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Abstract

Due to the importance of zero-shot learning, the number
of proposed approaches has increased steadily recently. We
argue that it is time to take a step back and to analyze the
status quo of the area. The purpose of this paper is three-
fold. First, given the fact that there is no agreed upon zero-
shot learning benchmark, we first define a new benchmark
by unifying both the evaluation protocols and data splits.
This is an important contribution as published results are
often not comparable and sometimes even flawed due to,
e.g. pre-training on zero-shot test classes. Second, we com-
pare and analyze a significant number of the state-of-the-
art methods in depth, both in the classic zero-shot setting
but also in the more realistic generalized zero-shot setting.
Finally, we discuss limitations of the current status of the
area which can be taken as a basis for advancing it.

1. Introduction
Zero-shot learning aims to recognize objects whose in-

stances may not have been seen during training [17, 22,
23, 30, 40]. The number of new zero-shot learning meth-
ods proposed every year has been increasing rapidly, i.e.
the good aspects as our title suggests. Although each new
method has been shown to make progress over the previous
one, it is difficult to quantify this progress without an estab-
lished evaluation protocol, i.e. the bad aspects. In fact, the
quest for improving numbers has lead to even flawed eval-
uation protocols, i.e. the ugly aspects. Therefore, in this
work, we propose to extensively evaluate a significant num-
ber of recent zero-shot learning methods in depth on several
small to large-scale datasets using the same evaluation pro-
tocol both in zero-shot, i.e. training and test classes are dis-
joint, and the more realistic generalized zero-shot learning
settings, i.e. training classes are present at test time.

We benchmark and systematically evaluate zero-shot
learning w.r.t. three aspects, i.e. methods, datasets and
evaluation protocol. The crux of the matter for all zero-
shot learning methods is to associate observed and non

observed classes through some form of auxiliary informa-
tion which encodes visually distinguishing properties of ob-
jects. Different flavors of zero-shot learning methods that
we evaluate in this work are linear [11, 2, 4, 32] and nonlin-
ear [39, 34] compatibility learning frameworks whereas an
orthogonal direction is learning independent attribute [22]
classifiers and finally others [42, 7, 26] propose a hybrid
model between independent classifier learning and compat-
ibility learning frameworks.

We thoroughly evaluate the second aspect of zero-shot
learning, by using multiple splits of several small to large-
scale datasets [28, 38, 22, 10, 9]. We emphasize that it is
hard to obtain labeled training data for fine-grained classes
of rare objects recognizing which requires expert opinion.
Therefore, we argue that zero-shot learning methods should
be evaluated mainly on least populated or rare classes.

We propose a unified evaluation protocol to address the
third aspect of zero-shot learning which is arguably the most
important one. We emphasize the necessity of tuning hyper-
parameters of the methods on a validation class split that is
disjoint from training classes as improving zero-shot learn-
ing performance via tuning parameters on test classes vi-
olates the zero-shot assumption. We argue that per-class
averaged top-1 accuracy is an important evaluation metric
when the dataset is not well balanced with respect to the
number of images per class. We point out that extracting
image features via a pre-trained deep neural network (DNN)
on a large dataset that contains zero-shot test classes also
violates the zero-shot learning idea as image feature ex-
traction is a part of the training procedure. Moreover, we
argue that demonstrating zero-shot performance on small-
scale and coarse grained datasets, i.e. aPY [10] is not con-
clusive. We recommend to abstract away from the restricted
nature of zero-shot evaluation and make the task more prac-
tical by including training classes in the search space, i.e.
generalized zero-shot learning setting. Therefore, we argue
that our work plays an important role in advancing the zero-
shot learning field by analyzing the good and bad aspects
of the zero-shot learning task as well as proposing ways to
eliminate the ugly ones.

1

ar
X

iv
:1

70
3.

04
39

4v
1 

 [
cs

.C
V

] 
 1

3 
M

ar
 2

01
7



2. Related Work
We review related work on zero-shot and generalized

zero-shot learning, we present previous evaluations on the
same task and describe the unique aspects of our work.

Zero-Shot Learning. In zero-shot learning setting test and
training class sets are disjoint [17, 22, 23, 30, 40] which can
be tackled by solving related sub-problems, e.g. learning
intermediate attribute classifiers [22, 30, 31] and learning a
mixture of seen class proportions [42, 43, 26, 7], or by a di-
rect approach, e.g. compatibility learning frameworks [3, 4,
11, 15, 27, 32, 34, 39, 32, 12, 29, 1, 6, 24, 13, 21]. Among
these methods, in our evaluation we choose to use DAP [22]
for being one of the most fundamental methods in zero-
shot learning research; CONSE [26] for being one of the
most widely used representatives of learning a mixture of
class proportions; SSE [42] for being a recent method with
a public implementation; SJE [4], ALE [3], DEVISE [11]
for being recent compatibility learning methods with simi-
lar loss functions; ESZSL [32] for adding a regularization
term to unregularized compatibility learning methods; [39]
and CMT [34] proposing non-linear extensions to bilinear
compatibility learning framework and finally SYNC [7] for
reporting the state-of-the-art on several benchmark datasets.

Generalized Zero-shot Learning. This setting [33] gener-
alizes the zero-shot learning task to the case with both seen
and unseen classes at test time. [19] argues that although
ImageNet classification challenge performance has reached
beyond human performance, we do not observe similar be-
havior of the methods that compete at the detection chal-
lenge which involves rejecting unknown objects while de-
tecting the position and label of a known object. [11] uses
label embeddings to operate on the generalized zero-shot
learning setting whereas [41] proposes to learn latent repre-
sentations for images and classes through coupled linear re-
gression of factorized joint embeddings. On the other hand,
[5] introduces a new model layer to the deep net which es-
timates the probability of an input being from an unknown
class and [34] proposes a novelty detection mechanism. We
evaluate [34] and [11] for being the most widely used.

Previous Evaluations of Zero-Shot Learning. In the liter-
ature some zero-shot vs generalized zero-shot learning eval-
uation works exist [30, 8]. Among these, [30] proposes a
model to learn the similarity between images and seman-
tic embeddings on the ImageNet 1K by using 800 classes
for training and 200 for test. [8] provides a comparison be-
tween five methods evaluated on three datasets including
ImageNet with three standard splits and proposes a metric
to evaluate generalized zero-shot learning performance.

Our work. We evaluate ten zero-shot learning methods on
five datasets with several splits both for zero-shot and gen-
eralized zero-shot learning settings, provide statistical sig-

nificancy and robustness tests, and present other valuable
insights that emerge from our benchmark. In this sense,
ours is a more extensive evaluation compared to prior work.

3. Evaluated Methods
We start by formalizing the zero-shot learning task

and then we describe the zero-shot learning methods that
we evaluate in this work. Given a training set S =
{(xn, yn), n = 1...N}, with yn ∈ Ytr belonging to training
classes, the task is to learn f : X → Y by minimizing the
regularized empirical risk:

1

N

N∑
n=1

L(yn, f(xn;W )) + Ω(W ) (1)

with L(.) being the loss function and Ω(.) being the regu-
larization term. Here, the mapping f : X → Y from input
to output embeddings is defined as:

f(x;W ) = argmax
y∈Y

F (x, y;W ) (2)

At test time, in zero-shot learning setting, the aim is to as-
sign a test image to an unseen class label, i.e. Yts ⊂ Y
and in generalized zero-shot learning setting, the test im-
age can be assigned either to seen or unseen classes, i.e.
Ytr+ts ⊂ Y with the highest compatibility score.

3.1. Learning Linear Compatibility

Attribute Label Embedding (ALE) [3], Deep Visual Se-
mantic Embedding (DEVISE) [11] and Structured Joint
Embedding (SJE) [4] use bi-linear compatibility function
to associate visual and auxiliary information:

F (x, y;W ) = θ(x)TWφ(y) (3)

where θ(x) and φ(y), i.e. image and class embeddings, both
of which are given. F (.) is parameterized by the mapping
W , to be learned. Embarassingly Simple Zero Shot Learn-
ing (ESZSL) [32] adds a regularization term to this objec-
tive. In the following, we provide a unified formulation of
these four zero-shot learning methods.

DEVISE [11] uses pairwise ranking objective that is in-
spired from unregularized ranking SVM [20]:∑

y∈Ytr

[∆(yn, y) + F (xn, y;W )− F (xn, yn;W )]+ (4)

ALE [3] uses weighted approximate ranking objective [37]:∑
y∈Ytr

lr∆(xn,yn)

r∆(xn,yn)
[∆(yn, y)+F (xn, y;W )−F (xn, yn;W )]+

(5)
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where lk =
∑k

i=1 αi and r∆(xn,yn) is defined as:∑
y∈Ytr

1(F (xn, y;W ) + ∆(yn, y) ≥ F (xn, yn;W )) (6)

Following the heuristic in [18], [3] selects αi = 1/i which
puts high emphasis on the top of the rank list.

SJE [4] gives full weight to the top of the ranked list and is
inspired from the structured SVM [36]:

[ max
y∈Ytr

(∆(yn, y) + F (xn, y;W ))− F (xn, yn;W )]+ (7)

ESZSL [32] adds the following regularization term to the
unregularized risk minimization formulation:

γ‖Wφ(y)‖2Fro + λ‖θ(x)TW‖2Fro + β‖W‖2Fro (8)

where γ, λ, β are parameters of this regularizer.

3.2. Learning Nonlinear Compatibility

Latent Embeddings (LATEM) [39] and Cross Modal
Transfer (CMT) [34] encode an additional non-linearity in
compatibility learning framework.

LATEM [39] constructs a piece-wise linear compatibility:

F (x, y;Wi) = max
1≤i≤K

θ(x)TWiφ(y) (9)

where every Wi models a different visual characteristic of
the data and the selection of which matrix to use to do the
mapping is a latent variable. LATEM uses the ranking loss
formulated in Equation 4.

CMT [34] first maps images into a semantic space of words,
i.e. class names, where a neural network with tanh nonlin-
earity learns the mapping:∑

y∈Ytr

∑
x∈Xy

‖φ(y)−W1 tanh(W2.θ(x)‖ (10)

where (W1,W2) are weights of the two layer neural net-
work. This is followed by a novelty detection mechanism
that assigns images to unseen or seen classes. The novelty
is detected either via thresholds learned using the embed-
ded images of the seen classes or the outlier probabilities
are obtained in an unsupervised way.

3.3. Learning Intermediate Attribute Classifiers

Although Direct Attribute Prediction (DAP) [22] has
been shown to perform poorly compared to compatibility
learning frameworks [3], we include it to our evaluation for
being historically one of the most widely used methods in
the literature.

DAP [22] learns probabilistic attribute classifiers and makes
a class prediction by combining scores of the learned at-
tribute classifiers. A novel image is assigned to one of the
unknown classes using:

f(x) = argmax
c

M∏
m=1

p(acm|x)

p(acm)
. (11)

with M being the total number of attributes. We train a
one-vs-rest SVM with log loss that gives probability scores
of attributes with respect to training classes.

3.4. Hybrid Models

Semantic Similarity Embedding (SSE) [42], Convex
Combination of Semantic Embeddings (CONSE) [26] and
Synthesized Classifiers (SYNC) [7] express images and se-
mantic class embeddings as a mixture of seen class propor-
tions, hence we group them as hybrid models.

SSE [42] leverages similar class relationships both in image
and semantic embedding space. An image is labeled with:

argmax
u∈U

π(θ(x))Tψ(φ(yu)) (12)

where π, ψ are mappings of class and image embeddings
into a common space. Specifically, ψ is learned by sparse
coding and π is by class dependent transformation.

CONSE [26] learns the probability of a training image be-
longing to a training class:

f(x, t) = argmax
y∈Ytr

ptr(y|x) (13)

where y denotes the most likely training label (t=1) for im-
age x. Combination of semantic embeddings (s) is used to
assign an unknown image to an unseen class:

1

Z

T∑
i=1

ptr(f(x, t)|x).s(f(x, t)) (14)

where Z =
∑T

i=1 ptr(f(x, t)|x), f(x, t) denotes the tth

most likely label for image x and T controls the maximum
number of semantic embedding vectors.

SYNC [7] learns a mapping between the semantic class em-
bedding space and a model space. In the model space, train-
ing classes and a set of phantom classes form a weighted bi-
partite graph. The objective is to minimize distortion error:

min
wc,vr

‖wc −
R∑

r=1

scrvr‖22. (15)

Semantic and model spaces are aligned by embedding real
(wc) and phantom classes (vr) in the weighted graph (scr).
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Number of Classes
Number of Images

At Training Time At Evaluation Time
SS PS SS PS

Dataset Size Detail Att Y Ytr Yts Total Ytr Yts Ytr Yts Ytr Yts Ytr Yts

SUN [28] medium fine 102 717 580 + 65 72 14K 12900 0 10320 0 0 1440 2580 1440

CUB [38] medium fine 312 200 100 + 50 50 11K 8855 0 7057 0 0 2933 1764 2967

AWA [22] medium coarse 85 50 27 + 13 10 30K 24295 0 19832 0 0 6180 4958 5685

aPY [10] small coarse 64 32 15 + 5 12 15K 12695 0 5932 0 0 2644 1483 7924

Table 1: Statistics for attribute datasets: SUN [28], CUB [38], AWA [22], aPY [10] in terms of size of the datasets, fine-
grained or coarse-grained, number of attributes, number of classes in training + validation (Ytr) and test classes (Yts), number
of images at training and test time for standard split (SS) and our proposed splits (PS).

4. Datasets and Evaluation Protocol
In this section, we provide several components of pre-

viously used and our proposed zero-shot and generalized
zero-shot learning evaluation protocols, e.g. datasets, im-
age and class encodings and the evaluation protocol.

4.1. Dataset Statistics

Among the most widely used datasets for zero-shot
learning, we select two coarse-grained, one small and one
medium-scale, and two fine-grained, both medium-scale,
datasets with attributes and one large-scale dataset without.
Here, we consider between 10K and 1M images, and, be-
tween 100 and 1K classes as medium-scale.

Attribute Datasets. Statistics of the attribute datasets are
presented in Table 1. Attribute Pascal and Yahoo (aPY) [10]
is a small-scale coarse-grained dataset with 64 attributes.
Among the total number of 32 classes, 20 Pascal classes
are used for training (we randomly select 5 for validation)
and 12 Yahoo classes are used for testing. Animals with
Attributes (AWA) [22] is a coarse-grained dataset that is
medium-scale in terms of the number of images, i.e. 30, 475
and small-scale in terms of number of classes, i.e. 50.
[22] introduces a standard zero-shot split with 40 classes
for training (we randomly select 13 for validation) and 10
for testing. AWA has 85 attributes. Caltech-UCSD-Birds
200-2011 (CUB) [38] is a fine-grained and medium scale
dataset with respect to both number of images and num-
ber of classes, i.e. 11, 788 images from 200 different types
of birds annotated with 312 attributes. [3] introduces the
first zero-shot split of CUB with 150 training (50 valida-
tion classes) and 50 test classes. SUN [28] is a fine-grained
and medium-scale dataset with respect to both number of
images and number of classes, i.e. SUN contains 14340 im-
ages coming from 717 types of scenes annotated with 102
attributes. Following [22] we use 645 classes of SUN for
training (we randomly select 65 for val) and 72 for testing.

Large-Scale ImageNet. We also evaluate the performance
of methods on the large scale ImageNet [9]. Among the

total of 21K classes, 1K classes are used for training (we
use 200 classes for validation) and the test split is either all
the remaining 21K classes or a subset of it, e.g. we deter-
mine these subsets based on the hierarchical distance be-
tween classes and the population of classes.

4.2. Proposed Evaluation Protocol

We present our proposed unified protocol for image and
class embeddings, dataset splits and evaluation criteria.

Image and Class Embedding. We extract image features
from the entire image for SUN, CUB, AWA and ImageNet,
with no image pre-processing. For aPY, as proposed in [10],
we extract image features from bounding boxes. Our im-
age embeddings are 2048-dim top-layer pooling units of the
101-layered ResNet [16] as we found that it performs better
than 1, 024-dim top-layer pooling units of GoogleNet [35].
ResNet is pre-trained on ImageNet 1K and not fine-tuned.
In addition to ResNet features, we evaluate methods with
their published image features. As class embeddings, for
aPY, AWA, CUB and SUN, we use per-class attributes. For
ImageNet we use Word2Vec [25] provided by [7] as it does
not contain attribute annotation for all the classes.

Dataset Splits. Zero-shot learning assumes disjoint train-
ing and test classes with the presence of all the images of
training classes and the absence of any image from test
classes during training. On the other hand, as deep neu-
ral network (DNN) training for image feature extraction is
actually a part of model training, the dataset used to train
DNNs, e.g. ImageNet, should not include any of the test
classes. However, we notice from the standard splits (SS)
of aPY and AWA datasets that 7 aPY test classes out of 12
(monkey, wolf, zebra, mug, building, bag, carriage), 6 AWA
test classes out of 10 (chimpanzee, giant panda, leopard,
persian cat, pig, hippopotamus), are among the 1K classes
of ImageNet, i.e. are used to pre-train ResNet. On the other
hand, the mostly widely used splits, i.e. we term them as
standard splits (SS), for SUN from [22] and CUB from [2]
shows us that 1 CUB test class out of 50 (Indigo Bunting),
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and 6 SUN test classes out of 72 (restaurant, supermarket,
planetarium, tent, market, bridge), are also among the 1K
classes of ImageNet. We noticed that the accuracy for all
methods on those overlapping test classes are higher than
others. Therefore, we propose new dataset splits, i.e. pro-
posed splits (PS), insuring that none of the test classes ap-
pear in ImageNet 1K, i.e. used to train the ResNet model.
We present the differences between the standard splits (SS)
and the proposed splits (PS) in Table 1. While in SS and PS
no image from test classes is present at training time, at test
time SS does not include any images from training classes
however our PS does. We designed the PS this way as eval-
uating accuracy on both training and test classes is crucial
to show the generalization of methods.

ImageNet with thousands of classes provides possibili-
ties of constructing several zero-shot evaluation splits. Fol-
lowing [7], our first two standard splits consider all the
classes that are 2-hops and 3-hops away from the original
1K classes according to the ImageNet label hierarchy, cor-
responding to 1509 and 7678 classes. This split measures
the generalization ability of the models with respect to the
hierarchical and semantic similarity between classes. Our
proposed split considers 500, 1K and 5K most populated
classes among the remaining 21K classes of ImageNet with
≈ 1756, ≈ 1624 and ≈ 1335 images per class on aver-
age. Similarly, we consider 500, 1K and 5K least-populated
classes in ImageNet which correspond to most fine-grained
subsets of ImageNet with ≈ 1, ≈ 3 and ≈ 51 images per
class on average. Our final split considers all the remaining
≈ 20K classes of ImageNet with at least 1 image per-class,
≈ 631 images per class on average.

Evaluation Criteria. Single label image classification ac-
curacy has been measured with Top-1 accuracy, i.e. the pre-
diction is accurate when the predicted class is the correct
one. If the accuracy is averaged for all images, high perfor-
mance on densely populated classes is encouraged. How-
ever, we are interested in having high performance also on
sparsely populated classes. Therefore, we average the cor-
rect predictions independently for each class before divid-
ing their cumulative sum w.r.t the number of classes, i.e. we
measure average per-class top-1 accuracy.

In generalized zero-shot learning setting, the search
space at evaluation time is not restricted to only test classes,
but includes also the training classes, hence this setting is
more practical. As with our proposed split at test time
we have access to some images from training classes, after
having computed the average per-class top-1 accuracy on
training and test classes, we compute the harmonic mean of
training and test accuracies:

H = 2 ∗ (accYtr ∗ accYts)/(accYtr + accYts) (16)

where accYtr and accYts represent the accuracy of images
from seen (Ytr), and images from unseen (Yts) classes re-

SUN AWA
Model R O R O
DAP [22] 22.1 22.2 41.4 41.4

SSE [42] 83.0 82.5 64.9 76.3

LATEM [39] – – 71.2 71.9

SJE [4] – – 67.2 66.7

ESZSL [32] 64.3 65.8 48.0 49.3

SYNC [7] 62.8 62.8 69.7 69.7

Table 2: Reproducing zero-shot results: O = Original results
published in the paper, R = Reproduced using provided im-
age features and code. We measure top-1 accuracy in %.

spectively. We choose harmonic mean as our evaluation cri-
teria and not arithmetic mean because in arithmetic mean if
the seen class accuracy is much higher, it effects the overall
results significantly. Instead, our aim is high accuracy on
both seen and unseen classes.

5. Experiments
We first provide zero-shot learning results on attribute

datasets SUN, CUB, AWA and aPY and then on the large-
scale ImageNet dataset. Finally, we present results for the
generalized zero-shot learning setting.

5.1. Zero-Shot Learning Results

On attribute datasets, i.e. SUN, CUB, AWA and aPY, we
first reproduce the results of each method using their eval-
uation protocol, then provide a unified evaluation protocol
using the same train/val/test class splits, followed by our
proposed train/val/test class splits. We also evaluate the ro-
bustness of the methods to parameter tuning and visualize
the ranking of different methods. Finally, we evaluate the
methods on the large-scale ImageNet dataset.

Reproducing Results. For sanity-check, we re-evaluate
methods [22, 42, 39, 4, 32, 7] 1 using provided features
and code. We chose SUN and AWA as two representative
of fine-grained and non-fine-grained datasets having been
widely used in the literature. We observe from the results
in Table 2 that our reproduced results and the reported re-
sults of DAP and SYNC are identical to the reported num-
ber in their original publications. For LATEM, we obtain
slightly different results which can be explained by the non-
convexity and thus the sensibility to initialization. Similarly
for SJE random sampling in SGD might lead to slightly dif-
ferent results. ESZSL has some variance because its al-
gorithm randomly picks a validation set during each run,
which leads to different hyperparameters. Notable obser-
vations on SSE [42] results are as follows. The published
code has hard-coded hyperparameters operational on aPY,

1[34] has public code available, but is not evaluated on SUN or AWA.
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SUN CUB AWA aPY
Method SS PS SS PS SS PS SS PS
DAP [22] 38.9 39.9 37.5 40.0 57.1 44.1 35.2 33.8

CONSE [26] 44.2 38.8 36.7 34.3 63.6 45.6 25.9 26.9

CMT [34] 41.9 39.9 37.3 34.6 58.9 39.5 26.9 28.0

SSE [42] 54.5 51.5 43.7 43.9 68.8 60.1 31.1 34.0

LATEM [39] 56.9 55.3 49.4 49.3 74.8 55.1 34.5 35.2

ALE [3] 59.1 58.1 53.2 54.9 78.6 59.9 30.9 39.7

DEVISE [11] 57.5 56.5 53.2 52.0 72.9 54.2 35.4 39.8

SJE [4] 57.1 53.7 55.3 53.9 76.7 65.6 32.0 32.9

ESZSL [32] 57.3 54.5 55.1 53.9 74.7 58.2 34.4 38.3

SYNC [7] 59.1 56.3 54.1 55.6 72.2 54.0 39.7 23.9

Table 3: Zero-shot on SS = Standard Split, PS = Proposed
Split using ResNet features (top-1 accuracy in %).
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Figure 1: Ranking 10 models by setting parameters on three
validation splits on the standard (SS, left) and proposed
(PS, right) setting. Element (i, j) indicates number of times
model i ranks at jth over all 4× 3 observations. Models are
ordered by their mean rank (displayed in brackets).

i.e. number of iterations, number of data points to train
SVM, and one regularizer parameter γ which lead to in-
ferior results than the ones reported here, therefore we set
these parameters on validation sets. On SUN, SSE uses 10
classes (instead of 72) and our results with validated param-
eters got an improvement of 0.5% that may be due to ran-
dom sampling of training images. On AWA, our reproduced
result being 64.9% is significantly lower than the reported
result (76.3%). However, we could not reach the reported
result even by tuning parameters on the test set, i.e. we ob-
tain 73.8% in this case.

Reproduced Results vs Standard Split (SS). In addition to
[22, 42, 39, 4, 32, 7, 34], we re-implement [26, 11, 3] based
on the original publications. We use train, validation, test
splits as provided in Table 1 and report results on Table 3
with deep ResNet features. DAP [22] uses hand-crafted im-
age features and thus reproduced results with those features
are significantly lower than the results with deep features
(22.1% vs 38.9%). When we investigate the results in de-
tail, we noticed two irregularities with reported results on
SUN. First, SSE [42] and ESZSL [32] report results on a
test split with 10 classes whereas the standard split of SUN
contains 72 test classes (74.5% vs 54.5% with SSE [42] and

64.3% vs 57.3% with ESZSL [32]). Second, after care-
ful examination and correspondence with the authors of
SYNC [7], we detected that SUN features were extracted
with a MIT Places [44] pre-trained model. As MIT Places
dataset intersects with both training and test classes of SUN
dataset, it is expected to lead to significantly better results
than ImageNet pre-trained model (62.8% vs 59.1%).

Results on Standard (SS) and Proposed Splits (PS). We
propose new dataset splits (see details in section 4) insur-
ing that test classes do not belong to the ImageNet1K that
is used to pre-train ResNet. We compare these results (PS)
with previously published standard split (SS) results in Ta-
ble 3. Our first observation is that the results on PS is sig-
nificantly lower than SS for AWA. This is expected as most
of the test classes in SS is included in ImageNet 1K. On
the other hand, for fine-grained datasets CUB and SUN, the
results are not significantly effected. Our second observa-
tion regarding the method ranking is as follows. On SS,
SYNC [7] is the best performing method on SUN (59.1%)
and aPY (39.7%) datasets whereas SJE [4] performs the
best on CUB (55.3%) and ALE [3] performs the best on
AWA (78.6%) dataset. On PS, ALE [3] performs the best
on SUN (58.1%), SYNC [7] on CUB (55.6%), SJE [4] on
AWA (65.6%) and DEVISE [11] on aPY (39.8%). Note
that ALE, SJE and DEVISE all use max-margin bi-linear
compatibility learning framework.

Robustness. We evaluate robustness of 10 methods to pa-
rameters by setting them on 3 different validation splits
while keeping the test split intact. We report results on SS
(Figure 2, top) and PS (Figure 2, bottom). On SUN and
CUB, the results are stable across methods and across splits.
This is expected as these datasets have balanced number of
images across classes and due to their fine-grained nature,
the validation splits are similar. On the other hand, AWA
and aPY being small and coarse-grained datasets have sev-
eral issues. First, many of the test classes on AWA and aPY
are included in ImageNet1K. Second, they are not well bal-
anced, i.e. different validation class splits contain signifi-
cantly different number of images. Third, the class embed-
dings are far from each other, i.e. objects are semantically
different, therefore different validation splits learn a differ-
ent mapping between images and classes.

Visualizing Method Ranking. We rank the 10 meth-
ods based on their per-class top-1 accuracy using the non-
parametric Friedman test [14], which does not assume a dis-
tribution on performance but rather uses algorithm ranking.
Each entry of the rank matrix on Figure 1 indicates the num-
ber of times the method is ranked at the first to tenth rank.
We then compute the mean rank of each method and or-
der them based on that. Our general observation is that the
highest ranked method on the standard split (SS) is SYNC
while on the proposed split (PS) it is ALE. These results
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Figure 2: Robustness of 10 methods evaluated on SUN, CUB, AWA, aPY using 3 validation set splits (results are on the same
test split). Top: original split, Bottom: proposed split (Image embeddings = ResNet). We measure top-1 accuracy in %.

Hierarchy Most Populated Least Populated All
Method 2 H 3 H 500 1K 5K 500 1K 5K 20K
CONSE [26] 7.63 2.18 12.33 8.31 3.22 3.53 2.69 1.05 0.95

CMT [34] 2.88 0.67 5.10 3.04 1.04 1.87 1.08 0.33 0.29

LATEM [39] 5.45 1.32 10.81 6.63 1.90 4.53 2.74 0.76 0.50

ALE [3] 5.38 1.32 10.40 6.77 2.00 4.27 2.85 0.79 0.50

DEVISE [11] 5.25 1.29 10.36 6.68 1.94 4.23 2.86 0.78 0.49

SJE [4] 5.31 1.33 9.88 6.53 1.99 4.93 2.93 0.78 0.52

ESZSL [32] 6.35 1.51 11.91 7.69 2.34 4.50 3.23 0.94 0.62

SYNC [7] 9.26 2.29 15.83 10.75 3.42 5.83 3.52 1.26 0.96

Table 4: ImageNet with different splits: 2/3 H = classes
with 2/3 hops away from 1K Ytr, 500/1K/5K most popu-
lated classes, 500/1K/5K least populated classes, All=20K
categories of ImageNet. We measure top-1 accuracy in %.

indicate the importance of choosing zero-shot splits care-
fully. On the proposed split, the three highest ranked meth-
ods are compatibility learning methods, i.e. ALE, DEVISE
and SJE whereas the three lowest ranked methods are at-
tribute classifier learning or hybrid methods, i.e. DAP, CMT
and CONSE. Therefore, max-margin compatibility learning
methods lead to consistently better results in the zero-shot
learning task compared to learning independent classifiers.

Results on ImageNet. ImageNet scales the methods to a
truly large-scale setting, thus these experiments provide fur-
ther insights on how to tackle the zero-shot learning prob-
lem from the practical point of view. Here, we evaluate 8
methods. We exclude DAP as attributes are not available
for all ImageNet classes and SSE due to scalability issues
of the public implementation of the method. Table 4 shows
that the best performing method is SYNC [7] which may
indicate that it performs well in large-scale setting or it can

learn under uncertainty due to usage of Word2Vec instead
of attributes. Another possibility is Word2Vec may be tuned
for SYNC as it is provided by the same authors however
making a strong claim requires a full evaluation on class
embeddings which is out of the scope of this paper. Our
general observation from all the methods is that in the most
populated classes, the results are higher than the least pop-
ulated classes which indicates that fine-grained subsets are
more difficult. We consistently observe a large drop in ac-
curacy between 1K and 5K most populated classes which is
expected as 5K contains ≈ 6.6M images, making the prob-
lem much more difficult than 1K (≈ 1624 images). On the
other hand, All 20K results are poor for all methods which
indicates the difficulty of this problem where there is a large
room for improvement.

5.2. Generalized Zero-Shot Learning Results

In real world applications, image classification systems
do not have access to whether a novel image belongs to a
seen or unseen class in advance. Hence, generalized zero-
shot learning is interesting from a practical point of view.
Here, we use same models trained on zero-shot learning set-
ting on our proposed splits (PS). We evaluate performance
on both Ytr and Yts, i.e. using held-out images from Yts.

As shown in Table 5, generalized zero-shot results are
significantly lower than zero-shot results as training classes
are included in the search space. Another interesting ob-
servation is that compatibility learning frameworks, e.g.
ALE, DEVISE, SJE, perform well on test classes. How-
ever, methods that learn independent attribute or object clas-
sifiers, e.g. DAP and CONSE, perform well on training
classes. Due to this discrepancy, we evaluate the harmonic
mean which takes a weighted average of training and test
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SUN CUB AWA aPY
Method ts tr H ts tr H ts tr H ts tr H
DAP [22] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

CONSE [26] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

CMT [34] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 1.4 85.2 2.8

CMT* [34] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 10.9 74.2 19.0

SSE [42] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4

LATEM [39] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE [3] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

DEVISE [11] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2

SJE [4] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL [32] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC [7] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

Table 5: Generalized Zero-Shot Learning on Proposed Split (PS) measuring ts = Top-1 accuracy on Yts, tr=Top-1 accuracy
on Ytr+ts), H = harmonic mean (CMT*: CMT with novelty detection). We measure top-1 accuracy in %.
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Figure 3: Ranking 11 models on the proposed split (PS) in
generalized zero-shot learning setting. Top-Left: on unseen
cla sses (ts) accuracy, Top-Right: on seen classes (tr) accu-
racy, Bottom: on Harmonic mean (H).

class accuracy. H measure ranks ALE as the best perform-
ing method on SUN, CUB and AWA datasets whereas on
aPY dataset CMT* performs the best. Note that CMT* has
an integrated novelty detection phase for which the method
receives another supervision signal determining if the image
belongs to a train or a test class. As a summary, generalized
zero-shot learning setting provides one more level of de-
tail on the performance of zero-shot learning methods. Our
take-home message is that the accuracy of training classes is
as important as the accuracy of test classes in real world sce-
narios. Therefore, methods should be designed in a way that
they are able to predict labels well in train and test classes.

Visualizing Method Ranking. Similar to the analysis in
the previous section, we rank the 11 methods based on per-
class top-1 accuracy on train classes, test classes and based

on Harmonic mean of the two. Looking at the rank ma-
trix obtained by evaluating on test classes, i.e. Figure 3 top
left, highest ranked 5 methods are the same as in Figure 1,
i.e. ALE, DEVISE, SJE, LATEM, ESZSL while overall the
absolute numbers are lower. Looking at the rank matrix ob-
tained by evaluating the harmonic mean, i.e. Figure 3 bot-
tom, the highest ranked 3 methods are the same as in Fig-
ure 1, i.e. ALE, DEVISE, SJE. Looking at the rank matrix
obtained by evaluating on train classes, i.e. Figure 3 top
right, our observations are different from Figure 1. ALE is
ranked the 3rd but other highest ranked methods are at the
bottom of this rank list. These results clearly suggest that
we should not only optimize for test class accuracy but also
for train class accuracy when evaluating zero-shot learning.
Our final observation from Figure 3 is that CMT* is better
than CMT in all cases which supports the argument that a
simple novelty detection scheme helps to improve results.

6. Conclusion

In this work, we evaluated a significant number of state-
of-the-art zero-shot learning methods on several datasets
within a unified evaluation protocol both in zero-shot and
generalized zero-shot settings. Our evaluation showed that
compatibility learning frameworks have an edge over learn-
ing independent object or attribute classifiers and also over
hybrid models. We discovered that some standard zero-shot
splits may treat feature learning disjoint from the training
stage and accordingly proposed new dataset splits. More-
over, disjoint training and validation class split is a neces-
sary component of parameter tuning in zero-shot learning
setting. Including training classes in the search space while
evaluating the methods, i.e. generalized zero-shot learning,
provides an interesting playground for future research. In
summary, our work extensively evaluated the good and bad
aspects of zero-shot learning while sanitizing the ugly ones.
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