
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Instantons and the Hartle-Hawking-Maldacena Proposal for dS/CFT

de Haro, S.; Petkou, A.C.
DOI
10.1007/JHEP11(2014)126
Publication date
2014
Document Version
Final published version
Published in
The Journal of High Energy Physics
License
CC BY

Link to publication

Citation for published version (APA):
de Haro, S., & Petkou, A. C. (2014). Instantons and the Hartle-Hawking-Maldacena Proposal
for dS/CFT. The Journal of High Energy Physics, 2014(11), [126].
https://doi.org/10.1007/JHEP11(2014)126

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1007/JHEP11(2014)126
https://dare.uva.nl/personal/pure/en/publications/instantons-and-the-hartlehawkingmaldacena-proposal-for-dscft(79ab591d-679b-404f-9057-6607248cc241).html
https://doi.org/10.1007/JHEP11(2014)126


J
H
E
P
1
1
(
2
0
1
4
)
1
2
6

Published for SISSA by Springer

Received: July 15, 2014

Revised: October 5, 2014

Accepted: October 24, 2014

Published: November 24, 2014

Instantons and the Hartle-Hawking-Maldacena

proposal for dS/CFT

Sebastian de Haroa and Anastasios C. Petkoub

aInstitute for Theoretical Physics and Amsterdam University College,

University of Amsterdam Science Park 113, 1098 XG Amsterdam, The Netherlands
bInstitute of Theoretical Physics, Aristotle University of Thessaloniki,

54124 71003 Thessaloniki, Greece

E-mail: s.deharo@uva.nl, petkou@physics.auth.gr

Abstract: We test the Maldacena proposal for the Hartle-Hawking late time quantum

state in an asymptotically de Sitter universe. In particular, we calculate the on-shell action

for scalar instantons on the southern hemisphere of the four-sphere and compare the result

with the renormalized on-shell action for scalar instantons in EAdS4. The two results agree

provided the corresponding instanton moduli as well as the curvature radii are analytically

continued. The instanton solutions in de Sitter are novel and satisfy mixed boundary

conditions. We also point out that instantons on S4 calculate the regularized volume

of EAdS4, while instantons on EAdS4 calculate the volume of S4, where the boundary

condition of the instanton in one space is identified with the radius of curvature of the

other. We briefly discuss the implications of the above geometric property of instantons

for higher-spin holography.
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1 Introduction

The task of extending the holographic principle to an explicitly time-dependent, cosmolog-

ical, setting proves to be as non-trivial as it is interesting. A particularly simple approach

is Maldacena’s proposal [1] (see also [2]) for the evaluation of the Harte-Hawking (HH) late

time quantum state in an asymptotically de Sitter universe.1 The HH state is specified [7]

by a Euclidean wave function of the schematic form:

ΨHH[χ] =

∫
φ|∂M≡χ

Dφ e−S[φ] , (1.1)

where ∂M is a 3-dimensional spacelike hypersurface near the future infinity of an asymptot-

ically de Sitter space-time with radius `dS. We have collectivelly denoted the bulk fields as

φ. Then, Maldacena’s proposal entails that the HH state can be obtained if one calculates

the corresponding renormalized on-shell action on Euclidean AdS4 (EAdS4) with radius

`AdS, and performs the analytic continuation `AdS → i`dS. Since the EAdS4 on-shell action

is reasonably well defined — it gives the partition function of a Euclidean 3-dimensional

CFT — Maldacena’s proposal gives a way to make sense of and calculate the HH wave

function from AdS/CFT. When analytically continued to Lorentzian signature, (1.1) gives

the Bunch-Davies wave function in de Sitter space.

AdS/CFT works best when there is an explicit string theory realisation of the bulk

physics. At present there is no satisfactory string theory description for gravity with

a positive cosmological constant, but an alternative and more adventurous set up for a

concrete realisation of dS/CFT was proposed in [8]. This is based on Vassiliev’s higher-spin

1Important earlier attempts for dS/CFT include [3–6].
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(HS) theory2 which provides the only known consistent classical description of interacting

higher-spin gauge fields in a de Sitter background. Its suggested holographic dual is the

Euclidean Sp(N) vector model with anti-commuting scalars and it is a free CFT3 when

the higher-spin symmetry is unbroken. Since the quantum properties of free theories are

known, the HS version of dS/CFT offers some hope of understanding quantum gravity

(plus HSs) on dS4. Moreover, an analytic continuation is also at work here, as N 7→ −N ,

where N ∼ `2dS/GN, maps the Sp(N) anti-commuting vector model to usual (commuting)

O(N) vector model which is believed to be the holographic dual of HS theory on AdS4.

Notice that Newton’s constant GN is held fixed.

The Hartle-Hawking-Maldacena (‘HHM’) proposal has been tested in a number of

cases. The most explicit check in [10] involves pure gravity only: the on-shell action on

Euclidean de Sitter (the four-sphere) is shown to analytically continue to the finite part of

the volume of EAdS4, after dropping counterterms which are argued to give only imaginary

phases which do not contribute to the measure |ΨHH|2 [1, 10]. It has also been tested in

the presence of scalars and gauge fields by showing that their generating functionals for

two-point functions in EAdS4 and dS4 are related by suitable analytic continuations [2,

11, 12]. However, the HHM proposal and the relevant analytic continuation has not been

tested for cosmological theories with matter fields and generic potentials. This would

entail a discussion of exact non-trivial solutions which come with a moduli space, and

then one wonders how the latter transforms under the analytic continuation in the HHM

proposal. Also, it is important to know how boundary deformations (such as multiple trace

deformations) of the CFT dual to EAdS4 carry over to de Sitter space, and whether some

complexification of the deformation parameter is involved. Finally, one may ask whether

there exists an analytic continuation at the level of fields rather than particular solutions.

For recent important progress, see [13], where it was shown that holography correctly

reproduces both the spectra and the non-gaussianities for general inflationary space-times,

i.e. for any potential that supports inflationary FRW solutions.

In this short note we study exact solutions in a scalar theory conformally coupled

to gravity and check that the HHM proposal works, namely the HH state is given by an

analytic continuation of the holographic EAdS4 partition function. These solutions are

instantons: they are zero energy, exact solutions of the Euclidean equations of motion

with finite action. Such solutions for scalar fields exist in EAdS4 [13, 19] and, as we show

here, also in 4-dimensional de Sitter space. Further investigation of these solutions is

relegated to a companion paper [20]. We test the HHM proposal for these solutions and

find exact agreement, provided the EAdS4 radius as well as the moduli of the solution and

their boundary conditions are analytically continued. We also note there exists a simple

geometric description of our results. In particular, the renormalized on-shell action of scalar

instantons on EAdS4 evaluates the volume of the four-sphere, while the corresponding on-

shell action of instantons on S4 evaluates the regularized volume of EAdS4. In both cases,

the instanton moduli serve as regulators of the corresponding volume forms. The above

geometric description allows us to interpret the on-shell action of scalar instantons as the

2For a recent review of HS theories see [9].
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free-energy of a theory on S3 and this in turn may have implications for the holography of

HS theories.

2 Instanton solutions in Euclidean AdS4 and dS4

2.1 The HH state and holographic partition functions

A central object for the holographic principle is the properly renormalized bulk on-shell

action. This can be evaluated as a functional of the boundary conditions for a suitably

regular solution of the bulk equations of motion. In this case, depending on the choice

of boundary conditions it yields either a generating functional for quantum correlation

functions or an effective action for a putative CFT living on the boundary.

However, given a particular solution of the bulk equations of motion, namely one

where the bulk fields assume fixed boundary values, the renormalized bulk on-shell action

evaluates the free energy of the boundary theory and therefore the partition function as:

Z = e−F ≡ e−Son-shell . (2.1)

For example, the renormalized Einstein-Hilbert action using the Poincaré patch of EAdS4

gives zero, while the corresponding quantity evaluated using a global parametrization of

the bulk metric with conformal boundary metric S3 yields the non-zero free energy of a

CFT on S3.

In the presence of bulk matter fields, things are less clear as exact solutions of the corre-

sponding nonlinear equations of motion are uncommon. Notable exceptions are instantons

in EAdS4 [13, 19]. In particular, as we we review in appendix A, for conformally coupled

scalars in EAdS4 with boundary behaviour φ(z, ~x) → z φ(0)(~x) + z2 φ(1)(~x), where φ(0)(~x)

takes a fixed form, the bulk on-shell action Son-shell[φ(0)] = − ln Z̃0 gives the logarithm of the

partition function Z̃0 of the dual boundary CFT, namely the CFT having in its spectrum

the operator O1 of dimension ∆ = 1 and 〈O1〉 ∼ φ(0). Moreover, having this result one

can calculate by a Legendre transform the partition function of the usual boundary CFT,

namely the one having an operator O2 of dimension ∆ = 2 and 〈O2〉 ∼ φ(1). In [19] the

partition function Z̃0 was interpreted as giving the probability for the nucleation of the

instanton vacuum in the boundary theory.

Regarding now the HH state for an asymptotically dS4 universe, a simple example

arises in the absence of matter fields when it is given by the on-shell value of the EH

action with a positive cosmological constant. After the analytic continuation of dS4 to the

4-sphere, the result is finite and proportional to the volume of S4. It is then easily seen [10]

that this is analytically continued to the finite part of the holographic partition function

on S3. As in the EAdS4 case, non-trivial results for the HH state in the presence of bulk

matter are uncommon. In this note we will improve on this situation by providing results

for dS4 instantons which, as we will see, are intimately related to the usual EAdS4 ones.

Our main aim is therefore to evaluate both the HH state and the holographic partition

functions of systems involving gravity and matter fields and to test whether they are still

related by analytic continuation. In doing so, we will obtain some interesting new results.

– 3 –
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2.2 Action and solutions

In the context of AdS/CFT there are few examples where particular exact solutions of

the bulk equations of motion of gravity coupled to scalars are known. Exact solutions are

needed in order to calculate the exact partition function of the CFT. A non-trivial example

was studied in [13, 19]. In this paper we write down similar solutions for de Sitter space

and use them to test the HHM proposal.

The Euclidean bulk action we will consider contains the Einstein-Hilbert term, a con-

formally coupled scalar with a φ4 potential, and the Gibbons-Hawking term modified by a

coupling to the conformal scalar. It should be noted from the outset that for Λ < 0 and

the special value of the quadratic coupling λ = λcr = 2κ2/`2AdS, this action is a consistent

truncation of N = 8 sugra to the diagonal of the Cartan subgroup U(1)4 of the SO(8)

gauge group [19, 21]. We will encounter this special value of λ later on.

As usual, we regulate the theory introducing a large distance cutoff ε which we send

to zero at the end of the calculation [22]:3

S =
1

2κ2

∫
Mε

d4x
√
g (−R+ 2Λ) +

∫
Mε

d4x
√
g

(
1

2
(∂µφ)2 +

R

12
φ2 +

λ

4!
φ4

)
− 1

2κ2

∫
∂Mε

d3x
√
γ 2K

(
1− κ2

6
φ2

)
, (2.2)

where κ2 = 8πGN and the cosmological constant can be either positive or negative. The

difference between a positive and a negative cosmological constant Λ = ∓ 3
`2

is in the

location and orientation of the regulated conformal boundary ∂Mε and in the counterterms:

SEAdS
ct =

1

κ2

∫
∂Mε

d3x
√
γ

(
4

`
+ `R[γ]

)
. (2.3)

For the Euclidean dS case, no counterterms are needed because the wave function (1.1)

only includes contributions from configurations that are asymptotically regular.

The instanton solutions are constructed using the Weyl invariance of the matter part

of the action, hence it is useful to use global coordinates that are conformal to I × ∂M ,

where I is a (finite or infinite) interval. In the cases at hand ∂M = S3. In EAdS4 we will

use conformal cylinder coordinates:

ds2
EAdS =

1

sinh2 τ
`

(
dτ2 + `2AdS dΩ2

3

)
, τ ∈ (0,∞) . (2.4)

For the purposes of the HHM proposal we will work with half4 Euclidean de Sitter, i.e. the

southern hemisphere of S4:

ds2
S4
−

=
1

cosh2 r
`dS

(
dr2 + `2dS dΩ2

3

)
, r ∈ (−∞, 0] . (2.5)

Lorentzian de Sitter is obtained by Wick rotating back r → −i`dS τ .

3See also [23].
4Since our scalar instantons do not back-react, the calculation of the HH wave functional involves gluing

the Euclidean half S4 in the past to Lorentzian dS4 in the future. Since we are interested in the norm of the

HH wave functional, considering half S4 suffices as the configuration along the imaginary (i.e. Lorentzian)

path just gives a purely imaginary contribution to the on-shell action.
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The relevant solutions of the scalar sector [20] are obtained by solving the Klein-Gordon

equation:

�φ− 2Λ

3
φ− λ

6
φ3 = 0 (2.6)

together with the requirement that the stress-energy tensor vanishes. The latter require-

ment turns out to give [24]: (
∇µ∇ν −

1

4
gµν�

)
φ−1 = 0 . (2.7)

The solutions on EAdS4 and S4 are then given by:

φε,bIEAdS4
(τ,Ω3) =

ε sinh τ
`

b0 cosh τ
` + b5 sinh τ

` + biΩi

φε,aI
S4 (r,Ω3) =

ε cosh r
`

a0 sinh r
` + a5 cosh r

` + aiΩi
, (2.8)

where i = 1, . . . , 4 and Ωi is a unit vector normal to the three sphere. ε can take the values

ε = ±1. The requirement that these are solutions to the equation of motion (2.6) renders

the moduli space non-trivial,

on EAdS4 : − b20 + b25 + b2i =
λAdS

12
`2AdS , i = (1, . . . , 4) (2.9)

on S4 : a2
0 − a2

5 + a2
i =

λS4

12
`2dS . (2.10)

From (2.9) and (2.10) we see that the moduli spaces of instantons on EAdS4 and dS4

are themselves EAdS4 or dS4 depending on the sign and values of the quartic couplings

λAdS and λdS; more specifically, the curvatures depend on the particular combinations
λAdS

12 `2AdS − b25 and
λS4
12 `2dS − a2

0. In the next subsection we will see the reason for this: b5
and a0 are not moduli of the solution; they parametrize boundary conditions instead. From

the boundary point of view, b5 is the marginal coupling of a triple-trace deformation of

the CFT. Therefore the moduli space of the solutions is EAdS4 if λAdS
12 `2AdS < b25, which is

the condition required for regularity of the bulk solution. At the critical value λAdS
12 = b25

the effective potential of the dual field theory becomes unbounded from below, which was

interpreted as an instability of the dual theory against marginal deformations, decaying

via quantum tunneling [19].

2.3 Boundary conditions

Not all of the parameters aI , bI (I = 0, . . . , 5) are moduli as we now show. Two of them

are boundary conditions relating the leading and subleading modes of the scalar:

φS4
−

(−ε `,Ω) =
ε

a5 + aiΩi
+

ε ε a0

(a5 + aiΩi)2
+O(ε2) = Φa5,ai

(0) + εΦa5,ai
(1) +O(ε2) (2.11)

φEAdS(ε `,Ω) =
ε ε

b0 + biΩi
− ε2 ε b5

(b0 + biΩi)2
+O(ε3) = εΦb0,bi

(0) + ε2 Φb0,bi
(1) +O(ε3) .

– 5 –
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The leading and subleading terms in the expansion of the field are related by:

Φa,ai
(0) (Ω) ≡ ε

a+ aiΩi

Φa,ai
(1) (Ω) = ± ε α

(
Φa,ai

(0) (Ω)
)2

, EAdS/S4
− , (2.12)

where α = b5 for EAdS4 and α = a0 for S4
−. Thus, b5, a0 parametrize marginal triple

trace deformations that change the boundary conditions from Dirichlet to mixed [19] (see

also [24]).

2.4 On-shell action and the HH wave function

We stress that, given the action (2.2), the solutions (2.8) are exact: they have zero stress-

energy tensor hence the EAdS/dS background stays unmodified. Thus we can compute

the on-shell effective action including its finite part.5 For simplicity we set the spherical

modes ai = bi = 0 and get:

Son-shell
EAdS =

4π2`2AdS

κ2
− λAdS π

2`4AdS

12

2b0 + b5
3b30(b0 + b5)2

+ π2`2AdS

b5
b30

+O(ε)

=
4π2`2AdS

κ2
+

2π2`2AdS

3b30

b20 + b0b5 + b25
b0 + b5

+O(ε), (2.13)

where in the last line we used (2.9). In the special case of a Neumann boundary condition

b5 = 0, which requires negative coupling λAdS < 0, we reproduce the result in [13],

Sb5=bi=0
on-shell, EAdS =

4π2`2AdS

κ2
− 8π2

λAdS

. (2.14)

Notice that this is a positive quantity. The case λAdS > 0 was described in [19] where it

was found that the instanton solution signals an instability of EAdS against deformations

by mixed boundary conditions that can be described via a Coleman-de Luccia scenario.

The decay rate calculation was presented in [19, 25].

The result of the corresponding calculation (1.1) for the de Sitter case is:

− log ΨHH = Son-shell

S4
−

= −
4π2`2S4

κ2
−
λdS π

2`4S4

12

2a5 − a0

3a3
5(a5 − a0)2

− π2`2S4

a0

a3
5

= −
4π2`2S4

κ2
+

2π2`2S4

3a3
5

a2
5 − a5a0 + a2

0

a5 − a0
, (2.15)

and again we used the condition for the moduli space (2.10). If we take a0 = 0, we get

a2
5 = −λS4

12 `2dS which can only be the if case λS4 < 0. In that case, the on-shell value of the

action is:

Son-shell

S4
−

= −
4π2`2S4

κ2
− 8π2

λS4

, (2.16)

5As mentioned before, the EAdS4 solutions can be embedded in M-theory. We are not considering 1/N

corrections here, but to the given order in the bulk coupling we can trust the result for the finite part of

the on-shell action including its λ-dependence, and this is only possible because the solution is exact.

– 6 –
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which after analytic continuation `S4 7→ −i`AdS, λS4 7→ λAdS agrees with (2.14), as it should.

Notice that this is negative for λS4 < −2κ2/`2S4 and vanishes for λS4 = −2κ2/`2S4 , which

coincides with the critical value arising in the consistent truncation of N = 8 sugra, after

the analytic continuation of the dS4 radius.

Comparing (2.13) and (2.15) we see that the first, pure gravity, term matches under

the analytic continuation `AdS → i `dS. This is Maldacena’s result in [10]. The result is

non-trivial in part because the EAdS4 needs to be regularized and renormalized, whereas

the S4
− calculation of the HH wave function is completely finite. In order to match the

matter contributions, however, in the second term we need to analytically continue the

couplings as well. This analytic continuation from EAdS4 to S4
− is an invertible map γ:

γ(`AdS) = i `dS

γ(b0) = i a5

γ(b5) = −i a0

γ(bi) = iai . (2.17)

It follows that the coupling constant does not change, i.e. γ(λAdS) = λdS. Notice that the

fact that the moduli have to be analytically continued is a consequence of the prescrip-

tion to analytically continue the EAdS4 radius of curvature. Then the two expressions

exactly match.

In contrast to [10, 12], we did not need to write absolute value bars around the HH

wave function (2.15) because this is the full semi-classical result (1.1) which is real in the

Euclidean. This result can be directly compared after analytic continuation, as we have

seen, to the Euclidean AdS/CFT partition function because the latter is finite — we took

into account the correct counterterms, thereby rendering a result that can be precisely

matched without the need to take the real part.

The complexification of the moduli can be understood from the fact that they are

dimensionful quantities, to be measured in units of the radius. Defining dimensionless

moduli yI = aI/`dS, zI = bI/`AdS, I = 0, . . . , 5, we find the the moduli spaces can be

represented as:

−z2
0 + z2

5 + z2
i =

λAdS

12
(i = 1, . . . , 4)

y2
0 − y2

5 + y2
i =

λdS

12
. (2.18)

These are all real quantities on both sides. The moduli space is O(1,5) invariant:

ηIJyI yJ =
λdS

12
, I, J = 0, . . . , 5 , (2.19)

with ηIJ the O(1,5) Minkowski metric. The analytic continuation is then simply an SO(1,5)

map of the moduli space onto itself:

zI = εI
JyJ ; ε = δ

(
0 1
−1 0

14×4

)
, δ = ±1. (2.20)

– 7 –
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We note here that in order to enforce the boundary conditions (2.12) from the bulk

equations of motion, one needs to add a further term to the action:

Sbdy def = −b5`
2
AdS

3

∫
dΩ3 Φ3

(0)(Ω) = −2π2`2AdSb5
3b30

. (2.21)

This of course agrees, after the analytic continuation (2.17), with the term one gets in

the dS4 case, −2π2`2dS a0
3a35

. In the presence of these terms, the on-shell actions are obtained

simply by adding (2.21) and the corresponding dS4 result to (2.13)-(2.15).

3 Geometric interpretation

The 3-sphere partition function ZS3 for a three-dimensional CFT measures its number of

degrees of freedom. Moreover, it has been argued that for unitary CFTs the corresponding

free energy is given (in suitably chosen units) by

F = − log |ZS3 | , (3.1)

which is positive and satisfies an F -theorem, namely it decreases along RG flows from the

UV to the IR [26, 27]. Holographically, the partition function is usually calculated using

the bulk gravitational action on EAdS4 with all other matter fields set to zero. The result

is the first term in (2.14) and it is proportional to the dimensionless ratio `2AdS/κ
2. One

may then wonder what the physical interpretation is of the second term in (2.14), which

corresponds to the contribution of the bulk scalar fields. Notice that for λAdS < 0 this term

is also positive. A similar question may be asked for the result (2.16), namely whether this

can also be interpreted as a partition function of a CFT3 on a 3-sphere. Since (2.16) is not

always positive, such a CFT3 need not be unitary.

To this end, we will point out that the instanton contributions in (2.14) and (2.16)

also arise from bulk gravitational actions, and hence can be interpreted as F -functions on

the 3-sphere. This follows [28] from the well-known representation of the conformal factor

of a metric as a scalar field with quartic self interaction. Indeed, consider the conformally

related metrics

gµν = Ω−2 hµν (3.2)

One can then show6 that

−Ih :=
1

2κ2

∫
M1

d4x
√
h (R[h]− 2Λh) +

1

2κ2

∫
∂M1

d3x
√
γh 2K[h] (3.3)

=

∫
M2

d4x
√
g

(
1

2
(∂µφ)2 +

R[g]

12
φ2 +

λ

4!
φ4

)
+

1

6

∫
∂M2

d3x
√
γg K[g]φ2 =: I(g,φ)

6To obtain the r.h.s. of (3.3) we used the fact that the trace of the extrinsic curvature for the conformally

related metrics (3.2) are related as

K[h] =
1

Ω
K[g] +

3

Ω2
nµ∂µΩ ,

with nµ the outward normal to the boundary in the metric gµν .

– 8 –
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where γh and γg are the induced metrics of hµν and gµν on the boundary ∂M1, ∂M2 and

we have defined

φ :=

√
6

κ2
Ω , λ := −2κ2

3
Λh . (3.4)

The critical value for λ mentioned in the previous section arises when we relate the

scalar action to a gravitational action. The second line in (3.3) coincides with the matter

part of the action (2.2), and from the above it equals minus a gravitational action including

the GH term. other words,

The crucial observation now is that the instanton solutions φinst on either S4
− and

EAdS4, with the moduli set to specific values, correspond exactly to the conformal factor

relating the two metrics. Hence, the on-shell action of instantons on EAdS4 corresponds

to the volume of (half) S4 and conversely, the on-shell action of instantons on the half

S4 corresponds to the volume of EAdS4, where the instanton deformation parameter b

(which corresponds to a0 in the previous section) regulates the volume of EAdS4. It is also

crucial to point out that in evaluating the on-shell values of the gravitational actions, the

boundary GH term does not contribute to the finite part. This is true for AdS4, but it is

also true for S4, since in this case the extrinsic curvature vanishes.

Let us see how this arises. On the half S4 with curvature radius ` and metric

ds2 =
4(

1 + ρ2

`2

)2

(
dρ2 + ρ2dΩ2

3

)
, (3.5)

the instanton solutions are given by

φinst(ρ) = ±

√
12

λS4

1

b

1 + ρ2

`2

1− ρ2

b2

(3.6)

where λS4 > 0. It is important to note the presence of the instanton modulus b which is in

principle unrelated to `. In particular, since the range of the radial coordinate is ρ ∈ [0, `),

if we consider b > ` the solution is everywhere regular.

Next we notice that half S4 and EAdS4 are conformally related metrics. In particular

ds2 =
4(

1 + ρ2

`2

)2

(
dρ2 + ρ2dΩ2

3

)
=

(
1− ρ2

b2

1 + ρ2

`2

)2
4(

1− ρ2

b2

)2

(
dρ2 + ρ2dΩ2

3

)
, (3.7)

where on the right EAdS4 has a generally different radius b which is set equal to the

instanton modulus. Hence, the calculation of the on-shell action for instantons on half S4

— including an appropriate boundary term as in (3.3) — boils down to the calculation of

the regularized volume of EAdS4. Notice that it is the presence of the instanton modulus

b > ` that gives rise to a particular regularization of the volume of the EAdS4 space with

radius `.

Explicitly, we obtain

Ion-shell

(g,φ)

(
S4
−
)

=
Λh
κ2

∫
d4x
√
h =

8π2b2

κ2

α4(α2 − 3)

(1− α2)3
=

16π2

λS4

α4(α2 − 3)

(1− α2)3
, α =

`

b
< 1 . (3.8)
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This diverges as α → 1, which we shall interpret presently. The finite part of (3.8) for

α→ 1 coincides with minus the first term in (2.14), as it should.

Next we consider the instanton solutions on EAdS4 with radius `. These have the form

φinst(ρ) = ±
√

12

−λAdS

1

b

1− ρ2

`2

1 + ρ2

b2

. (3.9)

with λAdS < 0 and b the modulus which we take here again to be b > `. The on-shell action

would give part of the volume of S4 with radius b. We find

Ion-shell
h (EAdS4) =

8π2b2

κ2

α4(α2 + 3)

(α2 + 1)3
= −16π2

λAdS

α4(α2 + 3)

(α2 + 1)3
, (3.10)

where here λAdS < 0. For α = 1 this is just minus the first term in (2.16), as it should.

The association of the on-shell instanton actions with minus the EH action in (3.3)

points towards a remarkable correspondence. Firstly, it is not hard to see that (3.8)

and (3.10) are mapped to each other by the transformation b 7→ i b. This is natural, if

we recall that b is the radius of both the S4 and EAdS4 of the associated EH actions.

Next, we should remember that the AdS4 result (2.14) gives (minus the logarithm) of the

partition function of a three dimensional CFT on S3 as a sum to two terms. The first

term is the usual holographic F -function that is proportional to dimensionless ratio `2/κ2.

What we have shown here is that the second term too has a geometric origin, since it also

comes from a gravitational action which is nevertheless in principle unrelated to the AdS4

action. Namely, if we identify the coupling λ ∼ κ′2/b2, the second term is the on-shell value

of a gravitational action with Newton’s constant κ′ and positive cosmological constant, in

other words it gives the volume of an S3 with radius b. Moreover, the ratio of the two

radii, α = `/b, which also has a geometric origin, can be viewed as a natural deformation

parameter, running from b = ∞ (α = 0) to b = 0 (α = ∞). It is worth noting then that

such a deformation is monotonic and according to the conjectured F -theorem takes the

boundary CFT towards the UV. The case of dS4 is exactly the reverse; here it is the scalar

instanton part that has a natural holographic interpretation as a partition function of a

CFT on S3, while the gravitational part is geometric. Here too, the parameter α deforms

monotonically the (non unitary) boundary theory.

We notice here that the instanton (3.6) is of the type (2.8) under the following

identification:

b2 = `2dS
a0 − a5

a0 + a5
, (3.11)

as is easy to verify doing the coordinate transformation. We see that the analytic contin-

uation b 7→ ib indeed corresponds to `dS 7→ −i `AdS.

The limit α → 1 of the above action, in which the instanton deformation parameter

approaches the curvature radius, corresponds to the limit a2
5 → 0+ and a2

0 →
λS4
12 `

2
dS

+

which is the critical value at which the moduli space shrinks to zero curvature radius. In

this limit, the instanton part of the action (2.15) diverges as 1/a3
5, which is precisely the
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divergence of the EAdS4 volume.7 Thus, the instanton is computing the EAdS4 volume,

and the boundary deformation parameter a0 regulates this volume. The critical value of the

deformation parameter a2
0 =

λS4
12 `

2
dS, for which we get the correct divergence, corresponds,

via the analytic continuation (2.17), to the critical value at which the dual boundary theory

becomes unstable.

4 Discussion and conclusions

In this note we have tested the HHM proposal in the case of scalar instantons. We have

calculated the on-shell action for instantons on half-S4, which yields the late-time HH state,

and compared it with the on-shell action for instantons on EAdS4. The results match under

the HHM prescription of analytically continuing the curvature radii. Additionally, we have

found that it is also necessary to analytically continue the boundary condition, which

corresponds to a marginal triple trace deformation. This provides new evidence that the

HHM proposal works for exact, but non-trivial configurations.

Our goal was to check the HHM proposal but along the way we got a number of results

which we believe are relevant for the HS proposals in de Sitter space, in particular for the

Sp(N) vector model that has been conjectured to be dual to it. On the EAdS side, the

instanton modulus b5 corresponds to the coefficient of a marginal triple trace deformation

(2.21) for an operator of dimension 1. Under the analytic continuation to dS space this is

again a triple trace deformation, and the free energy has been computed. The free energy

as a function of the boundary deformation parameter presents zeroes which usually signal

an instability of the theory. The presence of instabilities seems to be connected to the fact

that our free energy result (2.16) may be negative, hence it corresponds to a non-unitary

CFT3. Similar behaviour has been found in [12]. It would also be interesting to work out

the relationship of this result with holographic stochastic quantisation [28, 29].

We also found an interesting geometric realization of the same computation, in which

the S4 instantons (for particular values of the moduli) are seen to compute the regularized

volume of EAdS4, and the EAdS4 instantons are seen to compute the volume of the four-

sphere. The regulator of the EAdS4 volume is a0, with the divergence appearing precisely

for the critical value a2
0 =

λS4
12 `2dS. This might imply that a sector of the Sp(N) model with

this marginal deformation is dual to a pure gravitational theory with no scalars, and hence

signal a duality between Sp(N) models with different values of the deformation parameter.

This is reminiscent of similar scenarios as e.g. the dualities in [30, 31].

As stressed in [13, 32], instantons of the type found here seem to have special holo-

graphic properties because they parametrize different Weyl vacua of the theory. The exact

bulk action can be calculated and compared to the boundary effective potential [19, 24]. It

was pointed out in [13] that the boundary values of bulk instantons are also solutions of the

equations of motion of a three-dimensional conformally coupled scalar field theory on the

boundary, which was conjectured to be the effective action for an operator of dimension 1.

7This divergence can be removed by adding boundary terms in a way similar to what was done in section

2, however our aim here is to exhibit the form of this divergence and how it relates to the on-shell value of

the instanton.
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In [19, 24] it was found that this action in fact agrees with the effective action near the

critical point, which can be calculated by different methods. Given the robust structure of

the instanton solutions it is unlikely that this is a mere coincidence. Near the critical point,

as we have seen, the instantons in fact just calculate the volume. We point out here that

a similar boundary effective action description applies to the de Sitter instantons as well.

Finally, we wish to point out that our instanton solutions are intimately related to the

SO(4) and SO(3, 1) invariant solutions of 4-dimensional HS theory found in [33]. The latter

are solutions with all HS gauge fields switched off, except of the metric and the conformally

coupled scalar, and they are also related [19] to a consistent truncation of N = 8 gauge

supergravity down to a single scalar of the SO(8) group. In that sense, our results should

also provide the partition functions of both the above theories, at the scalar instanton

vacua. We leave a more detailed analysis of this intriguing point of view for future work.
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A Explicit bulk solutions and holography

The near boundary behaviour of a conformally coupled scalar field φ(z, ~x) on a fixed EAdS4

background is as

φ(z, ~x)→ z φ(0)(~x) + z2φ(1)(~x) + · · · (A.1)

One can then calculate the renormalized bulk on-shell action Ion-shell[φ(0)] as a functional

of the boundary conditions φ(0). This is interpreted as (minus) the generating functional

for connected correlation functions of the boundary operator O as:

Ion-shell[φ(0)] = −W [φ(0)] ,
δW [φ(0)]

δφ(0)
= 〈O〉φ(0) . (A.2)

Defining then the Legendre transform Γ[A] as

W [φ(0)] = Γ[A] +

∫
A φ(0) , (A.3)

we have
δΓ[A]

δA
= −φ(0) , A = 〈O〉φ(0) , (A.4)
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which shows that Γ[A] is the effective action of the boundary theory. Knowledge of Γ[A]

allows us to study non-trivial vacua of the boundary theory, which are then given by the

set of equations

δΓ[A]

δA

∣∣∣∣∣
A=A∗

= 0 ,
δW [φ(0)]

δφ(0)

∣∣∣∣∣
φ(0)=0

= 〈O∗〉 ≡ A∗ 6= 0 . (A.5)

Now, suppose that we impose mixed boundary conditions by adding a boundary term

of the form f(φ(0)) to the bulk action. We then obtain for the variation of the on-shell

bulk action:

δIon-shell[φ(0)] =

∫
δφ(0) (φ(1) − f ′(φ(0))) . (A.6)

This means that we are rendering the bulk on-shell action stationary for solutions of the

bulk equations of motion satisfying

φ(1) = f ′(φ(0)) . (A.7)

This in turn implies that

δW [φ(0)]

δφ(0)

∣∣∣∣∣
f ′[φ(0)]=φ(1)

= 0 . (A.8)

Therefore, we could have interpreted W [φ(0)] as an effective action of a dual boundary

theory that has a non-trivial vacuum structure. In fact, we can write [19]

W [φ(0)] ≡ Γ̃[−φ(0)] , W̃ [−σ] = Γ̃[−φ(0)] +

∫
φ(0) σ (A.9)

such that
δW̃ [−σ]

δσ

∣∣∣∣∣
σ=0

= −〈Õ∗〉 6= 0 (A.10)

yields the non-trivial vacuum expectation value for the operator Õ in the dual bound-

ary theory.

The partition function is given by

Z[J ] =

∫
Dϕ e−S[ϕ]+

∫
JO = eW [J ] = eΓ[A]+

∫
JA (A.11)

If the theory possesses non-trivial vacua (A.5), then setting the external source J = 0

we obtain

Z[J = 0] ≡ Z0 = eΓ[A∗] = e−S[ϕ∗]+··· (A.12)

Hence, the leading part of the effective action gives the partition function.

From the AdS/CFT point of view, given an exact particular solution of the bulk

equations of motion, namely a solution with a given form φ(0) ≡ φ̄(0) in (A.1), then we

would be able to evaluate W [φ̄(0)]. According to (A.9) this would give us the partition

function Z̃0 of the dual boundary theory as

W [φ̄(0)] = Γ̃[−φ̄(0)] = ln Z̃0 (A.13)

– 13 –
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On the other hand, given W [φ̄(0)] we are able using (A.3) to obtain the value of the effective

action of the boundary theory at its non-trivial vacuum A∗, as

Γ[A∗] = W [φ̄(0)]−
∫
A∗φ̄(0) = lnZ0 (A.14)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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