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Structure in the Value Function of Two-Player
Zero-Sum Games of Incomplete Information

Auke J. Wiggers' and Frans A. Oliehoek’ and Diederik M. Roijers?

Abstract.
competitive decision making. However, under general foofretate
uncertainty as considered in the Partially Observable tistic

Zero-sum stochastic games provide a rich model forcan be interpreted as the belief of a special type of Pari@tiserv-

able Markov Decision Process (POMDP) to which the collathcea
Decentralized POMDP can be reduced [3)10, 14]. This enabt#d

Game (POSG), such decision making problems are still nat verling these problems using solution methods for POMDPs jhepit

well understood. This paper makes a contribution to thertheb
zero-sum POSGs by characterizing structure in their valaetfon.
In particular, we introduce a new formulation of the valuadu
tion for zs-POSGs as a function of the ‘plan-time sufficietatis-
tics’ (roughly speaking the information distribution inetiPOSG),
which has the potential to enable generalization over softma-
tion distributions. We further delineate this general@atcapability
by proving a structural result on the shape of value functibaex-
hibits concavity and convexity with respect to approptiathosen
marginals of the statistic space. This result is a key preesifor de-
veloping solution methods that may be able to exploit sualcsire.
Finally, we show how these results allow us to reduce a zs&OS
to a ‘centralized’ model with shared observations, thereagsfer-
ring results for the latter, narrower class, to games witlividual
(private) observations.

1 Introduction

Modeling decision making for strictly competitive settingith in-
complete information is a field with many promising applioas for
Al. Examples include games such as poker [24] and secutityge
[8]. In strictly competitive sequential games in which thesieon-
ment can be influenced through actions, the problem of bebaar-
tionally can be modeled aszaro-sum Partially Observable Stochas-
tic Game (zs-POSG)

Reasoning about zs-POSGs poses a challenge for strategitsag
they need to reason about their own uncertainty regardmgttte of
the environment as well as uncertainty regarding the oppasgent.
As this opponent is trying to minimize the reward that they rmwax-
imizing, behaving strategically typically requires stastic strate-
gies. A factor that further complicates the reasoning i$ #ugents
not only influence their immediate rewards, but alsofthare state
of the environmersindboth agents’ future observations

In this paper, we prove the existence of structural propeuf zs-
POSGs, that may be exploited to make reasoning about thedelsno
more tractable. We take inspiration from recent work folatwbra-
tive settings which has shown that it is possible to sumreahe past
joint policy using so called plan-time sufficient statist[@d5], which
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increases in scalability [3].

This paper provides a theoretical basis for enabling simaitk
vancements for zs-POSGs. In particular, we extend resaitBéc-
POMDPs to the zs-POSG setting by presenting three coritsiigit

1. Two novel formulations of the value functions in POSGsg on
based on past joint policies, and one based on distributibims
formation in the game callgglan-time sufficient statistics

. A proof that the latter formulation allows for a generatinn over

the statistics: on every stage, the value function exhdatsavity

and convexity in differensubspacesf statistic space.

A reduction of the zs-POSG to Mon-Observable Stochastic

Game which in turn allows us to shows that certain properties

previously proven for narrower classes of games generalittee

more general zs-POSG considered here.

3.

This is the first work that gives insight in how the value fuootof a
zs-POSG generalizes over the space of sufficient statistlesrgue
that this result may open up the route for new solution method

2 Background

In this section we provide the necessary background to expla
contributions. We defer a treatment of related work to $edd,
where we can more concisely point out the differences to amrkw
This paper focuses on zero-sum games of incomplete infawmat
where the number of states, actions, observations and ttmhare
finite. We examine games where the hidden state is statiqgames
with dynamic state (i.e., it changes over time). We assperéect
recall, i.e., agents recall their own past actions and obsenstamd
assume that all elements of the gameammmon knowledgamong
the agentd [19, Chapter 5].

2.1 Zero-Sum One-Shot Games

We start by describing one-shot (static) games.

Definition 1. A normal form game (NFG) is a tuple N
(I, A R):

e [ ={1,2} isthe set of 2 agents,

e A= A; x A isthe set of joint actions = (a1, a2), also called
(joint) strategies,

e R ={R1, R2} is the set of reward (or ‘payoff’) functions for the
agentsiR; : A — R is the reward function for agent i,
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In the case of @ero-sumNFG (zs-NFG), we have thak, (a)
—Ra(a),Va. In a zs-NFG, we will define the following quantities
(and the associated strategies):

Definition 2. The maxmin value (for agent 1) of a 2 player zero-
sum game is defined d3,4zmin (N) = maxq, minag, Ri(a1,az2).

Definition 3. The minmax value (for agent 1) of a 2 player zero-
sum game is defined &3,inmaz (N) = ming, maxa, Ri(a1,az2).

The min-max theorem states thst\/ Vinazmin (N
Vininmaz(N) [2]. In case of equality, we say that (N
Vinazmin(N) = Vininmas (N) is thevalue of the game.

A Nash Equilibrium(NE) is a joint strategy from which no agent
has an incentive to unilaterally deviate. In zs-NFGs, if &b éXists,
then it coincides with the value of the game. That is, theevalfia
game is the value attained when both agents follow the glyagec-
ified by the NE. Moreover any NEs, also called saddle pointkim
context, correspond to maxmin-strategies for the playEsiPropo-
sition 22.2]. We will refer to such strategiesrasional strategies.

The value is not guaranteed to exist in all zs-NFGs. If théoact
sets are convex and compactyifz, the mappingi1 — Ri(a1,a2)
is a concave function, and a1, az — Ri(a1,a2) is a convex
function, then the value exists and the zs-NFG has a Nash equ
librium (i.e., a saddle point) [1, p. 134], [19, PropositiaQ.3]. In
games where actions are discrete, an NE (and correspondling) v
may not exist. However, when mixed strategies are allowesl, w
can convert to a continuous action NF@; M1 x M., R’), where
wi € M; specifies a probability distribution over actions, and vehe
Ré(ul,ug) = Zal ul(al) Za2 ug(ag)Ri(al, (12). Furthermore, it
can now be shown that the utility functioR’(u1, p2) in terms of
mixed strategies is concave jn for eachu., and convex inu, for

<

r

eachyq, such that the aforementioned assumptions needed for th

existence of a saddle-point hold (i.e., an NE exists [2, P23

2.2 Zero-Sum Bayesian Games

Here we considezero-sum Bayesian Gaméss-BGs), in which
agents simultaneously select an action based on an indivizht
servation (often referred to as thgipe).

Definition 4. A zs-BGis defined as atuplB = (1,0, A, R, o):

I = {1, 2} is the set of 2 agents,

O = ©; x O3 is the finite set of joint type8 = (61, 62),
A = A1 x A is the finite set of joint actions = (a1, a2),
R:© x A — Risthe reward function for agent 1,

o € A(O) is the probability distribution over joint types.

In this paper we treat finite zs-BGs, where the sets of actiols
types are finite. A pure strategy, to which we refer gsuge deci-
sion rule is a mapping from types to actions.stochastic decision
rule 6; € A7 is a mapping from types to probability distributions
over the set of actions, denotedf@ga;|;), A? is the space of such
mappings. Given a joint decision rude= (41, §2), the value is:

Qec(B,8) £ "0 (6) Y 5(alf)R(0, a). (1)
% a
wheres(ald) £ 51 (a1|61)d2(az]62). The case of pure decision rules
is covered by treating them as degenerate stochasticgmlici
There are two ways to reduce a zs-BG to a zs-NFG. First, we ca
simply reinterpretQsc(B, §) as a payoff functionR(d1, d2), such

that the BG corresponds to an NFG with continuous actionAéts
for each player. The conditions for the existence of the value for

such a game can be shown to hold, so if we suppose(#iabs)
is an NE, then the value of the game can be defined as the maxmin
(=minmax) value:

Vea(B) = Qo (B, (67,83)) =
max min_ Qgc(B, (01,d2)) = min  max Qsc(B, (d1,d2)). (2)
51EAT €A S2€AS 51€AT

Alternatively, one can reinterpret the BG as an NFG with énit
action sets corresponding to the pure decision rules. Tkis leads
to a similar R’ (u1, p2) formulation where the mixed strategips
now are distributions over pure decision rules. Again thisfulation
will satisfy the required assumptions on concavity/coltyexsuch
that this reinterpretation leads to the same logical caiciuthat the
value of the finite zs-BG exists (these dual perspectivepassible
due to the one-one correspondence between stochastiodatites
and mixed strategies).

These reductions imply that solution methods for zs-NFGg.,(e
via linear programmingd [25]) can be used to solve zs-BGs. ¢él@n
such an approach does not scale well — a more efficient solutio

E‘nethod is to convert the zs-BG sequence forrig)].

2.3 Zero-sum POSGs

A zero-sum Partially Observable Stochastic Game (zs-PO$@)
model for multi-agent decision making under uncertaintyzémo-
sum sequential games where the state changes over timehand t
agents simultaneously choose actions at every stage.

Definition 5. A finite zs-POSG is defined as a tupleP?
fh,1,5,4,0,T,0,R,1°):

h is the horizon,

I = {1,2} is the set oR agents,

S is the finite set of states

A = A, x A is the finite set of joint actions = (a1, a2),

O = O x O is the finite set of joint observations= (o1, 02),
T is the transition function Ps{!|s?, a"),

O is the observation function Ri(™*|s***, a®),

R:S x Ax S — Risthe reward function for agent 1,

b° € A(S) is the probability distribution over states.

In the zs-POSG, we aim to find maxmin-strategies and cor-
responding value. Let gure policy for agent: be a map-
ping from individual action-observation histories (AOH8) =
(a2,0f,...,at™" of) to actions. Let astochastic policyfor agent
1 be a mapping from individual AOHSs to a probability distritmurt
over actions, denoted as(a!|6"). An individual policy defines ac-
tion selection of one agent on every stage of the game, arsdéne
tially a sequence of individual decision rules= (57 ... 5"~ "). We
define thepast individual policyas a tuple of decision ruleg: =
(62,... ,55‘1), and define the tuple containing decision rules from
staget to h as thepartial individual policyr! = (5¢,..., 0" "),

As in zs-BGs, it is theoretically possible to convert a zsSBXo
a zs-NFG and solve using standard methods, but this is ibfedas
practice. An alternative is to converting the zs-POSG toxaersive
form game (EFG) and solve it in sequence fofm [9]. While this i
more efficient than the NFG route, it is still intractablee ttesulting
&FG is huge since its size depends on the number of full fgstor
(trajectories of joint actions, joint observations, arates) [18].



With the goal of opening paths to completely new approaciies orectly from known results. Here we provide a novel resulf: ex-

tackling zs-POSGs, this paper focuses on the descriptitreoflue
function of zs-POSGs, which (in contrast to thalueof a game as
defined above) is a function mapping from some notion of éstaft
a game to the expected value (for agent 1). Similar to howv&lee’
is defined by rational strategies, we will use the term ‘vdiluretion’
for a function that captures the future expected rewardsuadatio-
nal joint policy. However, since one can also reason abavéiue
of non-rational policies, we will refer to the ‘rational ved function’
if there is a need to clarify.

3 Structure in One-Shot Value

In order to provide a value function definition for the sedisrset-
ting (in Sectiori#), we will rely on an intermediate result éme-shot
games developed in this section. In particular, we intredhe con-

hibits a similar concave/convex shaipeterms of type distributions
This is important, as it provides insight on how tistribution of in-
formation(in addition to the distribution of actions) affects theual
of the game, which is key to enabling generalization of thHee/én
different parts of sequential games. To provide this foatiah, we
decompose into amarginaltermo,,,,; and aconditionaltermo. ;,
here shown foi = 1:

Um,l(Gl)é Z o (6162), (6162)

02€02 om1(61)°

The termso,,,2 ando.,2 are defined similarly. We refer to the
simplexA(©;) containing marginals, ; as themarginal-spaceof
agenti. We writeo* = o, ;0. ,; for short.

We will first show that the best-response value functionséefin

0c,1(02061) 2 (8)

cept of a Family of zero-sum Bayesian Games, for which we will 8 and [7) are linear in their respective marginal-spadsing this

introduce the joint type distribution as a suitable notibfstate’ and
prove that its value function exhibits certain concavevesrproper-
ties with respect to this notion.

3.1 Families of Bayesian Games

Here we consider the notion offamily of (zs)-BGs. Intuitively, dif-

ferent stages of a POSG are similar to a BG: each agent has a pri

vately observed history, which corresponds to its type. eél@x, the
probabilities of these histories might depend on how theegamas
played in earlier stages. As such, we will need to reasontdbmi-

lies of BGs.

Definition 6. A Family of Bayesian Games.F = (I,0, A, R),

result, we prove thalt’z exhibits concavity iMA(©) for everyo. 1,
and convexity inA(©2) for everyo. 2. For this purpose, let us define
a vector that contains the reward for agent 1 for each indalitype
01, giveno. 1 and given that agent 2 follows decision rdle

— A
Pie1,621 (01) £ max {Zac,l(egwl) > da(az|02)R(6, a)] -9)
62 ag
The vectorr,_, s,) is defined analogously.
Now we can state an important lemma that shows that the best-
response value functions are linear functions in the matgipace.

Lemma 1. (1) VERYis linear in A(©,) for all o1 andd,, and (2)
VERZjs linear in A(©2) for all o2 andd;:

is the set of Bayesian Games of the fotl©, A, R, o) for which 1. V2 (0m,10¢,1,62) = Fm,1 - Flo, 1 625 (10)
1,0, A andR are identical. 2. VE¥om20c2,61) = Gz - Toe.2.01]" (1)
Let F be a Family ozero-sunBayesian Games. By providing a joint Proof. The proof is listed in AppendixJA. O

type distribution, 7 (o) indicates a particular zs-BG. We generalize

(@ and[2) as follows: This lemma can now be used to show that the rational value func

tion V= possess concave and convex structure with respect to fappro
priately chosen marginals of) the space of joint type distions.

Qr(0,9) = QRec(F(0),9), (3) .. ) ] .
V(o) 2 Vee(F(0)). 4) Theqrem 1. V£ is (1) concave |_nA(@1) for a given cond!t!onal
) i ) distribution o1, and (2) convex iM\(©-) for a given conditional
As. eachF (o) is a zs-BG, the rational value functidiz (o) can be  gistribution oc,2. More specificallyVz is respectively a minimiza-
written as: tion over linear functions im\(©;) and a maximization over linear
functions inA(©2):
V#(c) = max min_ Qx(a, (41, d2)). (5)

s s .
S1EAY 82€A; 1. VZ(0m,10c,1) = min

Tm.1 Tloe.82] |
S2€AS |: “

We definebest-response value functiotigt give the best-response

value to a decision rule of the opposing agent: 2. Vi(0m20e2) = max |:Em 2 Floy .61]
: ) gl ) 2,01] | °
s eAT &

BR1 2
VFT(e,02) = ir?AXis Q7 (0, {01, 02), ©)  proof. Filling in the result of LemmAl1 gives:
VZ¥(0,61) £ min Qr (0, (61,62)). @)

S2eAS

. BR1
min V]: (O'm710'c’17 (52)

VE(om,10c,1) =
S2€AS

We remind the reader that, for eaghQ = (o, (41, d2)) exhibits con-
cavity and convexity in the space décision rulesas discussed in
Sectio 2.P.

= min

Fm,1 " To 1,02] |+
626A§|: [0c,1,02]

The proof for item 2 is analogous to that of item 1. |

3.2 Concavity/Convexity of the Value Function The importance of this theorem is that it gives direct wayape

proximately generalize the value function using pieceviisear and
convex (concave) functions.

We saw in the previous section that the concave/convex sifape
utility function expressed in the space of decision ruldkfes di-



4  Structure in zs-POSG Value

Given the result for one-shot games established in the que\sec-
tion, we are now in the position to present our main contidng

novel formulations for the value function, and general@abf the

structural result of Theorefd 1 to the sequential settingtfive will

introduce a description of the rational value function loase past
joint policies.

4.1 Past Joint Policies

To make rational decisions at stagim the zs-POSG, it is sufficient
to know thepast decisionswhich are captured in the past joint pol-
icy ¢*. To show this, the zs-POSG value function in terms of the
past joint policyp® can be defined in terms qf* by extending the
formulation by Oliehoek [15].

We define the value function of the zs-POSG at a stagderms
of a past joint policyy’. The definition that follows gives the value
attained when all agents follow the joint decision réife assuming
that in future stages agents will act rationally. That i€ Hgents
follow a rational joint future policyr!™'* = (571 ... §"=1%).

We first define the Q-value function at the final stage h — 1,
and give an inductive definition of the Q-value function aqading
stages. We then define the value function at every stagemireéedi-
ate reward for a joint AOH and a joint decision rule be defingd a

",60) 23 T 6Ma')0") Y Prs'", b R(s", a).
at St

For the final stage = h — 1, the Q-value function reduces to this
immediate reward, as there is no future value:

Qhoa ("0 8"y 2 RO, 8. (12)

Given an AOH and decision rule at staget is possible to find a
probability distribution over joint AOHs at the next stags, a joint
AOH att + 1 is the joint AOH att concatenated with joint actiasf
and joint observation®*!:

Pr(6* 6", 6") =Pr((6", at, o' T1)|0", 6') =Pr(o' 116", o) 6" (a']0").

For all stages except the final stage= h — 1, the value at future
stages is propagated to the current stage as follows:

+ 30> Pt et o)

feA ot+1

Qi (1,07 51),

Qi(e',6") 2 > PO, ¢")Q; (¢",0",8").

gtecot

Qi (¢".0", 8" 2 R(",5") +

(13)

(14)

We use[(T#) to find rational decision rules for both agentaisi@bent
with @3), we show how to find*+1* = (511 §iH1):

ST = argmax _min Qip1("h (8T 85Ty, (15)
sitleas sy tens
o5t = argmin max Q1 (", (01T, 65TY).  (16)

stHleas sitlens

Using [12), [I5) and{16), a rational joint decision rdfe~'* can
be found by performing a maxminimization over immediateariv
Evaluation ofQ;_, (¢", 8" ~'*) gives us the value at stage= h —

1, and [(IB) propagates the value to the preceding stages.ohs su
rationality for all stages follows by induction. The valumttion can
now be defined in terms of the past joint policy as:

Vi (¢') = max_ min_Q;(¢", (5}, 45)).
steAy steAf
By (@2), [I83) and[(6)¢"* is dependent od**!*, and thus on the
rational future joint policy. Howeve'™!* can only be found if past
joint policy '™, which includes?, is known. As such[{17) can not
be used to form a backward inductive approach directly.
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4.2 Plan-Time Sufficient Statistics

A disadvantage of the value function definition from the jwes
section is that the value at a staggepends on all thpint decisions
from stage 0 ta. We propose to define the value function in terms
of a plan-time sufficient statistic that summarizes manyt jaiat
policies. Furthermore, we give formal proof that this vafuaction
exhibits a concave/convex shape in statistic-space thgtbeaex-
ploitable.

Definition 7. The plan-time sufficient statistic for a general past
joint policy ¢, assumingb® is known, is a distribution over joint
AOHs: o' (6") £ Pr(0"|b°, ©").

In the collaborative Dec-POMDP case, a plan-time sufficient
statistic fully captures the influence of the past joint pplWe prove
that this also holds for the zs-POSG case, thereby valigidhia pre-
vious definition and the name ‘sufficient statistic'. We aovekpress
the value for a given decision rulg in terms of a plan-time suffi-
cient statistic, given that the agents act rationally a&rlatages. First,
we define the update rule for plan-time sufficient statistics

oA £ Pr(o"6", ') 8" (a!]6Y) et (6Y). (18)

The Q-value function at stage— 1 reduces to the immediate reward:

szl(tfh_l,gh_l,éh_l) A R(éh_175h_1). (19)
We then define the Q-value for all other stages similal o, ({{3)):

Qi (0", 0,6 2 R(6",6") + > > Pra8", 8"
at ot+1
QZ+1(Ut+1, 9‘%+17 5t+1*). (20)
ZU Qt 7 ) t)‘ (21)
Rational decision rules can be found usingl (21):
Sit = argmax  min  Qp (o', (51T 65TY),  (22)
sttleas sitlens
65T = argmin - max Q. (o' (6T, 65T, (23)

sitleas sitlens

We formally prove that the statistic provides sufficient information
for rational decision-making in the zs-POSG.

Lemma}. olisa sufficiegt statistic for the value oﬂthe zs-POSG,i.e.
Qi (0, 0",6") = Qi (", 0',6"),Vt €0...h — 1,V0" € O, V5",

Proof. The proof is listed in AppendixJA. O



This allows us to define the value function of the zs-POSGrimse 174
of the sufficient statistic as follows:

Vi'(0") £ max min_ Qi (o', (51, 62)). (24)
steny stens
Although we have now identified the value at a single stagéef t
game, implementing a backwards inductive approach dyréitill
not possible, since the space of statistics is continuodsvan do
* t H -

not kn.OW h(,)w to represeﬁt} (o ) T,hls paper takes a f'rtSt step at Figure 1: An abstract visualization of the decomposition of statisppace
reSOlVIng this problem by investigating the StrUCtUrd/ﬁf(O' ) into marginal-space and conditional-space.

t too g t
o.,1-Space Tm,17SPaCe 5! . -spaC ol ,-space

4.3 Equivalence Final Stage Zero-Sum POSG and for agent 1 for each individual AOHY, given that agent 2 follows
Family of Zero-Sum Bayesian Games the partial policyrs:

We have already proven that the value function of a Familyeobz - ,
. Iy . - Dt x7(01) £ max > ol (05107) D 05(ab|0h)
sum Bayesian Games exhibits concavity and convexity in sesfm log,1-m3] ated c1 (02 2\%2172

the marginal parts of the type distributienfor respectively agent 1 04e6} al €Az
and 2. We show that the final stage of the zs-PO3G = h — 1, t+1) 7t . 1
can be defined as a Family of zs-BGs as follows: (R )+ Z P10, a ) orhtagth (1) (26)

ot+le0,

I = {1,2} is the set of agents, Note that this is a recursive definition, and thaf™!

e © = 6" ! is the set of joint types corresponding to AOHS in (0%, at,ot1). The Vectonj{g is defined analogously.
zs-POSGP at stageh — 1, 27

e Ais the set of joint actions in zs-POS&

e R(6"1,a) follows directly from the immediate reward function

of P (as described in Section 4.1).

Lemma 3. (1) V2*is linear in A(6?) for a givens? ; andn, and
(2) V2¥2is linear in A(6%) for a giveno! , andrt, for all stages
t=0,...,h—1:

By the result of Theorefl 1 (i.e., th&t: exhibits concavity and con- 1, VBRl(U;n VOl Th) = Gl - Tyt D
vexity in marginal-spaces of agent 1 and 2 respectively)viiae 2. VERYqt, sot o mt) = Gy - 7 -
function at the final stage of the zs-POSB;_,, is concave in e e m2 "o
A(OF71) for all 7%, and convex im\ (65 ~*) for all o

Note that, even though the final stage is equal  a Family ofProof. We prove this by induction. We know the zs-POSG value
Bayesian Games, our approach is substantially differemhfap-  function at stage = h — 1 to be equivalent to that of a Family
proaches that represent a POSG asriesof BGs [4] and derivative ~ Of zs-BGs, which is concave/convex (Lemima 1). This is a base ¢
works [17]. In fact, all other stages (0 fo— 2) cannot be repre- for the proof. The full proof is listed in AppendixIA. g
sented as a Family of BGs, as the rational value functiontfges
t=0,...,h — 2 cannot be expressed as afunctié)@‘, a).

@7)
(28)

c, 27l

Theorem 2. V;* is (1) concave irA(éi) for a giveno? ;, and (2)
convex inA(6%) for a giveno! ». More specificallyV;* is respec-

. . . tively a minimization over linear functions iﬁ(@‘l) and a maxi-
44 COﬂCG.VIty/COﬂVGXI'[y Of the Value FUﬂCtIOﬂ mization over linear functions |A(é5)

We continue to show that the value function for any stagetstehihe

same type of structure. In particular, the plan-time sudfitistatis- 1 Vi (oma0e,1) = Wmelgt {Efn L V[(,C wrﬂ] '
tic can be decomposed in marginals and conditionals, andatlie 2

function is concave in marginal-space for agenﬁlé’i), and con- 2. V{ (am 20%0) = max {aﬁn 5 I/[UC 2’“]] .
vex in marginal-space for agent A(6%). Figure[ provides intu- mien

ition on how the best-response value functions relate toctire

cave/convex value function: a ‘slice’ in statistic-spaoeresponds to ~ Proof. Filling in the result of Lemm@l3 gives:
a single conditionak, ; (o. ») and exhibits concave (convex) shape

of the value function made up by linear segments that eaate-cor Vi (ot 1ot ) {12:51} min VBRl(o_t oty mh)
spond to a partial policy of the other agent. As we will shoagle LT ATel rh e} mite b T2
segment corresponds exactly to a best-response valuédiunct ] » .
Best-response value functions in termso6fand «} are defined = mm |:Um,1 : V[ag’l,ﬁ;]}
asVER and VER?, similar to [6) and[{7). LefT! be the space of all . . T2 .
stochastic partial policies!. We then have: The proof for item 2 is analogous to that of item 1. |

The importance of this theorem is that it suggests ways te (ap
Vi (0") = min VE (o', 7h) = max VE¥(o!, 7). (25) proximately) represent;* (c*). Thus, it may enable the development
5 €Tl e of new solution methods for zs-POSGs. To draw the parallahym
We first show that the best-response value functiti§' and POMDP solution methods exploit the fact that a POMDP valmefu
VEBR2 are linear in their respective marginal-spaces. Let us éefin tion is piecewise-linear and convex (PWLC) in belief-spf&[27]
vector that contains the value (immediate rewand future value)  (which is similar to the statistic-space we consider), asckently



such results have been extended to the decentralized etivpdi.e.,
Dec-POMDP) casé [3, 10].

Note that our result is similar to, but different from the died
point function that is typically associated with min-maxudipria.
In particular, the value function in is defined in the spacelah-
time sufficient statistics, while the well-known saddlemidunction
(see Sectiofi 211) is a function of complete strategies. Titgans
that the latter is only defined for the reduction to a normahfgame,
which per definition destroys any of the specific structurdnefgame
under concern. In contrast, our formulation preserves strcicture
and thus allows us to make statements about Walwe generalizes
as a function of the information distributiofhat is, the formulation
allows us to give approximation bounds that generalizeiwigach
conditional statistic.

5 Reduction to NOSG

over only joint AOHs. More importantly, however, our appchaloes
not require fixing the policy of any agent, which would nedess
recomputing of all values when the fixed policy changes §@f past
policy changes, the distributions over paths change, aml fiture
values are affected). Where the approach of Nair et al. g&2]4 to a
single-agent model that can be used to compute a best-isspmr
conversion leads to a multi-agent model that can be usedtpui
a Nash equilibrium directly.

A key contribution of our NOSG formulation is that it diregtl
indicates that properties of ‘zero-sum stochastic gamés stiared
observations'[5] also hold for zs-POSGs.

Definition 9. A zero-sum Shared Observation Stochastic Game
(zs-SOSG)is a zs-POSG (cf. DeEl5) in which each agent receives
the joint observation and can observe the other’s actions.

Ghosh et al.[[5] show that, under some technical assumptions-
SOSG can be converted into a completely observable modeil#si

The applicatioq of methods that exploit the PWLC structufe 0 to the conversion of a POMDP into a belief MDP), and that, ia th
the value function of Dec-POMDPs was enabled by a reductionpfinjte-horizon case, both the value and a rational joirlicyexists.

from Dec-POMDP to anon-observable MDP (NOMDPWwhich is
a special type of (centralized) POMDP [3. 10] 14} 16]. Thisves

Our claim is that these results in fact transfer to the moregd
class of zs-POSGs via our NOSG construction. We start byigoti

POMDP solution methods to be employed in the context of Dec-

POMDPs. The proposed plan-time statistics for Dec-POMI1B} [
precisely correspond to the belief in the centralized model

Since we have shown that it is possible to generalize the- plan

time statistics to the zs-POSG case, it is reasonable taeitys zs-
POSGs can be reduced similarly. Here we present a reductiom f
zs-POSG to a special type of stochastic game where infoomati

centralized, to which we refer adNmn-Observable Stochastic Game
(NOSG). We do not provide the full background of the reductio

for the Dec-POMDP case, but refer [0 [16]. The differenceveen

Lemma 4. The plan-time NOSG of a finite-horizon zs-POSG is a
2s-SOSG.

Proof. In the finite-horizon case, the set of states in our plan-time
NOSG is discrete. The action space, while continuous, isaéfdi-
mensionality, and is a closed and bounded set. The set ccsbar
servations only consists of a trivial NULL observation agdissum-

ing rationality for both players, we can assume that thegnleseach
others actions (corresponding to decision rules of the POSGO

the reduction from Dec-POMDP to NOMDP and the one we present | the infinite-horizon case, some assumptions on the cfakecd

next, is that the zs-POSG is reduced to a stochastic game\ilier
joint AOH acts as the state.

Definition 8. A plan-time Non-Observable Stochastic Gaméor
azs-POSGis atuples, A1, A1, 0,T,0, R, b°):

o I ={1,2} isthe set of agents,
¢ S is the set of augmented statés each corresponding to a joint
AOH 6,

sion ruless! are needed to be able to formulate the plan-time NOSG
model and assuming infinite policy trees as the policies et
olate certain technical requirements on which Ghosh'sltesle-
pend (e.g., the action-spaces are required to be metricangact
spaces). However, a straightforward extension of our raatudor
the case where the agents use finite-state controllersogmad to
such formulations for Dec-POMDPEs [10]), would satisfy thee-
quirements, and as such we can infer the existence of a vatue f

e A= A x As is the continuous action-space, containing stochas-Such games:

tic decision rules® = (6%, 65),

e O = {NULL} is set of joint observations that only contains the

NULL observation.

e T'is the transition function that specifidqs'*1 | s, (al, ab)) =
PrATT |6, (8%, 65)).

e Oisthe observation function that specifies that observatiohL
is received with probability 1.

e R:5 x A— Risthe reward functiomR(4*, (6%, 65)),

e 0% € A(S) is the initial belief over states.

Corollary 1. For infinite-horizon zs-POSGs where agents are re-
stricted to use finite-state controllers for their polici¢se value of
the game exists.

In that way, our reduction shows that some of the properts¢sbe
lished by Ghosh et al. for a limited subset of zero-sum ststiha
games, in fact extend to a much broader class of problems.

6 Related Work

In the NOSG model, agents condition their choices on thet join There is rich body of literature on zero-sum games, and weigkeo

belief over augmented statése A(S), which corresponds to the
belief over joint AOHs captured in the statistié € A(©'). As

pointers to the most relevant works here. The concave angegon
structure we have found for the zs-POSG value function iglaim

such, a value function formulation for the NOSG can be given i to the saddle point structure associated with min-max dojial [1].

accordance witH{24).
In order to avoid potential confusion, let us point out thatsa

Note, however, that we have defined the value function in $ewm
the distribution over information, rather than the subs#diy differ-

POSG can also be converted to a best response POMDP by fixingnt space ofoint strategies solving of which requires flattening the
the policies of one agent [12], which leads to a model wheee th game to normal form. That is, our results tell us somethinguab
information stateé(s, 0;) is a distribution over states and AOHSs of the value of acting using the current information, thus timay give

the other agent. In contrast, our NOSG formulation maistaibelief

insight into games of general partial observability.



A recent paper that is similar in spirit to ours is by Nayyaakt a Bayesian Game (BG) and Partially Observable StochastioeGa
[13] who introduce a so-called Common Information Based -Con (POSG) respectively. We formally defined the value funcfarboth
ditional Belief — a probability distribution over AOHs andhé  types of games in terms of an information distribution ahtlee suf-
state conditioned on common information — and use it to aesig ficient plan-time statistic: a probability distribution @vjoint sets
a dynamic-programming approach for zs-POSGs. This metbod ¢ of private information (originally used in the collaborati setting
verts stages of the zs-POSG to Bayesian Games for which plee ty [15]). Using the fact that this probability distributionrche decom-
distribution corresponds to the statistic at that stagevé¥er, since  posed into a marginal and a conditional term, we presentgdithhe
their proposed statistic is a distribution over joint AO&fsd states  zero-sum case value functions of both types of games exdubiav-

the statistic we propose in this paper is more compact. Mop®i- ity (convexity) in the space of marginal statistics of thexinazing
tantly, Nayyar et al. do not provide any results regardirgstinucture  (minimizing) agent, for every conditional statistic. Iretmulti-stage
of the value function, which is the main contribution of oaper. game, this structure of the value function is preserved enyestage.

Hansen et al.[7] present a dynamic-programming approach foThus, our formulation enables us to make statements abawdiae
finite-horizon (general sum) POSGs that iteratively cardtrsets of  generalizes as a function of the information distributibastly, we
one-step-longer (pure) policies for all agents. At evegydtion, the  showed how the results allow us to reduce our zs-POSG to almode

sets of individual policies are pruned by removing domidateli- with shared observations, thereby transferring propedfehis nar-
cies. This pruning is based on a different statistic caftedti-agent  rower class of games to the zs-POSG.
belief: a distribution over states and policies of other agentsh3u We hope that this result leads to solution methods that éple

multi-agent belief is sufficient from the perspective of adividual structure of the value function at every stage, as recentl devel-
agent to determine its best response (or whether some oblits p opments have been made in the field of cooperative multitggyeh-
cies are dominated). A more generalized investigation dizidual lems [10]. In particular, we believe that heuristic methdu iden-
statistics in decentralized settings is given by Wu & LaB][2How- tify useful (conditional) statistics to explore, or poiséised methods
ever, these notions are not a sufficient statistic for thejpas policy that iteratively select statistics to evaludtel[10 27] rbayadapted
from adesigner perspectivg@s is the proposed plan-time sufficient for the zs-POSG case.
statistic in this paper). In fact, they are complementary ae hy-
pothesize that they can be fruitfully combined in future kvor
There are works from game theory literature that presemttsiral
results on the value function of so-called ‘repeated zern-games
with incomplete information[1il, 21, 22, 23]. These cantb@sun-
derstood as a class of two-player extensive form gamesithat | A Appendix
between Bayesian games and POSGs: at the start of the gaome, na
determines the state (a joint type) from which each agenesialpri-  proof of Lemma@lL.We will prove item 1:
vate observation (i.e., individual type), and subsequyethié agents
take actions in turns, thereby observing the actions of fpopent.
The models for which these results have been proven arefdhere The Q-value definition is expanded in order to bring the nreigi

AcknowledgmentsThis research is supported by the NWO Innova-
tional Research Incentives Scheme Veni (#639.021.336)\Al®
DTC-NCAP (#612.001.109) project.

BR1 . .
VE (0m,10c,1,02) = Gm,1  Tio, 1 ,50]

substantially less general than the zs-POSG model we @msid termo,, ; to the front of the equation:
For various flavors of such games, it has been shown that the va OB
function has a concave/convex structure: cases with intmimfor- Qr(o,0) "= Z o(0) Z 6(al0)R(0,a)
mation on one side [23, 26], and cases with incomplete indbion 6o aEA
on both sides where ‘observations are independent’ (ileerevthe = Z om,1(01) Z 0c,1(02]01) Z 01(a1161)
distribution over joint types is a product of individual gplistribu- 01€0; 02€03 a1€A;
tions) [21] or dependent (general joint type distributipfiksl, [22]. Z 82(az|02)R((01,6), (a1, as)). (A.29)

These results, however, crucially depend on the alterpatations
and the static state and therefore do not extend to zs-POSGs.

A game-theoretic model that is closely related to the POS@aino
is thenteractive POMDPor I-POMDP [6]. In -POMDPs, a (sub-
jective) beliefb; (s, ¢;) is constructed from the perspective of a sin-

ag€Ag
A maximization over stochastic decision rules conditioned); is
equivalent to choosing a maximizing action for ed#sh Thus, we
can rewrite the best-response value function as follows:

L VY 0,02) = max_Qf (o, (d1,02))
gle agent as a probability distribution over states andtypes ¢;, F ) s1EAd LIASEANEY
of the other agent. Aevel& I-POMDP agent reasons about level-
(k — 1) types(;. Since eaclg; fully determines the future policy of =" max { Z Om,1(01) Z 0c,1(02]61) Z 51(a1161)
the other agent, an I-POMDP can be interpreted as a best-response sreafd 0,€0, 0,0, a1 €A
POMDP similar to the one introduced by Nair et al.[[12] (dssed
in Sectior[F), with the difference that the state also repraswhich Z 02(az2|02) R((61,62), (a1, a2>)}
policy the other agent uses. The differences mentioned dtic®¢3 az€A2
also apply here; where_ an_I-P_OMDP can be l_Jsed to compyt_ea best _ Z Tt (01) max{ Z e (02]01) Z 82 (az2|02) R(6, a)}
response, our formulation is aimed at computing a Nashiéguin. ico, a1 Lyce, anc Ao
{[9]} o {vec.not} _, N

. = om1(01)7o, 1,8,0(01) =" GFm1 Mo 1 60

7 Conclusions and Future Work 91;_)1 el el

This paper presents a structural result on the shape of tlue va As it is possible to write/ 2! as an inner product of two vectors,

function of two-player zero-sum games of incomplete infation, V2" is linear inA(©1) for all .1 andd.. Analogously,VER? is

for games of static state and dynamic state, typically memtl@ls  linear inA(©-) for all o 2 andd;. O



Proof of Lemma&l2.The proof is largely identical to the proof of cor-
rectness of sufficient statistics in the collaborativeisgt{15]. For
the final stage = h — 1, we have the followingQ; (*, 8*, %) =

Here, Usis the statistic update rule, defined in accordance \With (18)

We make the decomposition af into the marginal and conditional
terms explicit again. Immediate rewaf2f® can be expanded similar

R(6%,6%) = Qi(c*, 0 6%). As induction hypothesis, we assume to (A.29):

that at stage + 1, o' ! is a sufficient statistic, i.e.:

Qi (0 ) = Qi (0", 0 6. (A30)
We aim to show that at staggo” is a sufficient statistic:
Qi (¢",6",5) = Qi (0", 6", 6%9). (A.31)

We substitute the induction hypothesis iffal(21):
Qi 0 dt) B R@ o) + S0 3 PHE A o)
ate Aottl
Qr+1(¢t+l §t+1 5t+1*)
+ ) > PO, 6%
ate A ott+1
Q:ﬁ» ( s §t+17 6;:1*) = Q:(O’t7 §t7 6§S)

Furthermore, decision rulei{“* (based on the past joint policy)

{m} et 555

ands;.L* (based on the sufficient statistic) are equal:
5t+1*{@}ar max min P+ b0, ottt
1,pp 6t+gleAS sitieas Z ( b0 )

ot+1 Eét+1

Q:+1(S0t+17§t+1 <5t+1 5t+1>):|

|: Z Ut+1(§t+l)

ot+1 Eét+1

argmax min
sttleas sitlens

1,ss *

Q:-Q- ( t+1 T+1 <5t+1 5t+1>):| @6t+1*

Analogous reasoning holds fdé“* Thus, by inductiong? is a
sufficient statistic forp?, Vt € 0...h — 1. O

Proof of Lemma&l3 By the results of Lemmal1 and the results from
Sectio 4B, we know the best-response value functifit to be

Qf(ofn,lo—z,h <5i7 55)) = U:n,l(e Uc 1 92|9

Z 52 a2|92

a2€A2

Z 5% ( a1|9

aj €A1

<91792> <atl7at2>)' (A35)

We expand/2R! using the induction hypothesis in order to bring the

marginal dlstrlbutlomml to the front:

{432

t+1 _t+1 _t+1
m,lac,17 2 )

t+1(0t+1) [ t+1 t+1 (Qt 1)

BR1 t+1 5
‘/t+1 (U Om,1° [ f'+1 f'+1]

Ft4+1 - Zt+1
gittest
{18 _—
= E Um,l(‘gl) E Ucl 92|9 E 51 CL1|9
6t eof 0t e} ateA;
to tipt
> B(aslfy) > >
abeAy ot+1lcO ot+lcOy

@7+,
Filling the expanded equations info (Al34) and factorizinges:
[QF (e (1. 59lat)+

Pr(oi™! t+1|<§§7§§>7<a§7a§>)l7[a§+11,ﬁ§+1] (A.36)

BR1 25
| (Ufn,lffz,h ﬂ'é) =

max
steAf

Vet ot | G

glaxs[ S ot @) S ot @) S

PLEAT gtedt Gty afea;

) 3 S4(abl) (AT B )+
aiGAQ
> Pr(of+1|§t,ai)ﬁlotﬂﬁtﬂ](@ﬁl))}. (A.37)
ottlcO et

linear in A(67"). For all other stages, we assume the following note that the vector is indexed by the conditiondl;'. While this

induction hypothesis:
W3R11(0t+1 t4+1 t+1)

m,10¢,1 » T2
For the inductive step we aim to prove that at the currentestaige
following holds:

t41
=0m,1"

H[ ,,+11’7r;+1]A (A.32)

(A.33)

VERL Lt ty ot .
t (Um,lo-c,ly 71—2) =0Om,1° l/[oz 1,7\'5]'

Let QF be a function similar to[{3) that defines reward for a given

statistic and joint decision rule. We expand the definitiori/g™*
For notational convenience we wrii¢ instead ofgfn’iaﬁ,i, but keep
in mind that we consider statistics corresponding to coomwtt o, ;.

VER ot m) B e Vi(o, (nt )

7r€H

{Qf(‘* (85, 65)) + Vi (Usslo", ), <7ri+1m;+l>>]

= max
t 1Tt
my €I

= Imax max

t S t+1
steAy 7’1+

[P (0", 61,83 + g Vi )

[Q?(at“, (60, 620) + Vius (01, (1, 7r5“>>}

= max
steay H

{@} Rot (st st VBRI (Gt+1 (othl it A.34

_5??;(3 Qi (0°,(61,02)) + Viii(o (w7, w57 7)) | (A34)
1 1

conditional is dependent af}, it is not dependent o, allowing

us to remove the maximization over decision ruig$rom the equa-
tion. As a maximization over decision rules conditioned raahivid-

ual AOH ¢% is equal to choosing the maximizing action for each of
these AOHs, we can rewrite (A137) as follows:

‘/;BRl(O't7 ﬂ_é)

Z O @) max
a

1

{ Z Uc1 ‘92|9 Z 52 az|‘92

Gtebt Gtedl ate Ay
(R( + Z Pr(0t+1|9t )H t+1 t+1 (Ht 1)):|
oFt+leco
m PR 5y {vec not} _,
=D om0 |y (0) ma ot | xy)- (A38)

Gt €8t
This corresponds t¢g_(A.33). Therefore, by induction, besponse
value functionV;®** is linear inA(©4) for a givens! , andr}, for
all stages = 0...h — 1. Analogously,V;2*? is a linear function in
h—1. Od

A(6%) fora giveno! , andni, for all stageg = 0. ..
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