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ABSTRACT

The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in
astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of
thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed
using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation
X-ray timing instrument like ASTROSAT, NICER, or a mission similar to LOFT. In this paper, we showcase the use
of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting
synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson
realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with
the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness
of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined
parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of �3%
compared to the true value and with �5% statistical uncertainty. The next best determined are the mass and radius;
for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to �5%, with respective
uncertainties of �7% and �10%. The accuracy and precision depend on the observer inclination and spot
colatitude, with values of ∼1% achievable in mass and radius if both the inclination and colatitude are 60°.
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1. INTRODUCTION

Neutron stars are an astrophysical laboratory for studying
cold supra-nuclear-density matter. Accreting millisecond X-ray
pulsars, a particular subset of neutron stars in low-mass X-ray
binaries (LMXBs), are rapidly spinning accretion-powered
neutron stars with spin periods of a few milliseconds (e.g.,
SAX J1808.4–3658; Wijnands & van der Klis 1998). Their
pulsed X-ray emission originates from material striking the
surface of the neutron star during regular accretion and
warming an area on the surface so that it emits blackbody
radiation. Then, as the neutron star rotates, it gives periodic
oscillations in brightness as the emitting region faces toward
and away from the observer. Since these photons originate
from the surface of the neutron star itself, physical properties
like its mass and radius are encoded in the detected pulse
profile. Fitting these pulse profiles with realistic models can
then yield neutron star mass and radius estimates (Watts
et al. 2016).

In addition to regular pulsed X-ray emission, some neutron
stars in LMXBs exhibit thermonuclear (Type I) X-ray bursts
(Watts 2012). In a fraction of thermonuclear X-ray bursts, we
observe brightness oscillations, where the frequency corre-
sponds strongly with the spin frequency of the neutron star;
these are referred to as thermonuclear burst oscillations. The
pulse profile models that we discuss in this paper refer
specifically to models of these burst oscillations.

The emission area on the surface of the neutron star is
referred to as the hot spot or spot. Theories suggest two
different surface hot spot models: one that ignites nuclear
burning at one point and spreads across the whole neutron star,
and another that ignites at one point and begins to spread but

remains limited to a smaller area (referred to as a “persistent hot
spot”; see Watts 2012 and references therein). The persistent
hot spot on the surface of a rotating neutron star has been
demonstrated to be an effective model for Type I X-ray bursts
from the source 4U 1636–536 (Artigue et al. 2013), and so we
use a persistent spot model with no size variation over the
course of the burst. The fixed spot model is used for
convenience here; a changing spot model could be incorporated
for observations that show evidence for such behavior.
The spectral model depends on the physics of the spot

production and includes both the energy and angular depend-
ence of the emitted radiation. In the case of rotation-powered
X-ray pulsars (Bogdanov 2013), a hydrogen atmosphere model
is appropriate (e.g., Heinke et al. 2006). The hydrogen
atmosphere model depends on the spot’s temperature and the
local surface gravity. Since the surface gravity only depends on
the mass, radius, and spin of the star (AlGendy &
Morsink 2014), the local temperature is the only additional
free parameter introduced by the spectral model.
For accretion-powered X-ray pulsars, an empirical model

including a blackbody plus Comptonized photons has been
used, motivated by spectral observations (Poutanen &
Gierliński 2003; Leahy et al. 2009, 2011; Morsink &
Leahy 2011). The Comptonization model includes photon
power-law indices and a parameterized fan-beaming model.
These models required two free parameters, one for the energy
dependence and the other for the angular dependence of the
emitted radiation. One of the issues seen with fitting the data
from the accretion-powered X-ray pulsars is that the extra
degree of freedom in the radiation’s angular dependence leads
to extra degeneracies among the geometric parameters. The
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result is fairly large regions of parameter space allowed by the
fits, which do not strongly constrain the neutron star’s equation
of state.

Since thermonuclear X-ray burst oscillations can be well
reproduced with a simpler spectral model, we can fit models in
a reduced but still physically motivated parameter space. The
presence of fewer free parameters gives fewer degeneracies
among the parameters and therefore allows for better
constraints on the neutron star’s mass and radius.

In the setup of our models, we assume that the inner
boundary of the accretion disk is the neutron star’s corotation
radius (Ghosh & Lamb 1979). From this assumption, the
accretion disk would block emission from a possible second
antipodal hot spot (from an observer’s perspective), so we only
test models for one spot in the northern hemisphere of the
neutron star. If the signature of an antipodal spot is detected,
our code can be easily adapted to include a second hot spot.

We created synthetic data for a variety of different neutron
star and spot parameters. Fitting multiple Poisson realizations
for each synthetic pulse profile allows us to disentangle what
uncertainty is due to random statistical fluctuations and what is
due to inherent degeneracy between the parameters; under-
standing both is crucial for placing proper constraints on
neutron star masses and radii. The pulse profile fitting was
carried out with the Ferret optimization algorithm (Fiege 2010)
to determine the acceptable range of masses and radii.

In this paper we show that evolutionary optimization
algorithms are a powerful method of fitting neutron star pulse
profiles, and we test the effects of changing various input
parameters on how well we can recover the true neutron star
mass and radius. In Section 2 we explain the details of
constructing the pulse profiles, our parameter choices, and the
Ferret algorithm. The results of the pulse profile fitting are
described and examined in Section 3, and the conclusions are
discussed in Section 4.

2. PULSE PROFILE MODELS

We construct the pulse profiles within the Schwarzschild
+Doppler (S+D) approximation (Miller & Lamb 1998;
Poutanen & Gierliński 2003) and the oblate Schwarzschild
(OS) approximation (Morsink et al. 2007). In the S+D and OS
approximations, the metric exterior to the rotating neutron star
is approximated by the Schwarzschild metric as described by
Pechenick et al. (1983), adding the appropriate Doppler boost
factors arising from the rotation of the star. In the S+D
approximation the surface of the star is a sphere, while in the
OS approximation the surface is an oblate spheroid. Cadeau
et al. (2007) compared the S+D and OS results with pulse
profiles generated from the exact metric and showed that the
OS approximation is a good approximation for stars spinning
with frequencies above 300 Hz. However, we continue to use
the S+D approximation in many of our models in order to
further explore the effect of using the wrong shape on the fits.
At spin frequencies higher than 600 Hz, it may be necessary to
use higher-order approximations that make use of the star’s
quadrupole moment (Psaltis & Özel 2014); however, this level
of approximation is not necessary for the stars studied in this
paper.

Pulse profiles can be constructed once eight geometric
parameters and a spectral emissitivity model are specified. The
eight geometric parameters are the neutron star’s mass M,
equatorial radius R, spin frequency νspin, the observer’s

inclination angle i (as measured from the spin axis), the hot
spot’s colatitude θ, the angular radius of the spot ρ, the distance
to the star d, and a phase offset f. In practice, the star’s spin
frequency will always be known, so there are only seven
geometric parameters. It is possible to add parameters
describing a more complicated shape for the spot (Poutanen
et al. 2009), but in this paper we only consider the simplest spot
models, which are circular spots with uniform temperature.
Due to the approximately universal nature of a spinning
neutron star’s shape (Morsink et al. 2007; Bauböck et al. 2013),
inclusion of the star’s oblate shape does not require any
additional free parameters.
Thermonuclear X-ray burst oscillations can be spectrally

modeled as a single-temperature blackbody with limb darke-
ning(Artigue et al. 2013). Once a prescription for the angular
dependence has been selected, such as the Chandrasekhar
(1960) limb-darkening model (approximated by the Hopf
function), the only free parameter is the hot spot’s temperature.
The reduced parameter space required by this spectral model
results in less degeneracy with the geometric parameters. For
this reason, the oscillations from Type I X-ray bursts will be a
major target for large-area, high-time-resolution X-ray tele-
scopes like ASTROSAT(Singh et al. 2014), the soon-to-be
launched NICER mission(Arzoumanian et al. 2014), and a
future LOFT-like mission(Feroci et al. 2012).
The geometric parameters M, R, i, and θ have inherent

degeneracies, so it is useful to refer to less degenerate
combinations of these parameters. In the spherical S+D
approximation, i and θ only appear in the formulae in the
combinations qisin sin and qicos cos . As a result, in all fits
there is a simple degeneracy that allows i and θ to be switched.
Likewise, M and R are somewhat degenerate, so the
dimensionless compactness ratio M/R can be better con-
strained. These parameter combinations factor into the
approximate bolometric pulse amplitude Amp (Beloboro-
dov 2002),

q
q

=
-
+ -

M R i

M R M R i
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1 2 sin sin

2 1 2 cos cos
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( )
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1 2
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in geometric units (G=c=1). Due to the reduced degen-
eracy, it is possible to fit for qisin sin , qicos cos , M/R, Amp,
and β better than the individual parameters. In our models, we
consider an infinitesimally small spot for simplicity. However,
the q-i degeneracy can be partially broken for models with a
large spot, in which case the spot would span a range in θ but
not in i.
Equation (1) is only an approximate relation for the

bolometric pulse amplitude. In reality, the pulse amplitude
depends on both the emitted energy spectrum and the energy
bands at which the observations are made. There is no simple
formula for the dependence of the pulse amplitude on energy,
but it can be computed numerically. Since the pulse amplitude
Amp depends on the observed photon energy, observations of
the burst oscillations in two or more energy bands can provide
stronger constraints than suggested by Equation (1); for this
reason, two energy bands are used in this work. Additional
information could be extracted with more energy bands, but we
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were unable to accommodate more bands. The projected
velocity β controls the asymmetry in the pulse profile through
the Doppler boosting effect, as well as the phase lags between
the hard and soft energy bands. For higher values of β, the
pulse profiles are more asymmetric in rise and fall times,
showing the effects of higher harmonics.

Previous work (Morsink & Leahy 2011; Lo et al. 2013;
Stevens 2013; Bauböck et al. 2015) has shown that for smaller
spots, it is sufficient to compute the pulse profile assuming a
point-source spot instead of an extended region. By adopting
the point-source approximation, we simplify the calculation
and do not make use of the angular radius parameter ρ,
reducing the number of free geometric parameters to 6.
Furthermore, we normalize the synthetic pulse profiles to have
a mean of 1 to remove the dependence on the distance d, giving
five free geometric parameters for each model.

Our goal is to constrain the neutron star’s mass and radius
based on fitting models to the pulse profile and to determine
how the shape of the pulse profile affects how well we can
constrain its M and R. By fitting synthetic data, the input
parameters are known, so we can analyze how well the fitting
can recover the true M and R. In this paper we investigate two
sources of error in the constraints: degeneracy-related uncer-
tainty and statistical uncertainty. Although the two types of
uncertainties are coupled, we have introduced two measures of
the uncertainties sdegen and σ, which are affected differently by
the degeneracy and the statistics. The degeneracy-related
uncertainty sdegen arises from parameter degeneracies in each
fit, whereas the standard deviation σ is examined by simulating
multiple Poisson realizations of a model and determining the
mean and standard deviation over all the fits. We explore how
σ and sdegen are affected by the values of Amp and β for each
synthetic pulse profile. We also quote the accuracy of the fit in
M and R, comparing the mean best-fit value for each model
with the true value.

2.1. Properties of Test Models

We computed pulse profiles for a set of nine test models with
the parameter values listed in Table 1. The properties that were
kept the same for all test models are the spot’s temperature, the
phase offset f, the observer’s inclination angle i, and the
distance to the star d. The spot emission model is a 2 keV
blackbody (in the frame comoving with the neutron star’s
surface) with a limb-darkening atmosphere, approximated by
the Hopf function (Chandrasekhar 1960), appropriate for a
Thompson-scattered atmosphere. Since for real data we would

independently have the spot temperature at infinity instead of in
the star’s comoving frame, this parameter should be allowed to
vary within a narrow range (explored in Section 3.7), where the
appropriate range would be determined by the temperature at
infinity. The model assumes that any emission from the surface
of the neutron star outside the spot is negligible. The observer’s
inclination angle i=60° and the phase offset f=0 for all
cases. The computed pulse profiles are normalized to an
average flux of 1, so that the distance d to the star does not
affect the pulse profiles.
The parameters that were changed for different test models

are M, R, θ, the star’s shape (spherical or oblate), and νspin. For
oblate neutron star models, R is defined to be the radius of the
neutron star at the spot. The formalism for the oblate model is
detailed in Morsink et al. (2007) and does not require the
addition of any extra parameters.
The parameters for the fiducial model, model A, were chosen

to be representative of the masses and radii of accreting
millisecond neutron stars. Our fiducial mass M=1.6 M is
larger than the massM=1.4 M typically measured for slowly
rotating radio pulsars, since we expect that the neutron star has
been spun up by and gained mass from accretion. The radius of
12 km is consistent with other radius estimations (Leahy 2004;
Steiner et al. 2010). Rapid rotation with νspin�550 Hz is seen
in burst oscillations for at least seven neutron stars that exhibit
Type I X-ray bursts (Watts 2012). We have chosen
νspin=600 Hz for the fiducial model since it is representative
of these rapid rotators. The angles were chosen to provide a
pulse amplitude (Amp = 0.373) comparable to the largest pulse
amplitudes seen, in order to reduce the parameter degeneracy.
In particular, the neutron star 4U 1636–536 has rms pulse
amplitudes as high as 0.25 after subtracting the pre-burst
emission (Strohmayer et al. 1998; Galloway et al. 2008), where
Amp= 2 rms. The full set of theoretical parameters is given
in the row labeled “A” in Table 1. The resulting pulse profiles
in two energy bands are shown in Figure 1 with black and red
solid curves labeled “True.” Our fiducial model is similar to the
model described as “low inclination” by Lo et al. (2013),
except that they consider a slightly smaller R and a slower νspin.
As will be shown in Section 3.5, small changes in R do not
qualitatively change the results of this paper. Our choice of a
faster νspin improves the accuracy of the fits, but the faster νspin
is also more appropriate for the neutron stars that we hope to
apply this method to.
Theoretical pulse profiles were calculated for the nine

different test models. Each theoretical pulse profile was

Table 1
Summary of Test Models

Name Description Shape νspin M R i θ f M/R qisin sin qicos cos Amp β

(Hz) ( M ) (km) (deg) (deg)

A Fiducial Sphere 600 1.6 12 60 20 0 0.197 0.296 0.470 0.373 0.057
AO Oblate Oblate 600 1.6 12 60 20 0 0.197 0.296 0.470 0.373 0.057
θ37 θ=37° Sphere 600 1.6 12 60 37 0 0.197 0.521 0.399 0.720 0.101
θ37O θ=37° Oblate 600 1.6 12 60 37 0 0.197 0.521 0.399 0.720 0.101
θ60 θ=60° Sphere 600 1.6 12 60 60 0 0.197 0.750 0.250 1.305 0.145
(M/R)hi High M/R Sphere 600 1.68 11 60 20.8 0 0.226 0.308 0.467 0.350 0.057
(M/R)lo Low M/R Sphere 600 1.35 13 60 19.8 0 0.153 0.293 0.471 0.423 0.057
βhi(M/R)hi High β, high M/R Sphere 600 1.68 11 60 64 0 0.226 0.778 0.219 1.235 0.145
ν400 Low νspin Sphere 400 1.60 12 60 20 0 0.197 0.296 0.470 0.373 0.038

(This table is available in machine-readable form.)
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converted to a set of 20 synthetic observations by adding noise
from a Poisson distribution to the pulse profile. The standard
case (a low-noise model) assumes 25,000 photon counts per
phase bin and no background count rate, as if the background
were negligible in comparison with the hot spot emission. By
not including a background, we are underestimating the
Poisson fluctuations and thus underestimating the error bars.
This is done so we can test the suitability of evolutionary
optimization on the best-possible quality of synthetic data. For
a variation on the model θ60, a higher noise level was used:
θ60C6250 assumes 6250 photon counts per phase bin with no
background. In total, there are 10 sets of 20 simulated observed
pulse shapes.

Each of the 200 simulated pulse profiles was then fit using
the Ferret algorithm (described in the next subsection), which
searches for different values of the free parameters in order to
minimize the c2 fit statistic. Five parameters were allowed to
vary within physical ranges: 1.0 M �M�2.5 M ,
6.0 km�R�16.0 km, 0°�(i, θ)�90°, and f defined
cyclically from 0 to 2π. The star’s shape (spherical or oblate)
was fixed to be the same in the fitting procedure as in the
theoretical waveform. The temperature is kept fixed at 2 keV
since it has been shown by Lo et al. (2013) that observations
in multiple energy bands allow for a good determination of
the gravitationally redshifted spot temperature. We do not
allow the spot size to vary, as explained in the previous
subsection. For applications to real data, it would not be
difficult to add variations in spot size (and shape) and
temperature and to use unnormalized fluxes to allow for a
distance measurement. However, the addition of the extra
free parameters for the number of synthetic waveforms
considered in this study would be impractical. We carried out
preliminary trials (summarized in Section 3.7), allowing
these parameters to vary, but did not find much change in our
final results.

Since there are two energy bands with 32 phase bins each
and five free parameters, there are 59 degrees of freedom (dof).

The fitting yielded best-fit model parameters and also allowed
computation of confidence regions in the M–R plane, from
which we can assess the effect of various parameters on the
uncertainties in parameter determination.

2.2. Parameter Fitting Using Evolutionary Optimization

Evolutionary optimization algorithms provide a useful but
heuristic approach to search through large parameter spaces, to
optimize the fit of a model to data. Such algorithms use
principles inspired by biology to evolve a population of
candidate parameter sets, over many generations, toward an
optimal solution. The heuristic nature of the search aims to
sample the parameter space efficiently, but not completely,
since exhaustive search is not practical for problems involving
many parameters. Therefore, it cannot be guaranteed that the
true, globally optimal solution has been found, although this
would also be true for any other optimization algorithm,
besides an exhaustive search. Evolutionary algorithms have
been well studied and found to be useful in many fields of
science and engineering.
The oldest, and most commonly known, type of evolutionary

optimizer is the genetic algorithm (Holland 1975; Gold-
berg 1989, 2002). Classic genetic algorithms encode their
search parameters on a (usually) binary string (genotype),
which is decoded into a model (phenotype). A population of
candidate parameter sets is normally initialized as a set of
random bit strings, which are expressed as a model, and in turn
evaluated by a fitness function. This information is used to
probabilistically select good parameter sets (individuals) to
propagate to the next generation, in analogy to the “survival of
the fittest” principle of Darwinian evolution. Parameter sets
undergo random bitwise mutations to help perturb solutions
into previously unexplored regions of parameter space.
Information is shared between individuals by means of a
crossover operator that cuts a pair of bit strings at a random
position and recombines them into a new “offspring”

Figure 1. Left: pulse profiles for model A in two energy bands. The solid black and red curves (labeled “True”) correspond to the theoretical model A given in
Table 1. The black and red points (labeled “A1”) with error bars correspond to the addition of noise to model A with one Poisson realization assuming an average
count rate of 25,000 per phase bin. The blue dashed and dotted curves correspond to the best fit to model A1 with parameters given by the values in row “A1” in
Table 3. This best fit has c2=58.2 for 59 dof. Right: c2 contours in the M–R plane for fitting synthetic data from model A1. The best-fit model is shown with a star
and corresponds to the row labeled “1” in Table 3. The “true” values of mass and radius are 1.6 M and 12km. The contours show the 1 , 2, and 3sdegen confidence
regions. From this figure, it can be seen that the 1sdegen error region for radius corresponds to approximately 1.9 km, while the 1sdegen limit for mass spans 0.18 M .
The contours for 1, 2, and 3sdegen correspond to values of cD 2 (above cmin

2 ) of 2.3, 6.2, and 11.8, respectively.
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configuration, in analogy with sexual reproduction. This
process of evaluation, selection, mutation, and selection is
performed iteratively, over many generations, until a conv-
ergence criterion terminates the search. The genetic algorithm
can be viewed as a directed stochastic search, which makes use
of random noise to evade local minima, while a mostly
deterministic selection operator pushes solutions toward an
optimal solution.

In this paper, we used versions 5.3–5.5 of Ferret from the
Qubist Global Optimization Toolbox for MATLAB
(Fiege 2010; Rogers & Fiege 2011), a commercially available
software package, to find the best fits to our synthetic data. This
is an alternative to the Markov chain Monte Carlo approach in
Lo et al. (2013) to fit pulse profiles. Ferret’s development
began in 2002, as a variant of the multi-objective genetic
algorithm, which made use of a real-valued parameter encoding
and real-valued mutation and selection operators, rather than
the traditional binary encoding discussed above. Numerous
other features have been added to Ferret since then, which go
beyond the usual genetic algorithm paradigm. Most notably,
the code contains a unique linkage-learning algorithm, which
detects a certain type of nonlinearity (linkage) between
parameters, with the goal of dividing a large parameter space
into several smaller and nearly independent subspaces, thus
greatly simplifying the problem. This capability is discussed at
length in the software user’s manual (Fiege 2010). Ferret also
contains an algorithm that allows several of its most important
control parameters, including the typical strength of mutation
and crossover events, to be automatically adapted and
optimized during a run. This auto-adaptation capability is
similar in spirit to the self-adaptation used in Evolution
Strategies (ES) codes, although ES codes do not typically
employ a crossover operator. Ferret does not adhere to the strict
definition of a genetic algorithm, due to these enhancements
and others, but the code still remains closer to the genetic
algorithm paradigm than to others within the family of
evolutionary optimizers.

As an example of Ferret’s inner workings, consider the
parameters i and θ. Ferret selects sets of values from the
allowed region of parameter space (0�i, θ�90°) for the
population of a generation and fits pulse profile models. It then
keeps the best-fitting parameter sets and selects new sets to
explore more of the parameter space. Within a few generations,
Ferret discovers the degeneracy between i and θ, since their
values can be swapped with minimal impact on the c2 fit. A
more detailed explanation of Ferret in relation to pulse profile
modeling can be found in Chapter 4 of Stevens (2013).
Evolutionary optimization algorithms have also been used in
gravitational lensing (Rogers & Fiege 2011, 2012), medical
physics (Fiege et al. 2011), star formation (Franzmann 2014),
and X-ray spectral fitting (Rogers et al. 2015) applications.

Our problem is quite easy for Ferret, which consistently finds
the global minimum χ2

fit statistic within a few generations.
We note that the true global minimum is known, since our
results are based on artificial data tests. After finding the χ2

minimum, the algorithm was allowed to run for approximately
100 generations, as Ferret accumulated solutions within the
confidence region. No specific convergence criterion was
implemented; rather, we terminated the run manually when it
was evident from the software’s graphical user interface that no
further improvements were being made to the minimum χ2,
and enough solutions had been accumulated within the

confidence region to make contours maps of acceptable quality.
Ferret was executed in MATLAB R2011a on 12-core AMD
Linux servers (dual socket Opteron 2439 SE, with 32Gb RAM,
running Red Hat version 4.1.2), using Ferret’s built-in parallel
computing features. Each fit took approximately 8–20 hr.

3. RESULTS

Pulse profiles were simulated as a set of Poisson realizations
of a theoretical pulse profile model with known input
parameters (see Section 2.1). Each Poisson realization was fit
with Ferret to produce a set of best-fit parameters for the pulse
profile along with confidence regions for the parameters. Since
each theoretical pulse profile has multiple Poisson realizations,
the average and standard deviation for the best-fit parameters of
each theoretical pulse profile are computed.
Here we discuss the fit results of the pulse profiles, which

illustrate the effects of changing different system properties.
Table 2 shows a summary of the fits to the 20 different Poisson
realizations for each of the input models. The first row of each
pair of rows shows the input parameters of the theoretical pulse
shape model. The second row shows the means and standard
deviations of the best-fit values from the fits to the 20 different
Poisson realizations of each model. In addition to the fit
parameters (M, R, i, θ, and f), other useful measures of the
model (M/R, qisin sin , qicos cos , Amp, and β) are given.
A brief overview of the entire set of fits is given first. Some

parameters are well determined and others poorly determined.
The standard deviation of any given parameter for each set of
Poisson realizations is given as the error σ of that parameter.
We take the difference between the mean of a parameter for
each set and the input parameter as a measure of the accuracy
of that parameter fit. The means and standard deviations are
listed in Table 2, from which the percent error for precision and
accuracy can be determined. The Ferret algorithm also
computes contour regions as a measure of the degeneracy-
related uncertainty sdegen. The σ errors are sometimes smaller
than the 1sdegen region, as shown in figures in the following
subsections. These two values of error are measures of the
degeneracy (sdegen) and the statistical fluctuations (σ), but they
need not be the same. The 1sdegen contours determined by
Ferret are models with different i, θ, and f parameters that all
provide an equivalently good fit for that M and R. In this way,
the 1sdegen limit can be thought of as a measure of the
degeneracy of the parameter space near the best-fit model. The
standard deviations σ computed from the ensemble of Poisson
realizations provide a measure of the error from the statistical
fluctuations. However, the strong parameter degeneracy is
certainly still an important factor in the standard deviation
computation, and as such the reported σ values cannot be
assumed to be purely statistical error.
We find that the projected velocity β is generally the most

accurate and precise, with accuracy of 0.5%–3% and precision
of 1%–6%. M and R are the next best, with accuracy of 1%–

8%, but R has worse precision (1%–21%) than M (1%–13%).
Compactness (M/R), qisin sin , and Amp all have similar
accuracies (∼1%–8%) and precisions (∼1%–16%). The
accuracy of qicos cos is ∼4%–30%, and precision is ∼2%–

20%. The least well determined are i and θ, with accuracies of
∼4%–30% and precisions of ∼5%–50% due to the degeneracy
in angles.
In the following subsections we discuss in detail the results

from fitting the fiducial model A and then discuss trends we
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Table 2
Summary of Statistical Properties of Fits

Model M R i θ f M/R qisin sin qicos cos Amp β

c2 (59 dof) ( M ) (km) (deg) (deg) ×10−3 ×10−2

A 1.60 12.0 60.0 20.0 0.0 0.1969 0.296 0.470 0.373 5.74
59.3±7.6 1.52±0.11 11.4±1.2 34.7±15.0 41.8±15.2 2.8±4.6 0.199±0.016 0.318±0.032 0.549±0.120 0.363±0.025 5.81±0.20
AO 1.60 12.0 60.0 20.0 0.0 0.1969 0.296 0.470 0.373 5.74
59.1±7.0 1.65±0.06 11.7±0.9 49.3±18.2 28.3±11.9 0.8±5.3 0.209±0.016 0.299±0.019 0.511±0.142 0.353±0.060 5.76±0.18
θ37 1.60 12.0 60.0 37.0 0.0 0.1969 0.521 0.399 0.720 10.10
61.1±9.9 1.62±0.08 12.4±0.9 49.1±13.8 47.9±13.0 −0.7±2.9 0.194±0.009 0.509±0.033 0.386±0.064 0.726±0.029 10.09±0.17
θ37O 1.60 12.0 60.0 37.0 0.0 0.1969 0.521 0.399 0.720 10.10
58.9±8.1 1.58±0.04 11.8±0.4 49.8±9.7 46.3±7.8 1.1±1.5 0.198±0.008 0.528±0.016 0.424±0.029 0.704±0.037 10.08±0.14
θ60 1.60 12.0 60.0 60.0 0.0 0.1969 0.750 0.250 1.305 14.54
57.7±8.4 1.61±0.01 12.1±0.1 61.5±4.0 58.5±3.7 −0.3±0.6 0.196±0.003 0.745±0.008 0.245±0.010 1.309±0.011 14.53±0.09
θ60C6250 1.60 12.0 60.0 60.0 0.0 0.1969 0.750 0.250 1.305 14.54
58.2±7.7 1.62±0.03 12.5±0.5 58.6±6.6 60.2±6.6 −0.7±1.5 0.192±0.008 0.728±0.027 0.247±0.023 1.303±0.028 14.52±0.18
(M/R)hi 1.68 11.0 60.0 20.8 0.0 0.2255 0.308 0.467 0.350 5.74
60.3±7.7 1.61±0.11 10.4±1.0 34.9±13.1 42.7±16.2 2.1±4.8 0.228±0.012 0.328±0.029 0.542±0.116 0.343±0.022 5.80±0.22
(M/R)lo 1.35 13.0 60.0 19.8 0.0 0.1534 0.293 0.471 0.423 5.75
62.5±10.1 1.28±0.10 13.0±1.2 34.3±17.2 42.8±17.1 1.9±3.6 0.146±0.018 0.299±0.027 0.522±0.086 0.411±0.022 5.78±0.15
βhi(M/R)hi 1.68 11.0 60.0 64.0 0.0 0.2255 0.778 0.219 1.235 14.53
53.8±10.7 1.70±0.02 11.2±0.3 61.9±6.5 61.6±6.8 −0.8±0.8 0.223±0.004 0.762±0.016 0.211±0.016 1.241±0.016 14.47±0.09
ν400 1.60 12.0 60.0 20.0 0.0 0.1969 0.296 0.470 0.373 3.83
58.1±9.9 1.55±0.21 13.0±2.5 35.7±17.6 40.7±18.8 1.0±5.2 0.181±0.034 0.292±0.051 0.525±0.155 0.361±0.035 3.88±0.22
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find by comparing the fits from model A with the fits for the
models with modified parameters.

3.1. Model A: Fiducial Model

Twenty realizations of the Poisson noise were made to
simulate observations of the fiducial model A. The resulting
flux values with error bars for the first Poisson realization of the
data are shown as black and red points labeled “A1” on
Figure 1. The data points with Poisson errors were used as
input to Ferret, which searched for the best fit to the A1 data set
by minimizing c2. In the case of the A1 data set, the pulse
profiles that best fit the data are displayed with blue dashed and
dotted curves in Figure 1. The parameters corresponding to the
best fit of the A1 data set (c2=58.2) are shown in the row
labeled “1” in Table 3. For reference we have included the
derived quantities M/R, qisin sin , qicos cos , Amp, and β in
this table.

The best-fit model (star) and contours of constant
c c c= + D2

min
2 2 (black curves) for the A1 data set are

shown in the M–R plane in Figure 1. The contours correspond
to values of cD 2=2.3, 6.2, and 11.8, corresponding to 1, 2,
and 3sdegen confidence levels, respectively, in mass–radius
space for two free parameters, M and R. This plot uses the
profile likelihood (Murphy & Van Der Vaart 2000) to eliminate
the nuisance parameters i, θ, and f; a grid is defined in M and
R, and for each (M, R) grid point, Ferret finds the lowest c2

within each grid cell, allowing for any values of i, θ, and f. The
1sdegen confidence region (calculated by finding the maximum
and minimum values on the 1sdegen contour and dividing by 2)
gives an approximate 1sdegen error of 1.9 km for the radius and
a 0.18 M error for the mass. Note that since the contours are
not ellipses, these are only approximate 1sdegen limits.

Ferret was used to fit each of the 20 Poisson realizations of
model A. The independent best-fit results for the 20 different
realizations are shown in Table 3. The average and standard
deviation for each parameter are displayed at the bottom of
Table 3 and also appear in the second line of Table 2. For the
individual angles i and θ, it can be seen from Table 3 that the
determinations of these angles are very poor. This is due to the
already well-known degeneracy (for spherical stars; Poutanen
& Gierliński 2003) that occurs since the equations for light
bending and the Doppler effect only depend on the combina-
tions qisin sin and qicos cos and not on their individual
values. The q-i degeneracy can be seen in Figure 2, where
the normalized low-energy band pulse profiles for model A and
another model with i and θ swapped (both labeled “Sphere”)
are indistinguishable. For many of the Poisson realizations, the
best-fit values for i and θ shown in Table 3 are swapped from
their true values, and as a result, the average and standard
deviations for the individual angles are really not meaningful,
except to illustrate that it is the trigonometric combinations of
the angles that can be reliably determined. However, since
there are independent methods for constraining i and θ through
optical (Wang et al. 2013) or gamma-ray (Venter et al. 2012)
observations, it is still useful to discuss these two angles
separately.
To ensure that a suitable number of independent realizations

of the data were made, a histogram of the best-fit radii is plotted
in Figure 3. The resulting histogram is approximately Gaussian
(70% are within 1 standard deviation, 95% within 2 standard
deviations, 100% within 3 standard deviations), indicating that
20 trials are sufficient to illustrate general trends. A scatter plot,
also shown in Figure 3, shows the values of mass and radius
(red crosses) for the 20 different random realizations of the

Table 3
Summary of Best Fits for Model A

Model c2 M R i θ f M/R qisin sin qicos cos Amp β

59 dof ( M ) (km) (deg) (deg) ×10−2

True 1.600 12.00 60.0 20.0 0.0000 0.1969 0.296 0.470 0.373 5.741

1 58.2 1.575 11.97 48.7 25.0 0.0071 0.1943 0.318 0.598 0.347 6.120
2 60.8 1.517 12.39 19.9 57.3 −0.0011 0.1808 0.286 0.508 0.362 5.577
3 58.6 1.344 9.39 39.4 34.4 0.0021 0.2114 0.358 0.638 0.357 5.565
4 71.7 1.532 10.70 21.7 59.8 0.0000 0.2114 0.319 0.467 0.383 5.658
5 63.9 1.666 11.46 71.8 17.6 −0.0062 0.2147 0.287 0.297 0.426 5.471
6 56.7 1.445 10.26 36.7 36.0 0.0064 0.2080 0.351 0.649 0.350 5.932
7 64.6 1.469 10.81 37.2 34.4 0.0074 0.2007 0.342 0.657 0.345 6.007
8 53.9 1.694 12.39 68.7 17.3 −0.0047 0.2019 0.277 0.347 0.404 5.584
9 42.3 1.417 11.76 42.8 27.5 0.0044 0.1779 0.313 0.651 0.338 5.773
10 67.0 1.510 10.32 21.9 60.6 −0.0007 0.2161 0.324 0.456 0.388 5.583
11 57.1 1.581 11.29 21.7 58.1 0.0026 0.2068 0.314 0.491 0.372 5.828
12 68.9 1.433 12.08 29.1 39.9 0.0062 0.1752 0.311 0.671 0.331 5.869
13 58.4 1.458 10.88 35.6 35.8 0.0075 0.1979 0.341 0.659 0.345 5.994
14 63.7 1.702 13.86 15.9 67.6 −0.0057 0.1813 0.254 0.366 0.390 5.541
15 58.7 1.447 9.59 38.1 36.9 0.0067 0.2228 0.371 0.629 0.360 6.006
16 45.5 1.746 13.31 18.3 63.1 0.0015 0.1937 0.280 0.429 0.375 5.983
17 51.8 1.435 12.96 30.7 36.3 0.0086 0.1635 0.302 0.693 0.323 6.009
18 53.1 1.488 10.57 38.4 34.2 0.0076 0.2079 0.349 0.648 0.348 6.076
19 72.0 1.591 12.22 19.9 59.0 0.0003 0.1923 0.292 0.485 0.367 5.727
20 58.1 1.438 9.68 38.5 36.1 0.0060 0.2195 0.367 0.632 0.359 5.962

Ave 59.3 1.524 11.39 34.7 41.8 0.0028 0.1989 0.318 0.549 0.363 5.813
Std 7.6 0.107 1.23 15.0 15.2 0.0046 0.0159 0.032 0.120 0.025 0.203

(This table is available in its entirety in machine-readable form.)
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data. The large black cross indicates the average and standard
deviation values for the mass and radius fits.

As previously stated, parameter degeneracy plays a major
role in all aspects of uncertainty in our results, even the
standard deviation. By testing 20 different realizations of the
data for each model (a relatively small number), we still find
that some models converge on the true parameter values while
others do not. The models with stronger parameter degeneracy
have larger standard deviations on the parameters. This
provides an initial assessment of which types of models and
pulse profile shapes have stronger degeneracies. Even with
very small error bars on the pulse profile, there would still be
relatively large standard deviations over many models due to
the inherent degeneracies.

3.2. Effect of Changing Spot Colatitude

In this section, we examine the effect of changing the hot
spot’s colatitude θ on the accuracy and precision of the pulse
profile fits. By changing θ while keeping M, R, and i constant,
we alter the projected velocity β and the approximate pulse
amplitude Amp (see Table 1). Models A (with θ=20°), θ37,
and θ60 have increasing values of θ, β, and Amp. Due to the i–θ
degeneracy, this is also equivalent to keeping θ fixed and
varying i.

The θ371 pulse profile (i.e., for the first Poisson realization of
the θ37 model) is shown in the left panel of Figure 4, and the
constant c2 contours are shown in the right panel. This case is
one of the “outlier” pulse shapes (of the 20 Poisson
realizations) with a very large best-fit R that only includes
the true R at the 3sdegen level. The 1sdegen error regions for the
θ371 model (from the right panel of Figure 4) are smaller than
the A1 model, close to 1.1 km for R and 0.11 M for M. The
1sdegen regions for this particular Poisson realization are
somewhat larger than the standard deviation 1σ computed for
the ensemble of θ37 models.

Similarly, the θ601 pulse profile (first Poisson realization of
the θ60 model) is shown in the left panel of Figure 5, and the
constant c2 contours are shown in the right panel. The 1sdegen

error regions for the θ601 model are 0.7 km for R and 0.06 M
for M, larger than the ensemble standard deviation 1σ by a
factor of about 6.
We find a strong trend as θ increases: the average M and R fit

values are closer to the true values, and the standard deviation
is smaller. For example, σ in M decreases from 0.11 to 0.08 to
0.01 Me for models A, θ37, and θ60. This improvement in
fitting accuracy is due to models θ37 and θ60 having a larger
Amp and β than model A. This is consistent with the general
trend seen by Lo et al. (2013) in individual model fits.
During an X-ray burst, θ is expected to change. This set of

models roughly approximates this process, which has been
explored in detail by Mahmoodifar & Strohmayer (2016). If a
series of different burst oscillation pulse shapes are found for a
neutron star during the same burst, future work could include a
simultaneous multi-epoch fit, allowing θ (and spot size ρ) to be
dependent on epoch.

3.3. Effect of Oblateness

Rotation alters the shape of a neutron star, making it an
oblate spheroid. Although the change in shape is small for stars
spinning at rates seen in accreting systems, the alteration in the
star’s shape changes the positions on the neutron star’s surface
for which photons can reach the observer (Morsink et al. 2007),
leading to large changes in the pulse profile. As an example, a
1.6Me neutron star with an interior given by the APR equation
of state (Akmal et al. 1998) has an equatorial radius of 11.7 km
and a ratio of polar to equatorial radii of 0.93. This oblate
geometry has a larger effect on the pulse profile than other
effects due to rotation, such as frame dragging, as has been
discussed in detail in, e.g., Morsink et al. (2007).
In this section, we investigate the effect of the oblate shape

on the accuracy and precision of pulse profile fitting and
reproducing the input parameters. To do this, we construct
oblate versions of two models, A and θ37. The oblate versions,
designated with the letter “O,” are constructed so that the radius
of the star at the location of the spot is the same as for the
corresponding spherical model. This means that the values of
the star’s compactnessM/R and the projected velocity β are the
same for the spherical and oblate models. As a result of this
definition for the radius, the star’s equatorial radius is larger
than that listed in Table 1. The general trend is for the oblate
neutron star’s pulse profile to have a smaller pulse amplitude
than the spherical neutron star with the same parameters (when
i and θ are in the same hemisphere), since the visibility
condition makes it easier to see the far side of the neutron star
when the star is oblate (Cadeau et al. 2007; Morsink
et al. 2007). In cases where the spot is visible for all phases
(as in both models A and θ37), consider the emission when the
spot and the observer have the same azimuthal angle. At this
moment, the light from the spherical star is emitted close to the
normal to the surface. For the oblate star, the light is emitted in
the same direction in space, but it is at an angle farther from the
surface’s normal, due to the tilt of the surface. Since the
intensity of light is proportional to the cosine of the angle
between the original direction of emission and the normal to the
surface, the spherical star’s spot appears brighter at this phase.
The opposite is true when the spot is on the opposite side of the
star from the observer. In this case the light is emitted close to
the tangent to the surface for the spherical star and closer to the
normal for the oblate star, making the spot appear dimmer for

Figure 2. Normalized low-energy band pulse profiles for four neutron star
models showing the observer inclination-spot colatitude degeneracy for
spherical and oblate stars. The solid black curve represents model A, while
the overlapping dashed red curve represents a star with the same parameters as
model A, but with inclination i and colatitude θ swapped. The black dot-dashed
curve represents model AO, the oblate version of model A. The red dotted
curve represents a star with the same parameters as model AO, again with
inclination i and colatitude θ swapped.
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the spherical star at this phase. The overall effect is to create a
less modulated pulse profile for the oblate star.

In model AO, the neutron star’s equatorial radius is 12.7 km,
while the radius at the spot’s latitude is 12 km. As a comparison
with the spherical model, the low-energy band pulse profiles
for both AO and A are plotted as black dot-dashed and solid
curves, respectively, in Figure 2. The high-energy band (not
shown for clarity) has a similar decrease in modulation. In
model θ37O the equatorial radius is 12.5 km and has a lower
pulse amplitude than model θ37. Since the pulse profiles and
M–R confidence regions for models AO and θ37O look quite
similar to those for models A and θ37, they are not shown here.
The mean and standard deviation of the best-fit parameters for
the 20 realizations for each oblate model are given in Table 2.
For most parameters, the σ and accuracies are smaller for the
oblate case than for the fiducial spherical case (we also found
that the 1sdegen regions were smaller by about a half). A similar
improvement in the precision of the results was also noted by
Miller & Lamb (2015); however, since they only considered
one Poisson realization of the data, they could not rule out the
possibility that this was due to a statistical fluctuation. In our
case, since we are comparing a sample of Poisson realizations
for each model, the increase in precision and accuracy is most
likely due to the properties of the oblate model pulse profiles.

The improvement in the accuracy and precision in the
determination of most of the parameters for oblate models is
most likely due to the partial lifting of the degeneracy between i
and θ. For an oblate star, the direction in which the normal to
the surface points depends on the shape of the star, which is a
function of θ, but is independent of i. This introduces small
differences between the normalized pulse profiles for models
with i and θ switched, while for spherical stars, the normalized
pulse profiles are the same when the angles are switched. This
is illustrated in Figure 2, where the two oblate models
representing the swapped inclination and spot angles, shown
with black dot-dashed and red dotted curves, are clearly
different from each other. However, since they are still fairly
similar to each other, there is still a partial degeneracy when the
angles are swapped.

There is a similar but much smaller lifting of degeneracy for
large hot spots on spherical stars. A large spot extends over a
range of θ values, while the observer’s inclination i is just one
fixed value, so swapping the two angles if the spot is large will

not yield the same pulse shape. However, the magnitude of the
effect is much smaller than the magnitude of the change that
occurs when the angles are swapped on an oblate star.
We also tested the effect of using the wrong shape model by

using the oblate data corresponding to the 20 AO models as
input and fitting them with pulse shapes for spherical stars. In
this case, c2 increased by a small amount, but the best-fit
values forM and R became very inaccurate. For the set of fits to
the Poisson realizations, the average fit returned c2=64.7,
M=1.91 M , and R=12.3 km (which should be compared
with the values in the fourth row of Table 2). The average M
and R fits are accurate to 19.4% and 2.5%, respectively. Similar
results were found by Miller & Lamb (2015). In practice, this is
not a problem, since we know that the stars are actually oblate,
so the correct shape can be used. The spherical shape model is
computationally somewhat cheaper; hence, it is used for the
other models tested in this paper. Furthermore, the oblate shape
model used is still an approximation. It would be worthwhile,
in future research, to compare the slightly different shape
models that have been used in this paper with other models
used by other groups (e.g., Bauböck et al. 2013; Miller &
Lamb 2015).

3.4. Effect of Photon Count Rate

The average photon count rate per phase bin of 25,000 is the
expected best-case scenario, assuming typical burst flux, large
detector effective area, and long observation time (Feroci
et al. 2012), and similar to the count rate used in other pulse
profile analyses (Lo et al. 2013; Psaltis et al. 2014). The pulse
profile is noisier when fewer counts are detected. We tested the
effect of statistical noise on model θ60 by generating different
Poisson realizations, assuming a reduced count rate, of the
same theoretical pulse profile. Comparing model θ60 with the
reduced count-rate model, θ60C6250, allows us to explicitly
compare the degeneracy-related uncertainty versus error. The
average counts per bin are 25,000 and 6250 for models θ60 and
θ60C6250, respectively.
The pulse profile for model θ60C6250 looks very much like

that for model θ60, but with larger errors, so it is not shown.
The c2 contours for model θ60C62501 are shown in Figure 6.
The sizes of the 1sdegen contours in Figures 5 and 6 are very
similar, suggesting that the confidence contours for one

Figure 3. Left: histogram of best-fit values of R for model A. Right: best-fit values of M and R for model A. Each dot is one fit to a Poisson realization, as shown in
Table 3. The black cross shows the average with 1σ error bars.
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particular mock observation are mainly dominated by the
parameter degeneracy.

From Table 2, the standard deviations of the parameters for
the low count-rate model are ;2–3 times as large as those of
model θ60. The factor of 2 is expected purely on statistics (from
the factor of 4 reduction in counts). The actual degradation is
somewhat worse, likely because partial degeneracy between the
parameters makes the parameter determination degrade more
rapidly than the errors. Model θ60C6250 still gives well-
determined parameters even at the lower count-rate value.
The accuracies in M and R determination are 2% and 4%,
respectively, for the low count-rate case.

3.5. Effect of Compactness

Changes in the compactness ratio (M/R) are expected to
impact the quality of the fits, since the compactness affects the
pulse amplitude Amp (evident in Equation (1)). Increasing the
compactness decreases Amp, which might be expected to
decrease the precision and/or accuracy of the fits. To test this
effect, we generated models with differing values for the
compactness ratio but the same values of the projected spot
velocity β.

We created two models similar to model A with a larger and
smaller compactness ratio, (M/R)hi and (M/R)lo, and generated
a set of pulse shapes with Poisson noise. The results of the fits
can be seen in Table 2. All three models with the same value of
β have similar accuracy and precision for most of the
parameters. For instance, the accuracy of determining the mass
ranges from 4% to 5%, while the precision ranges from 6% to
7%, so the change in compactness does not greatly affect the
fits. However, while there is little change in the precision of the
radius measurement (9%–10%), in the case of the low
compactness model the accuracy was improved.

As a further test on the effect of compactness, model βhi(M/
R)hi was created to compare with the high spot colatitude model
θ60. The parameters were the same except that θ was adjusted
to give the same β as model θ60. This also necessitated that
Amp was somewhat lower than model θ60 (see Equations (1)
and (2)). Previously for model θ60, the accuracy and precision

for both M and R were better than 1%; by fitting model βhi(M/
R)hi, we found that increasing the compactness degrades both
the accuracy and precision in M and R, but only so that they
range from 1% to 3%.
From these results, given a value of β, it appears that the

accuracy and precision to which the other parameters can be
determined do not strongly depend on the compactness ratio of
the star. Thus, our fit results would not be significantly different
if we had chosen a different M and R for the fiducial model A.

3.6. Effect of Spin Frequency

The last parameter we adjusted to be different from the
fiducial model was νspin. We compared model A
(νspin=600 Hz) with a 400 Hz model, labeled ν400. Model
ν400 has all parameters the same as model A except νspin, and
hence a different projected spot velocity (β) (see Table 1). This
model has parameter values very similar to the “low-
inclination” model presented by Lo et al. (2013).
The fits results are summarized in Table 2. The precision

(standard deviations) and accuracy (difference of mean and true
values) are worse for model ν400, as expected. For M, R, M/R,
and Amp, the precisions are about twice as large for the 400 Hz
model as for the standard 600 Hz model. However, β has the
same absolute precision for the 400 Hz model as for the 600 Hz
model.

3.7. Effect of Incorrect Model or Additional Free Parameters

Along with the sets of trials summarized in the previous
subsections, we tested some of the model assumptions used in
the fits. These tests include the assumptions we have made
about the spectral emissivity, spot size, presence of a constant
background flux, and the star’s shape. Errors are not reported
for the tests of this subsection since fits were only carried out
on the A1 synthetic data set, the first Poisson realization of the
model A theoretical curve.
We first tested the effect of using the wrong atmosphere

model in the fits. To do this, we used the synthetic data
corresponding to the A1 model (see Figure 1) as input to Ferret.
The synthetic data were generated using the Hopf limb-

Figure 4. Left: pulse profiles for model θ37 in two energy bands. Right: c2 contours in the M–R plane for fitting synthetic data from model θ371. Symbols and lines
have the same meaning as in Figure 1. The best-fit values for mass and radius for this Poisson realization are 1.71 M and 15.29 km, with c2=58.7 for 59 dof. The
approximate 1sdegen limits for mass and radius are 0.11 M and 1.1 km.
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darkening function, but Ferret was run assuming a perfectly
isotropic blackbody spectrum. The algorithm was unable to
find a good fit after 300 generations (about double the number
of generations normally required), and the best fit had
c2=316.6 for 59 dof. The best-fit M and R were 1.21 M
and 11.3 km, which are quite inaccurate (24.4% for M, 5.8%
for R). As was seen by Lo et al. (2013), one does not get a good
fit using an incorrect atmosphere model.

We next tested fitting a variable spot size model to a pulse
profile that was generated with an infinitesimally small spot.
The infinitesimal size of the spot is a necessary assumption due
to the large number of trials carried out in this work. In order to
model a larger spot, the spot has to be cut into a number of
segments, and separate computations of the deflection angles
must be computed, increasing the run time linearly with the
number of segments. The pulse shape for a large spot tends to
have a lower pulse amplitude than a small spot centered at the

same latitude, due to the effect of averaging over many
latitudes. As a test of this assumption, we used the A1 data set
as input to the Ferret algorithm, but added the angular radius ρ
of the spot as a free parameter that was allowed to vary between
1° and 60°. The resulting best fit has c2=59 (for 58 dof) and
converged on an angular radius of ρ=1°, the smallest angle
allowed. The best-fit M and R for this case are 1.51 M and
11.6 km. While these values are less accurate (5.6% and 3.3%,
respectively) than the best-fit value shown in the first row of
Table 3 corresponding to a fit with an infinitesimal spot, they
are within the 1σ limits computed for the set of model A fits.
Since using multiple spot segments leads to a significantly
longer computation time, it was not feasible to use variable spot
sizes in this paper. However, in future work when real data are
being fitted, it will be necessary to allow the spot size to vary
and to compute the observed flux from multiple spot segments.
We also tested the effect of allowing the temperature of the

spot to be a free parameter in the fitting program. The
theoretical model was constructed with a spot temperature of
2 keV (as measured in the comoving frame at the star’s
surface). The Ferret program was used to fit the data with the
addition of a local temperature parameter that was allowed to
vary between 1 and 3 keV. The best fit returned c2=57.9 (for
58 dof), M=1.67 M , R = 11.8 km, and a temperature of
2.1 keV. The accuracies in M and R are 4.8% and 1.7%,
respectively. Although these M and R values are within the 1σ
limits for this data set, the addition of the extra parameter does
degrade the accuracy. This is most likely due to the degeneracy
introduced since we measure the redshifted temperature with
the light curves. For the case of real data, it would be important
to allow the temperature to vary in the fits, since the
temperature of the spot in the comoving frame is unknown.
Furthermore, making use of multiple energy bands would
improve the accuracy of the temperature measured at infinity.
The effect of an unknown background flux has been

investigated in detail by Lo et al. (2013), and for comparison
we test it for one simple case. The synthetic data set A1 was
constructed without a background count rate. We used this as
input and allowed Ferret to add two new parameters corresp-
onding to a constant (in time) background flux in each energy

Figure 5. Left: pulse profiles for model θ60 in two energy bands. Right: c2 contours in the M–R plane for fitting synthetic data from model θ601. The symbols have the
same meaning as in Figure 1. The best-fit values for mass and radius for this Poisson realization are M=1.63 M and R = 12.1 km, with c2=49.6 for 59 dof. The
approximate 1sdegen limits for mass and radius are 0.06 M and 0.7 km.

Figure 6. c2 contours in the M–R plane for fitting synthetic data from model
θ60C62501. The symbols have the same meaning as in Figure 1. The best-fit
values for mass and radius for this Poisson realization are M=1.62 M and R
= 12.0 km, with c2=53.8 for 59 dof. The approximate 1sdegen limits for mass
and radius are 0.06 M and 0.8 km.
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band. These background values were allowed to vary between
0 and 1 (recall that our pulse profiles are normalized to 1).
The resulting fit had c2=57.7 (for 57 dof), and the best-fit
M and R were 1.52 M and 11.7 km. M and R were accurate to
5.0% and 2.5%, respectively. It is possible to add a more
realistic background model by adding emission at a lower
temperature from the rest of the star (Lo et al. 2013;
Elshamouty et al. 2016) or by adding light scattered from the
disk (Morsink & Leahy 2011), but at this point it is not obvious
what the most realistic model would be. Real data are also
likely to contain non-negligible emission from the surface of
the neutron star outside the spot region and from the
accretion disk.

The effect of these tests on the best-fit values of M and R are
summarized in Table 4. These tests highlight the importance of
having as realistic an atmosphere model as possible, since
fitting with the wrong model drastically affected the quality and
accuracy of the fits. Thus, this method provides a sensitive test
for atmosphere models. Adding a free parameter for the
temperature, unknown background flux, or spot size did not
significantly detract from the accuracy in M and R, and our
code was able to replicate the additional parameter quite well.
Ideally, for real data we would allow these parameters to also
vary in the fits, even if it is not feasible to do so in the present
study.

4. DISCUSSION AND CONCLUSION

We calculated pulse profiles for simulated thermonuclear
burst oscillations from a rapidly rotating neutron star as would
be detected by a next-generation X-ray timing observatory,
such as ASTROSAT, NICER, or a mission similar to LOFT. The
input neutron star parameters include mass M, radius R,
emitting spot colatitude θ, and observer inclination i. We
created 20 Poisson realizations of each test pulse profile, which
allows us to determine the errors in the derived model
parameters, focusing on M and R. The resulting pulse profiles
were fitted with Ferret to analyze how well the input parameters
could be recovered (in both standard deviation and degeneracy-
related uncertainty).

We find that the best-determined parameter is the projected
velocity β of the spot along the observer’s line of sight. The
next best determined are M and R. Compactness (M/R),

qisin sin , and the pulse amplitude Amp are also well
determined, but qicos cos , i, and θ are poorly determined. It
is clear that more rapidly rotating neutron stars produce pulse
profiles with strong harmonics, which yield better constraints
on their parameters. Also, neutron stars viewed at larger i with
spots at a larger θ produce more modulated pulse profiles and
therefore better constraints. However, we also found that count

rate is important, so the best targets will be those systems that
have the optimal combination of large νspin, large θ and i, and
bright pulsations. For our best cases presented here, M and R
were determined to 1% accuracy and precision, but even for
many of the less optimum cases M and R were determined to
∼5% accuracy and precision, which is a very valuable result.
We carried out a number of parameter comparison tests, to see

how different input parameters can affect the constraints on M
and R. The more asymmetry and the larger the pulse amplitude,
the better the accuracy and precision in M and R from pulse
profile fitting. The asymmetry in the pulse profile is controlled by
β; a larger β results from increases in θ, i, and νspin. A larger θ or i
also gives a larger Amp. Compactness (M/R) has a small effect
on parameter determination; for more compact stars it is
somewhat more difficult to determine parameters. This is caused
by the increased visibility of the surface by the observer and the
resulting decreased pulse amplitude. Including oblateness in the
pulse profile model improves the accuracy and precision of M
and R determinations. This is due to a reduced q-i degeneracy
in the oblate models.
Photon count rate has a critical effect on parameter

determination. On simple grounds, increasing the counts by a
factor of 4 reduces the error by a factor of 2. However, in
practice we found a factor of 3 improvement in parameter
determination. The extra gain is likely the result of reduced
parameter degeneracy for data with smaller errors.
We assumed the spot temperature to be a known definite

quantity. In practice, this is determined by a spectral fit to the data
using multiple energy bands. We calculated the simulated pulse
profiles using only two energy bands, so we have underestimated
the uncertainties in M and R that enter through the uncertainty of
the temperature. In principle, it is not difficult to use more energy
bands (e.g., Lo et al. 2013). However, there is a trade-off that the
signal-to-noise ratio in each energy band falls as more, and thus
smaller, energy bands are used. Determining an optimal number
of energy bands that allows a determination of the spectrum
while providing enough statistics to constrain the star’s properties
should be the topic of a future study.
We also took the background count rate to be negligible in

comparison with the count rate from the neutron star hot spot.
For a real observation, the background comes from three
sources: instrument background, sky background, and source
contribution to background. Instrument background depends
strongly on the instrument design and mode of observation.
Source background can consist of emission from the surface of
the neutron star outside of the spot region and from the
accretion disk. However, subtracting the persistent pre-burst
emission from the X-ray burst flux is not an appropriate source-
background subtraction. As shown in Worpel et al. (2013), the
persistent emission can be different during the burst, possibly

Table 4
Summary of Tests on A1 Data

Model c2/dof M R i θ f M/R qisin sin qicos cos Amp β

( M ) (km) (deg) (deg) ×10−3 ×10−2

True 1.600 12.00 60.0 20.0 0.0000 0.1969 0.296 0.470 0.373 5.741

A1 best fit 58.2/59 1.575 11.97 48.7 25.0 0.0071 0.1943 0.318 0.598 0.347 6.120
Wrong atmosphere 316.6/59 1.210 11.29 40.2 39.2 0.0104 0.1583 0.408 0.592 0.495 7.004
Spot size varies 59.0/58 1.508 11.57 33.3 37.0 0.0090 0.1925 0.331 0.667 0.338 6.137
Temperature varies 57.9/58 1.668 11.81 23.1 55.1 0.0057 0.2086 0.322 0.526 0.364 6.266
Background 57.7/57 1.522 11.75 45.8 26.7 0.0066 0.1913 0.321 0.623 0.344 6.045
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due to an increased accretion rate onto the neutron star. A
method such as weighted-photon Bayesian blocks (Worpel &
Schwope 2015) should be incorporated into the analysis
pipeline to subtract the appropriate level of source-background
emission.

A limitation of our study is that we did not include the effect
of frequency drift, which is normally seen during the rise of an
X-ray burst (Watts 2012). When dealing with real data, it
would be important to either remove sections of the data where
frequency drift is observed or use a reliable method for
modeling the pulse shape with phase offsets to account for the
drift. An additional complication for the sources that also have
accretion-powered pulsations is that the pulsations may
contaminate the X-ray burst oscillations. At this time these
are open problems associated with modeling X-ray burst
oscillations.

In this paper we have demonstrated that an evolutionary
optimization and parameter search methods can be used to
effectively constrain the mass and radius of a neutron star with
pulsed emission. We focused on burst oscillations seen in Type
I X-ray bursts; however, the routines can also be used to model
accretion-powered pulsations or rotation-powered pulsations
once the appropriate spectrum and beaming functions have
been changed. In particular, the rotation-powered pulsars that
will be studied by NICER (see Ozel et al. 2015) can be
analyzed using the methods discussed in this paper.
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