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a b s t r a c t 

We analyze a dynamic optimization problem which involves the consumption and investment of an in- 

vestor with constant relative risk aversion for consumption but with a risk aversion for final wealth which 

does not necessarily imply that terminal wealth must always be positive. We require risk aversion for ter- 

minal wealth to be positive but not monotone: there is a point of maximal risk aversion at zero wealth 

and the investor may continue to consume when wealth is negative. Using dual optimization methods we 

can derive explicit solutions and we find that the optimal solution differs in a fundamental way from the 

case where risk aversion is monotone. It turns out that the optimal consumption function is convex and 

concave at different wealth levels and that the optimal investment strategy may no longer be monotone 

as a function of the remaining time to invest and consume. 

© 2016 Elsevier B.V. All rights reserved. 
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2 See Arkes and Blumer (1985) for the psychology of sunk costs, Thaler and John- 

son (1990) for the break-even effect and the paper by Baghestanian and Massenot 

(2015) for recent empirical evidence on the incentive to gamble for resurrection. 
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. Introduction 

The present paper contributes to the existing literature on op-

imal portfolio theory by finding explicit solutions for an investor

ho is risk-averse but who is willing to end up with debts, i.e. a

egative wealth at the end of the consumption and investment pe-

iod. Closed-form optimal policies have, to the best of our knowl-

dge, only been found for the specific class of exponential utilities,

here risk aversion is independent of wealth. Instead, we formu-

ate a model to study the consumption patterns for people who try

o avoid debt, but do not avoid it at all costs. In this model, there is

herefore an explicit tradeoff between a higher probability of debts

t the end of the time period under consideration and the utility

f immediate consumption. 

A specific example which can motivate our approach would be

 fund manager who invests to generate cashflows for a client dur-

ng a finite time period. She would try to avoid negative wealth

t the end of the investment period since her performance mea-

urement over the investment period will take both consumption

uring and wealth after the period into account, but she may not

xclude negative wealth on beforehand to allow the possibility to

gamble for resurrection’ in disadvantageous scenarios. 

Such behavior could be interpreted as a ‘sunk costs effect’ (also

nown as ‘escalation of commitment’), which in this case would
∗ Corresponding author. Fax: +31 20 5254349. 

E-mail addresses: an.chen@uni-ulm.de (A. Chen), m.h.vellekoop@uva.nl 

(M. Vellekoop). 
1 Fax: +49 731 5031188. 
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ean that the investor, having been unsuccessful enough on the

tock market to arrive at negative wealth levels, would feel an in-

entive to continue investing in stocks to make up for the lost ear-

ier investments. 2 

In that sense our model is meant to be descriptive rather than

ormative and it assumes that the investor still has the possibility

o borrow money once wealth is negative. This may be the case, for

xample, when the wealth position is not disclosed during but only

fter the investment period. 3 Our setup also allows us to deal with

ases where an investor starts with negative wealth at the initial

oint in time but still shows (asymptotically) constant relative risk

version for high positive wealth levels. 

The standard investment and consumption model which as-

umes preferences with constant relative risk aversion (CRRA) can-

ot be applied for such investors since it assumes that wealth must

tay positive and preferences with constant absolute risk aversion

CARA) allow only risk aversion which does not depend on wealth.

e thus believe it may be useful to offer an alternative which

akes account of such possibilities. In particular, we would like to
3 If wealth levels would be disclosed during the investment period, it would 

e more natural that the interest rate on the cash account would change once 

ealth becomes negative. We will not make that assumption here; see He and 

agés (1993) and Dybvig and Liu (2010) for results when borrowing is restricted 

nd Korn (1995) for the case where there is a higher interest rate for borrowing 

han for lending. It seems that in the latter case, our optimization problem can 

nly be solved numerically. 

http://dx.doi.org/10.1016/j.ejor.2016.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.09.012&domain=pdf
mailto:an.chen@uni-ulm.de
mailto:m.h.vellekoop@uva.nl
http://dx.doi.org/10.1016/j.ejor.2016.09.012
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allow investors to have different preferences for consumption and

for terminal wealth, but we still want explicit formulas for the

optimal strategies that can be directly compared to strategies in

which terminal debts must be avoided at all costs or where in-

vestors become risk-seeking when wealth becomes negative. 

1.1. SAHARA utility 

We therefore assume that an investor has CRRA preferences for

consumption and a utility for terminal wealth which exhibits Sym-

metric Asymptotic Hyperbolic Absolute Risk Aversion (SAHARA).

This class of utility functions allows for positive and negative val-

ues of wealth. For very large values the risk preferences correspond

to those of the CRRA class but SAHARA investors have a level of

wealth at which their risk aversion is maximal. 4 We take this ref-

erence point, without loss of generality, 5 to be the point of zero

wealth and we may interpret the fact that the investor becomes

more risk averse when the point of zero wealth is approached

from above as a manifestation of zero-risk-bias. However, once an

investor has crossed this point and wealth has become negative,

she becomes less risk averse if wealth becomes even more neg-

ative. This property formalizes the intuition that people may be-

come less concerned about debt once they are already in debt. If

that would not be the case, there would, for example, be no people

who switch to a new credit card once their first card has a nega-

tive balance which is not compensated by other assets they own. 

The SAHARA utility functions define a less risk averse attitude

for large values of wealth but also for large values of debt, i.e. for

very negative wealth. However, we will still assume that there is

positive risk aversion once the investor is heavily in debt. We do

not include risk seeking behavior such as proposed in models with

gain-loss preferences (see Tversky & Kahneman (1992) ). We thus

retain concavity of utility as a function of terminal wealth on the

entire domain, which allows us to find explicit solutions for the

optimized behavior in this dynamic setting. We will compare our

optimized strategies to those based on gain-loss preferences in the

last section before the conclusion. 

The optimal consumption and asset allocation problem in a

continuous-time setting dates back to Merton (1969, 1971) . The

solutions to the associated stochastic optimal control problems

strongly depend on risk preferences and the assumptions on the

asset price dynamics. The most frequently used utility functions

exhibit hyperbolic absolute risk aversion (HARA). In particular, one

often assumes that either wealth has to be above a certain thresh-

old (for example, by assuming CRRA utility functions) or that indi-

viduals’ risk aversion does not depend on their wealth (for CARA

utility functions). Together with the assumption of Brownian or

Geometric Brownian asset dynamics, Merton shows that closed-

form solutions can be obtained for these risk preferences. 6 In
4 SAHARA utility assumes a unique reference point at which the absolute risk 

aversion for terminal wealth reaches its maximum. In this sense, SAHARA utility 

does not capture the preferences of investors who exhibit multiple reference points 

where risk aversion levels obtain a local maximum. Some recent experimental stud- 

ies have shown that investors may indeed display multiple reference points in ter- 

minal wealth, see Knoller (2016) , and Koop and Johnson (2012) . Wang and Johnson 

(2012) develop a theory based on three reference points: the minimum requirement 

value, the status quo, and the goal. We believe that our study of preferences with 

a single point of maximal risk aversion provides insight into the more complicated 

case where there are more reference points. 
5 Choosing the reference point d differently for the utility of terminal wealth (and 

for the levels of consumption) would amount to a translation of the whole opti- 

mization problem and the corresponding optimal strategies over the wealth axis, 

since our asset returns do not depend on wealth. Note, however, that this is no 

longer true if there would be multiple local maxima for risk aversion. 
6 Merton’s optimal consumption and investment problem has been further inves- 

tigated and extended in different contexts. Some relevant references are Dybvig and 

Huang (1988) , Davis and Norman (1990) , Sørensen (1999) , Brennan and Xia (20 0 0) , 
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t

hen, Pelsser, and Vellekoop (2011) this closed-form solution for

erton’s problem is extended to include SAHARA risk preferences.

his class of utility functions also arises naturally in the frame-

ork of forward performance criteria: see the earlier formulations

n Zariphopoulou and Musiela (2009, 2010) . 

In contrast to the analysis in Chen et al. (2011) we consider

oth the utility of intermediate consumption and the utility of ter-

inal wealth in our optimization problem. Since it is possible to

nvest in riskless and risky assets during this period, we thus al-

ow the investor to postpone the payments of debts to a later time

hile continuing to consume, in the hope that favorable returns on

nancial assets may still help to achieve a better level of wealth at

he end. 

.2. Dual methods 

Since we will not make the Markovian assumption for the asset

rice dynamics, we rely on the dual approach for optimization in

tochastic dynamic systems to derive explicit solutions in the gen-

ral case. Such methods have been studied for complete markets in

ox and Huang (1989) , Karatzas, Lehoczky, and Shreve (1987) and

liska (1986) and in an incomplete market setting e.g. by Davis

1997) , He and Pearson (1991a,b) , Karatzas, Lehoczky, Shreve, and

u (1991) , Schachermayer (2001) and Rogers (2003) . We apply the

ual method in a multi-asset economy which takes survival proba-

ilities of the investor into account. If Markovian dynamics are not

ssumed we cannot necessarily express the optimal consumption

trategy as an explicit function of the level of wealth. But if we as-

ume that the parameters which specify the market dynamics and

references are deterministic functions of time, closed-form strate-

ies can be derived which provide direct insight in consumption

atterns and the optimal portfolio holdings. 

We find for example that if asymptotic risk aversion for large

alues of terminal wealth is larger (or smaller) than the risk aver-

ion for consumption, the wealth level at which investment in

isky assets is minimal occurs for a negative (or positive) value.

f these two risk aversion coefficients are equal, we can show how

uch the level of consumption and the allocation to risky assets

ncrease in comparison to an investor who has CRRA preferences

or both consumption and terminal wealth. This difference is time-

arying and involves several key parameters, such as the strength

f the propensity to become less risk averse when going further

nto debt (measured by a parameter β), the tradeoff between util-

ty from consumption and terminal wealth (measured by a pa-

ameter K ) and a parameter v γ which is a combination of the

isk free rate r , asymptotic risk aversion γ , the vector of market

rices of risk θ , the discount factor δ and force of mortality ς (see

orollary 3.6 ). 

We also find that over long time horizons the investment strat-

gy does not differ that much from the one generated by a loss

verse preference, which is one of the characteristic elements in

umulative prospect theory (see Berkelaar, Kouwenberg, and Post

2004) and Jin and Zhou (2008) ). One can interpret our choice as in

etween the classical framework of CRRA preferences, where nega-

ive wealth is avoided at all cost, and gain-loss preferences, which

re risk seeking for negative wealth. In our case, the investor re-

ains risk averse for negative wealth but less so if wealth becomes

ore negative, so in that case the investor gets closer to the point

here risk aversion becomes risk seeking behavior, without ever

eaching it. 

The remainder of the paper is structured as follows.

ection 2 describes the underlying financial market and formulates
unk and Sørensen (2004, 2010) , Korn and Steffensen (2007) , Dybvig and Liu 

2010) , and Kraft and Munk (2011) . For the case of investors which are not assumed 

o be time-consistent see Marín-Solano and Navas (2010) . 
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he consumption and investment problem. Solutions to optimal

onsumption, terminal wealth and investment strategies are found

n Section 3 . Furthermore, some special cases are discussed in

hich investment strategies can be expressed as an explicit func-

ion of wealth. Section 4 compares our results to those found

nder different preference structures and Section 5 provides some

oncluding remarks and suggestions for further research. All proofs

re collected in the appendix. 

. The optimal consumption and investment problem 

In this section, we define the underlying economy and formu-

ate the investor’s performance criteria. 

.1. Financial market 

We assume a financial market in continuous time without

ransaction costs that contains d ≥ 1 traded risky assets and one

isk free asset: the bank account. Let the asset price dynamics for

he risky assets 7 S t = (S 1 t , S 
2 
t , . . . , S 

d 
t ) 

′ and bank account B be given

y 

dS i t 
S i t 

= μi 
t d t + 

d ∑ 

j=1 

�i j 
t d W 

j 
t (1) 

dB t 

B t 
= r t dt, (2) 

here W t := (W 

1 
t , W 

2 
t , . . . , W 

d 
t ) 

′ are d independent Brownian mo-

ions on our probability space (�, F , P ) . We fix a time hori-

on T > 0 and define for t ∈ [0, T ] the processes r t ≥ 0, μt =
(μ1 

t , μ
2 
t , . . . , μ

d 
t ) 

′ and ( �t ) 
ij which are adapted 

8 with respect to the

ltration generated by the Brownian motions, which is denoted by

F t } t∈ [0 ,T ] . Furthermore we assume that 
∫ T 

0 

∑ d 
i =1 

∑ d 
j=1 (�

i j 
t ) 

2 dt <

 a.s., that for all t ∈ [0, T ] and x ∈ R 

d with ‖ x ‖ = 1 we have σ min 

‖ �t x ‖ ≤ σ max for a certain σ max ≥ σ min > 0 and that the pro-

esses μ and r are bounded by a deterministic constant. This im-

lies that the stochastic differential equations for S and B have a

nique solution on [0, T ]. We assume B 0 = 1 and S i 
0 

> 0 , all i . 

We are in a complete market setting and the unique measure

 under which all discounted asset prices are martingales can be

haracterized in terms of its Radon–Nikodym density process Z t =
dQ 
dP 

∣∣∣
F t 

which satisfies Z 0 = 1 and 

Z t = −Z t θ
′ 
t dW t , with θt := �−1 

t (μt − r t 1 ) 

nd 1 = (1 , 1 , . . . , 1) ′ a d-dimensional vector of ones. Note that our

onditions on � and the boundedness of μ and r lead to the uni-

orm boundedness of || θ t ||. The discounted process H t := Z t / B t is

he state price density or deflator process, which satisfies H 0 = 1

nd 

H t = −H t (r t dt + θ ′ 
t dW t ) . (3) 

.2. The preferences for consumption 

We consider an investor who wants to optimize investment and

onsumption on the time period [0, T ] given that she will be left

ith a terminal wealth X T if she is still alive at the time. The in-

estor is initially endowed with a wealth x 0 > 0. She can trade

n the d + 1 assets and consume part of the wealth in the period
7 Throughout the paper the prime ′ will be used to denote transposition of vec- 

ors. 
8 Note that this is an extension of the results reported in Chen et al. (2011) , 

here these and other parameters are assumed to be deterministic. 

U

0, T ] while alive. We assume that the time of death τ ≥ 0 of the

nvestor can be modeled using a stochastic force of mortality pro-

ess ς , which is adapted to a filtration (G t ) t∈ [0 ,T ] that is indepen-

ent of the Brownian filtration (F t ) t∈ [0 ,T ] so 

 (τ ≥ t|G t ) := ζt = exp 

(
−
∫ t 

0 

ς u du 

)
, (4) 

ith ς t ≥ 0 and 

∫ t 
0 ς s ds < ∞ for all t ∈ [0, T ] P -almost surely. 

The investor will choose a consumption process ( c t ) t ∈ [0, T ] 

hich is adapted with respect to {F t } t∈ [0 ,T ] , and such that P -

lmost surely 

 t ≥ 0 , E 

(∫ T 

0 

c t dt 

)2 

< ∞ . 

e also chooses an investment strategy that we describe in terms

f the amounts of wealth invested in all the risky assets at time t ,

hich we denote by (A t ) t∈ [0 ,T ] = (A 

1 
t , A 

2 
t , . . . , A 

d 
t ) 

′ . We assume that

his process is adapted to the same filtration and by investing the

emaining wealth A 

0 
t = X t −

∑ d 
i =1 A 

i 
t in the risk free asset we guar-

ntee that our strategy is self-financing. 

The wealth process related to the strategy ( c t , A t ) when starting

ith an initial wealth x 0 is then easily seen to satisfy 

X 

A,c 
t = (r t X 

A,c 
t − c t ) dt + A 

′ 
t ( (μt − r t 1 ) dt + �t dW t ) , (5) 

X 

A,c 
0 

= x 0 . 

he process W 

Q 
t = W t + 

∫ t 
0 θs ds is a martingale under Q since ‖ θ t ‖

s bounded, so the following process is a local martingale under

 : 

 

A,c 
t := X 

A,c 
t /B t + 

∫ t 

0 

(c u /B u ) du − x 0 = 

∫ t 

0 

(1 /B u ) A 

′ 
u �u dW 

Q 
u . (6) 

o avoid arbitrage opportunities which are generated by patholog-

cal investment strategies, we only allow processes A t which make

his process in fact a Q -martingale on [0, T ]. We will call invest-

ent strategies which fulfill this condition martingale-generating. 9 

e can give an explicit condition on A to achieve this, by proving

n extension for the no-consumption case which has been treated

n Chen et al. (2011) . 

emma 2.1. Take a consumption process c which satisfies the con-

itions mentioned above. If an adapted investment strategy A gener-

tes a wealth process X 

A , c such that for a certain stochastic variable
¯
 < ∞ we have 

 A t ‖ 

2 ≤ K̄ (1 + (X 

A,c 
t ) 2 ) , (7)

or all t ∈ [0, T ], then the process A is martingale-generating. 

We will often use the shorthand notation X t = X A,c 
t to avoid the

ore cumbersome version. We also introduce the following nota-

ion for admisible wealth processes. 

efinition 2.2. We indicate by X (x 0 ) all possible wealth processes

hat can be generated when starting from an initial capital x 0 by

sing strategies ( c t , A t ) which satisfy the conditions outlined above,

ncluding the martingale-generating property. 

Preferences of the investor for consumption are modeled using

 power utility function which is defined on the positive real line

nd exhibits a constant relative risk aversion (CRRA): 

 1 (c) = K 

c 1 −γ − 1 

1 − γ
9 In line with, for example, Karatzas and Shreve (1998) . 
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X 0 
for a constant K > 0 and a risk aversion parameter γ > 0, γ
	 = 1. For γ → 1 we find U 1 ( c ) → K ln c . The risk aversion function

A 1 (c) = −U 

′′ (c) /U 

′ (c) thus equals γ / c for all positive values of γ .

We will frequently use the convex dual function 

˜ 
 i (y ) = sup 

x ∈ R 
(U i (x ) − xy ) 

and the function which defines the value x for which the supre-

mum is attained: x = (U 

′ 
i 
) −1 (y ) := I i (y ) . For the CRRA utility these

functions are 

˜ 
 1 (y ) = 

K 

1 − γ
( γ ( y/K) 1 −1 /γ − 1) , I 1 ( y ) = ( y/K) −1 /γ , 

with domain R 

+ . 

2.3. The preferences for terminal wealth 

For terminal wealth, we would like to assume that an investor

may decide to end up with debts so we would like to allow nega-

tive wealth. The investor will avoid the point of zero wealth in the

sense that risk aversion increases when this level is approached

from above. But there is a possibility that negative wealth levels

are indeed reached. If this happens, we will assume the investor

will show behavior which is less risk averse but never risk-seeking.

We therefore use the SAHARA class of utility functions ( Chen et al.

(2011) and Zariphopoulou and Musiela (2009, 2010) ) which is de-

fined for the entire real line. This class, which incorporates CRRA

and CARA utility functions as limiting cases, is in general defined

as follows: 

Definition 2.3. A utility function U with domain R is of the SAHARA

class if the absolute risk aversion function A (x ) = −U 

′′ (x ) /U 

′ (x ) is

well-defined on its entire domain and satisfies 

A (x ) = 

α√ 

β2 + (x − d) 2 
> 0 (8)

for a given β > 0 (the scale parameter), α > 0 (the risk-aversion

parameter) and d ∈ R (the threshold wealth). 

As state before, we will assume in the remainder of the paper,

without loss of generality, that the point of maximal risk aversion

d is at zero wealth. 

Below the threshold wealth risk aversion becomes smaller for

more negative wealth levels since the investor is relatively indiffer-

ent between being slightly or severely in debt. Our approach there-

fore differs from classical expected utility formulations, where pos-

itive and monotone risk aversion is assumed, but also from prefer-

ences with loss aversion, which exhibit risk aversion that is neg-

ative and decreasing for wealth values below a certain threshold

value and positive and decreasing above it. This is for example the

case in the example given in Tversky and Kahneman (1992) , where
˘
 (x ) = x a + for x ≥ 0 and Ŭ (x ) = −b(−x ) a − for x < 0 where b , a +

and a − are strictly positive constants. 10 When a + and a − are taken

equal in this definition (in the paper both were estimated to be

0.88) we see that, both in their model and in ours, risk aversion

converges to zero for large positive and negative wealth levels. This

suggests a tendency to try to ’gamble oneself out of trouble’. But in

our model there is no risk seeking behavior and risk aversion is fi-

nite and smooth around the threshold value of maximal risk avoid-

ance. The risk aversion associated with Ŭ is discontinuous across

that point, since maximal risk aversion switches to maximal risk

seeking behavior the moment the investor crosses this point from

above. 
10 In their framework the investor’s objective function also involves a possible dis- 

tortion of the probabilities. We do not consider this in our paper. e
If U is a SAHARA utility function with scale parameter β > 0

nd risk aversion parameter α > 0 we can easily calculate the

onvex dual and inverse of marginal utility which are defined at

he end of the previous section. Since A ( x ) is the derivative of

ln U 

′ (x ) one may show by a direct integration that 

 

′ (x ) = c̄ (x + 

√ 

x 2 + β2 ) −α

or a certain constant c̄ > 0 and that there exists a constant c̄ 1 such

hat U(x ) = c̄ 1 + c̄ ̂  U (x ) with 

ˆ 
 (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− 1 

α2 − 1 

(
x + 

√ 

β2 + x 2 
)−α(

x + α
√ 

β2 + x 2 
)

α 	 = 1

1 

2 

ln (x + 

√ 

β2 + x 2 ) + 

1 

2 

β−2 x ( 
√ 

β2 + x 2 − x ) α = 1

(9)

here the domain is R in both cases. We take c̄ 1 = 0 and c̄ = 1

rom now on and use U α, β ( x ) to denote ˆ U (x ) in that case. 

Both the convex dual ˜ U α,β (y ) = sup x ∈ R (U α,β (x ) − xy ) and the

nverse marginal utility function of a SAHARA utility function are

asily seen to be a combination of two powers 11 of y . The latter

ne can be written in the explicit form 

 α,β (y ) = (U 

′ 
α,β ) −1 (y ) = β sinh 

(
− 1 

α
ln y − ln β

)
, (10)

ith domain R 

+ . 

. Solving the optimization problem 

The optimization problem of the investor to choose an optimal

ortfolio and consumption rule can now be stated as 12 

 (x 0 ) := sup 

(c,A ): X A,c ∈X (x 0 ) 

E 

[∫ T ∧ τ

0 

δs U 1 (c s ) ds + δT U 2 (X T ) 1 { τ>T } 

]
, 

(11)

 1 (c) = K 

c 1 −γ

1 − γ
, U 2 (x ) = U α,β (x ) , 

or K , γ , α, β > 0. Here δt is a subjective discounting function for

he investor. It is strictly positive, decreasing and not necessarily

arkovian but adapted to the Brownian filtration (F t ) t∈ [0 ,T ] , with

0 = 1 . The constant K > 0 allows us to make consumption less or

ore important than terminal wealth in the total welfare of the

nvestor. 

Our definition of strategies which lead to admissible wealth

rocesses allows us to derive an auxiliary result which gives us a

o-called budget constraint , in analogy to the case where only pos-

tive wealth levels can occur. 

emma 3.1. For every ( c , A ) such that X A,c ∈ X (x 0 ) we have that 

 

[∫ T 

0 

H s c s ds + H T X 

A,c 
T 

]
= x 0 . (12)

oreover, for every consumption process c which satisfies the condi-

ions given above and any F T -measurable stochastic variable Y which

atisfies 

 

[∫ T 

0 

H s c s ds + H T Y 

]
= x 0 , 

here exists an investment strategy A such that X A,c 
T 

= Y and X A,c ∈
 (x ) . 
11 The case α = 1 also involves a logarithmic term in the convex dual. 
12 Here and in the sequel, we use the notation 1 A for an indicator function which 

quals one if A is true and zero if it is not. 
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Fig. 1. Consumption as function of wealth for CRRA and SAHARA terminal util- 

ity. We assume there are two tradable risky assets and one risk-free asset in 

the market. The asset price processes considered are d S 1 t = S 1 t (μ1 d t + σ1 d W 

1 
t ) , 

d S 2 t = S 2 t (μ2 d t + σ2 (ρd W 

1 
t + 

√ 

1 − ρ2 d W 

2 
t )) . Parameters were chosen to be X 0 = 1 , 

r = 0 . 05 , μ1 = 0 . 08 , μ2 = 0 . 10 , σ1 = 0 . 2 , σ2 = 0 . 3 , ρ = 0 . 3 , T = 1 , α = 2 , β = 

1 
2 

X 0 , 

K = 10 , γ = 5 , δt = exp (−0 . 03 t) , ζt = exp (−t/ 15) . 

Fig. 2. Investment as a function of wealth for CRRA and SAHARA terminal utility. 

The asset price processes and parameters were chosen as indicated before. 
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.1. Main result 

In a complete market setting, every contingent claim is attain-

ble by using a self-financing trading portfolio when the initial

ealth is sufficiently high. The previous lemma shows that this

till holds when an appropriate predefined consumption process

s included. This means that the dual approach to optimization for

ur portfolio problem can be extended to the case where risk aver-

ion is no longer assumed to be monotone. It allows us to charac-

erize the optimal strategies in the following theorem. 

heorem 3.2. Assume that E [ δ−2 /α
T 

] < ∞ , E [ δT L (H T /δT )] < ∞ for

 (x ) := x 1 −1 /α + x 1+1 /α + 1 α=1 ln (x ) and E [ δt ̃  L (H t /δt )] < ∞ for all t

 [0, T ] when ˜ L (x ) := x 1 −1 /γ . Then there exists a unique constant

 0 > 0 such that the optimal consumption and terminal wealth are

iven by 

c ∗t = c 0 

(
δt E [ ζt ] 

H t 

)1 /γ

, 

 

∗
T = β sinh 

(
γ

α
ln c ∗T −

1 

α
ln K − ln β

)
. 

We see that the SAHARA preference structure allows us to get

n explicit solution in this case where the financial market is com-

lete. Note that we have allowed the force of mortality to be

tochastic, but the independence of the filtration for the stochas-

ic mortality (G t ) t∈ [0 ,T ] and the filtration for asset prices (F t ) t∈ [0 ,T ] 
eans, in the absence of assets to hedge our mortality risk, that

he optimal strategy does not involve the process ζ t itself but only

ts expected value E [ ζt ] . 

.2. The optimal strategies 

If we are willing to make some additional assumptions on the

tructure of our financial market, we can derive an explicit formula

or the optimal allocation process A 

∗. More specifically, we now re-

trict ourselves to the case where the processes which characterize

ur financial market and the time preferences of the investor are

eterministic, which makes the asset price processes Markovian. 

roposition 3.3. If the processes δt , r t and both �−1 
t θt and θ t are

eterministic then the optimal allocation process has the form 

 

∗
t = 

(
1 

γ
f (t) c ∗t + 

1 

α

√ 

(X 

∗
t − f (t) c ∗t ) 2 + β2 g(t) 2 

)
�−1 

t θt (13) 

or certain positive deterministic functions f and g with f (T ) = 0 and

(T ) = 1 . Moreover, if we denote the risk tolerance for our optimized

alue function V as defined in (11) by T 0 (x 0 ) := −V ′ (x 0 ) /V ′′ (x 0 ) , we

ave that 

 0 (x 0 ) = E 

[∫ T 

0 

H s T 1 (c ∗s ) ds + H T T 2 (X 

∗
T ) 

]
(14) 

ith T 1 (c) = −U 

′ 
1 (c) /U 

′′ 
1 (c) and T 2 (x ) = −U 

′ 
2 (x ) /U 

′′ 
2 (x ) the risk toler-

nce functions for consumption and terminal wealth. 

The optimal portfolio dictates that one should keep a time-

arying part of wealth invested in one fixed fund, and the rest in

he bank account, i.e. we find a special version of the usual mutual

und theorem. The percentage invested changes stochastically over

ime. The form of the optimal portfolio is also more complicated

han in the pure power utility case, where we invest a constant

roportion of our wealth in risky assets. This special case corre-

ponds to β = 0 and α = γ in the proposition. 

In Figs. 1 and 2 optimal consumption and investment in risky

ssets are shown as a function of wealth at three points in time:

 = 0 , t = T / 2 and t = T . The parameter values used are given in

he caption below the figures. We show the cases where terminal
ealth is characterized by both SAHARA and CRRA utilities and we

bserve the following. 

First, the more wealthy the investor becomes, the more she

onsumes and the SAHARA-investor always consumes more than

he power-investor. The SAHARA-investor is more interested in sus-

aining a certain consumption level and might consume beyond

er means, even when her total wealth is negative. Under favor-

ble economic scenarios, which give rise to a large positive wealth,

he consumption pattern of a SAHARA- and a CRRA-investor be-

ome similar. 

Second, we observe in Fig. 2 that the SAHARA-investor invests

ore in risky assets than the CRRA-investor (for the same time and

ealth levels) in order to achieve the desired higher consumption

ith a higher probability. There is a unique wealth level where we

nd a minimal amount of investment in the risky assets and for

he parameter values chosen here, this occurs for a positive wealth.
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Fig. 3. Consumption as function of wealth for CRRA and SAHARA terminal utility. 

The asset price processes and parameters were chosen as indicated before, the time 

of consumption is t = 

1 
2 

T . 

Fig. 4. Investment as a function of wealth for CRRA and SAHARA terminal utility. 

The asset price processes and parameters were chosen as indicated before, the time 

of investment is t = 

1 
2 

T . 

i  
In general the sign of this point depends on the ratio γ / α, as the

following result shows. 

Corollary 3.4. Assume β > 0 . The minimal amount of investment in

risky assets occurs for a unique wealth level X̄ t which is negative if

α > γ , positive if α < γ and zero when α = γ . 

Another interesting feature of the CRRA/SAHARA model is the

shape of consumption as a function of wealth. This function is usu-

ally assumed to be concave 13 . Whether our optimal consumption

function can be convex for low wealth levels depends again on the

ratio γ / α. 

Corollary 3.5. Assume β > 0 . The function for optimal consumption

in terms of wealth is convex if α ≥ γ . For α < γ there is a point
ˆ X t ≥ 0 for every t ∈ [0, T [ such that consumption is convex for wealth

levels below that point and concave for wealth levels above that point.

Notice that for α < γ we have ˆ X t > 0 whenever β > 0 so con-

sumption as a function of wealth always switches between convex

and concave at some point. In the CRRA case, where β = 0 , con-

sumption can be convex too as long as risk aversion for consump-

tion is lower than risk aversion for terminal wealth. The occurrence

of convex consumption patterns is therefore not a specific feature

of the SAHARA utility form alone. 14 If we interpret terminal wealth

as a bequest then there is evidence to assume that α < γ since

relative risk aversion for bequests has been found to be lower than

relative risk aversion for consumption. 15 Note, however, that in our

model the terminal time is not the time of death. If T is the time

of, for example, retirement, then α < γ would imply lower risk

aversion among the elderly. This has been reported in Bellante and

Green (2004) . 

Figs. 3 and 4 show how the investor should consume and in-

vest for different relationships between the asymptotic risk aver-

sion for consumption ( γ ) and terminal wealth ( α). Moving from

α = 2 γ to α = γ / 2 , the investor becomes less risk-averse with re-

spect to the terminal wealth so for a given γ , the total risk aver-

sion decreases, too. As a consequence of a declining α, both CRRA-

and SAHARA-investors take more risky assets in their portfolios.

Note that Theorem 3.2 shows that consumption at the end of the

period c ∗T as a function of terminal wealth X ∗T does not depend on

the individual risk aversion parameters α and γ , but only on their

ratio. This could perhaps be used to design empirical experiments

which test whether this ratio is close to one, as is usual assumed,

or that there is a marked difference between the two risk aversion

coefficients. 

3.3. Development of strategies over time 

Fig. 5 shows for a given level of wealth (which is the initial

value X 0 = 1 ) how investment in the risky asset varies over time.

CRRA preferences with α = γ (the red solid line) lead to a constant
13 In the formulation of Keynes (1936) in The General Theory of Employment, In- 

terest and Money pp. 31.: ‘Not only is the marginal prosperity to consume weaker 

in a wealthy community, but, owing to its accumulation of capital being already 

larger, the opportunities for further investment are less attractive unless the rate of 

interest falls at a sufficiently rapid rate’. 
14 For a discussion about the curvature of the consumption function in the ab- 

sence of terminal wealth see Carroll and Kimball (1996) . 
15 In Carroll (20 0 0, 20 02) , the author points out that the bequest function is ir- 

relevant for most of population, but when it is included it should be treated as a 

luxury good in the sense that the elasticity of intertemporal substitution with re- 

spect to bequest is higher than the one for consumption. Assuming power utility 

functions to characterize the preferences for the bequest and for consumption, this 

implies that the relative risk aversion for terminal wealth in the form of a bequest 

is lower than the one for consumption. In Palligkinis (2015) , using a dataset of US 

stockholders drawn from the Health and Retirement Study, the author verifies the 

results of Carroll (20 0 0, 20 02) and finds a lower relative risk aversion for terminal 

wealth. 
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nvestment strategy if wealth does not change. This is not consis-

ent with the decreasing investment in stocks over time which is

ound in the empirical life-cycle literature. Such behavior can be

xplained using SAHARA preferences. This has been pointed out in

ork by Bernard and Kwak (2016) for the case without consump-

ion, and they use this property as a motivation to consider utili-

ies with non-monotone risk aversion in the first place. Our current

esults imply that a decrease in risky investments over the life cy-

le will still hold when there is a utility for consumption with the

ame risk aversion parameter ( α = γ ), as shown by the solid blue

ine in Fig. 5 . 

We also see that if we take risk aversion for terminal wealth

maller than for consumption ( α < γ ), equity exposure may

ncrease over time for the CRRA case. For SAHARA utility, we see

hat the exposure can even be non-monotone over time. Optimal

onsumption c ∗t will rise over time for a fixed level of wealth, but

ptimal investment now depends on a term which we can call
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Fig. 5. Investment as a function of time for a fixed wealth level. The asset price 

processes and parameters were chosen as indicated before. 
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nvestment for consumption ( f (t) c ∗t /γ ) and a term representing

nvestment for terminal wealth ( 
√ 

(X ∗t − f (t) c ∗t ) 2 + β2 g(t) 2 /α).

he function f is decreasing so the combined effect can lead to an

llocation of risky investments for consumption which decreases

ver time and an allocation for terminal wealth which increases

ver time. The weighting of these two effects varies over time so it

an happen that the trend downwards dominates far from the ter-

inal time while the trend upwards dominates towards the end. 

Fig. 6 shows this effect by plotting the fraction of wealth that is

nvested in the risky assets, ‖ A 

∗
t (t, X t ) ‖ /X t , for different values of

he risk aversion ratio α/ γ (in the graph on the left, where X t = 1 )

nd for different values of wealth X t (in the graph on the right,

here α/γ = 

1 
2 ). We see from the second graph that for very low

alues of wealth, the percentage invested in risky assets decreases

ver time while for large values of wealth it increases. For wealth

round one, it first decreases and then increases. We also note the

arge equity exposure for low wealth at the beginning of the in-

estment period, which can also be found in the figure of ( Bernard

 Kwak, 2016 ) for the optimal investment strategy. 

.4. Development of risk tolerance over time 

Eq. (14) for the absolute risk tolerance in Proposition 3.3 allow

s to compare risk aversion at earlier and later times. Gollier and

eckhauser (2002) showed in a finite period consumption model

hat investors with a longer time horizon are less risk averse if

he absolute risk tolerance function for consumption is convex and

ubhomogeneous. 16 In our setup we have consumption with a risk

olerance function T 1 (x ) = x/γ but also terminal wealth, for which

he risk tolerance equals T 2 (x ) = 

√ 

x 2 + β2 /α. Both are convex and

ubhomogeneous and we find the analogue of Gollier and Zeck-

auser’s result in continuous time for the case which includes

erminal wealth, since combining (14) with the budget constraint

3.1) we find: 

 0 (x 0 ) = E 

[∫ T 

0 

H s T 1 (c ∗s ) ds + H T T 2 (X 

∗
T ) 

]

= E 

[∫ T 

0 

H s c 
∗
s ds/γ + H T 

√ 

(X 

∗
T 
) 2 + β2 /α

]

16 A function h is subhomogeneous if for every x in its domain and for every m ≥
 we have that h ( mx ) ≤ mh ( x ). 

X  

b  

t  

t

≥ min { 1 /γ , 1 /α} E 

[∫ T 

0 

H s c 
∗
s ds + H T X 

∗
T 

]
= min { 1 /γ , 1 /α} x 0 

o risk tolerance at time zero is indeed larger than the risk aver-

ion for consumption at later times, and we get an extended result

hich also involves asymptotic risk tolerance of terminal wealth. 

.5. Parameter sensitivities 

When α and γ are equal and interest rates and market prices

f risk remain constant, we can derive the optimal consumption

nd investment strategies in more explicit form. 

orollary 3.6. If α = γ and the processes �−1 
t θt and r t and θ t are

onstant and 

t = exp (−ηt) , E [ ζt ] = exp (−ς t) , 

hen the optimal consumption and allocation process have the form 

c ∗t = c ∗0 

⎛ 

⎝ 

1 

2 

X 

∗
t 

x (t) 
+ 

1 

2 

√ (
X 

∗
t 

x (t) 

)2 

+ j(t) 

⎞ 

⎠ 

 

∗
t = 

1 

γ

√ 

(X 

∗
t ) 

2 + j(t) x (t) 2 �−1 
t θt 

ith 

 (t) = c ∗0 v 
−1 
γ (1 − e −v γ (T −t) ) + 

1 

2 

c ∗0 K 

−1 /γ e −v γ (T −t) 

v γ := 

(
1 − 1 

γ

)(
r + 

‖ θ‖ 

2 

2 γ

)
+ 

1 

γ
(η + ς ) 

j(t) := 2 β2 K 

1 /γ (c ∗0 ) 
−1 e −v −γ (T −t) /x (t) 

Notice that for β = 0 we find the classical power utility results

ince j ( t ) ≡ 0 in that case. 

In Fig. 7 we show some parameter sensitivities for this case.

he parameter K governs the relative importance of consumption

as opposed to terminal wealth) so making K smaller decreases

onsumption. Increasing the time preference parameter η (which

as the same effect as increasing the mortality rate ς in the op-

imal solution) increases current consumption and investment, as

xpected. Consumption becomes smaller when we make the risk

version parameter for terminal wealth α smaller, since less con-

umption means that more wealth is saved for the terminal time. If

he risk aversion parameter for consumption γ is decreased, con-

umption hardly changes but investment in risky assets rises for

igh levels of wealth, i.e. for cases when there is a large probability

hat we can consume and still have a decent amount of terminal

ealth. Making the parameter β smaller brings the SAHARA pref-

rence closer to CRRA; we see that for positive wealth values con-

umption and investment for the two types of preferences become

ery close to each other, but even for small values of β SAHARA

nvestors may still end up with negative wealth. 

. Comparison of strategies for different preferences 

Two investors who have CRRA and SAHARA preferences for ter-

inal wealth respectively but share the same preferences for con-

umption, will invest differently when they have the same ini-

ial capital x 0 at their disposal. We can characterize the difference

n their strategies in terms of their terminal total wealth values

 

∗
T 

− X ∗,CRRA 
T 

, which in this complete market represents a replica-

le contingent claim. The claim must have initial value zero since

he initial wealth of the two investors is the same. We can charac-

erize it explicitly: 
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Fig. 6. SAHARA Investment as a function of time and wealth / risk aversion ratio. The asset price processes and parameters were chosen as indicated before. On the left, 

values for risk aversion ratios 1/2, 1, and 2 have been indicated by red lines and the constant value for CRRA utility is shown as a red surface. On the right we indicate the 

values at wealth levels 1/2, 1, and 3/2 in green, red and purple. As a function of time they are always decreasing, first decreasing and then increasing, and always increasing, 

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 7. Parameter sensitivities. Default parameters (corresponding to dark blue lines) are X 0 = 1 , r = 0 . 05 , μ1 = 0 . 08 , μ2 = 0 . 10 , σ1 = 0 . 2 , σ2 = 0 . 3 , ρ = 0 . 3 , T = 10 , α = 2 , 

β = 

1 
2 

X 0 , K = 10 , γ = 5 , δt = exp (−ηt) , ζt = exp (−ςt) , η = 0 . 03 , ς = 1 / 15 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article). 
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17 Cumulative prospect theory by Tversky and Kahneman (1992) has been widely 

used to interpret consumption and investment behaviors. See for example Bowman, 

Minehart, and Rabin (1999) , Dichtl and Drobetz (2011) . Also see Eckhoudt, Fiori, 

Gianin, and R. (2015) for recent results on the influence of loss-averse preferences 

on portfolio choice. 
Proposition 4.1. Assume that the processes δt , �
−1 
t θt , r t and θ t are

deterministic. If we define X ∗
T 

as above for a certain β ≥ 0 and X ∗,CRRA 
T 

as the corresponding solution for β = 0 then we have 

X 

∗
T − X 

∗,CRRA 
T 

= v ·
(

H 

−1 /α
T 

E H 

1 −1 /α
T 

− H 

1 /α
T 

E H 

1+1 /α
T 

)
. 

for a constant v ≥ 0 which is given by 

v = 

√ 

x 2 
0 

+ 4 β2 E H 

1 −1 /α
T 

E H 

1+1 /α
T 

− | x 0 | . 

4.1. Gain-loss preferences 

In our approach, risk aversion for terminal wealth is increas-

ing when we approach the point of zero wealth from above, but

risk aversion decreases to zero when wealth continues to become

more negative. Our investors do therefore not exhibit risk-seeking

behavior for negative wealth. It is therefore interesting to com-

pare the behavior of such investors to ours. In Berkelaar et al.
2004) the problem of maximizing the expected utility of termi-

al wealth from investment in a complete market is solved for a

umber of utility functions. These include an example that was

roposed by Tversky and Kahneman (1992) , from the class of so

alled gain-loss utility functions which form an important element

f cumulative prospect theory 17 : 

 TK (X T ) = u + (X T ) 1 { X T > 0 } − u −(−X T ) 1 { X T ≤0 } , 

ith u + and u − utility functions which are concave as usual and

ith u ′ + (0) < u ′ −(0) to make preferences loss-averse in the sense

f ( Köbberling & Wakker, 2005 ). In the paper of Tversky and Kah-

eman, both u + and u − are power functions. 
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Fig. 8. Wealth as a function of the deflator for SAHARA and gain-loss preferences. Parameters were mostly chosen as before but here T = 5 , β = 2 and α = 0 . 88 . On the left 

we show the terminal time t = T while on the right we are halfway through the investment period, so t = T / 2 . 
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The resulting problem is no longer a concave optimization

roblem and some restrictions on possible terminal wealth distri-

utions must be imposed to obtain a well-posed problem. In the

aper by Berkelaar et al. terminal wealth is restricted to be pos-

tive. 18 Another possibility is to use a distortion of the probabil-

ty measure to model the fact that investors tend to assign more

eight to the lefthand (i.e. disadvantageous) tails of probability

istributions. Results for that more general case are given in Jin

nd Zhou (2008) and He and Zhou (2011) . 

As these papers show, the solutions for such problems of in-

estment without consumption take the general form 

 

∗
T = I + (yH T / f (H T )) 1 { H T ≤h } − a 1 { H T >h } , (15)

here I + denotes the inverse of (u + ) ′ and h > 0 and y > 0 are free

arameters that must be chosen optimally. The positive constant a

ollows from the budget constraint by determining the price of the

ontingent claim on both sides of the equation at time zero: 

 = 

E [ H T I + (yH T / f (H T )) 1 { H T ≤h } ] − x 0 

E [ H T 1 { H T >h } ] 
. 

he function f depends on the probability distortion and it equals

 ≡ 1 if there is no such distortion. If wealth is constrained to be

ositive then a must equal zero. 

The gain-loss preference implies risk seeking behavior for neg-

tive wealth levels. For the investor it is optimal to invest in a

laim which gives a positive payoff in good states of the deflator

rocess (when H T ≤ h ). The money invested in this claim, with

ayoff I + (yH T / f (H T )) 1 { H T ≤h } at time T , exceeds the initial wealth

 0 . This is made possible using the proceeds from selling another

laim, which generates a negative payoff in bad states of the world.

his claim with payoff −a 1 { H T >h } at time T can only attain the val-

es 0 and −a and adding this payoff can thus be interpreted as

aising money by selling an insurance product on certain unfavor-

ble outcomes of the deflator process. The extra money is used to

reate a leveraged position in stocks and bonds. 

For SAHARA preferences, a similar interpretation can be given.

e can rewrite our solution for that case (without distortion and

ithout consumption, i.e. K ↓ 0) in a similar form 

19 to compare the

wo expressions: 

 

∗
T = I α,β (yH T ) 1 { H ≤(y/β) α} − | I α,β (yH T ) | 1 { H > (y/β) α} . 
T T 

18 One could also use the weaker condition that wealth at the final time T must 

e larger than a certain lower bound with a specified probability; this assumption 

s made in the paper by Basak and Shapiro (2001) for classical utility functions. 
19 See (25) in the Appendix . 

s

 

s  

i  

l  
ith I α, β the inverse marginal utility for a SAHARA function with

arameters α and β . For β↓ 0 we converge to the CRRA solution

hich only includes a positive part but for the general case with

> 0 we see some differences with the solution for the gain-loss

reference structure. Allowing the investor to end up with debts

ives her the opportunity to sell a contingent claim that makes

er a debtor at time T in bad states, i.e. when H T > ( y / β) α . The

oney earned by this sale increases the amount of money that

an be invested to generate payoffs in the good states (where H T ≤
 y / β) α). 

When we compare the terminal wealth X T as a function of the

nal state of the economy H T for the SAHARA investor and for

he loss averse investor, i.e. an investor with an S-shaped utility

unction, we see a marked difference. The loss averse investor will

reate a leveraged portfolio with a terminal payoff that is discon-

inuous around a certain terminal state H T , meaning that when

he economy ends up around that state when time approaches

he horizon T , there is a lot of uncertainty about the eventual

ealth. The investor will either have a positive wealth or a sub-

tantially negative wealth. For the SAHARA case, the debt she owes

n bad states and the amount she owns in good states are linked

n a continuous fashion. We now have different payoffs in the

ifferent bad states H T > ( y / β) α , instead of just the fixed values

a and zero. This is a result of our milder behavior for negative

ealth: the S-shaped utility implies risk-seeking behavior for neg-

tive wealth which implies that the large debt −a is preferred over

he smoother profile of the SAHARA case, where investors prefer to

e mildly in debt instead of having the possibility to end up heav-

ly indebted. 

The optimal terminal wealth as a function of the deflator is

hus continuous for SAHARA preferences while it is discontinu-

us for gain-loss utility functions in the point H T = h . But since

he wealth dynamics follow a diffusion process, optimal wealth at

arlier times, X ∗t , will be a continuous function of the deflator H t 

t that time. As was shown earlier in the work of Berkelaar et al.

2004) , the optimal strategies may be quite similar when the ter-

inal time is still far away, even when the terminal wealth profile

s different. As an illustration we show in Fig. 8 the optimal wealth

s a function of the deflator H t for t = T and t = 

1 
2 T for both pref-

rences. We also plot the density of the deflator at these times to

how the probabilities of reaching certain outcomes. 

Since the two preferences have the same asymptotic risk aver-

ion at high wealth levels we see that the strategies are very close

n the most favorable scenario’s (the good states represented by

ow values of the deflator) but we also see that they differ in very
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bad states. While the losses under SAHARA preferences can be un-

bounded, the investor with gain-loss utility makes sure she never

goes below the fixed level −a . From the probability density of the

deflator H (represented by the black line in Fig. 8 ) we see that

when we are halfway through the optimization period at t = 

1 
2 T ,

the strategies are quite close for the most relevant bad outcomes,

i.e. for states where the distribution of the deflator has a lot of

probability mass. 

5. Conclusion 

The present paper solves an optimal consumption and invest-

ment problem in a multi-asset financial market that explicitly in-

corporates negative terminal wealth. We assume that the opti-

mizing investor has CRRA preferences for consumption and SA-

HARA utility for terminal wealth. Relying on the dual approach

to stochastic optimization, we are able to derive explicit solutions

for the optimal consumption, wealth and investment strategies. It

turns out that the qualitative behavior of these strategies critically

depends on the ratio of the (asymptotic) risk aversion coefficients

for consumption and terminal wealth. Interestingly, we find that

for certain values of these parameters the consumption as a func-

tion of wealth may be convex and concave at different wealth lev-

els, Moreover, optimal investment may not be monotone as a func-

tion of the remaining time to invest and consume. 

Comparing our strategies with those generated by gain-loss

preferences, we conclude that in the absence of consumption we

find very similar investment strategies as long as the terminal time

is still far away. Closer to the terminal time, the changes in the lat-

ter preferences from risk aversion to risk seeking behavior at zero

wealth makes the strategies different in the worst scenarios of the

economy since SAHARA investors do not constrain themselves to

keep wealth above a certain fixed value. 

It would be interesting to compare our results to the case

where consumption is included in the optimal investment problem

under gain-loss preferences. Results for utility functions of con-

sumption that are kinked or where both u + and u − are power

functions have been derived in van Bilsen (2013) but no terminal

wealth has been included there. All wealth is therefore consumed

over the time horizon and there is no trade-off between consump-

tion during, and a possible debt after, the time period considered.

It would be interesting to see if similar results as in our case would

be obtained if both consumption and terminal wealth may gener-

ate utility, since we have seen in this paper that it is the relative

strength of the asymptotic risk aversion in these two components

that determines the shape of the optimal strategies for investment

and consumption. 

Finally, we remark that for SAHARA functions the unique point

of maximal risk aversion directly translates into a unique wealth

level which corresponds to minimal investment, as shown in

Corollary 3.4 . It will be interesting to study whether such results

can be extended to preferences which exhibit a more complex

shape, such as the ones used in the tri-reference point theory of

Wang and Johnson (2012) . 
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ppendix 

roof. Lemma 2.1 

Denote Y t = Y A,c 
t . Due to our assumptions on � there exists a

onstant σ max such that 

 

Q [ Y 2 t ] = E 

Q 

[∫ t 

0 

‖ A 

′ 
u �u /B u ‖ 

2 du 

]

≤ σ 2 
max E 

Q 

[∫ t 

0 

K̄ (1 + (X 

A,c 
u ) 2 ) B 

−2 
u du 

]

≤ K̄ σ 2 
max E 

Q 

[ ∫ t 

0 

[
B 

−2 
u + Y 2 u + 

(
x 0 −

∫ T 

0 

c s 

B s 
ds 

)2 ]
du 

] 

= 

ˆ K + 

˜ K σ 2 
max 

∫ t 

0 

E 

Q [ Y 2 u ] du (16)

or a.s. finite stochastic variables ˆ K and 

˜ K , where we have used the

efinition of Y A,c 
t in (6) and the fact that the process r is bounded.

his gives, by Gronwall’s lemma, that E 

Q [ Y 2 
T 

] is finite. For every

 F t )-stopping time τ we have that E 

Q [ Y 2 t∧ τ ] ≤ E 

Q [ Y 2 
T 

] so the col-

ection of stochastic variables ( Y t ∧ τ ), for all t ∈ [0, T ] and over all

topping times τ , is uniformly integrable. But this means Y is a Q -

artingale and A is martingale-generating. �

roof. Lemma 3.1 

The first statement is immediate: let X A,c ∈ X (x 0 ) and define Y t 
s in (6) then we have by the Bayes Rule that 

 

[∫ T 

0 

H s c s ds + H T X 

A,c 
T 

]
= B 0 E 

Q 

[∫ T 

0 

(c s /B s ) ds + (X 

A,c 
T 

/B T ) 

]
= x 0 + B 0 E 

Q [ Y T ] = x 0 . 

or the converse, assume c and Y given as indicated and define the

rocess 

¯
 t = E 

Q 

[∫ T 

t 

(c s B t /B s ) ds + Y B t /B T 

∣∣∣F t 

]
. 

e then take 

 t := ( ̄X t /B t ) + 

∫ t 

0 

(c s /B s ) ds = E 

Q 

[∫ T 

0 

(c s /B s ) ds + Y/B T 

∣∣∣F t 

]
, 

hich is a Q -martingale with respect to the Brownian filtration

tarting at M 0 = x 0 . By martingale representation there therefore

xists an adapted process ˜ A such that M t = x 0 + 

∫ t 
0 

˜ A 

′ 
u dW 

Q 
u . But tak-

ng A t = B t �
−1 
t 

˜ A t then gives, using (6) , 

 

A,c 
t = B t (x 0 + 

∫ t 

0 

(A 

′ 
u �u /B u ) dW 

Q 
u + 

∫ t 

0 

(c u /B u ) du ) 

= B t (M t + 

∫ t 

0 

(c u /B u ) du ) = X̄ t . 

o X A,c 
T 

= X̄ T = Y as required and since Y A,c 
t = M t − x 0 we see that

 is indeed martingale-generating. �

roof. Theorem 3.2 

Using Fubini’s theorem we write 

 

[∫ T ∧ τ

0 

δs U 1 (c s ) ds + δT U 2 (X T ) 1 { τ>T } 

]

= E 

[∫ T 

0 

δs U 1 (c s ) 1 { τ>s } ds + δT U 2 (X T ) 1 { τ>T } 

]

= E 

[∫ T 

0 

E 

[
δs U 1 (c s ) 1 { τ>s } |F T 

]
ds + E 

[
δT U 2 (X T ) 1 { τ>T } |F T 

]]

= E 

[∫ T 

0 

δs (E [ ζs ]) U 1 (c s ) ds + δT (E [ ζT ]) U 2 (X T ) 

]
, (17)
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1

here we have used the independence of the process 1 { τ > t } with

espect to the filtration (F t ) t∈ [0 ,T ] and the fact that both δ and c

re adapted to that filtration. Together with the previous lemma

his proves that the optimal ( c , A ) in the optimization problem

11) coincides with the optimal strategy ( c , A ) of 

 (x 0 ) = max 
(c u ) u ∈ [0 ,T ] , X T ∈ m F T (

E 

[∫ T 

0 

δs (E [ ζs ]) U 1 (c s ) ds 

]
+ (E [ ζT ]) E [ δT U 2 (X T )] 

)

s.t. E 

[∫ T 

0 

H t c t dt + H T X T 

]
= x 0 , (18) 

here m F T is the class of all F T -measurable stochastic variables

nd the consumption process c must satisfy the same conditions

s before. 

By the definition of the convex dual ˜ U i , we have 

 

[∫ T 

0 

δs (E [ ζs ]) U 1 (c s ) ds 

]
+ (E ζT ) E [ δT U 2 (X T )] 

+ λ

(
x 0 − E 

[∫ T 

0 

H s c s ds + H T X T 

])

≤ λx 0 + E 

[∫ T 

0 

δs ̃  U 1 (λH s / (δs E [ ζs ])) ds + δT 
˜ U 2 (λH T / (δT E [ ζT ])) 

]
, 

or a Lagrange multiplier λ, with equality if and only if 

 t = I 1 (λH t / (δt E [ ζt ])) = (λH t / (Kδt E [ ζt ])) 
−1 /γ (19) 

 T = I 2 (λH T / (δT E [ ζT ])) = I 2 ((I 1 ) 
−1 (c T )) 

= I 2 (U 

′ 
1 (c T )) = I 2 (K(c T ) 

−γ ) . (20) 

ubstitution of these expressions in the utility functions U 1 

nd U 2 shows that there exist constants K X and K c such that

 U 2 ( X T )| ≤ K X L ( H T / δT ) and | U 1 (c t ) | ≤ K c ̃  L (H t /δt ) so E [ δT U 2 (X T )] and

 [ δt U 1 (c t )] are finite for all t ∈ [0, T ] by the assumptions we made

n the statement of the Theorem. From (10) we see that it only

emains to show that there is a value λ > 0 such that the bud-

et constraint is satisfied since the previous lemma shows that one

an then find a martingale-generating investment strategy to gen-

rate this terminal wealth X T . Notice that c 0 = (λ/K) −1 /γ so the

onstraint can be rewritten as 

 0 = E 

[∫ T 

0 

H s c s ds + H T X T 

]

= E 

[∫ T 

0 

H s c s ds + H T I 2 (K(c T ) 
−γ ) 

]

= E 

[
c 0 

∫ T 

0 

H 

1 −1 /γ
s (δs E [ ζs ]) 

1 /γ ds + 

1 

2 

H 

1 −1 /α
T 

(δT E [ ζT ] /K) 1 /α

(c 0 ) 
γ /α − 1 

2 

β2 H 

1+1 /α
T 

(δT E [ ζT ] /K) −1 /α(c 0 ) 
−γ /α
] 
. 

ince r and θ are uniformly bounded, E [ H 

m 

T 
] exists for all

 ∈ R . The process δt decreases while δ0 = 1 so the condition

 [(δT ) 
−2 /α] < ∞ guarantees that the righthand-side is a finite ex-

ression for all c 0 > 0 by the Cauchy–Schwarz inequality. The

ighthand side is clearly an increasing function of c 0 , which goes

o −∞ for c 0 ↓ 0 and to ∞ for c 0 → ∞ so there must exist a unique

ositive value of c 0 such that the constraint is satisfied. �

roof. Proposition 3.3 

Since d(H 

n ) / (H 

n ) = n (dH/H) + 

1 
2 n (n − 1) d〈 H, H〉 / (H 

2 ) we can

efine for all s ≥ t the functions 

 n (t, s ) := E [(H s /H t ) 
n | F t ] = exp 

(
n 

∫ s 

t 

(−r u + 

1 

2 

(n − 1) ‖ θu ‖ 

2 ) du 

)

nd these are deterministic. From Lemma 3.1 we know that 

 

∗
t = 

1 

H t 
E 

[∫ T 

t 

H s c 
∗
s ds + H T X 

∗
T 

∣∣∣F t 

]

= 

1 

H t 

[
c ∗0 

∫ T 

t 

E [ H 

1 −1 /γ
s |F t ](δs E [ ζs ]) 

1 /γ ds + 

1 

2 

E [ H 

1 −1 /α
T 

|F t ] 

(δT E [ ζT ] /K) 1 /α(c ∗0 ) 
γ /α

−1 

2 

β2 E [ H 

1+1 /α
T 

|F t ](δT E [ ζT ] /K) −1 /α(c ∗0 ) 
−γ /α
] 

= c ∗0 H 

−1 /γ
t 

∫ T 

t 

h 1 −1 /γ (t, s )(δs E [ ζs ]) 
1 /γ ds + 

1 

2 

H 

−1 /α
t h 1 −1 /α

(t, T )(δT E [ ζT ] /K) 1 /α(c ∗0 ) 
γ /α

−1 

2 

β2 H 

1 /α
t h 1+1 /α(t, T )(δT E [ ζT ] /K) −1 /α(c ∗0 ) 

−γ /α ) 

:= A 1 (t, T ) H 

−1 /γ
t + A 2 (t, T ) H 

−1 /α
t − A 3 (t, T ) H 

1 /α
t , (21) 

or deterministic functions A i which are defined in the last equality

nd which are positive for all t ≤ T . Applying Îto’s Lemma we see

hat there exists an adapted process L t such that 

X 

∗
t = L t dt + 

(
−1 

γ
A 1 (t, T ) H 

−1 /γ
t + 

−1 

α
A 2 (t, T ) H 

−1 /α
t 

+ 

−1 

α
A 3 (t, T ) H 

1 /α
t 

)
(−θ ′ 

t dW t ) . 

n the other hand, dX ∗t satisfies (5) so d X ∗t = L t d t + (A 

∗
t ) 

′ �t d W t .

his gives, by uniqueness in the martingale representation, that 

 

∗
t = 

(
1 

γ
A 1 (t, T ) H 

−1 /γ
t 

+ 

1 

α

[
A 2 (t, T ) H 

−1 /α
t + A 3 (t, T ) H 

1 /α
t 

])
�−1 

t θt . (22) 

ut since H 

−1 /γ
t = (c ∗t /c ∗0 )(δt E [ ζt ]) 

−1 /γ we can write

(1 /γ ) A 1 (t, T ) H 

−1 /γ
t = (1 /γ ) f (t) c ∗t for the positive determinis-

ic function f given by 

f (t) = 

∫ T 

t 

h 1 −1 /γ (t, s ) 

(
δs E [ ζs ] 

δt E [ ζt ] 

)1 /γ

ds 

= 

∫ T 

t 

e −(1 − 1 
γ ) 
∫ s 

t (r u + 1 
2 γ ‖ θu ‖ 2 ) du 

(
δs E [ ζs ] 

δt E [ ζt ] 

)1 /γ

ds 

nd by (21) 

1 

α

(
A 2 (t, T ) H 

−1 /α
t + A 3 (t, T ) H 

1 /α
t 

)2 
= 

1 

α

(
A 2 (t, T ) H 

−1 /α
t − A 3 (t, T ) H 

1 /α
t 

)2 + 

4 

α
A 2 (t, T ) A 3 (t, T ) 

= 

1 

α
( X 

∗
t − f (t) c ∗t ) 

2 + 

4 

α
A 2 (t, T ) A 3 (t, T ) . 

he choice 

(t) = 2 β−1 
√ 

A 2 (t, T ) A 3 (t, T ) = exp 

(
−
∫ T 

t 

(r u − 1 

2 

‖ θu ‖ 

2 /α2 ) du 

)
hen proves the first result. 

For the second result we first differentiate (12) with respect to

he initial wealth x 0 to find that 

 = E 

[∫ T 

0 

H s 
∂c ∗s 
∂x 0 

ds + H T 

∂X 

∗
T 

∂x 0 

]
(19) −(20) = E 

[∫ T 

0 

H s 
∂λ

∂x 0 

H s 

δs E [ ζs ] 
I ′ 1 

(
λH s 

δs E [ ζs ] 

)
ds 
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+ H T 
∂λ

∂x 0 

H T 

δT E [ ζT ] 
I ′ 2 

(
λH T 

δT E [ ζT ] 

)]

= − 1 

λ

∂λ

∂x 0 
E 

[∫ T 

0 

H s T 1 (c ∗s ) ds + H T T 2 (X 

∗
T ) 

]
(23)

where we have used that for all utility functions U with derivatives

U 

′ and their inverses I = (U 

′ ) −1 we may show by simple differenti-

ation that xI ′ (x ) = −T (I(x )) . This shows that we are done when we

prove that λ = V ′ (x 0 ) . This follows from differentiating (18) with

respect to x 0 since this implies that 

 

′ (x 0 ) := E 

[∫ T 

0 

δs E [ ζs ] U 

′ 
1 (c ∗s ) 

∂c ∗s 
∂x 0 

ds + δT E [ ζT ] U 

′ 
2 (X 

∗
T ) 

∂X 

∗
T 

∂x 0 

]
(19) −(20) = E 

[∫ T 

0 

λH s 
∂c ∗s 
∂x 0 

ds + λH T 

∂X 

∗
T 

∂x 0 

]
= λ

where we have used (23) again in the last step. �

Proof. Corollary 3.4 

Finding the minimum means calculating 

0 = 

∂ 

∂H t 
(γ −1 A 1 (t, T ) H 

−1 /γ
t + α−1 A 2 (t, T ) H 

−1 /α
t + α−1 A 3 (t, T ) H 

1 /α
t )

= −H 

−1 
t (γ −2 A 1 (t, T ) H 

−1 /γ+α−2 A 2 (t, T ) H 

−1 /α
t −α−2 A 3 (t, T ) H 

1 /α
t )

= −H 

−1 
t α−2 (X 

∗
t + (α2 γ −2 − 1) H 

−1 /γ
t A 1 (t, T )) 

which gives the result since H t and A 1 ( t , T ) are both positive. �

Proof. Corollary 3.5 

We can write H 

−1 /γ
t = c ∗t m (t) for the strictly posi-

tive deterministic function m (t) = (c ∗
0 
) −1 (δt E ζt ) 

−1 /γ and

X ∗t = A 1 (t, T ) c ∗t m (t) + A 2 (t, T )[ c ∗t m (t)] γ /α − A 3 (t, T )[ c ∗t m (t)] −γ /α . 

Twice differentiating the righthand side with respect to c ∗t and

making the result strictly positive shows us where the consump-

tion function is strictly concave (since consumption increases in

wealth). This gives 

0 < 

γ

α

(
γ

α
− 1 

)
A 2 (t, T )(c ∗t ) 

γ /α−2 m (t) γ /α

−γ

α

(
γ

α
+ 1 

)
A 3 (t, T )(c ∗t ) 

−γ /α−2 m (t) −γ /α

= 

γ

α2 
A 2 (t, T )(c ∗t ) 

−γ /α−2 m (t) −γ /α((γ − α) [ c ∗t m (t)] 2 γ /α

−(γ + α) A 3 (t, T ) /A 2 (t, T ) . 

This proves that for α ≥ γ consumption is never concave while for

α < γ the function changes from convex to concave when crossing

from below to above consumption level 

ˆ c t = m (t) −1 

[
(γ + α) A 3 (t, T ) 

(γ − α) A 2 (t, T ) 

] α
2 γ

= 

[
β2 (γ + α) 

(γ − α) 

h 1+1 /α(t, T ) 

h 1 −1 /α(t, T ) 

] α
2 γ

= β
α
γ

(
γ + α

γ − α

) α
2 γ

e −
1 
γ

∫ T 
t (r u − 1 

2 ‖ θu ‖ 2 ) du 
, 

which corresponds to a unique value ˆ X t > 0 when β > 0 and gives
ˆ X t = 0 for β = 0 . �

Proof. Corollary 3.6 

From (21) we know that when γ = α we have 

X 

∗
t = [ A 1 (t, T ) + A 2 (t, T )] H 

−1 /γ
t − A 3 (t, T ) H 

1 /γ
t 

and this equation can be solved to give a solution for H 

−1 /γ
t : 

H 

−1 /γ
t = 

1 

2 

X 

∗
t 

A 1 (t, T ) + A 2 (t, T ) 

+ 

1 

2 

√ (
X 

∗
t 

A 1 (t, T ) + A 2 (t, T ) 

)2 

+ 

4 A 3 (t, T ) 

A 1 (t, T ) + A 2 (t, T ) 
ut c ∗t = c ∗
0 
(δt E [ ζt ]) 

1 /γ H 

−1 /γ
t so we have 

 

∗
t /c ∗0 = 

1 

2 

X 

∗
t 

(A 1 (t, T ) + A 2 (t, T ))(δt E [ ζt ]) −1 /γ

+ 

1 

2 

√ √ √ √ √ √ 

(
X 

∗
t 

(A 1 (t, T ) + A 2 (t, T ))(δt E [ ζt ]) −1 /γ

)2 

+ 

4 A 3 (t, T )(δt E [ ζt ]) 1 /γ

(A 1 (t, T ) + A 2 (t, T ))(δt E [ ζt ]) −1 /γ

= 

1 

2 

X 

∗
t 

x (t) 
+ 

1 

2 

√ (
X 

∗
t 

x (t) 

)2 

+ j(t) (24)

f we define 

 (t) = (A 1 (t, T ) + A 2 (t, T ))(δt E [ ζt ]) 
−1 /γ

= c ∗0 v 
−1 
γ (1 − e −v γ (T −t) ) + 

1 

2 

c ∗0 K 

−1 /γ e −v γ (T −t) 

j(t) = 4 A 3 (t, T )(δt E [ ζt ]) 
1 /γ /x (t) = 2 β2 K 

1 /γ (c ∗0 ) 
−1 e −v −γ (T −t) /x (t) 

nd the first result follows. For the second result we see from (21),

22) and (24) that when α = γ that 

 

∗
t = γ −1 (X 

∗
t + 2 A 3 (t, T ) /H 

−1 /γ
t )�−1 

t θt 

= γ −1 

(
X 

∗
t + 

1 

2 

j(t) x (t) 
c ∗0 
c ∗t 

)
�−1 

t θt 

= γ −1 

( 

X 

∗
t + 

j(t) x (t) 2 

X 

∗
t + 

√ 

(X 

∗
t ) 

2 + j(t) x (t) 2 

) 

�−1 
t θt 

= 

1 

γ

√ 

(X 

∗
t ) 

2 + j(t) x (t) 2 �−1 
t θt 

here we have used once more that c ∗t = c ∗0 (δt E [ ζt ]) 
1 /γ H 

−1 /γ
t . �

roof. Proposition 4.1 

Substitution of t = T in expression (21) for X ∗t with β ≥ 0 shows

hat X ∗T takes the form 

 

∗
T = yH 

−1 /α
T 

− β2 y −1 H 

1 /α
T 

(25)

or a certain deterministic value y ≥ 0 which should thus satisfy

he equation 

 0 = y E H 

1 −1 /α
T 

− β2 y −1 E H 

1+1 /α
T 

, 

hich has the solution 

y = 

1 

2 

(E H 

1 −1 /α
T 

) −1 (x 0 + 

√ 

x 2 
0 

+ 4 β2 E H 

1 −1 /α
T 

E H 

1+1 /α
T 

) 

 

−1 = 

1 

2 

(E H 

1+1 /α
T 

) −1 β−2 (−x 0 + 

√ 

x 2 
0 

+ 4 β2 E H 

1 −1 /α
T 

E H 

1+1 /α
T 

) . 

ut then 

 

∗
T = 

(√ 

x 2 
0 

+ 4 β2 E H 

1 −1 /α
T 

E H 

1+1 /α
T 

+ x 0 

)
H 

−1 /α
T 

E H 

1 −1 /α
T 

+ 

(
−
√ 

x 2 
0 

+ 4 β2 E H 

1 −1 /α
T 

E H 

1+1 /α
T 

+ x 0 

)
H 

1 /α
T 

E H 

1+1 /α
T 

. 

ubtracting the same expression for the special case where β = 0

hen gives the result. �
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