlation coefficient with associated sensitivity (SEN), specificity (SPC), positive and negative
predictive values (PPV, NPV) for all similarity measures in all applicable music representations.

Measure AUC φ SEN SPC PPV NPV

WT-DW 0.731 0.459 0.368 0.976 0.703 0.909
WT-PADW 0.731 0.459 0.368 0.976 0.703 0.909
WT-DA 0.736 0.454 0.320 0.985 0.772 0.903
WT-HA 0.746 0.460 0.324 0.986 0.778 0.904

ED-PI 0.695 0.373 0.243 0.985 0.718 0.894
ED-P 0.764 0.468 0.482 0.948 0.589 0.922
ED-DW 0.788 0.540 0.441 0.980 0.774 0.919
ED-PA 0.831 0.554 0.616 0.940 0.612 0.940
ED-PADW 0.849 0.618 0.619 0.962 0.716 0.942
ED-DA 0.851 0.610 0.627 0.957 0.693 0.943
ED-HA 0.865 0.612 0.610 0.962 0.714 0.941

CBD-PI 0.727 0.424 0.365 0.967 0.634 0.908
CBD-P 0.774 0.499 0.425 0.973 0.708 0.916
CBD-DW 0.799 0.581 0.468 0.985 0.824 0.923
CBD-PA 0.849 0.589 0.564 0.966 0.720 0.935
CBD-PADW 0.870 0.663 0.601 0.979 0.818 0.941
CBD-DA 0.872 0.663 0.608 0.978 0.808 0.942
CBD-HA 0.891 0.696 0.651 0.978 0.822 0.948

CD-PI 0.677 0.313 0.214 0.979 0.617 0.889
CD-P 0.756 0.426 0.266 0.990 0.810 0.897
CD-PA 0.849 0.589 0.564 0.966 0.720 0.935
CD-DW 0.797 0.503 0.414 0.977 0.732 0.915
CD-PADW 0.797 0.503 0.414 0.977 0.733 0.915
CD-DA 0.795 0.501 0.420 0.975 0.720 0.916
CD-HA 0.817 0.525 0.448 0.975 0.734 0.919

LA-PI 0.740 0.470 0.416 0.967 0.662 0.915
LA-P 0.783 0.533 0.491 0.967 0.695 0.925
LA-DW 0.785 0.573 0.510 0.974 0.750 0.928
LA-PA 0.859 0.621 0.646 0.956 0.695 0.946
LA-PADW 0.871 0.665 0.658 0.968 0.759 0.948
LA-DA 0.875 0.668 0.675 0.965 0.748 0.950
LA-HA 0.881 0.682 0.695 0.965 0.753 0.953

SIAM-PO 0.870 0.665 0.632 0.973 0.787 0.945
SIAM-DA 0.868 0.663 0.641 0.971 0.772 0.946
SIAM-HA 0.893 0.696 0.688 0.970 0.783 0.953
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