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Four and twenty blackbirds: how transcoding ability mediates the 
relationship between visuospatial working memory and math in a 
language with inversion

Sanne H.G. van der Vena,b, Jonathan D. Klaiberb and Han L.J. van der Maasb

aCognitive and Motor Development, Educational and Learning Sciences, Utrecht University, Utrecht, The Netherlands; 
bDepartment of Psychology, Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands

One of the most basic numerical skills is writing down number words in symbolic notation: for 
example, hearing the word ‘two’ and then writing down the symbol ‘2’. This ability is often referred 
to as transcoding. Many studies in this field thus far targeted differences in transcoding ability 
between children: either cross-cultural comparisons of children speaking languages differing in 
their verbal number system, or analyses in which transcoding accuracy is predicted from other 
cognitive abilities, such as working memory. With the present paper we add a comprehensive 
mediation analysis of transcoding ability as a mediator of the relation between working memory 
ability and math ability in all primary school grades. In addition, we add a new type of analysis: 
differences in transcoding difficulty between different number words in the same language, namely 
Dutch. We investigated characteristics related to the numerical structure and pronunciation of 
different numbers.

ABSTRACT
Writing down spoken number words (transcoding) is an ability that is 
predictive of math performance and related to working memory ability. 
We analysed these relationships in a large sample of over 25,000 children, 
from kindergarten to the end of primary school, who solved transcoding 
items with a computer adaptive system. Furthermore, we investigated 
the nature of transcoding difficulty of over 300 two- and three-digit 
numbers. All data come from a Dutch sample, meaning that transcoding 
is complicated by decade-unit inversion: 24 is pronounced as ‘four-and-
twenty’. Omission to invert the digits of a spoken number when writing 
it down is an inversion error: the incidence of these declined but did 
not disappear in later elementary school. Furthermore, transcoding 
ability mediated the relationship between visuospatial working memory 
and mathematics performance, a strong effect that declined with age. 
Inversion error making mediated this same relationship in an inverted 
U-shaped curve, peaking around grade 2 (8 years old). At the item level, 
structural characteristics related to inversion and irregular pronunciation 
of units and decades explained a large part of the variance in item 
difficulty. We conclude that number transcoding is an important ability 
to develop mathematical proficiency and discuss the implications of these 
findings.
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Learning transcoding

Number transcoding is related to mathematical performance: compared to normally developing chil-
dren, arithmetically disabled children made more transcoding mistakes (Moura et al., 2013) and were 
slower (van Loosbroek, Dirkx, Hulstijn, & Janssen, 2009), while children with good transcoding skills 
obtained higher math grades (Imbo, Vanden Bulcke, & Fias, 2014).

Transcoding consists of two types of rules: lexical rules, or the correspondence between number 
words and the numerical symbols 0–9, and syntactic rules, governing the formation of multidigit num-
bers (Power & Dal Martello, 1990). Learning these rules is a protracted process; transcoding errors in 
grades 1 and 2 are common (Camos, 2008; Power & Dal Martello, 1990; Seron & Fayol, 1994; Zuber, 
Pixner, Moeller, & Nuerk, 2009). Mistakes are frequent, especially violations against the syntactic rules, 
e.g. writing 1003 for 103, or 6100 for 600, in numbers with three or more digits (Camos, 2008; Imbo et 
al., 2014; Power & Dal Martello, 1990; Zuber et al., 2009).

It has been postulated that accessing the quantity of the number is not necessary while transcod-
ing; instead, a sequence of syntactic rules is applied (Barrouillet, Camos, Perruchet, & Seron, 2004). 
During development these rules are acquired sequentially. With development, multidigit chunks are 
formed that are directly retrieved without the need to apply rules. This model, named A Developmental, 
Asemantic and Procedural Model (ADAPT) was confirmed by simulations that matched children’s error 
patterns (Barrouillet et al., 2004). The authors found that second graders were already able to retrieve 
two-digit numbers as chunks.

In some languages the order of pronunciation of number words does not match the left-to-right nota-
tion order. This phenomenon is illustrated in the following nursery rhyme originating in the eighteenth 
century: ‘Sing a song of sixpence, a pocket full of rye. Four and twenty blackbirds, baked in a pie. When 
the pie was opened, the birds began to sing. Wasn’t that a dainty dish, to set before the king?’ In modern 
English this decade-unit inversion property is only remnant in the teen numbers (e.g. ‘sixteen’), but it is still 
present in many other languages: for example, the Germanic languages Dutch, German and Danish, but also 
Arabic. The native speakers of these four languages together account for hundreds of millions of speakers.

Adults speaking a language with inversion hardly make mistakes in two- and three-digit number 
transcoding (Zuber et al., 2009). However, for children inversion is difficult. In grade 2, children speaking 
a language with inversion (Dutch or German) made more transcoding errors than children speaking 
French, a language without inversion (Krinzinger et al., 2011; but see Imbo et al., 2014). In Czech, which 
has a system with and one without inversion, the same children made more errors and especially more 
inversion errors in the system with inversion (Pixner et al., 2011). Another study showed that half of 
the transcoding errors made by German first graders were inversion errors (Zuber et al., 2009), while 
these were hardly made by children speaking a language without inversion (Camos, 2008; Power & Dal 
Martello, 1990). Inversion even seems to affect mathematical performance: Austrian children speaking 
German (with inversion) slowed down more in addition problems requiring a carry (i.e. when the sum of 
the units is larger than 10, e.g. 17 + 9) than children speaking Italian (no inversion; Göbel, Moeller, Pixner, 
Kaufmann, & Nuerk, 2014). Finally, inversion error making in grade 1 predicted addition performance two 
years later, especially on problems involving a carry (Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011).

Transcoding, inversion and working memory

Studies on transcoding accuracy, such as cited in the previous section, focused on children around seven 
years old. However, transcoding errors may remain in older children under specific circumstances, due to 
working memory limitations. The ADAPT model (Barrouillet et al., 2004) predicts a relationship between 
working memory and transcoding performance. Working memory, according to the often-used Baddeley 
model (Baddeley, 1992; Baddeley & Hitch, 1974), is a system with limited capacity, especially in children 
(Alloway, Gathercole, & Pickering, 2006; Huizinga, Dolan, & van der Molen, 2006; van der Ven, Kroesbergen, 
Boom, & Leseman, 2012) but also in adults (Baddeley, 2007; Baddeley & Hitch, 1974). The model consists 
of two simple storage systems responsible for the storage of verbal (phonological loop) and visuospa-
tial (visuospatial sketchpad) information, and a domain-general attentional control system, the central 
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executive. The storage systems are usually measured with tasks in which sequences of, respectively, 
verbal and visuospatial stimuli must be repeated, while central executive tasks involve an additional 
manipulation, such as the requirement to perform a secondary task (e.g. the to-be-remembered number 
has to be counted first) or backward span tasks. Later studies confirmed the tri-partite model of working 
memory, although the distinction between the visuospatial sketchpad and the central executive may not 
be so clear-cut, especially in children (Ang & Lee, 2008; Gathercole, Pickering, Ambridge, & Wearing, 2004; 
Kessels, van den Berg, Ruis, & Brands, 2008), because executive involvement is also present in task tapping 
the visuospatial sketchpad (Ang & Lee, 2008; Fisk & Sharp, 2003; Vandierendonck, Kemps, Fastame, & 
Szmalec, 2004). In the present study, we therefore use visuospatial working memory when referring to 
visuospatial working memory tasks while acknowledging that these contain central executive elements.

According to the ADAPT model of transcoding (Barrouillet et al., 2004), each syntactic transcoding 
rule poses a load on working memory. Under circumstances of low overall task load, the number of 
mistakes may be very low or absent, as was found by Zuber et al. (2009). When the load is increased, e.g. 
when the number consists of many digits, the extra load posed by the inversion property may be the 
final straw to overload working memory. The first aim of the present study was therefore to investigate 
the degree of inversion error making in older children, under circumstances of higher cognitive load.

A second prediction derived from the ADAPT model is a relation between transcoding and working 
memory, especially the central executive. This relation has been confirmed in children around seven 
years of age. One study found a relation between transcoding and a complex memory span in French-
speaking children (Camos, 2008). Later studies incorporated all three components of Baddeley’s model 
and found evidence for a unique predictive role of the central executive in children speaking languages 
with and without inversion (Imbo et al., 2014; Pixner et al., 2011; Zuber et al., 2009) and the visuospatial 
sketchpad in English-speaking children (Simmons, Willis, & Adams, 2012). Only one study found indi-
cations for a unique relation with the phonological loop, which predicted variance in low-performing 
transcoders only (Imbo et al., 2014).

Thus, most studies found relations between transcoding and especially the interrelated central exec-
utive and visuospatial sketchpad. These relations were found in languages with and without inversion, 
but tended to be stronger in languages with inversion. The strongest indication comes from a study 
in which the same Czech children were tested in both Czech number word systems, one with and one 
without inversion: the standardised beta coefficient of the central executive was .44 in the system with 
inversion and .29 without (Pixner et al., 2011). The relative lack of findings concerning the phonological 
loop seems to reflect that the main difficulty of number transcoding lies in writing down a number in 
the correct order, not in recalling the verbally presented number word.

How the relation between working memory and transcoding develops in older children is unknown. 
The second aim of this study is therefore to investigate how the relation between visuospatial working 
memory and transcoding in general and inversion error making in particular changes with age. In a 
language with inversion the strength of these relations may decline, as older children retrieve inverted 
two-digit numbers as single chunks. However, for multidigit numbers working memory may pose a limit to 
older children’s transcoding ability as well, and therefore we do not expect these relations to fully disappear.

Transcoding and inversion error making as mediators for the relation between visuospatial 
working memory and mathematics

Relations between visuospatial working memory and mathematical ability have often been reported 
(Bull & Lee, 2014; De Smedt et al., 2009; Friso-Van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; 
Holmes & Adams, 2006; Rasmussen & Bisanz, 2005; van der Ven, van der Maas, Straatemeier, & Jansen, 
2013). The strength of this relation seems to decrease with age (De Smedt et al., 2009; Holmes & Adams, 
2006; Rasmussen & Bisanz, 2005; van der Ven et al., 2013). Explanations for this decrease have thus far 
focused on children’s increasing reliance on verbal coding of information and on verbal calculation 
procedures due to schooling (De Smedt et al., 2009; Rasmussen & Bisanz, 2005). Here we posit another, 
additional explanation: a reason for the decrease in this relationship may lie in transcoding, which may 
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affect mathematical accuracy. When children apply verbal strategies, they need to transcode symbolic 
numbers to their verbal counterpart, and when finished they need to transcode back to numerals.

These steps require working memory resources. In languages with inversion, the working memory 
demand may be stronger, especially around seven years of age, when children work with two-digit 
numbers which they have not yet stored as chunks. Since many of the studies reporting a decrease 
in relation between working memory and mathematics were carried out in children speaking a lan-
guage with inversion, specifically this inversion property may explain the decrease, which seems to 
be especially pronounced at this age. We thus predict that one of the mechanisms through which 
working memory exerts its action on math performance is that limitations in working memory lead to 
transcoding errors, which lead to mathematical errors.

In conclusion, our third aim is to investigate whether transcoding ability and inversion error mak-
ing mediate the relation between working memory and mathematical performance. We expect these 
effects to be the strongest around grades 1 and 2, and when incorporating inversion as a mediator, we 
expect the relation between visuospatial working memory and mathematics to be no longer decreas-
ing with age.

Explaining transcoding item difficulty

The fourth and final question addressed in this paper is what the nature is of the difficulties that chil-
dren have with transcoding. Which characteristics of number words determine this difficulty? Apart 
from the ADAPT model, this question has hardly received any scientific attention. In the present study, 
we address this question with a different approach. There are various characteristics of numbers and 
number words, relating to the pronunciation of number words and to the numerical structure, which 
may lead to differences in transcoding difficulty. We investigated the effect of these characteristics in 
Dutch, a language with inversion.

We identified two pronunciation characteristics. The first is word length (number of syllables). 
The word length effect is well known: longer words are more difficult to recall (Baddeley, Thomson, 
& Buchanan, 1975; Cowan et al., 1992). This may also affect number word transcoding. The second 
characteristic is irregular pronunciation. In English there are a few irregularly pronounced decades: e.g. 
20 (‘twenty’; not ‘twoty’). Dutch is comparable to English, the postfix ‘-tig’ is added to the single digits, 
but, as in English, teen numbers are irregular, and 20 is pronounced irregularly: ‘twintig’, not ‘tweetig’. 
Smaller irregularities are present for 30 (pronounced ‘dertig’ instead of ‘drietig’), 40 (‘veertig’ instead of 
‘viertig’) and 80 (‘tachtig’ instead of ‘achtig’). It has been claimed that more regular languages, such as 
East Asian languages based on ancient Chinese, support children in their understanding of the base 
ten structure (Geary, Bow-Thomas, Liu, & Siegler, 1996; Ng & Rao, 2010), which partially explains why 
East Asian children systematically outperform Western children in mathematics (Mullis, Martin, Foy, & 
Arora, 2012; Ng & Rao, 2010). It is therefore imaginable that also within a language irregular numbers 
are more difficult to transcode. However, it is also possible that irregular decades serve as facilitating 
cues preventing inversion errors. For example, when hearing ‘twee-en-dertig’ (‘two-and-thirty’; 32), two 
cues show that the number cannot be 23: ‘twee-’ cannot refer to the decade 20, which is pronounced as 
‘twin-’, while ‘der-’ cannot refer to units, which are pronounced as ‘drie’. In Dutch, the decades 10, 20 and 
30 differ strongly from their corresponding units (1, 2 and 3), while 40 and 80 have slight irregularities. 
We refer to these numbers as irregular units (1, 2, 3, 4, 8) and decades (10, 20, 30, 40, 80).

We also identified three characteristics relating to numerical structure: problem size, interdigit 
distance and number type. Problem size, or the value of the number, is a strong predictor of diffi-
culty in many mathematical domains (Ashcraft & Guillaume, 2009; Campbell & Graham, 1985; Imbo, 
Vandierendonck, & Rosseel, 2007; Parkman, 1972). In one study a problem size effect has also been 
demonstrated for transcoding: response latency was longer for larger numbers than for smaller num-
bers, even when the number of digits was identical (van Loosbroek et al., 2009).

The second characteristic related to numerical structure is interdigit distance: the difference 
between the two digits in a two-digit number: e.g. in the number 27, the interdigit distance is 5. 
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Austrian, German-speaking children were less accurate than Italian children in positioning numbers 
with a large interdigit distance on a number line, while there was no difference for numbers with a 
small interdigit distance (Helmreich et al., 2011). Austrian children may have misinterpreted the num-
bers, e.g. positioning 27 at the location of 72, which leads to large deviations for items with a large 
interdigit distance. In the present study, we investigate if interdigit distance also affects transcoding 
difficulty.

The third numerical structure characteristic is number type: in two-digit numbers these types are 
tie (e.g. 66), decade (e.g. 60) and inverted number (e.g. 62, pronounced in Dutch as twee-en-zestig: 
two-and-sixty). We expect inverted numbers to be more difficult because these require an inversion 
step that is not necessary in decades. Ties require this inversion step too, but omission also leads to 
a correct answer; moreover, only one number word needs to be activated in working memory. In 
three-digit numbers there are even more number types. Numbers can be classified as a multiple of 
hundred, a decade, as containing three different non-zero digits (e.g. 243), a ‘mid-zero’ (e.g. 204), a ‘full 
tie’ (e.g. 222), but also three types of partial ties, in which two digits are equal: a ‘hundred-decade tie’ 
(e.g. 224), a ‘decade-unit tie’ (e.g. 422) or a ‘hundred-unit tie’ (e.g. 242). We expect three different non-
zero digits to be difficult because of inversion. We also expect numbers with a zero in the middle (e.g. 
304) to be difficult, since these numbers require the extra procedural step of filling the empty middle 
position with this zero (Barrouillet et al., 2004). We further expect hundreds, decades and ties to be 
easier, with the exception that hundred-decade ties and hundred-unit ties may be difficult; because of 
the inversion property, in hundred-decade ties the notation of the two equal digits is consecutive but 
their pronunciation is not (442 is pronounced ‘four hundred two and forty’, while in hundred-unit ties 
the pronunciation of the two equal digits is consecutive but their notation is not (424 is pronounced 
‘four hundred four and twenty).

Aims of the present study

The present study is divided in two parts. In the first part, analyses focus on the first three research 
questions related to child development: we compared data from Dutch children from all years of pri-
mary education, ranging from kindergarten to grade 6. First, we investigated the degree to which these 
children made inversion errors while transcoding number words. Second, we investigated the relation 
between transcoding and inversion error making and visuospatial working memory at different ages. 
Third, we investigated (age differences in) the mediating role of transcoding and inversion error in the 
relationship between working memory and math performance.

The second part is a detailed analysis dealing with the fourth research question: the nature of the 
difficulty of two- and three-digit transcoding items. With regression analyses, we investigated how 
well this difficulty can be predicted by potential characteristics described in the previous section: i.e. 
the pronunciation characteristics word length and irregular pronunciation of units and decades, and 
structural characteristics which relate to the numerical structure of the item: problem size, interdigit 
distance and number type.

To answer these questions, we used the transcoding game from the Dutch version (Rekentuin.
nl) of the web-based computer adaptive learning environment named Math Garden (Klinkenberg, 
Straatemeier, & Van der Maas, 2011), in which children can practice mathematics by playing various 
games, one of which is number transcoding. Computer algorithms adapt the presented problems to 
the child’s ability: problems are administered such that there is an average probability of .75 to solve 
the problem correctly. This process ensures that problems are not overly easy: a reasonable cognitive 
load will be present. This increases the ecological validity of the task: in everyday life, writing down 
numbers often takes place in an environment in which more sources of cognitive load are present, such 
as mathematical problem solving. A further advantage of the use of Math Garden is the vast sample 
size: whereas most studies described in the introduction consisted of fewer than 200 participants, we 
currently use data from over 25,000 children in the entire range of primary education.
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Method

All data used in the present study were obtained with Math Garden. Since this is an unconventional way 
of collecting data, we present more information about Math Garden and its algorithms in Appendix 
1. Further information can be found in Klinkenberg et al. (2011) and Maris and Van der Maas (2012) .

Participants

The participants of Math Garden are predominantly children attending schools using Math Garden 
as part of their education: approximately 5% of all children in the Netherlands have an account. 
Participating families and schools gave permission for the (anonymous) use of the data for research 
purposes; the schools accept the responsibility to inform the parents about the research and voluntary 
participation. Parents are given the opportunity to refuse the use of their children’s data; data from 
these children are not distributed to the researchers.

In the Netherlands, primary school consists of two years of kindergarten and six years of primary 
education. The data from kindergarten year 1 proved unreliable because of children’s limited computer 
skills. Therefore, for our user analyses we selected the children from the second year of kindergarten (5 
and 6 years old) until the sixth and final year of primary education (11 and 12 years old) who had played 
at least 30 problems of the transcoding game between February 2013, when the game was introduced, 
and May 2013. Some children had been registered with highly improbable age-grade combinations 
(e.g. a 14-year-old in grade 2). Chances are high that for these children mistakes have been made. 
Therefore, we excluded data from the children whose reported age deviated more than one year from 
the trimmed mean age of their grade (the 10% extremes on each end were trimmed to determine this 
mean age). We further removed data from children with reported dates of birth that were improbably 
frequent (mainly January 1 of any year). The final sample consisted of 25,620 children: 961 (44% girls) 
from kindergarten, 3915 (47% girls) from grade 1, 5113 (48% girls) from grade 2, 5080 (49% girls) from 
grade 3, 4399 (48% girls) from grade 4, 3596 (49% girls) from grade 5 and 2556 (46% girls) from grade 6.

Instruments

Math Garden
Math Garden is web-based computer interface, with math game plants in a garden. When a child 
clicks on a plant, the corresponding game starts. By playing the games, children’s plants grow: the 
higher the ability, the bigger the plant. The games analysed in the present paper are displayed in 
Figure 1.

The left panel shows the transcoding game: in this game, the child clicks on the play button and a 
number word is spoken, which the child has to enter in numerals in an answer field, using the computer 
keyboard. A dimensionality analysis for a subset of two-digit numbers is presented in Appendix 2. For 
research questions 2 and 3, data from two more games were analysed: the addition game (middle 
panel), in which the child solves addition problems in a multiple choice format, and the mole game 
(right panel), a visuospatial working memory game in which moles appear sequentially in a grid with 
molehills. After the sequence, the child is told to indicate the sequence of the moles, either in the same 

Figure 1. Screenshots of the transcoding game (left), addition game (middle) and mole game (right).
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or in reversed order. The difference between same and reversed order has been shown to be only minor; 
this task taps the visuospatial sketchpad as well as the central executive (van der Ven et al., 2013).

In all games the child is given 20 seconds to answer each item. The remaining time is reflected as 
a row of coins in the bottom of the screen, from which a coin disappears with each passing second. 
Upon answering, the correct answer is shown and the child receives the number of remaining coins if 
the answer was correct, but loses the same number of coins if the answer was incorrect. The rationale 
of this scoring rule is explained in Appendix 1. The question mark can be clicked if the child does not 
know the answer: in this case, and when the child did not provide an answer within the time limit, no 
coins are won or lost and the next item appears. The coins can be used to buy virtual prizes in a trophy 
cabinet. The child is thus motivated to answer quickly if (s)he knows the answer, but to refrain from 
answering otherwise. A game ends after 15 items, but children can quit earlier or play the game (with 
different items) several times.

Each instance of a child answering a problem is used to update both the estimated ability of the 
child and the estimated difficulty of the item. This enables analyses at two levels: user analyses focus 
on the (development of ) user ability, and item analyses focus on item characteristics.

Math Garden shows a high criterion validity: correlations of r = .78–.84 (Klinkenberg et al., 2011), 
with norm-referenced math tests (Janssen, Scheltens, & Kraemer, 2005).

Transcoding items

For the second part of the results, the analyses were performed on the difficulty ratings of the items. 
This means that the population consists of the items, and results can thus only be explained by means 
of item characteristics (although the children indirectly play a role, since item ratings were determined 
by the children playing the transcoding game, with the algorithms described in Appendix 1).

The ratings of the two- and three-digit items were extracted from the system as they were in May 
2013: the item set contained all two-digit items and 290 three-digit numbers. For two-digit and three-
digit numbers separately, we investigated how well the item difficulty ratings could be predicted with 
the characteristics described in the introduction: first the pronunciation characteristics, then the numer-
ical structure characteristics, and then both types of characteristics together. Finally, an error analysis 
was carried out on the three-digit items, to see if decade-unit inversions occurred more often than 
other inversions.

Results

Child development in transcoding and inversion error making

During the four months of the study, all children together solved 4,218,372 problems. Figure 2 shows the 
distribution of the children’s ability ratings by grade: the further towards the right, the higher the rating.

Since as in all latent variable models the scale of the horizontal axis is arbitrary, scores by themselves 
are not meaningful. Example items illustrate what type of numbers children are capable of transcod-
ing. That is, when the ratings of the child and the problem are equal, the child has a .50 probability of 
transcoding the number correctly. Because this probability correct is set higher in Math Garden, typically 
.75, the items presented in Math Garden are also easier: with the setting of .75 correct, item ratings are 
on average 1.1 points lower than child ratings.

For instance, the most common ability rating of children in grade 4 is around 5, and children perform-
ing at this level have a .50 probability of transcoding the number 70312 correctly. When children play 
Math Garden with the default medium difficulty setting of a probability of .75, the problems presented 
to them have a difficulty of on average 1.1 point lower than their own ability. If a child chooses to solve 
easy problems (90% correct), the problem difficulty is on average 2.2 points lower than the child’s ability, 
and if the difficult setting (60%) is chosen, the problem difficulty is 0.4 points lower.
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Question 1: prevalence of inversion errors in different grades
In the subset of 12,960 children that had transcoded at least 11 numbers containing at least one inver-
sion, we investigated the incidence of inversion errors. The boxplots in Figure 3 show that inversion 
errors were frequent in kindergarten and grade 1, and then decreased to a stable average level of around 
.10 in grades 4–6. A one way-ANOVA showed a significant large effect of grade, F(6; 12,953) = 421, 
p < .001, ƞ2 = .163. Tukey HSD post hoc tests confirmed that all grades differed significantly from each 
other, with the exception of kindergarten-grade 1, and grades 4–6. Overall transcoding ability, on the 
other hand, as shown in Figure 2, continued to increase until grade 6 and this effect was very large, 
F(6; 12, 953) = 2520, p < .001, ƞ2 = .539 and Tukey HSD post hoc tests confirmed that all grades differed 
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significantly from each other. This shows that the decrease in inversion error rate is not merely a result 
of a ceiling effect in the task.

In all grades, the number of children making at least 50% inversion errors was limited and stabilised 
at a very low percentage after grade 4: 8.3% in kindergarten, 10.9% in grade 1, 7.8% in grade 2, 2.7% in 
grade 3, 0.9% in grade 4, 0.7% in grade 5 and 0.9% in grade 6. Nevertheless, the number of children not 
making any inversion error at all was also less than half: 9.1% in kindergarten, 6.5% in grade 1, 13.1% 
in grade 2, 26.8% in grade 3, 34.5% in grade 4, 35.1% in grade 5 and 42.9% in grade 6. This shows that 
the majority of children understood the principle of inversion but occasionally made errors.

Questions 2 and 3: inversion, mathematics and visuospatial working memory
Two mediation analyses were performed using the R package Mediation (Tingley, Yamamoto, Hirose, 
Keele, & Imai, 2013). In the first model, it was tested whether the relation between visuospatial work-
ing memory and mathematical ability was mediated by transcoding ability. Mathematical ability was 
defined by addition ability, a good proxy of overall mathematical ability (Klinkenberg et al., 2011). The 
same analysis has also been done on a composite score of addition, subtraction and multiplication, 
but this led to the same results. Data were standardised by grade and the analysis was run for each 
grade separately.

The procedure consists of four steps. The results are summarised in Figure 4. In step 1, path c, the 
unmediated, direct effect of working memory on addition ability was determined in a linear regression 
analysis. The results are displayed in the upper part of Figure 4; these are significant at the .05 level if 
the error bars do not cross the dotted line at 0. The next three steps show the first mediation analysis, 
shown in the lower left part of Figure 4. In step 2, path a was estimated in a linear regression: the effect 
of independent variable (working memory) on the mediator (transcoding ability). The results with 
standard errors are visualised next to path a in Figure 4: results are also significant at the .05 level if the 
error bars do not cross the dotted line at 0. In step 3, paths b and c′ were estimated simultaneously in a 

Figure 4. Results of the mediation analyses by grade: the relation between visuospatial working memory and addition ability, mediated 
by transcoding ability (upper figure) and inversion accuracy (lower figure). The sizes of the coefficients are presented adjacent to 
each path of the analysis. The middle graph displays the proportion of the total effect that is explained by the indirect path: a×b

a×b+c
�
.
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second linear regression. These results are displayed in Figure 4 graphically adjacent to the correspond-
ing paths. Note that the total effect of working memory on addition, represented by path c, is equal 
to a * b + c′. Finally, in step 4 a bootstrapping procedure with 50 simulations was used to estimate the 
proportion of the original path c, explained by the indirect pathway through inversion. This result, with 
95% confidence intervals, is displayed in the centre of Figure 4; again, this result is significant at the .05 
level if the bars do not cross the horizontal line at 0.

The results show that the direct effect of working memory on addition, and also the effect of 
transcoding ability on addition, was significant and virtually constant throughout all years of primary 
education. The relation between working memory and transcoding was also always significant but 
showed a decline in higher grades. As a consequence, the mediation effect also showed this decline, 
from .46 in kindergarten to .20 in grade 6.

In the second mediation analysis, shown in the lower right part of Figure 4, the mediator was replaced 
by inversion ability (proportion of correctly transcribed numbers containing at least one inversion). The 
results show that a reasonably stable direct path from working memory to math in size with a small 
decline in higher grades, but both pathways in the indirect path and the proportion mediated by the 
indirect path show an inverted U-shaped curve, being non-significant in kindergarten and at the end 
of primary school and significant in the middle, peaking around grade 2.

Since the boxplots in Figure 3 suggest that in each grade a minority of children made inversion errors 
very frequently, we added a series of Welch two-sample t-tests investigating the difference in math 
ability between the highest 10 percentiles in inversion error making and the other children in every 
grade. The results, presented in Table 1, show similar results to the mediation analysis: the difference 
in math ability was significant but with a very small effect size in kindergarten, showed a peak in grade 
2, then declined to non-significance in grade 6.

Question 4: the transcoding difficulty of two- and three-digit numbers
Regression analyses. Two-digit numbers: While Figure 2 displayed a few example items, Figure 5 shows 
the difficulty of all two-digit numbers between 10 and 99. A series of regression analyses (see Table 2) 
was performed to explain these difficulties. In the first analysis the pronunciation characteristics were 
entered, F(8, 81) = 5.53, p < .001. Note that each irregular unit was entered separately whereas decades 
were combined in one variable (except for highly irregular 10). This was done because preliminary 
analyses indicated that separating the units improved model fit but separating the decades did not. 
The second analysis was performed on the structural characteristics, F(4, 85) = 27.20, p < .001, R2 = .56. 
In the third analysis, all predictors were entered together in one analysis, F(12, 77) = 19.26, p < .001, 
R2 = .56, which fitted significantly better than both the phonological model, F(4, 77) = 30.56, p < .001, and 
the structural model, F(8, 77) = 7.27, p < . 001, showing that both phonological and structural aspects 
affected item difficulty. All structural variables were significant: items with an inversion were significantly 
more difficult, and ties were significantly easier than decades. Furthermore, larger numbers were more 
difficult, while numbers with a large interdigit distance and numbers with a 1 or 2 in the units or 10 as a 
decade were easier. The predicted values by the final model are presented in Figure 5 as a dotted line.

Table 1. Results of t-tests investigating the difference in math ability between the poorest 10% at inversion and all other children.

aK = second year of kindergarten.

Grade df t p Cohen’s d
Ka 573.67 103.21 <.001 0.05
1 2344.11 194.10 <.001 0.36
2 2435.90 135.77 <.001 0.79
3 2414.99 83.63 <.001 0.70
4 2310.76 46.34 <.001 0.55
5 1807.13 15.97 <.001 0.35
6 1298.67 0.27 .784 0.13
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Three-digit numbers: A similar series of regression analyses was performed on the 290 three-digit 
numbers in the transcoding game (see Table 2). Again first the pronunciation characteristics were 
entered with the same variables as in the two-digit analysis, F(7, 282) = 21.39, p < .001, R2 = .35. Then 
the structural analysis was performed, which contained more variables than the two-digit analysis, 
because the extra digit allowed for more different types, as described in the introduction. The reference 
category is formed by the numbers consisting of three different non-zero digits (such as 135); thus, a 
negative regression coefficient means that a type of number was easier than this reference category 
and a positive regression coefficient means that it was more difficult. The structural characteristics 
predicted again a higher proportion of variance in item difficulty than the phonological characteristics, 
F(8, 281) = 77.48, p < .001, R2 = .69.

In the final regression analysis all predictors were entered. This model fitted the data significantly better 
than both the phonological model, F(8, 274) = 50.15, p < .001, and the structural model, F(7, 274) = 6.93, 
p < .001. The results show again that most structural predictors were significant: Hundreds and tens 
were significantly easier than problems with three different non-zero digits, while numbers with a zero 
in the middle were more difficult. Concerning ties, the result is differentiated. While the presence of a 
decade-unit tie made a problem easier, full ties were not significantly different and hundred-decade 
ties (in which the notation of the two equal digits is consecutive but their pronunciation is not), and 
hundred-unit ties (in which the pronunciation of the two equal digits is consecutive but their notation 
is not) were even significantly more difficult than items with three different non-zero digits. A higher 
problem size was also related to a higher difficulty. In the pronunciation part, as in the two-digit item 
analyses, now the presence of a 1 or 2 in the units made problems significantly easier, while shorter 
numbers were also easier.

Both regression analyses thus demonstrate that the variables we included can predict item difficulty 
very well, and especially inversion-related variables affect item difficulty.

Error analysis. An error analysis was carried out on all 127 three-digit numbers in the problem set that 
consisted of three different non-zero digits. Together these 127 problems had been solved 275,299 times. 
A mistake was made in 53,522 instances (19%). Of these mistakes, 11,878 (22%) were order mistakes, in 
which all digits were identified correctly but written in the wrong order. Of all order mistakes, 11,644 
(98%) were decade-unit inversions, hundred-decade inversions occurred 15 times (0.1%), hundred-unit 
inversion errors were made 68 times (0.6%) and a complete shuffle of the answer (e.g. 584 becomes 
845 or 458) happened 151 times (1.3%). A binomial test confirmed that the number of decade-unit 
inversion errors was significantly higher than chance, p < .001. Especially the low incidence of hundred-
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decade inversions compared to the high incidence of decade-unit inversions suggests that the inversion 
property of the language is the real cause, as opposed to mere typos.

Discussion

In the present study transcoding in a language with inversion was studied. In the first part, we investi-
gated transcoding ability in children. We investigated the degree of inversion error making, the relation 
between working memory and transcoding, and the mediating role of transcoding ability in general 
and inversion error making in particular in the relation between visuospatial working memory and 
mathematics. In the second part, we investigated which item characteristics affect transcoding difficulty.

The results showed that inversion errors in transcoding were common in the lower grades and sta-
bilised at a low but constant level in grades 4–6. In these higher grades, the curriculum is long past the 
transcoding of numbers; indeed only few children made more than 50% inversion errors. Nevertheless, 
most children made occasional inversion errors. Because of the adaptive algorithms, children in higher 
grades transcribed larger numbers (see also Figure 1). Thus, to some degree inversion errors are persis-
tent when the cognitive load is high enough.

Inversion error making was related to visuospatial working memory in an inverted U-shaped age 
pattern: peaking in grade 2 when the beta coefficient was around .3, similar to other studies around 
this age range (Pixner et al., 2011; Zuber et al., 2009). This confirms the statement by Zuber et al. (2009) 
that the central executive is involved in mastering the principle of inversion. The later decrease in the 
size of this relation suggests that older children have mastered the syntactical principles of inversion. 
However, the small remaining relation, as well as the persistence of occasional inversion errors, suggest 
that two-digit numbers may not always be retrieved from memory as single chunks, as stated previously 
(Barrouillet et al., 2004).

The relation with visuospatial working memory was not specific to inversion error making: the rela-
tion with overall transcoding ability was even stronger, starting with a rather constant beta coefficient 
around .50 in the lowest three grades, after which it suddenly dropped to around .25 in the highest 
four grades. The difference in strength might again be due to the syntactic principles of transcoding, 
of which inversion is a prominent one, that are fully mastered in higher grades. The remaining relation 
with working memory in these years may be due to the larger size of the presented numbers, meaning 
that the limits of (verbal) working memory capacity are approached.

The results of the mediation analyses suggest that the nature of inversion errors changes with age. 
Inversion error making was a non-significant mediator, and a non-significant predictor of math ability 
in kindergarten. In kindergarten children mainly solve one-digit addition problems, in which inversion 
does not play a role. From grade 1 onwards, inversion error making predicted math ability and mediated 
the relation between working memory and math. This confirms the findings by Moeller et al. (2011) that 
inversion error incidence predicted later math ability. These relations peaked in grade 2, when children 
start solving larger multidigit problems, and declined in higher grades, to non-significance again in 
grade 6, suggesting that errors were then most likely small attentional slips. Even the 10% children per-
forming most poorly on the inversion items in grade 6 did not obtain significantly lower scores in math 
than their peers who made fewer inversion errors. This suggests that inversion errors are persistent and 
continue to affect math performance quite long in primary school, but its influence declines with age.

The results thus indicate that around grade 2 in primary school, children with poor visuospatial 
working memory perform more poorly in math, partially because they struggle to master the principles 
of inversion. This partially explains the previous findings that the relationship between visuospatial 
working memory and mathematics declines with age (De Smedt et al., 2009; van der Ven et al., 2013) – 
although contrary to expectations, the decreasing trend with age did not fully disappear. For children 
struggling with inversion a (temporary) different counting system without inversion may be helpful. 
A promising intervention study showed that teaching an alternative regular Asian-language-based 
counting system in which 13 is pronounced as ‘one ten three’ improved number sense in Dutch children 
with mild intellectual disabilities (Van Luit & Van der Molen, 2011). The finding by Pixner and colleagues 
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(2011) that the same Czech children made more transcoding errors in the Czech system with inversion 
than in the system without, further confirms the merits of this approach. A reform in Norwegian in 
1951 has shown that it is even possible to introduce a new number word system without inversions 
in education (Jahr, 1989).

However, we also found a consistent relation between overall transcoding ability and mathematics. 
Transcoding ability was a far stronger mediator in the relation between visuospatial working memory 
and mathematics than inversion, and although the mediating effect decreased with age, now the age 
trend in the relation between working memory and mathematics fully disappeared. The continuing 
relation between transcoding and mathematics shows that math results are likely not only influenced 
by the ability to understand the problem and carry out the correct procedures, but also simply by 
writing the numbers down correctly. Given the scarcity of research on transcoding in older normally 
developing children, this is a ‘blind spot’ in mathematics research.

In the second part, we analysed which number characteristics affect transcoding difficulty, with a 
comprehensive item analysis. Factors related to number word inversion played a large role. In the two-
digit analysis, inverted numbers were more difficult than decades and hundreds. However, this might 
also be the case in language without inversion, as the ADAPT model predicts fewer steps for these 
numbers in other languages as well (Barrouillet et al., 2004). Nevertheless, the regression analyses also 
revealed other effects of inversion: two-digit ties were easier than non-ties, and three-digit ties were 
only easier if the two digits that were equal were in decade and unit position, and even more difficult 
than non-ties if they were in hundred and decade or hundred and decade position. Moreover, the error 
patterns reflected difficulty with inversion: of the five possible order mistakes in three-digit numbers, 
virtually all (98%) were decade-unit inversions.

Together, these results suggest that transcoding is affected by the linguistic properties of a lan-
guage, and that the ADAPT model needs to be expanded with an extra inversion rule that must be 
mastered by speakers of languages with inversion. However, the results show more. The ADAPT model 
would not predict a difference in difficulty between ties and non-ties: also with inversion included in 
the model, both number types have an equal number of required steps. The even higher difficulty of 
some ties suggests that transcoding is not a mere asemantic syntactical sequence of steps, at least not 
in languages with inversion. Instead it suggests semantic activation leading to a conflict that must be 
resolved: the two identical digits are perceptually salient, but their locations differ between the auditory 
input and the symbolic output.

The results showed more evidence in favour of semantic (co-)activation. The effect of problem 
size was marginally significant in the two-digit numbers and significant in the three-digit numbers. 
Moreover, a small effect of interdigit distance was found: numbers with a large interdigit distance 
were easier. This suggests that some activation of the numerical magnitude takes place, which in the 
case of a large interdigit distance prevents a reversal. At first sight, this seems to contradict the results 
by Helmreich et al. (2011), who found that German-speaking children showed larger deviations when 
locating numbers with a larger interdigit distance on a number line, while these numbers were easier 
in our study. However, Helmreich et al. (2011) argued that these larger deviations were probably due 
to the fact that the difference between the target number and its inverted number are larger, so if a 
number is misinterpreted, the deviation is larger. This is not the case in our study: the score is not influ-
enced by the distance between the provided and the correct answer. It is possible that the absolute 
number of mismatches was also smaller in the Helmreich et al. (2011) study: this may be obscured by 
the larger deviations in these cases.

The above-mentioned effects favouring semantic processing might change with development. Imbo 
et al. (2014) showed that in skilled transcoders, transcoding happened predominantly asemantically, 
i.e. without accessing the value of the number, while less skilled transcoders at least sometimes used a 
semantic route. In our data, the children were presented with problems with a high but not overly high 
probability of a correct answer, so they were not overly skilled in the problems they solved.

Of all factors related to the pronunciation of number words, only the presence of 1 or 2 as unit was 
consistent significant predictors: these items were easier than items with a different unit. The irregularity 
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of decade pronunciation has been put forward as one of the factors explaining the disadvantage in 
mathematics in children growing up in Western countries compared to children speaking fully regular 
East Asian languages (Ng & Rao, 2010). But in a language with the inversion property two negatives 
make a positive: the irregularity functions as a cue that inversion is necessary. This effect was especially 
strong in the units and less in the decades, which may be explained by the fact that these come later 
in pronunciation; apparently, by that time the inversion has already been processed.

Some limitations must be mentioned: the data were collected with an online computer adaptive 
system, meaning that there is less control over the circumstances of data collection than in a tradi-
tional research setting. This method of data collection, however, also enabled a vast sample size, and 
its ecological validity is large, since the data were collected while children were practicing as part of 
their daily routine. Another limitation is that the data were gathered in one language only: Dutch. A 
replication in other languages with other numerical characteristics is desirable.

In conclusion, the results show that inversion affects children’s performance to transcribe numbers. 
While this problem is most prominent in young children, it never fully disappears. This suggests that 
the increasing load of inversion gives speakers of a language with inversion a small but permanent 
disadvantage that appears in demanding situations. This disadvantage affects quite a number of speak-
ers: Arabic in its different varieties alone is the fifth largest language in the world. The general effect 
of transcoding ability, however, which had a relation with mathematics that was stronger and more 
persistent with age than the effect of inversion alone, suggests that transcoding is more than inversion 
alone. It might therefore also play an important role in other languages. Furthermore, the difficulty 
analyses revealed effects of inversion, and effects showing that transcoding may not be fully asemantic. 
This shows that especially languages with mismatches between pronunciation and notation of num-
ber words can reveal effects of semantic processing that would possibly go unnoticed in fully regular 
languages. Both findings warrant further research, preferably cross-linguistic studies comparing these 
effects in fully regular languages, various languages with different types of irregularities such as French 
and Danish, and languages with a two parallel number word systems, with and without inversion, such 
as Norwegian and Czech.
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Appendix 1
This appendix consists of two parts: a more detailed explanation of the Math Garden computer-adaptive algorithms, and 
a dimensionality analysis of a subset of items from the transcoding game.

Math Garden computer-adaptive algorithms
The Math Garden computer adaptive technology works in an iterative process consisting of four steps: (1) problem selec-
tion, (2) determining the expected score, (3) the child solving the problem and (4) updating the child ability and problem 
difficulty estimates based on the difference between the expected and obtained score.
In step 1, a problem is selected for the child. This selection is based on past performance of both the player and the problems 
(by other players solving the same problem). This past performance yielded an ability estimate of the player and difficulty 
estimates of the problems. A problem is selected for which the child has an expected probability of on average .75 (SD = .1) 
of giving the correct answer within the time limit, according to the Rasch model shown in Equation (1):
 

In this equation P = probability, X = the accuracy (1 = correct, 0 = incorrect) of the answer of player j 
with ability estimate �j on item i with difficulty �i; the probability increases with increasing player ability 
and decreases with increasing problem difficulty.
In step 2, the expected score is determined. Math Garden uses a scoring system that incorporates not only accuracy but 
also speed: the high speed high stakes principle (HSHS; Maris & Van der Maas, 2012). The HSHS principle entails that the 
score equals the proportion of remaining time for correct answers, and the proportion of remaining time multiplied by 
−1 if the answer was incorrect. The score is thus largest, positively or negatively, for fast answers and linearly decreases/
increases to 0 as the time approaches the limit. The principle is shown in Figure 6. For example, if an immediate answer is 
given, the score is +1 (correct answer) or −1 (incorrect answer). If an answer is given with 75% of the time remaining, the 

(1)P(Xij = 1|�j) =
e�j−�i

1 + e�j−�i
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score is 0.75 (correct) or −0.75 (incorrect). All values between −1 and 1 are possible. With this rule, fast correct responses 
are rewarded while fast incorrect guesses are punished.
The child’s expected score on the problem is estimated with the extended Rasch model, presented in Maris and Van der 
Maas (2012). This model is shown in equation (2):
 

In this equation, E = expected, S = score, �j = ability of player j, and �i = difficulty of problem i. The 
outcome of Equation (2) is thus the expected score of player j with ability estimate �j on item i with dif-
ficulty estimate �i. As Equation (2) shows, this expected score is based on the difference between βi and 
θj: this expected score ranges from close to −1 (when problem difficulty is far higher than child ability), 
through 0 (when both are equal), to almost 1 (when child ability is far higher than problem difficulty).
In step 3, the child solves the problem and the actual score is determined, using the HSHS principles as displayed in Figure 
1. Then step 4 is executed, a new feature in Math Garden: an on-the-fly item calibration system. This means that directly 
after the problem is solved, the child’s obtained score is used to update the estimate of the child’s ability and the difficulty 
of the item. The expected score derived from Equation (2) is compared to the actual score. Then, following a procedure 
invented by Elo (1978) and also used in e.g. competitive chess to rank players, the child’s ability is adjusted upward if the 
obtained score was higher than expected and downward if the score was lower than expected; the larger the discrepancy 
between observed and expected score, the larger the adjustment. In a similar fashion, the problem difficulty is adjusted 
downward if the obtained score was higher than expected (as the problem was easier than expected) and upward if the 
obtained score was lower than expected. Then the cycle starts again: a new problem is selected, based on the updated 
estimates. This way, estimates of child ability and problem difficulty are obtained reliably with an on-the-fly algorithm that 
enables adaptive problem selection such that children only solve problems that are suitable for their level of development.

Appendix 2.The algorithms described above work with an underlying ability estimate. Therefore 
they only function optimally if there is one underlying ability scale, and all items measure this same 
ability. In other words, tests based on the 1 PL model such as Math Garden only function optimally if the 
assumption of unidimensionality is met. This assumption can be tested with a dimensionality analysis. 
However, these analyses require a full data matrix: a data-set in which every user solved every item. 
The computer-adaptive nature of Math Garden prohibits this. To enable a dimensionality analysis, we 
selected a subset of items and users for whom we could obtain a full data matrix: 14,898 Math Garden 
users (mean age: 8.92 years; SD: 1.49; 50.6% female) each solved 65 items. Fifty-one items contained 
an inversion: 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 47, 48, 49, 51, 52, 53, 
54, 58, 59, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 81, 82, 83, 84, 85, 86, 87, 91, 92, 93, 94 and four-
teen items did not contain an inversion: 20, 22, 30, 33, 40, 44, 50, 60, 66, 70, 80, 88, 90 and 100. With a 
general linear mixed model analysis (Bates, 2010), two models were compared to investigate whether 
transcoding can be considered unidimensional or bidimensional: two separate transcoding abilities 
for inverted and non-inverted numbers. The first, unidimensional model was a model with one fixed 

(2)E(Sij|�j) =
e2(�j−�i ) + 1

e2(�j−�i ) − 1
−

1

�j − �i

Figure 6. Illustration of the high speed high stake principle. With a time limit of 20 seconds, a correct answer after 5 s yields a score 
of 0.75; an incorrect answer after 12 s yields a score of −0.40.
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effect, whereas the bidimensional model was a model with two fixed effects: one for inverted items 
and one for non-inverted items. The results indicate that the fixed effect estimates are significant in 
both models (p < .001). The BIC for model comparison was 236,832 for the unidimensional model and 
236,818 for the bidimensional model. The bidimensional model is thus favoured, but only slightly. To 
test the correlation between the two dimensions, a third model was created: a Fixed-Random-Effects 
model, which was similar to the bidimensional model, with the addition of a random effect to allow 
the fixed effects to vary between users. This Fixed-Random Effects model revealed a large correlation 
between the two dimensions, r = .81, which means that for users there is not much difference between 
inverted and non-inverted items. In other words, we may assume one underlying dimension. Moreover, 
a mix of inversion and non-inversion items in the transcoding game is essential for testing transcoding 
ability. If there are only (non)-inversion items, users automatically enter a number in the (same) reversed 
sequence as they hear it. The consequence would be an overestimation of user ability and an underes-
timation of item difficulty. The mix of inversion and non-inversion items ensures that the transcoding 
game works well and guarantees a more precise measurement of transcoding ability.
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