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Abstract

Metabolic pathways are complex dynamic systems whose response to perturbations and environmental challenges are
governed by multiple interdependencies between enzyme properties, reactions rates, and substrate levels. Understanding
the dynamics arising from such a network can be greatly enhanced by the construction of a computational model that
embodies the properties of the respective system. Such models aim to incorporate mechanistic details of cellular
interactions to mimic the temporal behavior of the biochemical reaction system and usually require substantial knowledge
of kinetic parameters to allow meaningful conclusions. Several approaches have been suggested to overcome the severe
data requirements of kinetic modeling, including the use of approximative kinetics and Monte-Carlo sampling of reaction
parameters. In this work, we employ a probabilistic approach to study the response of a complex metabolic system, the
central metabolism of the lactic acid bacterium Lactococcus lactis, subject to perturbations and brief periods of starvation.
Supplementing existing methodologies, we show that it is possible to acquire a detailed understanding of the control
properties of a corresponding metabolic pathway model that is directly based on experimental observations. In particular,
we delineate the role of enzymatic regulation to maintain metabolic stability and metabolic recovery after periods of
starvation. It is shown that the feedforward activation of the pyruvate kinase by fructose-1,6-bisphosphate qualitatively
alters the bifurcation structure of the corresponding pathway model, indicating a crucial role of enzymatic regulation to
prevent metabolic collapse for low external concentrations of glucose. We argue that similar probabilistic methodologies
will help our understanding of dynamic properties of small-, medium- and large-scale metabolic networks models.
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Introduction

Lactic acid bacteria (LAB) are industrially important microor-

ganisms used in the fermentation of milk, meat, and certain

vegetables [1,2]. LAB produce lactic acid as their main catabolic

byproduct and are frequently used as starter cultures in various

food-fermentation processes. LAB have a long tradition of safe use

and, because the central metabolism of LAB has high activity, is an

interesting target for metabolic engineering. A variety of metabolic

models, detailed kinetic models as well as large-scale stoichiometric

reconstructions, have been proposed, in particular for the best-

studied LAB Lactococcus lactis [3–10]. Despite a relative wealth of

data, however, many aspects of the fermentative metabolism of

LAB are still insufficiently understood [2,11–17]. Even compar-

atively small metabolic pathways, such as the glycolytic pathway of

LAB, are highly interconnected not only via carbon metabolites,

but also via redox (NADH) and energy carriers (ATP). Under-

standing the dynamic response arising from such a complex

network of interactions is often not possible through heuristic

reasoning alone, but requires the construction of detailed

computational models. Such kinetic models of biochemical

pathways are typically built in a bottom-up approach. First, the

detailed enzyme-kinetic properties of each individual step are

collected, having been sourced from either dedicated experiments

or from literature research and databases. Subsequently, the

model is constructed and revised until a faithful in-silico
representation of the pathway is obtained. Despite considerable

efforts, however, the construction of such models is still hampered

by the extensive data requirements necessary to parametrize each

enzymatic step. Several approaches have been suggested to

alleviate this problem, including the use of approximative kinetics

[18,19] and Monte-Carlo sampling of reaction parameters
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[20,21]. As one of the first applications of a Monte-Carlo sampling

procedure accounting for the uncertainty in kinetic parameters,

Wang et al. [22] employed statistical tools for the identification of

the rate-controlling steps in a model of yeast glycolysis. Shortly

afterwards, the formalism of generalized modeling [23] was

extended to study the dynamic properties of models of metabolic

pathways by using a general parametric representation of their

Jacobian matrix [24,25]. Later, these methods were adopted and

modified by several other groups [26–30].

Building upon these methods, we aim to elucidate and

understand the regulatory properties of the central metabolism

of the lactic acid bacterium Lactococcus lactis. In particular, we

seek to understand how allosteric regulation, together with its

associated feedback and feedforward loops, influence the control

exerted by the various enzymatic steps. Making only minimal

assumptions about rate equations and kinetic parameters, and data

from direct experimentation, we show that it is possible to study

and elucidate the control properties of a metabolic pathway. In a

second step, we investigate the dynamics of a corresponding

kinetic pathway model in periods of starvation and show that

allosteric control and regulatory interactions are crucial to

maintaining metabolic viability in times of nutrient scarcity. Our

probabilistic approach directly builds upon measured properties,

such as the concentrations of metabolic intermediates and flux

distributions, rather than enzyme-kinetic parameters, to constrain

the possible dynamics of a metabolic pathway. We demonstrate

that (i) the control coefficients of biochemical network models

show intelligible patterns and trends that are accessible without

detailed knowledge of enzyme-kinetic parameters; (ii) the regula-

tory structure of a biochemical network models has profound

effects on the possible dynamics that are largely independent of

specific kinetic parameters; and (iii) more specifically, that the

topology of the regulation network is instrumental to ensure the

stability of an observed state and to enable the patwhay to survive

periods of starvation. We expect that our methodology will be of

high utility to elucidate and understand the dynamic and

regulatory properties that enable large-scale metabolic networks

to function reliably in uncertain environments.

Results/Discussion

The Central Metabolism of Lactococcus lactis
The starting point of our analysis is a stoichiometric represen-

tation of the central metabolism of Lactococcus lactis, defined here

as the carbon and energy metabolism of this organism that

generates most of its free-energy and C3 carbon precursors during

fermentative growth. Drawing upon earlier kinetic models

[3,4,7,9,15] and several available genome-scale reconstructions

[5,31], a set of enzymes involved in fermentative metabolism of L.
lactis was selected. A graphical overview is shown in Figure 1. The

metabolic network was chosen so as to describe the main glycolytic

intermediates, the ATP regeneration cycle, and the dynamics of

inorganic phosphate (Pi) and redox carriers (NAD/NADH). We

neglect flux through the pentose phosphate pathway, since it

accounts for less than 2% of glycolytic flux [32]. Main

fermentation products are lactate (LAC), ethanol (EtOH), acetate

and butanediol. Stoichiometric analysis reveals that the systems

has three conserved moieties, ATP/ADP, NAD/NADH, as well

as conservation of a phosphate group involving 11 metabolites.

The concentrations of formate (FMT) and coenzyme A (CoA) are

considered constant. The stoichiometry of the network allows for

either LAC as the only fermentation product, or for equimolar

amounts of butanediol and EtOH or acetate and EtOH as end

products. The latter branch, fermentation to acetate and EtOH,

results in the highest yield of ATP per glucose consumed.

Beyond the reaction stoichiometries, our model incorporates the

currently known regulatory features found in L. lactis central

metabolism. Fructose 1,6-bisphosphate (FBP) activates the forma-

tion of pyruvate (PYR) by the pyruvate kinase (PYK), activates the

conversion from PYR to LAC by the lactate dehydrogenase

(LDH), and inhibits the phosphotransferase system (PTS). A

potentially important regulator is the concentration of free

phosphate. In our model, the total pool of phosphate is constant,

Figure 1. A pathway map of L. lactis central metabolism. The pathway involves 21 metabolic interconversions between 24 metabolites and
includes three conserved moieties and two internal metabolites whose concentrations are assumed to be constant (FMT, CoA). External metabolites
are indicated by light blue boxes. The inset provides an overview of the regulatory interactions. Abbreviations are defined in Text S2.
doi:10.1371/journal.pone.0106453.g001
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therefore the concentration of free inorganic phosphate (Pi) is an

(inverse) measure of the amount of the glycolytic intermediates

plus ATP. Further reactions that are under regulatory control

include the pyruvate dehydrogenase (PDH), as well as the alcohol

dehydrogenases (ADH). A complete list of all regulatory interac-

tions is summarized in Figure 1 and given in Text S1. Following

the workflow outlined above, a kinetic rate equation was assigned

to each reaction step. In good agreement with earlier models [3],

reaction rates were assumed to follow conventional Michaelis-

Menten kinetics. Regulatory interactions were implemented as

multiplicative factors to the rate equations, using Hill-type kinetics

[33]. Detailed reaction equations are provided in Text S2.

Subsequently, equilibrium constants were assigned to all steps,

using values obtained by the group contribution method [34]. The

metabolic state was based on values for extracellular fluxes and

metabolites specifically measured for this study, supplemented

with values from the literature. We consider a state with high

external glucose (20 mM) and high-flux activity, see also Text S1.

Probabilistic Analysis of Control Properties
To quantify the extent to which a system property, such as a

specific flux or metabolite concentration, is influenced by a specific

enzymatic step, we make use of the concepts of Metabolic Control

Analysis (MCA). The control coefficient CP
i is defined as the

relative change of a steady-state property P (the response of the

system) divided by the small relative modulation of the activity of

an enzyme i that caused that change [35,36]. In the following, we

mostly focus on the flux control coefficients CJ , where the system

properties P represent the fluxes within central metabolism. These

control coefficients can only be evaluated for a fully characterized

system, that is, their evaluation requires knowledge of the

stoichiometry, as well as of all kinetic parameters or elasticity

coefficients. Because neither all kinetic parameters nor all elasticity

coefficients were known, we employed a Monte-Carlo scheme to

iteratively sample enzyme-kinetic parameters, in particular

Michaelis-Menten constants, to obtain insight into what we shall

call the probabilistic distribution of control coefficients. To

determine the respective intervals for the Monte-Carlo sampling

of parameters, we make use of the fact that the control coefficients

are essentially determined by the scaled elasticities, the logarithmic

partial derivatives of the rate equations with respect to metabolic

compounds. In a first approximation, these values are determined

by the ratio of the Michaelis-Menten constants to their respective

concentration [24,28]. Motivated by the saturation properties of

enzymatic rate equations, and making use of knowledge of the

metabolic phenotype, we assume each Michaelis-Menten constant

to be distributed around the concentration value of its associated

metabolic compound. The width of the sampling interval is varied

to test for robustness of the results; in the following all results are

reported for a sampling interval spanning both, one order of

magnitude above and below the respective concentration. After

choosing all Michaelis constants, the forward velocity Vmax was

adjusted so as to ensure that the reaction rate was not affected by

the chosen constant. Applying this Monte-Carlo procedure, we

obtain a distribution, rather than a single value, for each flux

control coefficient. We emphasize that our approach ensures that

each set of parameters is sampled such that it is consistent with the

experimentally observed state. That is, each sampled set of

paremeters indeed gives rise to the experimentally observed state.

All subsequent evaluations are specific to this state. Prior to the

calculation of control coefficients, the stability of the model is

tested for each sampled set of parameters and only sets

corresponding to a stable phenotype are retained (<92% of all

sampled instances). Our workflow is outlined in Figure 2.

The resulting distribution of flux control coefficients allows us to

assess, qualitative and fairly independent of the precise values of

the enzyme kinetic parameters, the potential effects of perturba-

tions in enzyme levels on the system flux at the metabolic state.

Most importantly, the distributions of the control coefficients were

not arbitrarily. Rather, the results shown in Figure 3 exhibit strong

patterns and, in accordance with earlier studies [37], indicate that

qualitative knowledge of model properties can already result in

well-constrained predictions, even when individual parameters are

only poorly constrained. With respect to the interpretation of the

distributions of scaled flux control coefficients, three properties are

of particular interest: (i) The width of the distribution. Narrow

distributions indicate control coefficients that do not change

appreciably due to parameter sampling, whereas broad distribu-

tions indicate that the precise value of the coefficient is highly

dependent on parameter values. (ii) The median of the distribu-

tion. For several reactions, the respective distributions are

appreciably shifted away from zero towards either negative or

positive values. (iii) The dominant sign of the control coefficients.

Often, it is only of interest whether an increase in enzyme amount

will result in an increase or decrease of a specific flux in the

network, irrespective of the exact magnitude. To this end, Figure 4

provides the probabilistic sign distribution of flux control

coefficients, grey-scale coded to indicate the percentage of sampled

control coefficients that lie on the positive semi-axis.

The Control of Flux
Figures 3 and Figure 4 show the resultant distributions of

control coefficient based on the sampling procedure described

above. All sampled sets of parameters share the common property

that they are consistent with the experimentally observed

metabolic state of the pathway. However, other than that, we

have no knowledge as to whether an actual control coefficient is

close to the median value of the respective distribution, or whether

evolutionary pressure has selected for a value at the extreme fringe

of this distribution. Clearly, for each control coefficient, both

scenarios are possible. To provide a meaningful interpretion of

these results, we therefore proceed in two steps. First, we asses to

what extend the observed distributions correspond to our intuitive

assumptions about control within the pathway. Overall, the

pattern of flux control coefficients shown in Figures 3 and 4 are

indeed in good agreement with conventional assumptions about

the distribution of control within the pathway. For example, the

glycolytic enzymes (PGI to ENO) predominantly show positive

control over the glycolytic flux, with more than 80% of the

sampled control coefficients having positive values. Reactions close

to equilibrium, such as PGM or ENO, typically also have narrow

distributions around zero, indicating that they typically exert little

control on the fluxes through the system, irrespective of precise

parameter values. Indeed, the average standard deviation of the

scaled control coefficients correlates with the distance from

equilibrium of the respective reaction, as shown in Figure 5, and

in accordance with theoretical considerations [38]. Other

straightforward results include the predominantly negative control

the LDH exerts upon the competing branches involved in the

production of ethanol, acetate and butanediol. However, other

properties of the distributions shown in Figure 3 and Figure 4 are

less straightforward to explain. For example, the predominantely

negative control that the enzymes involved in acetate production

(PTA and ACK) exert upon the glycolytic flux. Although

increasing activity of PTA and ACK might be expected to pull

more flux through the upper part of glycolysis, the flux control

coefficients indicate that this is, for the vast majority of parameters,

not the case. Rather, increasing the activity of the acetate branch

Monte-Carlo Modeling of L. lactis Central Metabolism
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Figure 2. Probabilistic Modeling of L. lactis. The topological properties of the pathway, including the stoichiometry and all known regulatory
interactions, are assembled. The analysis is then based on knowledge of a metabolic state of the system, as defined by a steady-state flux distribution
and a set of associated thermodynamically consistent metabolite concentrations. Based on this information, the state-specific dynamic properties of
the corresponding pathway model are evaluated. Of particular interest are control coefficients, the role of regulatory interactions, as well as the
dynamic response to periods of starvation.
doi:10.1371/journal.pone.0106453.g002

Figure 3. Probabilistic distribution of flux control coefficients. Shown is the distribution of the scaled flux control coefficients corresponding
to the pathway model of L. lactis central metabolism given in Figure 1. Each plot corresponds to the interval [21,1] on the abscissa. The diagram in
the i th column and on the j th row gives the distribution of the control coefficient quantifying the extent to which enzyme i controls the flux
through the reaction j. Each distribution provides information about the magnitude and uncertainty of one control coefficient. Narrow distributions
indicate control coefficients that do not change appreciably due to parameter sampling, whereas broad distributions indicate that the precise value
of the coefficient is more strongly dependent on parameter values. The corresponding sign distribution is shown in Figure 4.
doi:10.1371/journal.pone.0106453.g003

Monte-Carlo Modeling of L. lactis Central Metabolism
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prevents the regeneration of NAD required by the glyceraldehyde-

3-phosphate-dehydrogenase (GAPDH), consequently slowing

down the glycolytic pathway.

We emphasize that the probabilistic distributions shown in

Figures 3 and 4 depict control properties of the pathway model for

values of kinetic parameters that are consistent with the

experimentally observed state, but are otherwise random. Clearly,

the peaks of these distributions do not necessarily correspond to

the actual control profile of the organism. Selection pressure

during evolution might have easily led to parameters on the fringes

or even outside of the range in which we sampled, precisely

because the organism’s requirements were different from what

arises as ‘typical’ from random sampling. We therefore must

compare the distributions shown in Figures 3 and Figure 4 with

known and empirically obtained control coefficients in L. lactis
[39–42]. In particular, control coefficients that take values far from

the median value of the respective distribution might point to

additional evolutionary pressure, or errors in the topology of the

pathway, and therefore provide valuable information for further

analysis.

Using a series of mutants with altered GAPDH activity, Solem

et al. (2003) [40] determined that changes in GAPDH activity had

virtually no effect on glycolytic flux in growing as well as

nongrowing cells. Likewise, in a series of studies, the enzymes

PFK, PYK, and LDH, encoded together on the las operon, were

shown to have no significant control on the glycolytic flux in

Figure 4. Probabilistic sign distribution of flux control coefficients. Grey-scale representation of the sign distribution of the flux control
coefficient shown in Figure 3. The shade of the entry represents the percentage of the calculated control coefficients that are positive. Dark colors
correspond to a distribution of flux control coefficients that lies predominantly on the negative semiaxis, whereas light colors indicate that the
sampled control coefficients are predominantely positive. For example, for this metabolic phenotype, an increase of the enzyme PYK will for almost
all sampled parameter values result in decreased flux through the LDH reaction as indicated by the dark circle in the row for LDH and the column for
PFK.
doi:10.1371/journal.pone.0106453.g004

Figure 5. The width of the distribution of control coefficients
correlates with distance from equilibrium. Shown is the average
standard deviation of the sampled flux control distribution as a function
of displacement C from equilibrium of the respective enzyme.
Reactions close to equilibrium (C close to unity) typically have narrow
distributions of flux control coefficients, centered at zero, indicating
they can only exert little control over the flux through the system.
Contrary, reactions far from equilibrium (C%1) exhibit broad distribu-
tions, indicating a potential, but no necessity, for high control
coefficients. For definitions see Materials and Methods.
doi:10.1371/journal.pone.0106453.g005
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exponentially growing cells [39,41]. These findings are in

agreement with the rather narrow distributions, centered at zero,

of the respective probabilistic control coefficients. Furthermore,

Koebmann et al. (2005) [41] showed that the enzyme LDH has a

strong negative control over the flux to mixed acids and formate

formation, whereas PYK has a strong negative control over these

fluxes – again in agreement with the respective distributions. PFK

was found to have no control on either acetate or lactate flux,

again corresponding to the respective distribution. An interesting

case is the control of ATP consuming-processes outside of the

pathway (ATPase) on the glycolytic flux. The respective probabi-

listic distribution indicates a large potential for control, as

manifested by the very broad distribution of the corresponding

flux control coefficients. Such a high level of control by ATP

consuming reactions outside of the pathway was indeed reported

recently [17], and a similar high control of demand for ATP on

glycolytic flux has been observed for E. coli [43]. From the

introduction of an uncoupled ATPase activity, however, Koeb-

mann et al. (2002) [39] concluded that the flux control by ATP

demanding processes was close to zero over a range of ATP/ADP

ratios. Both scenarios are consistent with the broad distribution

shown in Figure 3. We emphasize that in the following, despite the

good agreement with experimental data, we do not interpret the

probabilistic distributions as a likelihood for the actual control

coefficients. Rather the distributions indicate ranges of control

coefficients that are typical for the metabolic state, given our

sampling procedure, whereas deviations provide a highly valuable

starting point for further analysis. We note, however, that as yet

most empirically determined control coefficients available for L.
lactis do seem to be consistent with the bulk of the respective

distribution.

Control of Glycolytic Flux by PTS
As a rather counter-intuitive finding, the distribution of control

coefficients indicates that for most sets of parameters the PTS

would exert a negative control on flux through the pathway. This

finding is in contrast to our expectation that an increase in PTS

activity results in higher glucose uptake, hence an increased flux

through glycolysis. These results emphasize that the control

coefficients are indeed systemic properties of the pathway and may

exhibit non-intuitive patterns, depending on the specific metabolic

phenotype and details of the pathway stoichiometry and regula-

tion. To verify that the non-intuitive distribution of the influence of

the glucose transport upon the glycolytic flux is indeed a true

feature of the pathway model, we varied the maximal velocity

(Vmax) of the PTS using an explicit kinetic model. The resulting

flux is shown in Figure 6 for a specific set of reference parameters.

Repeating the analysis for a large number of sampled parameters

yielded similar results. At the specified metabolic state, the slope of

the curve representing glucose uptake as a function of Vmax is

almost always negative. The universality of the negative slope

indicates that the control profile of the network model is indeed

strongly dependent on the specific metabolic phenotype at which

the probabilistic control profile is evaluated. That is, the

experimentally observed metabolic state itself shapes the resultant

distribution of control coefficients. To verify this assertion, we

evaluated the control profile of a second metabolic state,

corresponding to a situation with low external glucose. The results

are provided and discussed in Text S2. In this case, the control of

the PTS system on glycolytic flux is predominantly positive.

The Impact of Metabolic Regulation
Up to this point, the system had been evaluated in the presence

of metabolic regulation additional to substrate/product effects.

Each instance of sampled parameters included randomly selected

values for all regulatory interactions. To delineate the impact of

metabolic regulation, we subsequently removed all regulatory

interactions and repeated the analysis to pinpoint specific

differences between the regulated and unregulated network model.

In particular, our re-scaling and sampling procedure allows us to

analyze both systems at an identical steady state and therefore

enables a direct comparison between both scenarios. We note that

this approach is different to a simple change of parameters within

a kinetic model, for example by decreasing the value of a certain

feedback parameter. While such a change would indeed modify

the feedback properties, it would also alter the metabolic state of

the pathway and thereby complicate a direct comparison of

systemic properties between both scenarios. In contrast, here, we

assume that the metabolic phenotype, the set of concentrations

and fluxes, has evolved to satisfy the particular functional

requirements of the cell. By removing regulatory interactions

while keeping the metabolic state unchanged, we ask the question

how this evolved state would typically behave in the absence of

metabolic regulation, whilst fulfilling the same metabolic function.

As is demonstrated below, this approach allows us to perform a

detailed assessment of the role of individual regulatory interac-

tions.

Repeating the Monte-Carlo sampling of kinetic parameters in

the absence of regulatory interactions, we first note that the

percentage of stable models, as evaluated by an analysis of the

largest real part of the eigenvalues of the Jacobian, drops to about

83% of sampled instances, as compared to 92% for the regulated

system considered above. The analysis was repeated for the second

metabolic state, characterised by low external glucose, in the Text

S2, showing that a similar drop in average stability is again

associated with the absence of regulatory interactions. Figure 7

shows the probabilistic distribution of the scaled flux control

coefficients in the absence of metabolic regulation, the corre-

sponding sign distribution is shown in Figure 8. The absence of

regulation affects the control profile in terms of the dominant sign

of the control coefficients, as well as the amplitude and width of

their distribution. A comparison between Figures 3 and 7 shows,

for example, that the control of PGI and PFK over the glycolytic

flux is predominantly positive in the regulated system, but almost

always negative in the unregulated systems. Differences are also

Figure 6. Dependency of the glycolytic flux on the maximal
activity of the glucose transporter (PTS). Shown is the glucose
uptake as a function of Vmax, evaluated using a kinetic model with a
representative set of the sampled parameters. The black dot indicates
the reference state.
doi:10.1371/journal.pone.0106453.g006
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recorded for the regulation of the glycolytic flux by AS, ACLACD

and BDH, which is negative in the regulated case and evenly

distributed between negative and positive values in the absence of

regulation. A strong difference between the probabilistic control

profiles is also observed for the ATPase, representing general ATP

demand outside of the pathway. In the presence of regulation, the

distribution of the control coefficients of the ATPase on the

glycolytic flux is rather broad, indicating a high potential for

control, and symmetrically distributed around zero. In contrast, in

the absence of regulation, the distribution is shifted to higher

values, with a median value close to unity. Consequently, in the

absence of metabolic regulation, the pathway model exhibits a

strong sensitivity with respect to ATP demand for almost all

possible sets of parameters. Similar differences are observed for the

possible control of PYK on the glycolytic flux. The respective

distribution is significantly narrower in the presence of metabolic

regulation, indicating less potential for control but an increased

robustness of the flux with respect to perturbations in enzyme

levels. Similar differences in widths and signs were observed for the

second metabolic state as discussed in Text S2.

Starvation and Dynamic Recovery
To investigate the impact of metabolic regulation on the

dynamic properties of the system, we have to go beyond the

steady-state control coefficients and consider explicit time-courses

of the system. In particular, we are interested in the dynamic

response to periods of starvation and in the subsequent recovery

when external nutrients are replenished. To this end, we set up an

ensemble of models, each at the steady-state defined by the

metabolic state considered above. Subsequently, we ran explicit

numeric simulations for 103 instances of sampled parameters in

the presence and absence of regulatory interactions. After a period

of t~1 min, the external glucose was lowered from its original

value of [GLCx] = 20 mM to a value of [GLCx] = 0:1 mM.

The pathway model then adapted to the new conditions and

converged to a new metabolic state. At a simulation time of

t~10 min, the external glucose was restored to its original value

[GLCx] = 20 mM. As expected, and shown in Figure 9,

withdrawal of external glucose resulted in a quick drop of

intracellular metabolites. Typical time-courses of selected model

instances are provided in the Text S2. Due to the autocatalytic

nature of the glycolytic pathway, the concentration of ATP

typically first exhibits a slight increase, corresponding to the

cessation of ATP utilization in the upper part of glycolysis.

Subsequently, the concentration of ATP, and likewise of other

metabolites, drops to a new steady-state, characterized by a

significantly decreased ATP concentration. The average value of

ATP concentration during starvation is 0:5+0:5 mM for regu-

lated systems versus 0:11+0:07 mM in the absence of regulation.

Both scenarios exhibit drastically different behavior after

external glucose is restored to its original value. For the regulated

system, the distribution of ATP concentration after a suitable

recovery time is clearly bimodal (Figure 9A). Approximately 54%

of all models recover to the original metabolic state (542 of 1000

instances tested) and the ATP level reaches its original value

(&4 mM). In the absence of regulation, the probability of the

system to recover drops significantly. More than 95% of the

simulations correspond to a failure in restoring the original

concentration of ATP. The probability of the system to have

recovered from starvation also depends on the duration of the

Figure 7. Probabilistic distribution of flux control coefficients in the absence of metabolic regulation. Same as Figure 3 except for the
absence of metabolic regulation. Any diagram refers to the control of one flux (i.e. through the step indicated to the left of the row) by one enzyme
(i.e. the enzyme indicated above each diagram corresponds to the interval [-1,1] on the abscissa.
doi:10.1371/journal.pone.0106453.g007
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starvation (Ts) and recovery time (Tr). Figure 10 shows the

percentage of recovered systems as a function of Ts and Tr for

both scenarios. In the presence of regulation, the probability to

recover does not seem to depend appreciably on the duration of

the starvation and recovery time. In the absence of regulation,

however, a longer starvation time strongly decreases the proba-

bility of recovery. In addition, unregulated systems tend to recover

more slowly, as also observed in the individual time-courses

provided in the Text S2. These results are in agreement with the

previous observation that regulatory interaction can accelerate

response times of simple biological network motifs [44,45].

Screening Individual Regulation Mechanisms
To investigate the role of regulation in the response to periods of

starvation and the subsequent metabolic recovery in more detail,

we tested the response of the system in the presence of individual

regulation mechanisms. To do so, we performed the aforemen-

tioned parameter sampling on models of the pathway endowed

with only a single regulatory interaction. The percentage of

models that recover after a period of starvation strongly depends

on the specific regulatory interaction. Table 1 lists the percentage

of recovering models for each individual regulation mechanism,

along with the percentage of stable Jacobians for the respective

system. Most of the regulatory mechanisms do not have any

appreciable effect on the ability of the system to recover from

starvation. Three of the ten tested regulation mechanisms,

however, result in a significantly increased probability to recover

after a period of starvation. The strongest increase is observed for

FBP as an activator of PYK, followed by free inorganic phosphate

(Pi) as an inhibitor of the same reaction. A slight, but significant,

increase is also observed for FBP as an inhibitor of PTS. The

results are in good agreement with previous work on metabolic

stability using minimal pathway models [2], such as the study of

Voit et al. [15] who investigate the feedforward activation system

in L. lactis using a six variable model with generalized mass action

kinetics. Likewise, recent work on regulation of PEP utilization in

E. coli also emphasized the importance of FBP as a regulator

allowing rapid adaptation to changing environmental conditions

[46].

FBP as a regulator of PYK and PTS
The importance of allosteric regulation of PYK by FBP for

metabolic functioning, in particular for the levels of ATP and

glycolytic intermediates, is widely recognized and the regulatory

mechanisms is present in almost all glycolytic pathways [2,46].

Our results suggest that for L. lactis at the metabolic state studied

here, a major role of the activation of PYK by FBP is to prevent an

irreversible metabolic collapse during brief times of starvation.

Indeed, as argued previously [2,15], the mechanism introduces a

safety valve for the utilization of PEP. In the absence of regulation,

and after the withdrawal of glucose, PEP is continually converted

to pyruvate and short-lived ATP until all resources are depleted.

However, in the presence of regulation, a decrease of FBP

concomitantly decreases the utilization of PEP by PYK. Since no

external glucose is present, utilization of PEP by PTS is likewise

diminished. Hence a substantial amount of PEP is retained in the

Figure 8. Probabilistic sign distribution of flux control coefficients in the absence of regulation. The shade of the entry represents the
percentage of the calculated control coefficients that are positive. Dark colors correspond to a distribution of flux control coefficients that lies
predominantly on the negative semiaxis, whereas light colors indicate that the sampled control coefficients are predominantly positive.
doi:10.1371/journal.pone.0106453.g008
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system, which allows glucose uptake and regeneration of ATP as

soon as external glucose is restored to its pre-starvation levels.

Figure 11 shows the time-course of the median of the concentra-

tions of FBP, ATP, and PEP following the withdrawal of external

glucose at t~1 min for models that include the activation of PYK

by FBP. As expected, after withdrawal of glucose, the concentra-

tion of PEP quickly rises and attains a new steady state –

interestingly with a median concentration similar to the value

before starvation. With the restoration of external glucose at

t~10 min, PEP undergoes a quick drop, fuelling the uptake of

glucose, and the subsequent production of ATP. The time-course

shown in Figure 11 is in strong contrast to the situation in the

absence of feedforward regulation, even when selecting for

parameters that likewise allow for metabolic recovery. The

Figure 9. Metabolic recovery after periods of starvation. Starting at the defined metabolic state, external glucose is lowered from 20 mM to
0.1 mM at time t = 1 min, mimicking a brief period of starvation. At time t = 10 min external glucose is restored to its orginal value. The upper panel
shows a histogram of intracellular ATP after a recovery period at time t = 100 min. For the regulated system (A), approximately 54% of all models
recover to the initial metabolic state (542 of 1000 instances tested), whereas in the absence of regulation the probability of recovery is below 5% (39
of 1000 instances tested). The lower panel shows the median of the time-course, with .25 and 0.75 quantiles included as dashed lines. For the
regulated system, the time-course is split between recovering and non-recovering instances.
doi:10.1371/journal.pone.0106453.g009

Figure 10. Recovery as a function of starvation time. Shown is the percentage of model instances that recovered to the original metabolic
state after a starvation time Ts and a recovery time Tr in the presence (left panel) and absence (right panel) of regulation. We emphasise the different
scales on the z-axis on both panels. In the presence of regulation, the probability to recover does not appreciably depend on length of starvation and
recovery time. In the absence of regulation a longer starvation time decreases the probability to recover.
doi:10.1371/journal.pone.0106453.g010
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corresponding plot and its discussion is provided the Text S2. We

note that a similar reasoning might also hold in the absence of a

PTS. In this case, the substrate ATP is required for the hexokinase

and PFK in upper glycolysis, which is provided by the PYK

reaction. The functional role of the FBP-mediated negative

feedback on the PTS is more difficult to delineate and has

received only little attention so far [2]. While the feedback also

contributes to metabolic stability, its quantitative effect is rather

small. Functionally, the regulation constitutes a traditional

negative feedback loop, providing a mechanism for pathway

homeostasis.

Metabolic Collapse and Hysteresis
As demonstrated, the regulatory structure of the glycolytic

pathway is crucial to allow for metabolic recovery after periods of

starvation. This raises the question about the detailed dynamic

mechanisms through which recovery is achieved. By definition,

systems that fail to recover after the external glucose has been

restored to its original value must at least possess one additional

stable state for the respective concentration of external glucose,

that is, the systems must be at least bistable. To test for this

hypothesis, we varied the concentration of external glucose and

progressively decreased the concentration from the initial 20 mM
to 0:1 mM. For each level of external glucose, the respective

systems were allowed to relax to a new steady state. Subsequently,

the external glucose was progressively increased again, back to the

original value of 20 mM. Two typical examples are shown in

Figure 12. Indeed, bistability and hysteresis was observed for all

non-recovering systems. For recovering systems, in almost all cases

(approximately 99%) no hysteresis was observed. A small subset of

recovering systems (approximately 1%), however, also exhibited

hysteresis. In this case the hysteresis loop is usually fully contained

within the considered interval of external glucose and the system is

monostable for an external glucose concentration of 20 mM. In

Table 1. Percentage of recovering systems in the presence of individual regulation mechanisms.

REACTION REGULATOR TYPE PERCENTAGE STABLE STATES PERCENTAGE RECOVERING SYSTEMS

PTS FBP Inhibitor 87% 11%

GAPDH NADH Inhibitor 81% 4%

PYK Pi Inhibitor 97% 26%

PYK FBP Activator 87% 51%

PDH DHAP Inhibitor 83% 4%

PDH GAP Inhibitor 83% 3%

ADH ATP Inhibitor 82% 3%

LDH Pi Inhibitor 84% 2%

LDH FBP Activator 83% 2%

LDH NADH/NAD Inhibitor 83% 3%

The table gives the percentage of stable instances of the Jacobian in the presence of a single regulation mechanisms (83% in the absence of regulation) and the
probability of metabolic recovery (4% in the absence of any regulation). The percentage of the recovering systems is always relative to the instances of stable systems
tested.
doi:10.1371/journal.pone.0106453.t001

Figure 11. Time-courses of intermediate metabolites. The median of the concentration of FBP, ATP, and PEP following a withdrawal of
external glucose at t~1 min in models that include activation of PYK by FBP is shown. After withdrawal of glucose, the concentration of PEP quickly
rises and attains a new steady state. With the restoration of external glucose at t~10 min, PEP undergoes a quick drop, fuelling glucose uptake and
subsequent production of ATP. The corresponding figure for systems that lack regulatory interactions but are nonetheless able to recover from
periods of starvation is discussed in the Text S2.
doi:10.1371/journal.pone.0106453.g011
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very rare cases, the system also returned to its original state,

despite hysteresis and the existence of a second stable state with

low metabolic activity. In these cases, the sudden withdrawal and

reestablishment of external glucose may induce dynamic transients

that allow the system to leave the lower state. Figure 12 shows a

non-recovering system in the absence of regulation (panels A and

B), as well as a recovering system in the presence of regulation

(panels C and D). We note that hysteresis was tested numerically

and therefore the existence of further metabolic states cannot be

excluded. However, the numeric results obtained from the tested

103 instances clearly showed that recovery was predominantely

due to the monostability of the steady state for the respective

concentration of the external glucose. Furthermore, the absence of

bistability was clearly linked to the regulatory structure of the

system, almost irrespective of the precise paramater values. Our

results therefore imply that the regulatory structure indeed has a

structural influence on the possible bifurcations of the pathway

independent of a specific fine-tuned set of parameters.

Conclusions

Metabolic regulation is a crucial aspect of cellular function.

While significant progress has been made on the stoichiometric

properties of large-scale metabolic systems, the organizing

principles of metabolic regulation that enable stability and rapid

adaptation are still insufficiently understood [15,29,38,47]. In this

work, we have presented a Monte-Carlo approach to study the

regulatory feedback topology of the homo-fermentative LAB strain

Lactococcus lactis. In particular, we have used knowledge of an

experimentally acquired metabolic state to evaluate typical

dynamic properties of a corresponding pathway model. To this

end, our first aim was to demonstrate that the distributions of

control coefficients obtained from conditional Monte-Carlo

sampling is highly structured. Based on a sampling scheme, such

that all considered sets of parameters are in accordance with the

experimentally observed state, the resulting patterns of control

coefficients were consistent with many well-known control control

principles of the pathway.

Given these findings, two aspects of our study must be

emphasized: First, we did not conduct a straightforward Monte-

Carlo study such that the kinetic parameters were drawn from a

random distribution. Such an approach would likely result in a

plethora of different metabolic states – most of which are totally

irrelevant for the functioning of the system under any condition.

Rather, our approach is based on the assertion that evolution and

selective pressure can easily restrict the metabolic state, and hence

the parameters, to values that are beneficial for the organism’s

survivial, even if these parameter sets represent only an

exceedingly small portion within parameters. Therefore, we

restrict the sampling to an evolved metabolic state, such that all

sampled parameters are consistent with this experimentally

observed state. The underlying assumption is that the primary

function of a metabolic pathway is embodied in its flux and, to a

lesser extend, in the set of metabolite concentrations. It is these

values that are the targets of selective pressure, not the kinetic

parameters per se. We therefore seek to study how the dynamic

properties of the pathway differ for different potential sets of

kinetic parameters that are equally suited to support the observed

steady-state flux. Such an approach allows us to straightforwardly

Figure 12. Bistability and hysteresis with respect to external glucose. Shown is a non-recovering system in the absence of regulation (A,B)
and a recovering system in the presence of regulation (C,D). In the upper panels (A,C), the concentration of external glucose was varied between the
initial level of 20 mM to a lower value of 0:1 mM and back. The lower panels (B,D) show a corresponding time-course of the rate of glucose uptake.
The original level of external glucose, 20 mM, was lowered to 0:1 mM within the time interval t = 1 min to 10 min.
doi:10.1371/journal.pone.0106453.g012
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compare the distributions of dynamic properties in the presence

and absence of a specific metabolic feedback.

The second aspect of our study relates to the question: How

relevant are such distributions of control properties, given that any

actual system only attains a single set of parameters. To what

extent is, therefore, average behavior an indicator for actual

behavior, given that the actual set of parameters may as well be

located on the extreme fringes of the distribution. While we reject

any interpretation of average behavior as a likelihood for actual

behavior, we claim that the distributions obtained using our

computational procedure indeed have functional, as well as

explanatory, relevance. The explanatory relevance lies in the fact

that probabilistic control profiles allow us to evaluate to what

extent experimental findings are rooted in the topological structure

of the pathway, rather than in fine-tuning of Michaelis-Menten

parameters. Specifically, if almost all sampled parameters attain a

value within a certain narrow range, and the empirically observed

value is in good agreement with these values, then we face no

further explanatory challenge: The empirical value simply

corresponds to what we expect as typical behavior, given no

further knowledge about additional contraints the system is subject

to. On the other hand, an empirically obtained control coefficient

that is located at the extreme fringe of the respective distribution

provides valuable information for further analysis and points to

additional constraints or requirements the pathway is subject to.

The functional relevance of our probabilistic evaluation is then

given by the fact that control properties that are already inherent

in the topological structure allow for an evolutionary adaptation of

parameters with respect to other objectives. Specifically, it seems

favorable, within the course of evolution, to adopt a network

topology that exhibits a certain desired behavior, such as recovery

after periods of starvation, for a broad range of parameter values.

These parameters can then be further fine-tuned according to

other objectives, without impeding the core functionality of the

pathway.

In this sense, we argue that our approach has led to increased

understanding of principles of metabolic regulation in Lactococcus
lactis: We compared the typical response of the pathway with

respect to short periods of starvation in the presence and absence

of metabolic regulation. It was shown that the regulatory

interactions, irrespective of the particular parameter values, result

in qualitative differences in the dynamics. Our results therefore

shows that the topology of the regulation alone is, to a large extent,

already sufficient to ensure dynamic stability and recovery of the

pathway. While fine-tuning of parameters may achieve a similar

increase in stability, an appropriate regulatory structure dramat-

ically increases the set of accessible parameters space and therefore

opens the possibility to optimize Michaelis-Menten parameters for

other secondary objectives, such as the trade-off between affinity

and catalytic rate which are not considered here. The main result

presented in this study is therefore that the regulatory architecture

of the Lactococcus lactis central metabolism induces qualitative
changes in the probabilistic control profile, as well as in the

dynamic behavior after a brief period of starvation. Further, we

were able to delineate the role of individual regulation terms:

Three of the known regulatory mechanisms play a major role in

the recovery ability of the system. These are (i) the inhibition of

PYK by inorganic phosphate, (ii) the activation of PYK by FBP

and (iii) the inhibition of PTS by FBP. We showed that in cases of

non-recovery the zero-flux metabolic state is an attractor for the

system. In the presence of regulation the ability of the system to

escape metabolic death is, in the overwhelming number of cases,

mirrored by the absence of such attractor.

In summary, sampling unknown kinetic parameters for a kinetic

model of a metabolic pathway, such that all sampled parameters

give rise to the same metabolic state, can lead to fundamental

insights into the control properties of the underlying system. In

particular, the emergent control profile exhibits a structure that

helps us to draw conclusions about the possible behavior of the

system. The probabilistic control profile represents what dynamics

we should expect as typical, given no further knowledge about

specific constraints the system is subject to – a tremendously useful

information when interpreting experimentally observed data. In

this respect, some of the probabilistic distributions are in line with

what we expect given the topology of the network, while other

properties are counter-intuitive and therefore point the direction

for further investigation. Our approach is particularly suited to

investigate the qualitative effects that result from changes in

pathway topology, in particular from the presence or absence of

regulatory interactions. Our computational approach is straight-

forward to implement and numerically efficient even for large

systems. We therefore expect it to be of high utility also in other

studies of metabolic, gene-expression and signal transduction

systems.

Materials and Methods

From Stoichiometry to Dynamics
Our approach consists of a series of well-defined steps and is

based upon related strategies that utilize Monte-Carlo sampling in

the study of metabolic networks [22,24,26,28,30,48]. The starting

point of our analysis is a stoichiometric representation of a

metabolic system, as obtained either from textbook knowledge or

extracted from genome-scale models of the respective organism.

The stoichiometric representation is tested to allow for meaningful

flux patterns, for example by an analysis of metabolic flux modes

[49] or flux-balance analysis [50]. In addition to stoichiometric

dependencies, we assume that the basic regulatory interactions are

known. That is, for each enzymatic interconversion there may be a

set of metabolites that either inhibits or activates the respective

step, albeit with unknown strength. Differing from conventional

bottom-up modelling, and following the definitions given in

Grimbs et al. [51] and Murabito et al. [28], the subsequent

analysis is then based on knowledge of a specific metabolic

phenotype of the system. That phenotype is defined by a steady-

state flux value for each metabolic reaction, as well as by a set of

concentration values for all metabolic intermediates, and has to

fulfill two prerequisites. First, its flux distribution must be

consistent with the mass-balance constraint. Second, the set of

concentration values must be thermodynamically consistent with

the directions of the fluxes, namely that given a set of

concentration values and the set of equilibrium constants, the

Gibbs free energy of all reactions must be negative in the direction

indicated by the phenotype’s flux distribution. To obtain insights

into kinetic properties, each reaction rate is then assigned a rate

equation that specifies the dependence of the reaction rate with

respect to its substrates and products, as well as with respect to

possible allosteric or competitive effectors. In case the actual rate

equation of the respective step is unknown, a generic Michaelis-

Menten equation is employed [33,52]. Once these data are

assembled, the system of differential equations that determines the

dynamic properties of the network has been fully specified except

for lacking numerical values for most enzyme-kinetic parameters.

As shown previously [28], however, with these definitions and the

known metabolic phenotype, it is possible to systematically sample

the parametric space, such that the resulting set of enzyme-kinetic

parameters is consistent with the known metabolic state. In this
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way, insight into the typical dynamic properties of a specific

metabolic phenotype can be obtained.

Defining the system and its evaluation
The probabilistic approach used within this work has been

described previously [28]. In the following, we briefly outline our

workflow. We assume that a metabolic system of interest consisting

of m metabolites and r reactions is described by a system of

ordinary differential equations of the form,

dS

dt
~N:v(S), ð1Þ

where N denotes the m|r stoichiometric matrix and S the

m{dimensional vector of metabolite concentrations. The

r{dimensional vector v specifies the nonlinear dependencies of

the reaction rates as a function of the associated metabolite

concentrations and kinetic parameters. To evaluate the dynamics,

we assume the existence of a feasible metabolic state, defined by a

concentration vector S0 and its associated flux values v(S0), such

that Nv(S0)~0. We note that the metabolic state does not

necessarily has to be asymptotically stable. The matrices of flux

control coefficients CJ and concentration control coefficients CS

can be expressed as,

CS~{D{1

S0
:L:J’{1:N’:D

v0 ð2Þ

and

CJ~1zD{1

v0
:Lv

LSD
S0

:D
S0
:CS ð3Þ

where D
v0 and D

S0 denote diagonal matrices with elements v0 and

S0 on the diagonal, respectively, N’ denotes the reduced

stoichiometric matrix and L the link matrix. See [28] for details.

The Jacobian J’ accounts for possible mass conservation and is

defined as

J’ : ~N’:
Lv

LSD
S0

:L: ð4Þ

The control coefficients are only evaluated for stable metabolic

states, characterized by an invertible Jacobian with all real parts of

the eigenvalues below zero. The information required to evaluate

the control coefficients therefore consists of: (i) The stoichiometry

of the system, as encoded by N’ and L; (ii) the metabolic state, as

encoded in the matrices Dv 0 and DS0 ; and (iii) the kinetic

properties of the reactions, as encoded in the partial derivatives.

The partial derivatives are also known as the unscaled elasticity

coefficients.

Our probabilistic evaluation of the system is then based on the

fact that the metabolic state is often directly experimentally

accessible, whereas information about kinetic parameters, and

hence the elasticities, is generally lacking. We therefore evaluate

the possible values of the unscaled elasticities by drawing random

instances of parameters and evaluating the equations for the

control coefficients. In particular, we proceed along the following

steps: First, each reaction is associated with a kinetic reaction

equation. We adopt general Michaelis-Menten kinetics of the form

u~Vmax
:f (S,K,Keq), ð5Þ

where K denotes a vector of unknown Michaelis-Menten

parameters and Keq denotes an equilibrium constant. The function

f includes terms for possible inhibition and activation. For

example, for an unregulated uni-uni reaction A?B, the equation

reads

u~Vmax
:

A{
B

Keq

K1 1z A
K1

z B
K2

� � ð6Þ

The number of unknown reaction parameters typically equals

the number of associated substrates, products and modifiers (plus

Vmax and the equlibrium constant). A full list of rate equations is

provided in the Text S2. Second, the kinetic parameters K are

sampled from intervals chosen according to the associated

metabolite concentration, such that

Ki[ 10{a1 S ,10za2 S
� �

: ð7Þ

For each simulation, the set of Michaelis-Menten parameters is

chosen at random. All results are reported for a1~a2~1, but the

results are highly robust for different choices of a and b. Sampling

was linear in log space, i.e., the logarithm of Ki=S i
0 is

equidistributed in the interval. Once the parameters are specified,

the values of Vmax are adjusted so as to deliver the known steady-

state flux,

Vmax~
u0

f (S0,K,Keq)
, ð8Þ

and the derivatives of the reaction equation can be computed.

Parameter sampling and the evaluation of control coefficients were

repeated 2:104 times for each regulatory scenario. The values

obtained for the control coefficients were largely robust with

respect to different choices of the rate equations. Specifically, the

evaluation of the control coefficient only depends on the values

attained by the partial derivative, which are primarily determined

by the ratio of substrate concentrations with respect to their

corresponding Michaelis-Menten constants, as well as by param-

eter-independent thermodynamic contributions. Using a similar

sampling scheme with slightly modified reaction equations is

therefore unlikely to result in major deviations with respect to

overall control properties [38]. We note that our approach is

straightforward to implement and its robustness with respect to

different sampling schemes has been tested previously [28]. In

particular, the evaluation of the control coefficients does not

require explicit kinetic simulation of nonlinear differential

equations, making it applicable also for medium- and large-scale

systems. The key requirements are knowledge of the network

topology, including its regulatory interactions, the metabolic state,

as well as the respective thermodynamic equilibrium constants. All

code is provided in File S1.

Fermentation experiments
L. lactis cells were grown anaerobically at 37uC in CDM-LAB

medium [53]. The medium contained per liter: 1 g K2HPO4, 5 g
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KH2PO4, 0.6 g ammonium citrate, 1 g acetate, 0.25 g tyrosine,

0.24 g alanine, 0.125 g arginine, 0.42 g aspartic acid, 0.13 g

cysteine, 0.5 g glutamic acid, 0.15 g histidine, 0.21 g isoleucine,

0.475 g leucine, 0.44 g lysine, 0.275 phenylalanine, 0.675 g

proline, 0.34 g serine, 0.225 g threonine, 0.05 g tryptophan,

0.325 g valine, 0.175 g glycine, 0.125 g methionine, 0.1 g

asparagine, 0.2 g glutamine, 10 g glucose, 0.5 g L-ascorbic acid,

35 mg adenine sulfate, 27 mg guanine, 22 mg uracil, 50 mg

cystine, 50 mg xanthine, 2.5 mg D-biotin, 1 mg vitamin B12,

1 mg riboflavin, 5 mg pyridoxamine-HCl, 10 mg p-aminobenzoëic

acid, 1 mg pantothenate, 5 mg inosine, 1 mg nicotinic acid, 5 mg

orotic acid, 2 mg pyridoxine, 1 mg thiamine, 2.5 mg lipoic acid,

5 mg thymidine, 200 mg MgCl2, 50 mg CaCl2, 16 mg MnCl2,

3 mg FeCl3, 5 mg FeCl2, 5 mg ZnSO4, 2.5 mg CoSO4, 2.5 mg

CuSO4, (NH4)6Mo7O24. Mid-exponentially grown cells were

harvested by centrifugation at 5000 RPM for 10 minutes at room

temperature, washed twice with 50 mM MES buffer (pH = 6.5),

and finally suspended in the indicated buffer solution. Anaerobic

conditions were established by flushing with nitrogen for 10 min.

Glucose (20 mM for L. lactis) was added and samples were taken

at regular time intervals. 400 ml samples were taken and mixed

immediately with 200 ml of a cold perchloric acid (3.5 M) solution.

The extracts were kept on ice for maximal 60 minutes. The pH

was neutralized with 160 ml 2 M KOH. The pH-adjusted samples

were centrifuged and the supernatants were stored at 280uC for

subsequent analysis. All metabolites were quantified by enzymatic

methods coupled to the spectrophotometric determination of

NAD(P)H. The strain NZ9000 was used [54].

Analysis of carbon fluxes
Bacterial dry weight was measured as described previously [55].

External glucose, pyruvate, lactate, formate, acetate, succinate,

and ethanol were determined by high-pressure liquid chromatog-

raphy (HPLC; LKB) with a Rezex organic acid analysis column

(Phenomenex) at a temperature of 45uC with 7.2 mM H2SO4 as

the eluent, using a RI 1530 refractive index detector ( Jasco) and

AZUR chromatography software for data integration. Discrimi-

nation between d- and l-lactate was performed using a d-/l-lactate

assay kit (Megazyme).

Determination of the metabolic state
Fluxes for lactate, acetate, formate, pyruvate and ethanol were

calculated using their fermentation broth concentration, dilution

rate (0:5h{1) and steady state bacterial cell dry weight. Fluxes are

given in Text S1. Steady state intracellular metabolites concen-

trations were gathered from previously published articles in

various journals. The steady state data and its sources are

provided in Text S1.

Determination of the equilibrium constants
The equilibrium constants Keq were derived using the following

equation,

DRG0~{RT ln Keq, ð9Þ

where DRG0 denotes the change in standard Gibbs free energy

occurring in the corresponding reaction and RT the gas constant

multiplied by the absolute temperature. The value of DRG0 was

estimated using,

DRG0~
X

products

Df G0{
X

substrates

Df G0, ð10Þ

where Df G0 denotes the Gibbs free energy of formation of the

different metabolites. The values were adopted from Feist et al.

[34], who use the group contribution method developed by

Mavrovouniotis [56,57]. The full list of equilibrium constants is

provided in the Text S1. The metabolic state was checked for

thermodynamics feasibility. In particular for any reaction

S1zS2?P1zP2 with positive flux, the following relationship

must hold at steady state,

S 1
0S 2

0{P 1
0P 2

0=Keq

� �
w0: ð11Þ

In Figure 5, we consider the distance C from equilibrium,

defined as the ratio

C : ~
1

Keq

Pj P j
0

Pi S i
0

, ð12Þ

for a reaction that converts a set of substrates S into a set of

products P. Only considering the positive direction of flux, the

value of C is zero for irreversible reactions and approaches unity

for reactions close to equilibrium.

Supporting Information

Text S1 A pdf document detailing the experimental
procedure and the metabolic state.

(PDF)

Text S2 A pdf document providing additional informa-
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(ZIP)
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