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Abstract We study the process of quantum telecloning of d-dimensional pure quan-
tum states using partially entangled pure states as quantum channel. This process
efficiently mixes optimal universal symmetric cloning with quantum teleportation. It
is shown that it is possible to implement universal symmetric telecloning in a prob-
abilistic way using unambiguous state discrimination and quantum state separation
schemes. It is also shown that other strategies, such as minimum error discrimination,
lead to a decrease in the fidelity of the copies and that certain partially entangled pure
states with maximal Schmidt rank lead to an average telecloning fidelity which is
always above the optimal fidelity of measuring and preparation of quantum states. We
also discuss the case of partially entangled pure stateswith non-maximal Schmidt rank.
The results presented here are valid for arbitrary numbers of copies of a single-input
qudit state of any dimension.
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1 Introduction

The encoding of information in quantum systems exhibits features which do not have
classical counterparts, including quantum teleportation [1,2] and the no-cloning theo-
rem [3]. Quantum teleportation enables quantum states to be transmitted from a sender,
Alice, to a receiver, Bob, without sending a physical quantum system. The no-cloning
theorem rules out the perfect cloning of unknown quantum states by the linearity of
quantummechanical transformations. It does allow approximate deterministic cloning
[4–7] and perfect probabilistic cloning [8–10]. Approximate deterministic cloning is
the creation of imperfect copies of an unknownquantum statewith themaximal fidelity
permitted by quantummechanics. Perfect probabilistic cloning is the creation of exact
copies of an unknown quantum state in a probabilistic fashion.

Quantum teleportation and approximate universal cloning can be combined to allow
a sender to distribute approximate clones to many receiving parties. The sender may
first generate all the required clones before teleporting them to the receivers. This
strategy requires the use of as many bipartite maximally entangled states as there are
clones to be broadcast, as well as the transmission of classical information to com-
plete the teleportation stage. A new and more efficient approach, termed telecloning
[11,12], allows simultaneous conveyance of all the clones by means of a single local
measurement carried out by the sender, who publicly broadcasts the result of the
measurement. Each receiving party then performs a local quantum operation which
depends on the publicly broadcast measurement result, and thereafter the approximate
clones are finally broadcast. This kind of scheme has been experimentally demon-
strated using entangled photons [13], where three non-perfect but optimal copies were
transmitted using maximally entangled bipartite pure states. This strategy is more
efficient than the simple scheme described above since it requires only O(log2M)

maximally entangled bipartite pure states, where M is the number of clones to be
distributed.

Telecloning is based on the generation of a multipartite entangled state which is
distributed among the parties participating in the telecloning process. In realistic sit-
uations, however, generation and distribution do not, in general, lead to a maximally
entangled state. Here we study the performance of telecloning when implemented
with a partially entangled pure state as a quantum channel. We focus on the errors
introduced in the telecloning process and the degradation of the fidelity of the clones.
We show that the problem of recovering high fidelity in the copies reduces to the
problem of discrimination between non-orthogonal quantum states. We also propose
a probabilistic and conclusive method to correct the errors caused by the non-maximal
entanglement of the multipartite entangled state, using standard strategies of quantum
state discrimination. This article is organised as follows: in Sect. 2, we briefly review
the telecloning process. In Sect. 3, we show how the problem of telecloning via a
partially entangled pure quantum state can be related to the problem of discrimination
of non-orthogonal quantum states. In Sect. 4, we consider the case of a pure quantum
channel of full Schmidt rank, and we combine unambiguous state discrimination with
the telecloning scheme to correct the errors introduced by the non-maximal entan-
glement of the multipartite entangled state. We show that the fidelity of this process,
averaged over the Hilbert space of the states to be cloned, is higher than the fidelity
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Telecloning of qudits via partially entangled states 3445

of estimating quantum states for certain quantum channels. Also in this section, we
study the combination with other discrimination schemes, namely minimum error and
quantum state separation. In Sect. 5, we comment the case of a pure quantum channel
with non-maximal Schmidt rank, and our results are summarised in Sect. 6.

2 Telecloning process

The linearity of quantum operations forbids the perfect cloning of unknown quan-
tum states. Nevertheless, it is possible to consider an approximate cloning process
which creates clones of unknown quantum states with the highest fidelity allowed by
quantum mechanics. This optimal process is carried out by applying separate unitary
transformations onto a set of quantum systems. We consider a universal and symmet-
ric telecloning process [11,12]. It is universal in the sense that the fidelities of the
clones do not depend on the particular state undergoing the cloning process, and it
is symmetric in that all of the clones have the same fidelity with respect to the input
state. Additionally, each of the copies and the system to be cloned may be spatially
separated.

Let us consider the case of creating M clones from a single copy of an arbitrary
qudit of dimension d, denoted as 1 → M telecloning [12]. The maximal fidelity for
this kind of process is given by the optimal fidelity of the 1 → M universal cloning,
F1→M
opt = (2M + d − 1)/(M + Md). The input state to be teleported is the qudit state

|ψ〉X = ∑d−1
j=0 α j | j〉X , where the set of states {| j〉} is the computational basis for

the system X . The output state is represented through the basis |φ j 〉, which describes
N0 = 2M−1 d-dimensional systems, where M−1 of them are ancillary systems and
the remaining M systems encode the clones. The elements of this basis are written in
terms of the basis of normalised and symmetrised states {|ξM

k 〉}. They are given by

|φ j 〉AC =
√
d√

d[M]
d[M]∑

k=0

P 〈 j |ξM
k 〉PA ⊗ |ξM

k 〉C , (1)

where d[M] = (d+M−1)!/M !(d−1)!. The index P represents the port qudit, which
belongs to Alice, A represents theM−1 ancillas, andC represents theM qudits which
host the clones. A constructive procedure for the states {|ξM

k 〉C } is detailed in [12].
The optimal quantum channel for the telecloning process is given by

|ξ 〉PAC = 1√
d

d−1∑

j=0

| j〉P ⊗ |φ j 〉AC , (2)

which is a maximally entangled state between the port qudit and the AC system.
Therefore, the joint state of the total system (input state and quantum channel) is
given by

|ψ〉X PAC = |ψ〉X ⊗ |ξ 〉PAC . (3)
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3446 G. Araneda et al.

This state can be cast as

|ψ〉X PAC =
d−1∑

n,m=0

|Φnm〉X P
1√
d

d−1∑

j=0

ω jnα j |φ j⊕m〉AC , (4)

whereω = exp(2π i/d) and the generalised Bell states {|Φnm〉} (n,m = 0, . . . , d−1)
are given by

|Φnm〉X P = 1√
d

d−1∑

k=0

ωkn|k〉X |k ⊕ m〉P , (5)

with k ⊕ m = ( j + m) mod(d). Equivalently, the states of the separable basis of
systems X and P are given in terms of the Bell states by the expression

|k〉X |k ⊕ m〉P = 1√
d

d−1∑

n=0

ω−nk |Φnm〉X P . (6)

We now perform a measurement on the systems X and P in the {|Φ〉nm} basis. The
outcomes of this measurement are the eigenvalues associated with the indexes n and
m, and they are transmitted by means of classical communications to the carriers
of systems A and C . In order to recover the optimal copies, the carriers of these
systems apply local reconstruction unitary operations, conditioned to the outcomes of
the measurement. These operations are given by

U A
nm =

d−1∑

j=0

ω− jn| j〉 ⊗ 〈 j ⊕ m|, (7)

UC
nm =

d−1∑

j=0

ω jn| j〉 ⊗ 〈 j ⊕ m|, (8)

for the ancillas and copy systems, respectively. Therefore, the state in the AC system
is |ψ〉AC = ∑d−1

k=0 α j |φ j 〉AC , which contains optimal copies of the input state in each
system C . The fidelity of each copy is optimal and given by F1→M

opt .

3 Telecloning via partial entanglement

Now let us suppose that the quantum channel given by Eq. (2) is not a maximally
entangled state between the port qudit and the AC system and, instead, is given by the
state

|ξ̃〉PAC =
d−1∑

j=0

c j | j〉P ⊗ |φ j 〉AC , (9)

where {c j } are d coefficients which define the channel and satisfy
∑d−1

j=0 |c j |2 = 1.
We assume that the channel is written in its Schmidt decomposition so that all the c j
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are real, positive numbers. In this way, the state of the total system is given by

|ψ〉X PAC = |ψ〉X ⊗ |ξ̃〉PAC , (10)

which can be cast as

|ψ〉X PAC =
d−1∑

n,m=0

|Φnm〉X P

d−1∑

j=0

α j c j+m exp(−2π i jn/d)|φ j+m〉AC . (11)

If we perform a measurement in the generalised Bell basis Eq. (5), the state of the
system is projected onto

|ψ〉ACnm = 1√
Pm

d−1∑

j=0

α j c j+m exp(−2π i jn/d)|φ j+m〉AC , (12)

where m and n denote the generalised Bell state associated with the measurement
result and Pm is the probability of projecting onto the |Φ〉nm state. This probability
depends only on m,

Pm =
d−1∑

j=0

|α j |2|c j+m |2. (13)

Since the values of n and m are known after this measurement, it is possible to apply
the corresponding local reconstruction unitary operationsU A

nm andUC
nm on the ancillas

and copies systems. After these operations, the state of the system is described by

|ψ ′〉ACnm = 1√
Pm

d−1∑

j=0

α j c j+m |φ j 〉AC , (14)

and the associated density matrix can be written as

ρAC
nm = 1√

Pm

d−1∑

j, j ′=0

α j c j+mα j ′c j ′+m |φ j 〉AC 〈φ j |AC . (15)

Let us study the fidelity in the simplest case in which two qudit copies (M = 2)
are created. In this case, the vectors |φ j 〉AC can be written explicitly as

|φ j 〉AC1C2 =
√

1

2(d + 1)

d−1∑

k=0

|k〉A
(| jk〉C1C2 + |k j〉C1C2

)
. (16)
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The reduced density matrix of one of the copies, e.g. C2, is then

ρC2
nm = 1

2(d + 1)

d−1∑

l=0

|l〉〈l|

+ (2 + d)

2(d + 1)

1

Pm

d−1∑

j, j ′=0

[
α j c j+mα j ′c j ′+m

] | j〉〈 j ′|. (17)

Hence, the local fidelity of the clones F1→2,PE
m = 〈ψ |ρC2

nm |ψ〉 with respect to the
initial input state for a partially entangled channel is given by

F1→2,PE
m = 1

2(d + 1)
+ (2 + d)

2(d + 1)

1

Pm

(
d−1∑

k=0

|αk |2ck+m

)2

. (18)

The average fidelity of the process for a fixed channel is the sum of all the possible
fidelitiesweightedby the probability of obtaining the different results in the generalised
Bell measurement, that is F1→2,PE = ∑d−1

m=0 PmF
1→2,PE
m , which takes the explicit

form

F1→2,PE = 1

2(d + 1)
+ (2 + d)

2(d + 1)

d−1∑

m=0

(
d−1∑

k=0

|αk |2ck+m

)2

. (19)

This fidelity is always smaller than the optimal universal cloning fidelity F1→2
opt . In

the case of qubits, the average fidelity of telecloning using a partially entangled state
reduces to

F1→2,PE
d=2 = N 2

θ

12

[
5|a|4c21 + 5|b|4c22 + |a|2|b|2(1 + 8c1c2)

]
, (20)

where

Nθ =
√
2

√
a2c21 + b2c22

. (21)

As we can see from Eq. (19), the lack of maximal entanglement not only reduces the
fidelity of the broadcast clones, but also makes the cloning process state dependent.
As indicated by Eq. (17), this is due to the fact that the coefficients of the channel
are introduced in the state of the clones. It is possible to improve the fidelities of the
copies, even to optimal fidelity by using additional steps. In the following sections,
we distinguish between the cases where the channel can be described by a state with
maximal Schmidt rank and the cases in which it may not be described in this fashion.

4 Quantum channel of maximal Schmidt rank

In the previous section, we have shown that the use of a partially entangled channel
leads to a telecloning process characterised by a suboptimal state-dependent fidelity.
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Here, we will show that it is possible to achieve the optimal state-independent fidelity
at the expense of making the telecloning process probabilistic.

This approach allows the coefficients of the state to be cloned to be decoupled from
those of the channel. We can cast the state of the total system, Eq. (4), before the
telecloning process, as

|ψ〉X PAC = 1

d

d−1∑

n,m=0

|Φ̃nm〉X P ⊗U−1
nm

d−1∑

j=0

α j |φ j 〉AC , (22)

where the states {|Φ̃nm〉} are defined by

|Φ̃nm〉X P =
d−1∑

k=0

ckω
kn|k 	 m〉X |k〉P , (23)

with n 	 m = (n − m) mod(d), and

U−1
nm

d−1∑

j=0

α j |φ j 〉AC =
d−1∑

j=0

ω−( j+m)nα j |φ j⊕m〉AC . (24)

The coefficients of the quantum channel are now transferred into the new set {|Φ̃nm〉}
of generalised Bell states. These are non-orthogonal and cannot be perfectly distin-
guished in a deterministic fashion. Therefore, the selection of the correct unitaryUnm

is ambiguous and leads to errors in the clones.
In order to avoid this limitation and improve the performance of the telecloning

process, we can use probabilistic processes such as quantum state discrimination [14,
15] or quantum state separation [16]. These processes allow the correct reconstruction
operation Unm to be chosen, or to improve the probability of choosing the correct
reconstruction operation in a controlled way. It is also possible to use minimum error
discrimination [17–19], which is a deterministic discrimination strategy. In Sects. 4.1,
4.2 and 4.3, we analyse the performance of the telecloning process when combined
with each of these discrimination strategies.

4.1 Telecloning combined with unambiguous state discrimination

The set {|Φ̃nm〉} of d2 non-orthogonal, partially entangled states can be transformed
into a set of separable states. This is done by applying the GXOR gate onto the X P
system. This gate is defined as

GXORPX |n〉P |m〉X = |n〉P |n 	 m〉X . (25)

The GXOR gate is a generalisation of CNOT for qudits, and it can entangle and
disentangle two qudit states. After applying this gate, the state given by Eq. (22) is
transformed into the state
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3450 G. Araneda et al.

GXORPX |ψ〉PX AC = 1

d

d−1∑

n,m=0

d−1∑

k=0

ckω
kn|k〉P |m〉X

⊗U−1
nm

d−1∑

j=0

α j |φ j 〉AC , (26)

where the systems X and P are factorisable. The X system is then projected into its
computational basis by a projective measurement. The X system is projected onto the
state |m〉X with probability

Pm =
d−1∑

k=0

|ck+m |2 |αk |2 . (27)

The state of the total system, which depends on the results of the measurement on
system X , becomes

|ψm〉X PAC = 1√
Pm

1

d

d−1∑

n=0

|Ψn〉P |m〉X (28)

⊗
d−1∑

j=0

ω−( j+m)nα j |φ j⊕m〉AC ,

where the states

|Ψn〉P =
d−1∑

k=0

ckω
nk |k〉P , n = 0, . . . , d − 1 (29)

are a set of d symmetric states. These are symmetric because they are defined by the
successive action of the operator Z = ∑d−1

j=0 ω j | j〉〈 j | over the seed state |Ψ0〉P =
∑d−1

k=0 ck |k〉P , namely |Ψn〉P = Zn|Ψ0〉P . Thus, the problem of discriminating among
the d2 states |Φ̃nm〉 of the bipartite system X P is reduced to distinguishing among the
d states |Ψn〉P of the system P . These states are also mutually non-orthogonal, and
so they cannot be deterministically distinguishable. We will now apply unambiguous
state discrimination (USD) to the set {|Ψn〉P }. It has been demonstrated that this
discrimination scheme exists only for sets of linearly independent states [20]. In our
case, this corresponds to a set of non-vanishing c j coefficients, or equivalently, to a
quantum channel of full Schmidt rank.

Now we apply the USD protocol to states |Ψn〉P . This scheme corresponds to a
unitary transformation UUSD

PX acting on the bipartite system PX followed by a von
Neumann measurement on system X [21]. The unitary transformation UUSD

PX is given
by

UUSD
PX |Ψn〉P |m〉X = √

pd |un〉P |m〉X + √
1 − pd |χn〉P |m ⊕ 1〉X , (30)

where the set {|ul〉P } is composed by d mutually orthogonal and distinguishable states
of system P , the states {|χ〉P } are d linearly dependent states, and pd is the probability

123



Telecloning of qudits via partially entangled states 3451

of successful discrimination of the states |Ψn〉. All the states |Ψn〉 are generated with
the same probability 1/d, so the discrimination probability is the same for each of
them and is given by pd = d|cmin|2 where cmin is the channel coefficient with the
smallest absolute value. The state |m ⊕ 1〉 is orthogonal to the state |m〉; thus, it is
possible to knowwhen the discriminationprocess is successful bymeans of a projective
measurement on system X . The states {|χl〉} are given by

|χl〉 = 1√
d

1√
1 − pd

d−1∑

m,n=0

ω(l−m)n
√
c2n − c2min|m〉. (31)

These d states belong to a subspace of dimension d−1 and are thus linearly dependent,
which forbids the possibility of applying a further stage of unambiguous discrimina-
tion. The states {|uk〉} turn out to be the Fourier transform of the computational basis
[22], that is

|un〉 = F |n〉 = 1√
d

d−1∑

k=0

ωkn|k〉. (32)

Therefore, the application of the inverse Fourier transform on the system P allows
the states |Ψn〉 to be discriminated on the computational basis. First applying the
discrimination unitary operation U and then the inverse Fourier transform, we find
that the state of the joint system PX AC is given by

|ψ̃m〉 =
√
pd

d
√
Pm

⎛

⎝ 1√
d

d−1∑

n=0

|n〉PU−1
nm

d−1∑

j=0

α j |φ j 〉AC
⎞

⎠ |m〉X

+
√
1 − pd
d
√
Pm

⎛

⎝
d−1∑

n=0

F−1
P |χn〉PU−1

nm

d−1∑

j=0

α j |φ j 〉AC
⎞

⎠ |m ⊕ 1〉X , (33)

where we have defined |ψ̃m〉 = F−1
X UUSD

PX |ψm〉X PAC . We now perform a projective
measurement on system X . If the outcome of the measurement is the eigenvalue
associated with the state |m〉X , which occurs with probability pd, then it is possible to
conclusively discriminate the states of system P . We therefore obtain the values of n
and m. These are transmitted by classical communications to the carriers of systems
A and C , who separately apply the local reconstruction unitary operations U A

nm on
each ancilla system and UC

nm on each system encoding a clone. These reconstruction
operations are given by

U A
n,m =

d−1∑

j=0

ω−( j+m)n| j〉 ⊗ 〈 j ⊕ m| (34)

and

UC
nm =

d−1∑

j=0

ω( j+m)n| j〉 ⊗ 〈 j ⊕ m|. (35)
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After these transformations, the copies encoded in the systemsC are mixed states with
optimal fidelity F1→M

opt with respect to the input qudit state. Thus, the combination
of telecloning process via a partially entangled pure state and an unambiguous dis-
crimination stage leads to a probabilistic telecloning process which produces optimal
copies with probability pd = d|cmin|2 for any values of M and d.

In the case that the discrimination process fails, with probability 1− pd , the result of
the measurement in the X system turns out to bem⊕1. The fidelity of the clones turns
out to be non-optimal and depends on the state of system X after the first measurement
(through m) and on the input state. Indeed, if the discrimination fails, the state of the
AC system corresponds to the second term of Eq. (33), namely

|ψ̃m〉fail = 1

d
√
Pm

⎛

⎝
d−1∑

n=0

F−1
P |χn〉PU−1

nm

d−1∑

j=0

α j |φ j 〉AC
⎞

⎠ |m ⊕ 1〉X . (36)

Starting from Eq. (36), we can construct the density matrix for the final state in the
case of a failed discrimination attempt and then obtain the reduced density matrix of
one of the copies, namely C2, by calculating, in the case of the 1 → 2 telecloning,

ρC2,fail
n,m = TrC1

[
TrPA

[
|ψ̃m〉fail〈ψ̃m |

]]
. (37)

The fidelity of the clones F1→2,fail
m = 〈ψ |ρC2,fail

m |ψ〉 is given by

F1→2,fail
m = 1

2(d + 1)
+ 1

2(d + 1)

1

Pm

d−1∑

j=0

∣
∣α j+m

∣
∣2

∣
∣α j

∣
∣2 (38)

×
{
(2 + d)

(
c2j+m − c2min

)}
.

This depends on the result of the first measurement, given by the value of m, and on
the state to be cloned, so that, in the case of failure, the process is neither universal nor
optimal. The average failure fidelity is computed by integrating over all the possible
input states and summing over all the possible outcomes of the first measurement on
system X ,

F fail =
∫

dα

d−1∑

m=0

PmF
1→2,fail
m , (39)

where
∫
dα represents integration over all pure d-dimensional qudits. Using the iden-

tity
∫
dψ

∣
∣ψ j

∣
∣2 |ψk |2 = (δ j,k + 1)/d(d + 1) and Eq. (38), we obtain

F fail = 1

d
. (40)

A simple cloning strategy consists of estimating the state to be cloned and then creating
as many copies of the estimated state as needed. The fidelity of this process is given by
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the optimal state estimation fidelity Fest = 2/(d + 1). Thus, the average telecloning
fidelity obtained in cases which the discrimination attempts fail is always smaller than
that obtained when estimating.

Finally, as a measure of the quality of the total process obtained by concatenating
telecloning to unambiguous state discrimination, it is possible to compute the total
average fidelity Fav, which includes failures and successes in the discrimination stage.
This average fidelity is obtained by adding the optimal fidelity of cloning F1→M

opt

weighted by the optimal discrimination probability pd and the average fidelity F fail,
given in Eq. (39), weighted by the failure probability 1 − pd:

Fav = F1→M
opt pd + F (fail)(1 − pd). (41)

In the case of 1 → 2 telecloning of qudits, this fidelity is given by

F1→2
av = pd

(
3 + d

2 + 2d

)

+ (1 − pd)
1

d
, (42)

which depends on the quantum channel through pd. We can compare this fidelity
with the classical fidelity Fset for 1 → 2 cloning processes, i.e. the fidelity of the
optimal measure-and-prepare cloner. For the 1 → 2 telecloning of qudits, we look for
dimensions where

pd

(
3 + d

2 + 2d

)

+ (1 − pd)
1

d
≥ 2

d + 1
(43)

holds. In addition, the condition pd ≤ 1 also holds. This implies that |cmin|2 ≤ 1/d.
Therefore, it is possible to outperform the classical cloning fidelity in every dimension
d if the condition for the channel

|cmin|2 ≥ 2

d(d + 2)
, (44)

is fulfilled. Hence, for certain quantum channels, even when including clones pro-
duced in cases with failed discrimination processes, it is possible to achieve a higher
telecloning fidelity than in the classical case.

4.2 Telecloning combined with minimum error discrimination

Minimum error discrimination of quantum states [17–19,23] is based on the minimi-
sation of the average error when making guesses about a set of states. Operationally,
following the same procedure as using unambiguous state discrimination, and after
a projective measurement in the system X , the state of the PAC system is given by
Eq. (28),

|ψm〉 = 1√
Pm

1

d

d−1∑

n=0

|Ψn〉P
d−1∑

j=0

ω−n( j+m)α j |φ j⊕m〉AC , (45)
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Now, in order to discriminate between the |Ψn〉 states, we apply the inverse Fourier
transform over P ,

F−1|Ψn〉P = 1√
d

d−1∑

k=0

d−1∑

j=0

ckω
k(n− j)| j〉, (46)

and subsequently, we projectively measure in the canonical basis. If the result is the
one associated with the state |n〉, the state of the system is given by

P 〈n|F−1
P |ψm〉 = 1√

Pm

1√
d

d−1∑

j=0

c j+mα jω
−n( j+m)|φ j⊕m〉AC , (47)

which is non-normalised, but with norm P̃n . Knowing the values of n andm, we apply
the reconstruction operations given by Eqs. (34) and (35). The new state of the AC
system is given by

|ψnm〉 = 1
√

P̃n

1√
Pm

1√
d

d−1∑

j=0

c j+mα jω
−nm |φ j 〉AC . (48)

The probability of measuring the state associated with n′ is given by P̃n =
1
Pm

1
d

∑d−1
j=0

∣
∣c j+m

∣
∣2

∣
∣α j

∣
∣2, and replacing Eq. (13), we get P̃n = 1

d .
As in the previous cases, it is possible to compute the fidelity of the copies in the

1 → 2 telecloning using Eqs. (16) and (48) to get first the density matrix of the AC1C2
system, and then the reduced density matrix of one of the copies, namely C2, which
is given by

ρC2
n,m = TrC1

[
TrA

[|ψn,m〉A,C1,C2〈ψn,m |]] . (49)

Hence, the fidelity of the copies, which is given by F1→2,ME
m = 〈ψ |ρC2

n,m |ψ〉, has the
explicit form

F1→2,ME
m = 1

2(d + 1)

1

d3
+ (2 + d)

2(d + 1)

1

Pm

1

d3

⎛

⎝
d−1∑

j=0

|α j |2c j+m

⎞

⎠

2

. (50)

This fidelity depends on the result of the first measurement, and this dependence is
carried in the m indexes and in the input state, so that, after applying minimum error
discrimination, the process is no longer universal, but still symmetric. Finally, the
overall fidelity of the process is calculated by the weighted sum of all the possible
measurements results, i.e. 〈FME〉 = ∑d−1

n,m=0 P̃n PmF
2
nm , which is given explicitly by

〈FME〉 = 1

2(d + 1)

1

d3
+ (2 + d)

2(d + 1)

1

d3

d−1∑

m=0

⎛

⎝
d−1∑

j=0

|α j |2c j+m

⎞

⎠

2

. (51)
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The last expressions correspond to F1→2,PE/d3, which means that the overall fidelity
of the process with minimum error discrimination is always worse than the process
without any discrimination protocol. In the case of qubits, this fidelity is given by

〈FME〉1→2
d=2 = N 2

θ

96

[
5|a|4c21 + 5|b|4c22 + |a|2|b|2(1 + 8c1c2)

]
. (52)

4.3 Telecloning combined with quantum state separation

The process of quantum state separation [16] consists of changing the separation
between different states by a different and, in general, larger one. This separation is
given by the inner product of the corresponding states. Therefore, the increase in this
value between non-orthogonal states allows us to increase the chance of discrimina-
tion between them. This process is characterised by a unitary operation S and is a
probabilistic process. In the case of a set of equidistant symmetric states, as in the
case of the states given by Eq. (29), and considering that we want to symmetrically
increase the separation of these states, the probability of this process is given by
pSEP = c2min/c̃

2
min, where c̃min is the minimal coefficient that we want to achieve. If

we set the increase in the distance between the symmetric states on Eq. (29) so that
after applying the suitable quantum state separation operation over system P they will
be mutually orthogonal, it is then possible to discriminate and correctly choose the
unitary reconstruction operations and at the end have optimal copies of the input state,
i.e. with fidelity F1→2

opt , but with a limited probability portSEP = c2min/d, which is always
smaller than the probability achieved by unambiguous state discrimination.

However, it is also possible to change the separation of this state arbitrarily, not
necessarily to orthogonality. If we apply this procedure over the system P , considering
the states of Eq. (29), so that the new set of coefficients are denoted by c̃k , and without
other processes of discrimination, it is possible improve the fidelity of the copies,
which in the case of 1 → 2 telecloning will be given by

F1→2,SEP
m = 1

2(d + 1)
+ (2 + d)

2(d + 1)

1

P̃m

(
d−1∑

k=0

|αk |2c̃k+m

)2

, (53)

where P̃m = ∑d−1
j=0 |α j |2|c̃ j+m |2. The probability of obtain this fidelity is given by

pSEP. The weighted fidelity over every possible outcome m is given by

〈FSEP〉1→2 = 1

2(d + 1)
+ (2 + d)

2(d + 1)

d−1∑

m=0

(
d−1∑

k=0

|αk |2c̃k+m

)2

(54)

In the case of telecloning of qubits, this quantity reduces to

〈FSEP〉1→2
d=2 = Ñ 2

θ

12

[
5|a|4c̃21 + 5|b|4c̃22 + |a|2|b|2(1 + 8c̃1c̃2)

]
(55)
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where

Ñθ =
√
2

√
a2c̃21 + b2c̃22

. (56)

If we use the quantum state separation process to orthogonalise in the qubit case, the
fidelity achieved is the optimal 5/6 for any input state and the probability of success is
c2min/2, which is four times smaller than the probability of achieving the same fidelity
when using unambiguous state discrimination.

5 Quantum channel of non-maximal Schmidt rank

In the case where c j = 0, for some j , the states of Eq. (29) are linearly dependent
and it is not possible to unambiguously distinguish between them, so it is necessary
to resort to other discrimination schemes. A useful discrimination scheme in this sce-
nario is maximum confidence state discrimination (MCD) [24]. This scheme allows
us to discriminate between linearly dependent states, but with errors associated with
the identification of some of them, even if we permit non-conclusive results in the dis-
criminationmeasurements. Therefore, it is possible to construct a set of measurements
which enables us to identify the states with the maximum possible confidence.

We apply, as in the USD case, the transformation of maximum confidence discrim-
ination on the system X using the system P as ancilla system. The initial state of
the ancilla system is |m〉. If this state remains unchanged, the discrimination process
succeeds and it is possible discriminate with maximum confidence. In any other case,
the result is inconclusive. After applying the MCD unitary transformation UMC , the
state of the system is given by

| ˜̃
ψ〉 = √

1 − p?|m〉X
d−1∑

n=0

|ũn〉PU−1
nm

d−1∑

j=0

α j |φ j 〉AC

+ √
p?|m ⊕ 1〉X

d−1∑

n=0

|χ̃n〉PU−1
nm

d−1∑

j=0

α j |φ j 〉AC , (57)

where | ˜̃
ψ〉 = UMC

XP |ψm〉X PAC . The states |ũ〉n are orthonormal states given by

|ũn〉 = 1√
N

N−1∑

k=0

e2πkn/d |k〉2, (58)

and the states |χ̃〉 are normalised non-orthogonal states, given by

|χ̃n〉 =
N−1∑

k=0

√
c2k − c2min

p?
e2πkn/d |k〉. (59)
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N is the number of non-vanishing coefficients c j . As in the USD case, if we get the
outcome m by measuring the system X , we will be able to perform an inverse Fourier
transform and measure the system P on the computational basis, obtaining the out-
come n, and then perform the transformations of Eqs. (34) and (35). The confidence of
the process, i.e. the probability of correctly distinguishing the state n through the mea-
surement outcome n, is N/d. Additionally, the probability of getting a non-conclusive
outcome is p? = 1 − Nc2min, where in this case cmin is the non-vanishing coefficient
with the smallest modulus.

6 Summary

We presented a general scheme to probabilistically teleclone qudit states via partially
pure entangled channels as described in Eq. (9). After introducing these kinds of
channels, the process is still symmetric, but no longer universal. However, it is still
possible to recover the universality of the cloning process in the case of maximally
ranked Schmidt channels, by using unambiguous state discrimination and turning
the process into a probabilistic one. The same result could be achieved using quan-
tum state separation, but with a much smaller probability. If instead of using these
processes we use minimum error discrimination to try to improve the results, the over-
all fidelities are even worse than not using any strategy. In [25], the authors propose
a similar probabilistic scheme, but just in the 1 → 2 case and maximal Schmidt rank
using a pseudo-control unitary operation which corresponds to a special case of our
unambiguous state discrimination strategy.
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