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When cooperative teams of agents are planning in uncertain domains, they must coordinate to max-
imise their (joint) team value. In several problem domains, such as maintenance planning [6], the full
state of the environment is assumed to be known to each agent. Such centralised planning problems can
be formalised as multi-agent Markov decision processes (MMDPs) [1], in which the availability of com-
plete and perfect information leads to highly-coordinated policies. However, these models suffer from
exponential joint action spaces as well as a state that is typically exponential in the number of agents.
This is especially an issue when optimal policies are required. In this paper, we identify a significant
MMDP sub-class whose structure we compactly represent and exploit via locally-computed upper and
lower bounds on the optimal policy value. We exploit both the compact representation, and the upper
and lower bounds to formulate a new branch-and-bound policy search algorithm we call conditional
return policy search (CoRe). CoRe typically requires less runtime than the available alternatives and
finds solutions to previously unsolvable problems [5].

We consider transition independent MMDPs (TI-MMDPs). In TI-MMDPs, agent rewards depend
on joint states and actions, but transition probabilities are individual. Our key insight is that we can
exploit the reward structure of TI-MMDPs by decomposing the returns of all execution histories – i.e.,
all possible state/action sequences from the initial time step to the planning horizon – into components
that depend on local states and actions. To do so, we build on three key observations. 1) Contrary to
the optimal value function, returns can be decomposed without loss of optimality, as they depend only
on local states and actions of execution sequences. This allows a compact representation of rewards and
efficiently computable bounds on the optimal policy value via a data structure we call the conditional
return graph (CRG). 2) In TI-MMDPs agent interactions are often sparse and/or local, typically resulting
in very compact CRGs. 3) In many problems the state space is transient, i.e., states can only be visited
once, leading to a directed, acyclic transition graph. With our first two key observations this often gives
rise to conditional reward independence – the absence of further reward interactions – and enables agent
decoupling during policy search.

In order to represent the returns compactly with local components, we first partition the reward
function into additive components Ri and assign them to agents. The local reward for an agent i ∈ N
is given by Ri = {Ri} ∪ Rei , where Ri is the reward function that only depends on agent i and Rei is
the set of interaction reward functions assigned to i (restricted to a subset of those Re where i ∈ e, i.e.,
those functions that depend on i have at least one other agent in its scope, e). The sets Ri are disjoint
sub-sets of the reward functions, R. Given a disjoint partitioning

⋃
i∈N Ri of rewards, the Conditional

Return Graph (CRG) φi is a directed acyclic graph with for every stage t of the decision process a node
for every reachable local state si, and for every local transition (si, ai, ŝi), a tree compactly representing
all transitions of the agents in scope in Ri. The tree consists of two parts: an action tree that specifies
all dependent local joint actions, and an influence tree, that contains the relevant local state transitions
included in the respective joint action.

1Full version published in the proceedings of AAAI 2016 [5].
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Figure 1: Example of a CRG for the tran-
sition for one agent of a two-agent problem,
where R1 only depends on a2.

An example CRG for one time step is given in Fig. 1. The
graph represents all possible transitions that can effect the re-
wards in Ri, given the local transitions of the state of agent i (in
this case only from s10 to s11). The labels on the path to a leaf
node of an influence tree, via a leaf node of the action tree, suf-
ficiently specify the joint transitions of the agents e in scope of
the functions Re ∈ Ri, such that we can compute the reward∑
Re∈Ri

Re(se,~ae, ŝe). The wildcard, ∗2, represents any action
of agent 2 for which there is no interaction reward, i.e., all reward functions depending on both agent 1
and agent 2 yield 0. In the paper, we prove that CRGs are indeed a compact representation of histories,
and even more so when interactions are sparse.

In addition to storing rewards compactly, we use CRGs to bound the optimal expected value. Specif-
ically, the maximal (resp. minimal) attainable return from a joint state st onwards, is an upper (resp.
lower) bound on the value. Moreover, the sum of bounds on local returns bounds the global return
and thus the optimal value. We define them as U(si) = max(se,~aet ,ŝe)∈φi(si)

(
Ri(se,~aet , ŝe) + U(ŝi)

)
,

such that φi(si) denotes the set of transitions available from state si ∈ se (ending in ŝi ∈ ŝe), in
the corresponding CRG. The bound on the optimal value for a joint transition (s,~a, ŝ) of all agents is
U(s,~at, ŝ) =

∑
i∈N

(
Ri(se,~aet , ŝe) + U(ŝi)

)
, and lower bound L is defined similarly over minimal

returns. Note that a bound on the joint returns automatically implies a bound on the value.
We combine the above, together with conditional reward independence, in our Conditional Return

Policy Search (CoRe) algorithm. CoRe performs a branch-and-bound search over the joint policy space,
represented as a DAG with nodes st and edges 〈~at, ŝt+1〉, such that finding a joint policy corresponds
to selecting a subset of action arcs from the CRGs (corresponding to ~at and ŝt+1). First, however, the
CRGs φi are constructed for the local rewards Ri of each agent i ∈ N , assigned heuristically to obtain
balanced CRGs. The generation of the CRGs follows a recursive procedure, during which we store
upper and lower bounds on the local returns. During the subsequent policy search, CoRe detects when
subsets of agents become conditionally reward independent, and recurses on these subsets separately.
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Figure 2: Experimental results: the runtime of CoRe
(red) versus that of SPUDD (black), on the same 2-
(+) and 3-agent (×) instances.

When we compare CoRe to previously available
methods, we observe that CoRe can both solve instances
that could not previously be solved [5], and that CoRe can
solve instances that could be solved by existing methods
a lot faster. For example, in the sample of our results pre-
sented in Figure 2 we compare the runtime of CoRe to
that of SPUDD [2] using a problem-tailored encoding [6]
for instances of the maintenance planning problem.

Finally, inspired by the success of CoRe for single-
objective TI-MMDPs, we have shown [3] that we can ex-
tend our earlier work on multi-objective (TI-)MMDPs [4],
using CoRe as a subroutine, to solve significantly larger
multi-objective problem instances as well. We thus con-
clude that CoRe is vital to keeping both single- and multi-objective TI-MMDPs tractable.
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