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Abstract

This essay links some of my own work on expectations, learning and bounded
rationality to the inspiring ideas of Jean-Michel Grandmont. In particular,
my work on consistent expectations and behavioral learning equilibria may be
seen as formalizations of JMG’s ideas of self-fulfilling mistakes. Some of our
learning-to-forecast laboratory experiments with human subjects have also been
strongly influenced by JMG’s ideas. Key features of self-fulfilling mistakes are
multiple equilibria, excess volatility and persistence amplification.
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1 Introduction

The ideas of Jean-Michel Grandmont have inspired the work of many young scholars in

economics. During my own PhD thesis work on chaos in economic models (Hommes,

1991), I have for example been studying his seminal contribution on chaos in over-

lapping generations models (Grandmont, 1985). For many years thereafter, another

seminal contribution Grandmont (1998)1 on expectations formation and stability in

large socio-economic systems has provided inspiration for my work on expectations,

learning and bounded rationality in the last two decades (see e.g., Hommes, 2013).

Let me start off by quoting JMG at length (Grandmont, 1998, pp.776-777):

Complex “learning equilibria” may be at first sight good candidates to explain why

agents keep making significant and recurrent mistakes when trying to predict the fate

of socioeconomic systems in which they participate. To be acceptable, however, the

observed patterns along such “learning equilibria” should display some reasonable de-

gree of consistency with the agents’ beliefs. One might envision situations in which

agents do believe (wrongly) that the world is relatively simple (e.g. linear) but subject

to random shocks, and in which the corresponding (deterministic) “learning equilib-

ria” are complex enough to make the agents’ forecasting mistakes “self-fulfilling” in

a well defined sense. For instance, the agents might be assumed to have at their dis-

posal a reasonably wide, but nevertheless limited, battery of statistical tests (“bounded

rationality”) which would not allow them to reject the hypothesis that their recurrent

forecasting mistakes are attributable to random disturbances ... It is not quite clear

to me at this stage whether such a program can actually generate operational results

or is even feasible (for a first step, see Sorger (1997), Hommes and Sorger (1997)2).

Yet progress on this front, if possible, might provide an interesting alternative to our

current paradigms, which rely very heavily on extreme, and often criticized, rationality

axioms.

This essay summarizes some of my work emphasizing how it has been follow-

1An essential part of this work was already presented at JMG’s Presidential address at the World

Meetings of the Econometric Society, Barcelona, 1990.
2Grandmont cited the working paper versions 1997, published in 1998 in the Journal of Economic

Behavior & Organization and Macroeconomic Dynamics.
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ing these ideas. Section 2 starts off from the concept of a consistent expectations

equilibrium (CEE), as introduced in Hommes and Sorger (1998), which may be seen

as a formalization of Grandmont’s idea of a self-fulfilling mistake. Along a self-

fulfilling mistake agents incorrectly believe that the economy follows a stochastic

process, whereas the actual dynamics is generated by a deterministic chaotic process

which is indistinguishable from the former (stochastic) process by linear statistical

tests. The concept of CEE was motivated by the fact that piecewise linear asymmetric

tent maps generate deterministic chaotic time series with exactly the same autocor-

relations structure as a stochastic AR(1) process. Along a (chaotic) CEE agents use

a simple linear, AR(1) forecasting rule and, given this belief, the economy follows a

nonlinear chaotic asymmetric tent map dynamics with the same autocorrelation struc-

ture. Hommes and Sorger (1998) showed the existence of chaotic CEE in the cobweb

“hog cycle” model with a backward bending supply curve. They also studied the

stability of CEE under learning, introducing sample autocorrelation (SAC-)learning,

where agents learn the two parameters of the AR(1) forecasting rule by the observed

sample average and (first-order) sample autocorrelation coefficient.

Section 3 discusses an application of CEE in Hommes and Rosser (2001), in a

fishery model with backward bending supply. They simulated stochastic nonlinear

models where agents learn to believe in chaos, that is, the system converges to a

noisy chaotic system, with SAC-learning parameters converging to sample average and

sample autocorrelations. This situation qualifies as a self-fulfilling mistake: agents can

not reject the hypothesis that the economy follows and AR(1) process, while the true

law of motion of the economy follows a noisy chaotic process. Section 4 discusses more

recent work of Hommes et al (2013) on stochastic consistent expectations equilibria

(SCEE), generalizing the notion of CEE to a nonlinear stochastic framework. A

SCEE is a self-fulfilling mistake where agents learn the correct AR(1) rule, in terms

of sample average and sample autocorrelations, in a nonlinear stochastic environment.

A CEE may be viewed as an early example of a Restricted Perceptions Equilibrium

(RPE), as in Evans and Honkapohja (2001), based on the idea that agents have

misspecified beliefs, but within the context of their forecasting model they are unable

to detect their misspecification3.

3In his survey Branch (2006) argues that the RPE is a natural alternative to rational expectation
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In Section 5 we discuss recent work of Hommes and Zhu (2014), who apply the

idea of SCEE in a stochastic linear modeling framework. The idea here is that agents

use a simple (misspecified) univariate AR(1) forecasting rule in a higher dimensional

linear framework. A behavioral learning equilibrium (BLE) or, more precisely, a first-

order stochastic consistent expectations equilibrium (SCEE), arises when the sample

average and the first-order autocorrelations of the AR(1) rule coincide with observed

realizations. Hence, along a BLE the parameters of the AR(1) rule are not free, but

pinned down by two simple observable statistics, the sample average and the first-

order sample autocorrelation. Such a simple, parsimonious learning equilibrium may

be a more plausible outcome of the coordination process of individual expectations in

large complex socio-economic systems. An interesting feature of BLE is that multiple

equilibria may arise in very simple settings. Section 6 discusses laboratory experiments

on expectations, stressing the empirical relevance of coordination on almost self-

fulfilling equilibria in positive feedback systems (Heemeijer et al., 2009) and recent

experiments of Arifovic et al., 2015 in a complex overlapping generations framework

a la Grandmont (1985). The final section concludes.

2 Consistent Expectations Equilibrium

Consider an expectations feedback system of the form

pt = F (pet ), (1)

where pt is the state (or price) of the economy, pet the forecast of the price in period

t and F the actual law of motion of the economy. In general, the map F may be

complex and nonlinear. A well known example of (1) is the classical cobweb “hog

cycle” model, where F = D−1S is the composition of inverse demand and supply

curves.

Throughout this paper, we assume that agents are boundedly rational and do not

know the law of motion F of the economy. Rather agents form a belief about the

price generating process. Assume that all agents believe that prices are generated by

equilibrium (REE) because it is to some extent consistent with Muth’s original hypothesis of REE,

while allowing for bounded rationality by restricting the class of the perceived law of motion.
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a stochastic AR(1) process, that is, their perceived law of motion (PLM) is given by

pt = α + β(pt−1 − α) + δt, (2)

where α and β ∈ [−1, 1] represent the long run mean and the first-order autocorre-

lations coefficient of the PLM, and δt is an IID noise term. Given the PLM (2) and

prices known up to pt−1, the optimal forecast, that is, the prediction for pt minimizing

the mean squared prediction error, is4

pet = α + β(pt−1 − α). (3)

Given that agents use the linear forecast (3), the implied actual law of motion becomes

pt = Fα,β(pt−1) := D−1S(α + β(pt−1 − α)). (4)

The (observable) sample average of a time series (pt)
∞
t=0 is

p̄ = lim
T→∞

1

T + 1

T∑
t=0

pt (5)

and the (observable) sample autocorrelation coefficients are given by

ρj = lim
T→∞

cj,T
c0,T

, j ≥ 1, (6)

where

cj,T =
1

T + 1

T−j∑
t=0

(pt − p̄)(pt+j − p̄), j ≥ 0. (7)

A consistent expectations equilibrium (CEE) is defined as (Hommes and Sorger,

1998)5

Definition A triple {(pt)∞t=0;α, β}, where (pt)
∞
t=0 is a sequence of prices and α and β

are real numbers, β ∈ [−1, 1], is called a consistent expectations equilibrium (CEE) if

1. the sequence (pt)
∞
t=0 satisfies the implied actual law of motion (4) and is bounded,

2. the sample average p̄ in (5) exists and is equal to α, and

4More generally, for a (nonlinear) stochastic process Y the optimal forecast conditional on X

minimizing the mean squared error is the conditional expectation E(Y |X); see e.g. Hamilton (1994)

for a discussion and a proof.
5Extensions and applications of CEE include Sögner and Mitlöhner (2002), Tuinstra (2003),

Branch and McGough (2005), Lansing (2009) and Bullard et al. (2008, 2010).
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3. the sample autocorrelation coefficients ρj, j ≥ 1, in (6) exist and one of the

following is true:

a. if (pt)
∞
t=0 is a convergent sequence, then sgn(ρj) = sgn(βj), j ≥ 1;

b. if (pt)
∞
t=0 is not convergent, then ρj = βj, j ≥ 1.

A CEE is a price sequence together with AR(1) belief parameters α and β, such that

expectations are self-fulfilling in terms of the observable sample average and sample

autocorrelations. The two parameters α and β of the AR(1) forecasting rule are not

free, but pinned down by simple observable statistics. Along a CEE expectations are

thus correct in a linear statistical sense. Hommes and Sorger (1998) showed that,

given an AR(1) belief, there are (at least) three different types of CEE:

• a steady state CEE in which the price sequence (pt)
∞
t=0 converges to a steady

state p∗, with α = p∗ and β = 0;

• a 2-cycle CEE in which the price sequence (pt)
∞
t=0 converges to a period two

cycle {p∗1, p∗2}, p∗1 6= p∗2, with α = (p∗1 + p∗2)/2 and β = −1;

• a chaotic CEE in which the price sequence (pt)
∞
t=0 is chaotic, with sample average

α and autocorrelations βj.

A steady state CEE is a REE (at least in the long run) corresponding to some fixed

point where demand D and supply S intersect. A 2-cycle CEE also is a REE, where

the price jumps back and forth between two different intersection points of the demand

and supply curves. A chaotic CEE is a non-rational equilibrium, where agents believe

in a linear stochastic law of motion, while the true law of motion is nonlinear (e.g.,

a piecewise linear tent map) and chaotic. Which of these cases occurs in the cobweb

model depends on the implied actual law of motion, i.e. upon the composite mapping

D−1S in (4), determined by demand and supply curves. In general, different types of

CEE may co-exist as will be discussed below.

Sample autocorrelation learning

The notion of CEE involves an AR(1) belief with fixed parameters α and β, which have

been pinned down by two simple statistics, the sample average and the (first order)

7



sample autocorrelation. But how would agents learn these parameters? Assume

that agents use adaptive learning to update their belief parameters αt and βt, as

additional observations become available. There is a large literature on adaptive

learning in macroeconomics, see e.g. Sargent (1993) and Evans and Honkapohja

(2001) for extensive discussion and overviews. Many adaptive learning algorithms

use standard econometrics/statistical tools such as (recursive) ordinary least squares.

Hommes and Sorger (1998) proposed another natural and simple learning scheme

called sample autocorrelation learning (SAC-learning), with parameters based upon

sample average and first order sample autocorrelation coefficient6:

αt =
1

t+ 1

t∑
i=0

pi , t ≥ 1, (8)

βt =

∑t−1
i=0(pi − αt)(pi+1 − αt)∑t

i=0(pi − αt)2
, t ≥ 1. (9)

When, in each period, the belief parameters are updated according to (8) and (9) the

(temporary) law of motion (4) becomes

pt+1 = Fαt,βt(pt) = D−1S(αt + βt(pt − αt)) , t ≥ 0. (10)

One can also rewrite SAC-learning in recursive form. Define

Rt =
1

t+ 1

t∑
i=0

(pi − αt)2,

then the SAC-learning is equivalent to the following recursive dynamical system

(Hommes and Sorger, 1998).

αt = αt−1 +
1

t+ 1
(pt − αt−1),

βt = βt−1 +
1

t+ 1
R−1
t

[
(pt − αt−1)

(
pt−1 +

p0

t+ 1
− t2 + 3t+ 1

(t+ 1)2
αt−1 −

1

(t+ 1)2
pt
)

− t

t+ 1
βt−1(pt − αt−1)2

]
,

Rt = Rt−1 +
1

t+ 1

[ t

t+ 1
(pt − αt−1)2 −Rt−1

]
.

(11)

6Although not identical, SAC-learning is closely related to the ordinary least squares (OLS-

)learning scheme; see the discussion in Hommes and Sorger (1998). A convenient feature of the SAC

estimate βt in (9) is that it always lies in the interval [−1, 1], reflecting the fact that the firs order

autocorrelation coefficient is not explosive, while the OLS-estimate may be outside this interval.
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An important feature of CEE and SAC-learning is that both have a simple, intu-

itive behavioral interpretation. In a CEE agents use a linear forecasting rule with two

parameters, the mean α and the first-order autocorrelation β. Both can be observed

from past observations by inferring the average price level and the (first-order) per-

sistence of the time series. For example, β = 0.5 means that, on average, prices mean

revert toward their long-run mean by 50 percent. The linear univariate AR(1) rule

and the SAC-learning process are examples of simple forecasting heuristics that can

be used without any knowledge of statistical techniques, simply by observing a time

series and roughly ”guestimating” its sample average and its first-order persistence7.

Which type of CEE exist in the nonlinear cobweb model and to which of them

will the SAC-learning dynamics converge? Hommes and Sorger (1998) show that in

the simplest case, when demand is decreasing and supply is increasing, the only CEE

is the REE steady state price p∗. This means that, even when the underlying market

equilibrium equations are not known, agents will be able to learn and coordinate on

the REE price if they learn the correct sample average and sample autocorrelations.

Hence, in a nonlinear cobweb economy with monotonic demand and supply, bound-

edly rational agents should, at least in theory, be able to learn the unique REE from

time series observations8.

Hommes and Sorger (1998) study CEE in a cobweb model with linear demand

and a non-monotonic, piecewise linear backward bending supply curve. They present

examples of 2-cycle and chaotic CEE, where, given an AR(1) perceived law of motion,

the implied actual law of motion is a chaotic piecewise linear tentmap. Different types

of CEE, steady state, 2-cycle and chaotic, may co-exist and the SAC-learning dynam-

ics exhibits path-dependence, with the long run CEE depending upon initial states.

In the long run however, the SAC-learning always settles down to one of the CEE,

where agents have learned the correct sample average and sample autocorrelation.

7In learning-to-forecast laboratory experiments for many subjects forecasting behavior is well

described by simple rules, such as a simple AR(1) rule; see Section 6.
8For the cobweb model, Bray and Savin (1986) show that OLS learning also converges to the

REE steady state. In the laboratory experiments of Hommes et al. (2007) however, prices do not

always converge to the REE steady state but exhibit excess volatility when the cobweb model is

strongly unstable.

9



3 Learning to believe in (noisy) chaos

Hommes and Rosser (2001) consider another example of a cobweb model with a

backward bending supply curve having its origin in a fishery model. This example

serves to illustrate how agents may “learn to believe in chaos” in a stylized nonlinear,

stochastic environment. That is, in an unknown nonlinear environment agents learn

the parameters of a simple, linear AR(1) forecasting rule, while the law of motion of

the economy is nonlinear and chaotic. In the long run, the sample mean and first order

autocorrelation coefficient of the AR(1) rule converge to the observed sample means

and first order autocorrelation of the unknown nonlinear chaotic process. Under

SAC-learning, the two parameters of the AR(1) rule thus converge, while the implied

actual law of motion of the economy converges to a chaotic map. Moreover, agents

can not reject the null hypothesis of a stochastic AR(1) process through statistical

hypothesis testing and therefore in a linear statistical sense beliefs and realizations

coincide9.

SAC-learning of a chaotic CEE may be seen as an example of an approximate ratio-

nal expectations equilibrium (Sargent, 1998) or a Restricted Perceptions Equilibrium

(RPE) (Evans and Honkapohja, 2001, Branch, 2006). Agents have misspecified be-

liefs, but within the context of their forecasting model they are unable to detect their

misspecification, and they learn the optimal misspecified forecasts. We also would

like to stress the behavioural rationality interpretation of CEE and SAC-learning, be-

cause the simple AR(1) rule is intuitively plausible and SAC-learning may be seen as

a learning heuristic through guestimating the sample average and first order sample

autocorrelation.

9The notion learning to believe in chaos has been introduced in Hommes (1998, p.360), and the

first examples have been given by Sorger (1998) and Hommes and Sorger (1998). For related work on

the instability of OLS learning, see e.g. Bullard (1994) and Grandmont (1998). Schönhofer (1999)

has used the notion of learning to believe in chaos in a somewhat different context, namely when the

entire OLS-learning process fluctuates chaotically. In Schönhofers’ examples belief parameters of the

OLS-learning scheme do not converge, but keep fluctuating chaotically and at the same time, due to

inflation, prices diverge to infinity, so that agents are in fact running an OLS-regression on a non-

stationary time series. Tuinstra and Wagener (2007) consider the same model with heterogeneous

expectations, with agents switching between different OLS-estimation methods.
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We generalize the law of motion to a nonlinear stochastic system. SAC-learning

is given by (8), (9), as before, but we add a noise term to the implied actual law of

motion, i.e.

pt+1 = Fαt,βt(pt) + εt = D−1S(αt + βt(pt − αt)) + εt, t ≥ 0, (12)

where εt is an independently identically distributed (IID) random process.

Figure 1 illustrates an example of learning to believe in noisy chaos. Under SAC-

learning the belief parameters αt → α∗ ≈ 5400 and βt → β∗ ≈ −0.87 converge to

constants, while the underlying law of motion Fα∗,β∗ converges to a chaotic map.

Prices then keep fluctuating chaotically with noise. Recall that our boundedly ratio-

nal agents have no knowledge about underlying market equilibrium equations, and

therefore do not know the implied actual law of motion. They only observe time

series and update their forecasting parameters based upon simple statistics, the sam-

ple average and the first order sample autocorrelation coefficient. Would agents in

the long run be satisfied with their linear forecasting rules and stick to their AR(1)

belief?

Figure 1e shows that the forecasting errors under SAC-learning are uncorrelated.

Agents therefore do not make systematic mistakes, or at least there is no linear

structure in their forecasting errors. As a next step, one could do statistical hypothesis

testing of the linear forecasting rule. Would boundedly rational agents be able to

reject their stochastic AR(1) belief or perceived law of motion by linear statistical

hypothesis testing? Hommes and Rosser (2001) show that in this example the null

hypothesis that prices follow a stochastic AR(1) process can not be rejected at the

10% level. Agents thus learn to believe in noisy chaos.

These equilibria are persistent with respect to dynamic noise. In fact, the pres-

ence of noise may increase the probability of convergence to such learning equilibria.

Agents are using a simple, but misspecified model to forecast an unknown, possibly

complicated actual law of motion. Without noise, boundedly rational agents using

time series analysis might be able to detect the misspecification and improve their

forecast model. In the presence of dynamic noise however, misspecification becomes

harder to detect and boundedly rational agents using linear statistical techniques can

do no better than stick to their optimal, simple linear model of the world. This
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Figure 1: Learning to believe in noisy chaos. In the presence of noise, SAC learning con-

verges to a (noisy) chaotic CEE, with chaotic prices fluctuations (top left) and at the same

time convergence of the belief parameters αt → α∗ ≈ 5400 (mid left) and βt → β∗ ≈ −0.87

(mid right). Forecasting errors (top right) are (noisy) chaotic and seemingly unpredictable.

The ACF of forecasting errors (bottom plot)) shows that errors are uncorrelated.
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clearly satisfies Grandmont’s earlier quote of a self-fulfilling mistake (Grandmont,

1998, pp.776-777):

“One might envision situations in which agents do believe (wrongly) that the world is

relatively simple (e.g. linear) but subject to random shocks, and in which the corre-

sponding (deterministic) “learning equilibria” are complex enough to make the agents’

forecasting mistakes “self-fulfilling” in a well defined sense. For instance, the agents

might be assumed to have at their disposal a reasonably wide, but nevertheless limited,

battery of statistical tests (“bounded rationality”) which would not allow them to re-

ject the hypothesis that their recurrent forecasting mistakes are attributable to random

disturbances ...”

4 Stochastic Consistent Expectations Equilibrium

(SCEE)

Hommes et al. (2013) have generalized the notion of consistent expectations equilib-

rium to a stochastic setting. Let the law of motion of an economic system be given

by the stochastic system

xt = f(xet+1, ut), (13)

where xt is the state of the system at date t, xet+1 is the expected value of x at date t+1,

{ut} is an IID noise process with mean zero and f is a continuous (nonlinear) function.

Note that the timing is different and (13) has the form of a temporary equilibrium map,

with the state xt depending on the expected future state xet+1. As before, agents are

boundedly rational and do not know the exact form of the (nonlinear) law of motion

(13), but rather agents’ perceived law of motion is a stochastic AR(1) process. Given

this perceived law of motion, the 2-period ahead forecast xet+1 that minimizes the

mean-squared forecasting error is

xet+1 = α + β2(xt−1 − α). (14)

Here we use the convention of the learning literature that xt in (13) is not yet ob-

servable when the forecast xet+1 is made. Combining the forecast (14) and the law of

13



motion of the economy (13), we obtain the implied actual law of motion (ALM)

xt = f(α + β2(xt−1 − α), ut). (15)

Hommes et al. (2013) define a first-order stochastic consistent expectations equilibrium

(SCEE) as follows.

Definition 4.1 A triple (µ, α, β), where µ is a probability measure and α and β are

real numbers with β ∈ (−1, 1), is called a first-order stochastic consistent expectations

equilibrium (SCEE) if the following three conditions are satisfied:

S1 The probability measure µ is a nondegenerate invariant measure for the stochas-

tic difference equation (15);

S2 The stationary stochastic process defined by (15) with the invariant measure µ

has unconditional mean α, that is, Eµ(x) =
∫
x dµ(x) = α;

S3 The stationary stochastic process defined by (15) with the invariant measure µ

has unconditional first-order autocorrelation coefficient β.

A first-order SCEE is thus characterized by two consistency requirements: the uncon-

ditional mean and the unconditional first-order autocorrelation coefficient generated

by the actual (unknown) stochastic process (15) coincide with the corresponding

statistics of the perceived linear AR(1) process. Along a SCEE the two parame-

ters α and β of the AR(1) forecasting rule are thus not free, but pinned down by

two simple observable statistics. This means that along a first-order SCEE agents

correctly perceive the mean and the first-order autocorrelation (i.e., the persistence)

of the stochastic state of the economy, without fully understanding its (nonlinear)

structure.

Under SAC-learning the actual law of motion becomes

xt = f(αt−1 + β2
t−1(xt−1 − αt−1), ut), (16)

with time-varying parameters αt, βt as before in (8-9).

Hommes et al. (2013) study SAC-learning of SCEE in the highly nonlinear, chaotic

overlapping generations model of Grandmont (1985) of the form

pt = g(pet+1) + εt, (17)
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where g is a non-monotonic map with infinitely many periodic and chaotic equilibria.

An interesting finding is that SAC-learning always converges to a simple equilibrium,

either a steady state or a 2-cycle, as illustrated in Figure 4. In such a complex OLG-

economy, SAC-learning of an AR(1) rule thus leads to learning-to-believe- in a steady

state or learning-to-believe in a two-cycle.

The nonlinear framework for SCEE is very general. A drawback of the nonlinear

framework however is that computation of first-order autocorrelations is typically

not analytical tractable. The next section presents a simpler linear framework for

SCEE, where agents use a simple, but misspecified univariate AR(1) rule in a higher

dimensional linear framework.

5 Behavioral Learning Equilibria

Hommes and Zhu (2014) apply the first order SCEE to a linear framework, in which

the univariate AR(1) forecasting rule is misspecified. The simplest class of models

arises when the actual law of motion of the economy is a one-dimensional linear

stochastic process xt, driven by an exogenous AR(1) process yt. More precisely, the

actual law of motion of the economy is given by

xt = f(xet+1, yt, ut) = b0 + b1x
e
t+1 + b2yt + ut, (18)

yt = a+ ρyt−1 + εt, (19)

with parameters b0 > 0, b1 in the interval (−1, 1)10, b2 > 0, a > 0 and 0 < ρ < 1; ut

are IID shocks.

The rational expectations equilibrium x∗t of (18-19) is a linear function of the

driving variable yt, and is given by

x∗t =
b0

1− b1

+
ab1b2

(1− b1ρ)(1− b1)
+

b2

1− b1ρ
yt + ut. (20)

Its unconditional mean and first-order autocorrelation are given by (Hommes and

10This assumption is made to ensure stationarity; for |b1| > 1 the dynamics under learning easily

becomes explosive.
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Figure 2: Convergence of SAC-learning in the OLG-model of Grandmont (1985). The

model has infinitely many periodic and chaotic equilibria, but SAC-learning always

selects a simple equilibrium outcome, either a steady state (top panels) or a 2-cycle

(bottom panels). The plots show the price (P), expected price (EXPP), forecast error

and the time-varying parameters αt and βt.
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Zhu, 2014):

x∗ := E(x∗t ) =
b0(1− ρ) + ab2

(1− b1)(1− ρ)
, (21)

Corr(x∗t , x
∗
t−1) =

ρb2
2

b2
2 + (1− b1ρ)2(1− ρ2)σ

2
u

σ2
ε

. (22)

Note that in the special case σu = 0, the above expression reduces to Corr(x∗t , x
∗
t−1) =

ρ, that is, when there is no exogenous noise ut in (18), the persistence of the REE

coincides exactly with the persistence of the exogenous driving force yt.

Hommes and Zhu (2014) show that for the linear system (18-19) at least one

nonzero first-order SCEE (α∗, β∗) exists, with α∗ = x∗ and 0 < β < 1. They call

this equilibrium a behavioral learning equilibrium (BLE), since it provides a simple,

parsimonious forecasting rule, with the parameters pinned down by the simple statis-

tics sample average and sample autocorrelation, on which a population of agents in

large socio-economic systems may coordinate. Two important applications of this

general framework are an asset pricing model driven by AR(1) dividends and a New

Keynesian Phillips Curve (NKPC) where inflation is driven by an AR(1) process for

marginal costs.

5.1 Asset pricing model

Consider an asset pricing model with a risky asset that pays stochastic dividends yt

following an AR(1) process. The equilibrium price of the risky asset pt is given by

pt =
1

R

[
pet+1 + a+ ρyt

]
, (23)

where R > 1 is the gross risk free rate of return. Compared to the general framework

(18), we have b0 = a
R

, b1 = 1
R

, b2 = ρ
R

and σu = 0.

Using (20), the rational expectations equilibrium p∗t becomes

p∗t =
aR

(R− 1)(R− ρ)
+

ρ

R− ρ
yt. (24)

In particular, if {yt} is IID, i.e., a = ȳ and ρ = 0, then p∗t ≡ a
R−1

= ȳ
R−1

is constant.

The corresponding mean, variance and first-order autocorrelation coefficient of the
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rational expectation price p∗t are given by, respectively,

p∗ := E(p∗t ) =
a

(R− 1)(1− ρ)
=

ȳ

R− 1
, (25)

V ar(p∗t ) = E(p∗t − p∗)2 =
ρ2σ2

ε

(R− ρ)2(1− ρ2)
(26)

Corr(p∗t , p
∗
t−1) = ρ. (27)

Under the assumption that agents are boundedly rational and believe that the

price pt follows a univariate AR(1) process, the implied actual law of motion for

prices is 
pt =

1

R

[
α + β2(pt−1 − α) + a+ ρyt

]
,

yt = a+ ρyt−1 + εt.

(28)

A straightforward computation shows that the corresponding first-order autocorrela-

tion coefficient F (β) of the ALM (28) is given by

F (β) =
β2 +Rρ

ρβ2 +R
. (29)

Hommes and Zhu (2014) show that in the asset pricing model (28), the BLE (α∗, β∗) is

unique, α∗ = ȳ
R−1

= p∗ and β∗ > ρ. This means that along the BLE the forecast is on

average unbiased and prices exhibit persistence amplification, that is, the persistence

β∗ is larger than the persistence ρ under RE. Furthermore, the BLE is stable under

SAC-learning.

Figure 3a illustrates the existence of a unique BLE (α∗, β∗) = (1, 0.997). The time

series of fundamental prices and market prices along the BLE (α∗, β∗) = (1, 0.997)

are shown in Figure 3b, illustrating that the BLE exhibits excess volatility compared

to the RE solution. Furthermore, along the BLE the first-order autocorrelation coef-

ficient β∗ of market prices is larger than that of the fundamental prices ρ, implying

that the market price exhibit persistence amplification. The autocorrelation functions

of the market prices and the fundamental prices are shown in Figure 3c. Persistence

amplification leads to much slower decay of the ACF, and the autocorrelation coeffi-

cients of prices along a BLE are substantially higher than those of the RE fundamental

price.

Figure 4 illustrates how the persistence amplification and excess volatility depend

on the autocorrelation coefficient ρ of dividends, which is also the autocorrelation
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Figure 3: (a) BLE β∗(= 0.997) is the intersection point of the first-order autocorre-

lation coefficient F (β) = β2+Rρ
ρβ2+R

(bold curve) with the perceived first-order autocorre-

lation β (dotted line); (b) RE fundamental prices (dotted curve) and market prices

(bold curve) along the BLE; (c) Autocorrelation Functions (ACF) of RE fundamen-

tal prices (lower dots) and market prices (higher stars) along the BLE. Parameters:

R = 1.05, ρ = 0.9, a = 0.005, εt ∼ IID U(−0.01, 0.01) (i.e. uniform distribution on

[−0.01, 0.01]).

coefficient of the fundamental price. The first-order autocorrelation β∗ of market

prices is significantly higher than that of fundamental prices, especially for ρ > 0.4

(Figure 4a). For ρ ≥ 0.5 we have β∗ > 0.9, implying that asset prices are close to

a random walk and therefore quite unpredictable. Based on empirical findings, e.g.

Timmermann (1996) and Branch and Evans (2010), the autoregressive coefficient of

dividends ρ is about 0.9, where the corresponding β∗ ≈ 0.997, very close to a random

walk. In the case ρ > 0.4, the corresponding unconditional variance of market prices

is larger than that of fundamental prices. As illustrated in Figure 4b, the ratio of

the variance of market prices and the variance of fundamental prices is greater than

1 for 0.4 < ρ < 1, with a peak around 3.5 for ρ = 0.7. For ρ = 0.9,
σ2
p

σ2
p∗
≈ 2.5, that

is, excess volatility by a factor of more than two for empirically relevant parameter

values.

Figure 5 illustrates that the unique BLE (α∗, β∗) is stable under SAC-learning.

Figure 5a shows that the sample mean of the market prices under SAC-learning,

αt, tends to the mean α∗ = 1, while Figure 5b shows that the first-order sample

autocorrelation coefficient of the market prices under SAC-learning, βt, tends to the
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Figure 4: (a) first-order BLE β∗ with respect to ρ; (b) ratio of unconditional variances

of market prices and fundamental prices with respect to ρ, where R = 1.05.
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Figure 5: (a) Time series αt → α∗(1.0); (b) time series βt → β∗(0.997); (c) time

series of market prices under SAC-learning and fundamental prices.
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first-order autocorrelation coefficient β∗ = 0.997. Figure 5c shows the asset price

under SAC-learning, using the same sample path of noise, as the time series of the

BLE in Figure 3c. Since the times series are almost the same, SAC-learning converges

to the BLE rather quickly.

In summary, the BLE and SAC-learning offer an explanation of high persistence,

excess volatility and bubbles and crashes in asset prices within a stationary time series

framework.

5.2 A New Keynesian Philips curve

A second application of BLE and SAC-learning uses the New Keynesian macro model

(Woodford, 2003). In the New Keynesian Philips curve (NKPC) with inflation driven

by an exogenous AR(1) process yt for the firm’s real marginal cost or the output gap,

inflation and the real marginal cost (output gap) evolve according to πt = δπet+1 + γyt + ut,

yt = a+ ρyt−1 + εt,
(30)

where πt is the inflation at time t, πet+1 is the subjective expected inflation at date

t+1, yt is the output gap or real marginal cost, δ ∈ [0, 1) is the representative agent’s

subjective time discount factor, γ > 0 is related to the degree of price stickiness in

the economy and ρ ∈ [0, 1) describes the persistence of the AR(1) driving process. ut

and εt are IID stochastic disturbances with zero mean and finite absolute moments

with variances σ2
u and σ2

ε , respectively. The most important difference with the asset

pricing model is that (30) includes two stochastic disturbances, namely the shock εt

of the AR(1) driving variable and an additional noise term ut in the New Keynesian

Philips curve. We refer to ut as a supply shock (or markup shock), and to εt as

a demand shock, that is uncorrelated with the supply shock. We will see that this

extra shock allows for the possibility of multiple equilibria. Compared with our general

framework (18), the corresponding parameters are b0 = 0, b1 = δ and b2 = γ.

Under the assumption that agents are boundedly rational and believe that inflation
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πt follows a univariate AR(1) process, the implied actual law of motion becomes11 πt = δ[α + β2(πt−1 − α)] + γyt + ut,

yt = a+ ρyt−1 + εt.
(31)

The corresponding first-order autocorrelation coefficient F (β) of the implied ALM

(31) is computed as

F (β) = δβ2 +
γ2ρ(1− δ2β4)

γ2(δβ2ρ+ 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

. (32)

Hommes and Zhu (2014) show that for 0 < ρ < 1 and 0 ≤ δ < 1, there exists

at least one nonzero BLE (α∗, β∗) for the New Keynesian Philips curve (31) with

α∗ = γa
(1−δ)(1−ρ)

= π∗. Moreover, a BLE is stable under SAC-learning if F ′(β∗) < 1.

For the New Keyensian Philips curve (31), multiple BLE may coexist. In the

simulations below, we fix the parameters δ = 0.99, γ = 0.075, a = 0.0004, ρ = 0.9,

σε = 0.01 [εt ∼ N(0, σ2
ε)], and σu = 0.003162 [ut ∼ N(0, σ2

u)], so that σ2
u

σ2
ε

= 0.1. Figure

6a illustrates an example where F (β) has three fixed points β∗1 ≈ 0.3066, β∗2 ≈ 0.7417

and β∗3 ≈ 0.9961. Hence, we have coexistence of three first-order BLE (α∗, β∗j ),

j = 1, 2, 3. Figures 6b and 6c illustrate the time series of inflation along the coexisting

BLE. Inflation has low persistence along the BLE (α∗, β∗1), but very high persistence

along the BLE (α∗, β∗3). The time series of inflation along the high persistence BLE in

Figure 6c has in fact similar persistence characteristics and amplitude of fluctuation as

in empirical inflation data, e.g., in Tallman (2003). Furthermore, Figure 6c illustrates

that inflation in the high persistence BLE has much stronger persistence than REE

inflation, where the first-order autocorrelation coefficient of REE inflation is 0.865,

significantly less than β∗3 = 0.9961.

If multiple BLE coexist, the convergence under SAC-learning depends on the

initial state of the system, as illustrated in Figure 7. Since 0 < F ′(β∗j ) < 1, for

j = 1 and j = 3, while F ′(β∗2) > 1, (see Figure 6a), the first-order BLE (α∗, β∗1) and

(α∗, β∗3) are (locally) stable under SAC-learning, while (α∗, β∗2) is unstable. For initial

state (π0, y0) = (0.028, 0.01) (Figures 7a and 7b), the SAC-learning dynamics (αt, βt)

11As in the asset pricing model, we assume that boundedly rational agents do not recognize or do

not believe that inflation is driven by output or marginal costs, but simply forecast inflation by an

univariate AR(1) rule.
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Figure 6: (a) The first-order autocorrelation β∗ of the BLE correspond to the

three intersection points of F (β) in (32) (bold curve) with the perceived first-

order autocorrelation β (dotted line); (b) time series of inflation in low-persistence

BLE (α∗, β∗1) = (0.03, 0.3066); (c) times series of inflation in high-persistence BLE

(α∗, β∗3) = (0.03, 0.9961) (bold curve) and time series of REE inflation (dotted curve).
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Figure 7: Time series of αt and βt under SAC-learning for different initial values.

(a-b) For (π0, y0) = (0.028, 0.01) SAC-learning converges to the low persistence BLE

(α∗, β∗1) = (0.03, 0.3066); (c-d) For (π0, y0) = (0.1, 0.15) SAC-learning converges to

the high persistence BLE (α∗, β∗1) = (0.03, 0.9961).
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converges to the stable low-persistence BLE (α∗, β∗1) = (0.03, 0.3066). Figure 7b also

illustrates that the convergence of the first-order autocorrelation coefficient βt to the

low-persistence first-order autocorrelation coefficient β∗1 = 0.3066 is very slow. For a

different initial state, (π0, y0) = (0.1, 0.15), our numerical simulation shows that the

sample mean αt still tends to α∗ = 0.03, but only slowly (see Figure 7c), while βt

tends to the high persistence BLE β∗3 ≈ 0.996112 (see Figure 7d).

Numerous simulations (not shown) show that for initial values π0 of inflation

higher than the mean α∗ = 0.03, the SAC-learning βt generally enters the high-

persistence region. In particular, a large shock to inflation may easily cause a jump

of the SAC-learning process into the high-persistence region.13 In the following we

further indicate how high and low persistence BLE depend on different parameters.

Multiple equilibria and parameter dependence

Figure 8 illustrates how the number of BLE depends on the parameter γ. For suffi-

ciently small γ(< 0.05), there exists only one, low persistence BLE β∗ (Figure 8a).

Moreover, since

∂F

∂γ
=

2ρ(1− δ2β4)(1− ρ2)(1− δβ2ρ)σ
2
u

σ2
ε

γ3
[
(δβ2ρ+ 1) + (1− ρ2)(1− δβ2ρ) 1

γ2
σ2
u

σ2
ε

]2 > 0,

the graph of F (β) in (32) shifts upward as γ increases. At some critical γ-value, a

tangent bifurcation occurs. Immediately thereafter, there exist three BLE, β∗1 , β∗2

and β∗3 (see Figure 8b). The low persistence BLE β∗1 and the high persistence BLE

β∗3 are stable under SAC-learning, since 0 < F ′(β∗j ) < 1, j = 1 and j = 3, separated

by an unstable BLE β∗2 , with F ′(β∗2) > 1. As γ further increases, another tangent

bifurcation occurs and the low persistence BLE disappears. A unique high persistence

BLE then remains, which is stable under SAC-learning (Figure 8c).

The dependence of the number of BLE and their persistence upon the parameter

γ are quite intuitive. Recall that γ in (30) measures the relative strength of the

12As shown in Figure 6a, F ′(β∗3) is close to 1 and, hence, the convergence of SAC-learning is slow.
13Hommes and Zhu (2014) also simulate the NKPC under SAC-learning with a constant gain pa-

rameter (see the online Supplementary Material) and, similar to Branch and Evans (2010), obtained

irregular regime switching between phases of very low persistence and phases of high persistence

with near unit root behavior.
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Figure 8: The figure illustrates how the (co-)existence of low and high persistence

BLE β∗ depends upon the parameter γ, measuring the relative strength of inflation

upon the driving variable, the output gap. (a) γ = 0.01; (b) γ = 0.075; (c) γ = 0.1.

Other parameters: σ2
u

σ2
ε

= 0.1, ρ = 0.9 and δ = 0.99.

driving variable, the output gap or marginal costs, to inflation. When the driving

force is relatively weak, a unique, stable low persistence BLE prevails, with much

weaker autocorrelation than in the driving variable. At the other extreme, when the

driving force is sufficiently strong, a unique, stable high persistence BLE prevails,

with significantly stronger autocorrelation and higher persistence than in the driving

variable. In the intermediate case, multiple BLE coexist and the system exhibits path

dependence, where, depending on initial conditions, inflation converges to a low or a

high persistence BLE.

In a similar way, the dependence of the BLE upon the noise ratio σ2
u

σ2
ε

can be

analyzed. F (β) in (32) can be rewritten as

F (β) = δβ2 +
ρ(1− δ2β4)

(δβ2ρ+ 1) + (1− ρ2)(1− δβ2ρ) · σ2
u

σ2
ε

1
γ2

.

Consequently, the effect of the noise ratio σ2
u

σ2
ε

is inversely related to the effect of γ.

Hence, when the ratio σ2
u

σ2
ε

is high, that is, when the markup shocks to inflation are

high compared to the noise of the driving variable, a unique, stable low persistence

BLE prevails. If on the other hand, the markup shocks to inflation are low compared

to the noise of the driving variable, a unique, stable high persistence BLE prevails.

Furthermore, Figure 9 illustrates how the BLE β∗, together with the first-order

autocorrelation coefficient of REE inflation, depends upon the parameter ρ, measuring
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stable BLE β∗ with respect to ρ (bold curves), unstable BLE β∗ (dotted curve), where

γ = 0.075, σu = 0.003162, σε = 0.01, δ = 0.99.

the persistence in the driving variable. For intermediate values of ρ(∈ [0.84, 0.918]),

two stable BLE β∗ coexist separated by an unstable BLE. In the high persistence

BLE, β∗ is larger than the first-order autocorrelation coefficient of REE inflation,

while in the low persistence BLE β∗ is smaller than the first-order autocorrelation

coefficient of REE inflation. For small values of ρ, ρ < 0.84, a unique, stable low

persistence BLE prevails, while for large values of ρ, ρ > 0.918, a unique, stable high

persistence BLE prevails.

Simulations show that, for plausible values of ρ around 0.9, for a large range of

initial values of inflation, the SAC-learning converges to the stable, high persistence

BLE β∗ with very strong persistence in inflation (see e.g. Figure 7d). This result is

consistent with the empirical finding in Adam (2007) that the Restricted Receptions

Equilibrium (RPE) describes subjects’ inflation expectations surprisingly well and

provides a better explanation for the observed persistence of inflation than REE.

In summary, the dependence of the number of equilibria and whether the persis-

tence is high or low are quite intuitive. This intuition essentially follows from the

signs of the partial derivatives of the first-order autocorrelation coefficient F (β) in

(32) of the implied ALM (31) satisfying:

∂F

∂γ
> 0

∂F

∂(σ
2
u

σ2
ε
)
< 0

∂F

∂ρ
> 0

∂F

∂δ
> 0. (33)
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Hence, as in Figure 8, the graph of F (β) shifts upwards when γ increases, σ
2
u

σ2
ε

decreases,

ρ increases or δ increases, and consequently, the equilibria shift from low persistence

to high persistence equilibria. When the nonlinearity is strong and F is S-shaped,

e.g., as in Figure 6 for empirically relevant parameter values in the NKPC, both the

persistence and the number of equilibria shift, and a transition from a unique stable

low persistence BLE, through coexisting stable low and high persistence equilibria, to

a unique stable high persistence equilibrium occurs. Such a transition from a unique

low persistence BLE, through coexisting low and high persistence BLE, toward a

unique high persistence BLE occurs when the strength of the AR(1) driving force

(the parameter γ) increases, when the ratio of the model noise compared to the noise

of the driving force (i.e. σ2
u

σ2
ε
) decreases, when the autocorrelation (i.e., the parameter

ρ) in the driving force increases, and when the strength of the expectations feedback

(i.e., the parameter δ) increases.

6 Learning-to-forecast experiments

In order to study the empirical relevance of different theories of expectations and

learning I have been involved in many so-called learning-to-forecast experiments (LtFE)

in controlled laboratory settings with human subjects. A LtFE, introduced by Ma-

rimon and Sunder (1993) and Marimon, Spear and Sunder (1993), is an experiment

where a group of subjects repeatedly forecast the price of a good, whose value is

endogenously determined by the average group forecast. A LtFE may be seen as

an empirical test of the expectations hypothesis of a dynamic economic expectations

feedback system, where all other decisions in the economy –consumption, production,

trading, etc.– are computerized, consistent with the underlying model assumptions.

A LtFE thus becomes an empirical test of the expectations hypothesis, with all other

assumptions under the control of the experimenter. See Assenza et al. (2014) for a

recent review of LtFEs and Duffy (2014) for a recent collection of state of the art

work in experimental macroeconomics.

To my best knowledge, Jean-Michel Grandmont has never conducted experiments

with human subjects himself, but his ideas and suggestions have certainly influenced

my own experiments and in particular triggered the positive/negative feedback exper-
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imental design in Heemeijer et al. (2009). In a workshop in December 2002, in honor

of Volker Böhm, I made the claim that lab experiments in positive feedback environ-

ments are more unstable than those under negative feedback, based on a comparison

between asset pricing experiments (Hommes et al., 2005) and cobweb experiments

(Hommes et al., 2007). Jean-Michel –who was in the audience– correctly pointed out

that this claim was not warranted, as these experiments differed in multiple dimen-

sions. These suggestions led to the design of a new lab experiment comparing positive

versus negative feedback systems in Heemeijer et al. (2009).

Positive expectations feedback is characteristic of speculative asset markets, where

an increase of the average price forecast of investors causes the realized market price

to rise through higher speculative demand. Negative feedback is more important

in producer driven markets of perishable consumption goods, where more optimistic

expectations about the price of the good lead to higher production and therefore to

lower realized market prices. Heemeijer et al. (2009) investigate how the expecta-

tions feedback structure affects individual forecasting behaviour and aggregate market

outcomes by considering market environments that only differ in the sign of the ex-

pectations feedback, but are equivalent along all other dimensions. The realized price

is a linear map of the average of the individual price forecasts pei,t of six subjects. The

(unknown) price generating rules in the negative and positive feedback systems were

respectively:

pt = 60− 20

21
[(

6∑
h=1

1

6
peht)− 60] + εt, negative feedback (34)

pt = 60 +
20

21
[(

6∑
h=1

1

6
peht)− 60] + εt, positive feedback (35)

where εt is a (small) exogenous random shock to the pricing rule. The positive and

negative feedback systems (34) and (35) have the same unique RE equilibrium steady

state p∗ = 60 and only differ in the sign of the expectations feedback map. Both

are linear near-unit-root maps, with slopes 20/21 ≈ −0.95 resp. +20/2114. Fig.

10 (top panels) illustrates the difference in the negative and positive expectations

feedback maps. Both have the same unique RE fixed point 60. A striking feature

14In both treatments, the absolute value of the slopes is 0.95, implying in both cases that the

feedback system is stable under naive expectations.
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Figure 10: Laboratory experiments of negative (left panels) versus positive (right panels) feedback
systems. Linear feedback maps (top panels), realized market prices (middle panels), six individual
predictions (bottom panels) and individual errors (inside bottom panels). In the negative expecta-
tions feedback market (left panels) the realized price quickly converges to the RE benchmark 60.
In all positive feedback markets (right panels) individuals coordinate on the ”wrong” price forecast
and as a result the realized market price persistently deviates from the RE benchmark 60.
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of the near-unit-root positive feedback map, is that each point is in fact an almost

self-fulfilling equilibrium. In near unit root positive feedback systems, agents only

make small mistakes and these mistakes are almost self-fulfilling. Such near unit root

behavior is typical in many macro and financial asset pricing models, where near unit

roots arise e.g. due to discount factors close to 1. Will subjects in LtFEs be able to

coordinate on the unique RE fundamental price, the only equilibrium that is perfectly

self-fulfilling?

Figure 10 (bottom panels) shows realized market prices as well as six individual

predictions in two typical groups. Aggregate price behavior is very different under

positive than under negative feedback. In the negative feedback case, the price settles

down to the RE steady state price 60 relatively quickly (within 10 periods), but in the

positive feedback treatment the market price does not converge but rather oscillates

around its fundamental value. Individual forecasting behavior is also very different:

in the case of positive feedback, coordination of individual forecasts occurs extremely

fast, within 2-3 periods. The coordination however is on a “wrong”, i.e., a non-RE-

price. Individual errors are small, but strongly coordinated, leading to large aggregate

deviations from the rational fundamental price. In contrast, in the negative feedback

case coordination of individual forecasts is slower and takes about 10 periods. More

heterogeneity of individual forecasts however ensures that, the realized price quickly

converges to the RE benchmark of 60 (within 5-6 periods), after which individual

predictions coordinate on the correct RE price.

OLG experiments

Arifovic et al. (2016) recently performed LtFEs in the overlapping generations mod-

eling framework of Grandmont (1985)15. In this highly nonlinear OLG economy,

infinitely many different periodic and chaotic perfect foresight equilibria may exist.

Grandmont (1985) also showed that each periodic or chaotic perfect foresight equi-

librium is stable under some suitable adaptive learning algorithm. The purpose of

the LtFE is to test empirically on which of these infinitely many different equilibria

a group of subjects may coordinate their individual expectations. The expectations

15See also Heemeijer et al. (2012) for related individual LtFEs in a different OLG economy.
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feedback system is of the form

pt = Gρ2(p
e
t+1), (36)

where pt is the price of the consumption good, pet+1 is the average price forecast of

young consumers, G is a non-monotonic map and ρ2 is a parameter (the degree of

relative risk aversion of the old consumers). For small values of ρ2 the dynamics of

the map is simple, and the system has a stable steady state. For increasing values

of ρ2 the steady state becomes locally unstable and the dynamics exhibits a period-

doubling bifurcation route to chaos and generates infinitely many periodic and chaotic

perfect foresight solutions.

Figure 11 shows four typical groups of the LtFE of Arifovic et al. (2016). For

ρ2 = 5, the map G5 has an unstable steady state and a stable 2-cycle. In the LtFEs

for ρ2 = 5, one group (top left panel) coordinates on a (noisy) 2-cycle, while another

group coordinates on a steady state (top right panel). For ρ2 = 12, in the chaotic

region of the map, two typical groups are shown, both coordinating on a 2-cycle, one

after a long transient and to a somewhat noisy 2-cycle (bottom left panel), and another

one converging relatively fast to an almost perfect 2-cycle (bottom right panel). In

this LtFE of the highly nonlinear OLG economy, subjects thus learn-to-believe in a

steady state or learn-to-believe in a 2-cycle in a complex chaotic environment.

Figure 12 shows that SAC-learning provides a good fit on these laboratory data,

and explains convergence to a steady state (top right panel) and to 2-cycles (top left

and both bottom panels). These results are consistent with Hommes et al. (2013) (see

Section 4), who showed that SAC-learning in Grandmont’s OLG model framework

either selects a steady state or a 2-cycle. In Figure 12a constant gain version of

the SAC-learning is used, with constant gain parameter κ = 0.2. The SAC-learning

converges rather quickly to the steady state (top right panel) and somewhat slower to

the 2-cycle (top left and both bottom panels), but matches both long run outcomes

quite nicely. SAC-learning thus explains coordination on simple– steady state and

two-cycle– equilibria in a complex environment. If agents (wrongly) believe that prices

follow a stochastic AR(1) process, this belief becomes self-fulfilling and selects simple

equilibria in the complex, nonlinear OLG-economy as the only long run outcomes.
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Figure 11: Lab experiments for the OLG-economy of Grandmont (1985). For ρ2 = 5

the map has a stable 2-cycle and the LtFEs converge either to a 2-cycle (top left) or

to a steady state (top right). For ρ2 = 12 the map is chaotic, but both groups in the

LtFEs converge to a (noisy) 2-cycle (bottom panels).

7 Concluding Remarks

I am grateful to Jean-Michel Grandmont for much of his inspiration over the years.

My work discussed here may be seen as formalizations of his ideas. In particular,

the idea of self-fulfilling mistakes (Grandmont, 1998), where agents (wrongly) be-

lieve that prices follow a (simple) stochastic process, while the true (unknown) law

of motion is a nonlinear complex system, and agents are unable to statistically reject

these beliefs, has inspired the research program on bounded rationality and learn-

ing. Coordination on almost self-fulfilling equilibria in positive feedback systems in

laboratory experiments show the empirical relevance of these ideas. Much work on

bounded rationality and learning in large socio-economic systems remains to be done,

particularly to study how policy should manage self-fulfilling mistakes.
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Figure 12: Two-step ahead simulations under SAC learning with gain coefficient

κ = 0.2. SAC-learning explains coordination on a stable steady state or a stable

2-cycle.
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