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ABSTRACT
The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise
present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the
pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic
sources of noise include contributions from physical processes which are not sufficiently well
modelled, for example, dispersion and scattering effects, analysis errors and instrumental insta-
bilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed
with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and
achromatic noise component, or ‘timing noise’, we employ two methods, based on Bayesian
and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent results. For the
remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent
confidence level. We additionally place an upper limit on the contribution to the pulsar noise
budget from errors in the reference terrestrial time standards (below 1 per cent), and we find
evidence for a noise component which is present only in the data of one of the four used tele-
scopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity
of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor
of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries
with circular orbits.

Key words: gravitational waves – methods: data analysis – pulsars: general.

1 IN T RO D U C T I O N

Over the past decades, pulsar astronomy has been instrumental in the
experimental tests of general relativity (GR) and alternative theories
of gravity. Some of the most notable highlights from this research
field include the first evidence of the existence of gravitational
waves (GWs; Taylor & Weisberg 1989), the most precise tests of
GR (Kramer et al. 2006b), as well as tests of alternative theories of
gravity, such as tensor–scalar gravity, in the quasi-stationary, strong-

� E-mail: caball@mpifr-bonn.mpg.de

field regime (see e.g. Freire et al. 2012; Shao et al. 2013). These
results rely on the pulsar timing technique (e.g. Lorimer & Kramer
2005), which fits the precisely recorded times-of-arrival (TOAs) of
the pulses with a model of the pulsar’s rotational, astrometric and
orbital parameters, as well as signal propagation delays induced by
the ionized interstellar medium between the pulsar and Earth. The
differences between the observed TOAs and those predicted by the
model are called the timing residuals and contain the effects of any
unmodelled physical or instrumental processes.

One of the applications of pulsar timing is the possibility of direct
detection of GWs via the precise timing of an ensemble of pulsars,
commonly referred to as a Pulsar Timing Array (PTA; Foster &
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Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/457/4/4421/2588960 by U
niversiteit van Am

sterdam
 user on 20 July 2020

mailto:caball@mpifr-bonn.mpg.de


4422 R. N. Caballero et al.

Backer 1990). The expected effects of GW propagation on the TOAs
were first examined by Sazhin (1978). Later, the idea of using a PTA
for unambiguous direct detection of low-frequency (nHz regime)
GWs based on the predicted cross-correlation of the residuals of
pulsars in various sky positions was proposed by Hellings & Downs
(1983). Subsequent work has identified the potential of modern
timing data for detecting nHz GWs and formulated the detection
methodologies (e.g. Jenet et al. 2004, 2005; Sanidas, Battye &
Stappers 2012).

PTAs are sensitive to the stochastic GW background (GWB) re-
sulting from the incoherent superposition of the GW signals from
the cosmic population of unresolved inspiralling supermassive black
hole binaries (SMBHBs; e.g. Rajagopal & Romani 1995), contin-
uous GWs (CGWs) from individual, resolvable SMBHB systems
(e.g. Estabrook & Wahlquist 1975), the GWB created from the de-
caying loops of a cosmic string network that may have formed in
the early Universe (e.g. Kibble 1976), a cosmological relic GWB
from the Universe’s inflationary era (e.g. Grishchuk 2005) and the
memory term (long-term change in the GW’s amplitude) from GW
bursts from SMBHB mergers (e.g. Favata 2009). Prior to the detec-
tion, upper limits on the GW amplitudes can impose limits on the
properties of the cosmic SMBHB population (e.g. Shannon et al.
2015), and rule out the presence of nearby SMBHBs proposed by
independent observations (Jenet et al. 2004). In the era of GW as-
tronomy, PTAs using future, hypersensitive telescopes will also be
able to test theories of gravity in the radiative regime. The GW
polarization modes predicted by GR or alternative theories result
in different spatial cross-correlations of the pulsar timing residuals
(e.g. Chamberlin & Siemens 2012). These cross-correlations can be
further modified if the graviton is not massless as predicted by GR
(e.g. Lee 2013).

The pursuit of GW detection using pulsar timing is coordinated by
three consortia; the European Pulsar Timing Array (EPTA; Kramer
& Champion 2013) in Europe, the North-American Nanohertz Ob-
servatory for Gravitational Waves (NANOGrav; McLaughlin 2013)
in North America and the Parkes Pulsar Timing Array (PPTA;
Hobbs 2013) in Australia. The PTAs employ in total eight large
single-dish radio telescopes. The EPTA uses five telescopes, namely
the Effelsberg Radio Telescope (EFF), the Nançay Radio Telescope
(NRT), the Lovell Telescope (JBO), the Westerbork Synthesis Radio
Telescope (WSRT) and the Sardinia Radio Telescope. NANOGrav
uses two telescopes, the Green Bank Telescope and the Arecibo
Radio Telescope, while the PPTA uses the Parkes Radio Telescope.
The three consortia cooperate under the International Pulsar Timing
Array (IPTA) consortium, maximizing the observing efficiency and
data set sensitivity.

The sensitivity of a given PTA is mainly limited by the uncertain-
ties of the TOA measurements, the number of observations and the
data time-span, the number of pulsars, their sky distribution and the
presence of low-frequency noise in the data (see e.g. Lee et al. 2012;
Siemens et al. 2013). While improvements in the instrumentation,
increase of the allocated telescope time to PTAs and discoveries of
new pulsars can address the first three factors, low-frequency noise
needs to be characterized and understood on a pulsar-by-pulsar
basis.

A number of methods have been developed to mitigate the dom-
inant sources of noise in pulsar timing. Temporal variations in the
dispersion measure (DM; integrated free electron density of the
interstellar medium) along the line of sight to the pulsar are a pri-
mary source of low-frequency stochastic noise. DM time delays,
however, depend on the observing frequency, ν, as tDM ∝ DMν−2,
and therefore DM variations can be, to a large degree, corrected

using multifrequency data (e.g. Keith et al. 2013; Lee et al. 2014).
Improper calibration of the gain of the two receiver feeds or cross-
coupling between the two feeds can potentially lead to distortions
of the total intensity profiles. These instrumental artefacts will in-
troduce additional non-stationary noise components in the timing
residuals (van Straten & Bailes 2003; van Straten 2006). By per-
forming standard calibration observations during every observing
run, we can minimize the presence of such noise in the data (e.g.
Britton 2000). By comparing the noise properties of the same pul-
sars using overlapping data from different telescopes, uncorrected
noise from instrumental instabilities can potentially be identified
(Lentati et al. submitted).

Unfortunately, pulsar timing data also exhibit some levels of
‘timing noise’ (TN), low-frequency, stochastic, achromatic noise,
the physical origin of which is unknown and, as such, cannot be
mitigated. TN is primarily thought to be caused by pulsar rotational
instabilities from various mechanisms. One approach is to consider
simultaneous random walks and discrete jumps (caused, e.g. by mi-
croglitches) in the pulsar’s spin frequency and the spin-down rate
(e.g. Cordes & Downs 1985; D’Alessandro et al. 1995; Shannon &
Cordes 2010). Based on observational evidence, it is also suggested
that TN can result from accumulated periodic and quasi-periodic
changes in the spin-down rates due to magnetospheric state switch-
ing (Kramer et al. 2006a; Lyne et al. 2010). In addition, intrinsic
noise has also been proposed to be the result of undetected (and
therefore unmodelled) bodies in orbit, such as asteroid belts (Shan-
non et al. 2013) or planetary-mass objects in long, decadal orbits
(Thorsett et al. 1999). Clearly, the measured TN in pulsar timing
data can be a superposition of noise intrinsic to the pulsar, and any
of the above non-intrinsic noise which is not properly mitigated,
e.g. noise by DM variations not properly corrected due to the lack
of sufficient multifrequency data.

While young pulsars show large amounts of low-frequency noise,
millisecond pulsars (MSPs), typically show very low levels of such
noise (Verbiest et al. 2009). It is theorized that MSPs have spun-up
to the observed ms-order rotational periods via mass transfer from
their companions during the system’s evolution (e.g. Alpar et al.
1982). Their highly stable rotations, short periods and absence of
significant temporal changes in their pulse profile shapes (see e.g.
Shao et al. 2013) make them excellent celestial clocks which can be
timed to sub-100 ns precision over decades. MSPs are therefore the
observed sources for GW-detection experiments, and indeed for all
high-precision pulsar timing applications.

Despite their demonstrated rotational stability, some MSPs show
significant amounts of TN. While their TN is considerably weaker
than that of non-recycled pulsars, it can be significant enough to
hinder GW detection. PSR B1937+21 (J1939+2134), the first
ever discovered MSP, is a notable example of an MSP with
strong TN (Kaspi, Taylor & Ryba 1994; Shannon et al. 2013).
Other MSPs show more moderate noise levels, comparable to
the predicted strength of the targeted GWs signals (e.g. PSR
J1713+0747; see Zhu et al. 2015). The characterization of TN
is therefore of central importance in high-precision pulsar timing
applications.

The measured TN will also contain signals from spatially corre-
lated low-frequency noise (e.g. Tiburzi et al. 2016). Primary exam-
ples are the long sought-after stochastic GWB, the signal caused
by errors in the reference terrestrial time standards (see e.g. Hobbs
et al. 2012) and errors in the Solar system ephemeris (see Cham-
pion et al. 2010). These signals can be distinguished by the spatial
cross-correlations they induce on the timing residuals. The GWB
induces a quadrupole signature (see Section 7.1). Errors in the
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terrestrial time standards produce a fully correlated signal in all
pulsars (see Section 6), while errors in the Solar system ephemeris
can potentially produce a superposition of dipolar correlations be-
tween pulsars, each produced by the error in the predicted location
of a Solar system body. PTAs allow such correlated signals to be
recovered or put upper limits on their power.

Different methods have been proposed and employed to char-
acterize the statistical properties of TN in pulsar data and to per-
form pulsar timing analysis in the presence of correlated noise.
These cover techniques based on frequentist (Matsakis, Taylor &
Eubanks 1997; Coles et al. 2011) and Bayesian statistics (e.g. van
Haasteren et al. 2009; Lentati et al. 2014), both in the time- and
frequency-domain. As part of the efforts to detect GWs, an increas-
ing number of algorithms are being used by the various PTAs to
determine the TN properties of MSPs, motivating work to exam-
ine the possible biases inherent to different methods. In this con-
text, we perform characterization of the TN using two established
methods based on different statistical analyses, Bayesian and fre-
quentist, and make a comparison of their performance and results.
We subsequently use the measured TN properties to search for the
presence of TN unique to specific observing systems, place an up-
per limit on the contribution of clock errors to the measured noise
and investigate the impact of the TN on the data set’s sensitivity to
GWs.

This paper is organized as follows. In Section 2, we describe the
data we use. In Section 3, we present the methods used to calculate
the noise parameters. The results from both methods are presented
in Section 4. In Section 5, we check for TN present only in individual
data subsets and continue to investigate systematics by making a
search for a correlated clock error signal in Section 6. In Section
7, we evaluate the effects of the TN present in our data on their
sensitivity to GWBs and CGWs and finally discuss our conclusions
in Section 8.

2 TH E E P TA DATA R E L E A S E 1 . 0

We use the EPTA Data Release 1.0 that is presented in Desvignes
et al. (submitted; henceforth D15). The data set is composed of data
recorded with four EPTA radio telescopes: The EFF in Germany,
the NRT in France, the WSRT in the Netherlands and the JBO
in the United Kingdom. The data-recording systems (backends)
used are the Effelsberg–Berkeley Pulsar Processor (EBPP), the
Berkeley–Orléans–Nançay (BON), the Pulsar Machine I (PuMaI)
and the Digital Filterbank (DFB), respectively. A more detailed de-
scription of the instruments and data reduction techniques can be
found in D15, where the timing solutions of the pulsars are also
presented.

The data set includes TOAs from 42 MSPs. Their key proper-
ties are summarized in Table 1. We identify observing systems as
unique combinations of telescope, backend and central observing
frequency (receiver). In total, the data set has 18 distinct systems.
The EBPP L-band1 data have the longest time-span, with a maxi-
mum of 18 yr, starting from 1996 October, divided into two observ-
ing systems, due to a change in the receiver in 2009. For most of
the sources with EBPP data, all other instruments started recording
from 2007 onwards, dividing our longest pulsar data sets into two
subsets: the first, with single-telescope, single-frequency data and
the second, with multitelescope, multifrequency data. The lack of
multifrequency data in the first half of the data set makes direct

1 1–2 GHz range in centre frequency.

Table 1. General characteristics of the EPTA Data Release 1.0. For each
pulsar we note the total time-span, T, the ranges of the observing frequencies,
ν, the number of observing systems and the number of TOAs. Sources
marked with a star suffer from a gap of ∼6 yr (1999–2005) in the Effelsberg
1410 MHz data.

PSR T ν range Number of Number of
J-Name (yr) (MHz) systems TOAs

J0030+0451� 15.1 1345–2678 7 907
J0034−0534 13.5 323–1628 6 276
J0218+4232 17.6 323–2683 13 1196
J0610−2100 6.9 1365–1632 3 1034
J0613−0200 16.1 323–2636 14 1369
J0621+1002 11.8 323–2635 10 673
J0751+1807 17.6 1352–2695 9 796
J0900−3144 6.9 1365–2303 5 875
J1012+5307 16.8 323–2636 15 1459
J1022+1001 17.5 323–2634 10 908
J1024−0719� 17.3 1346–2628 9 561
J1455−3330 9.2 1367–1698 3 524
J1600−3053 7.6 1366–2298 4 531
J1640+2224 17.3 1335–2636 8 595
J1643−1224 17.3 1353–2639 11 759
J1713+0747 17.7 820–2637 14 1188
J1721−2457 12.7 1335–1698 4 150
J1730−2304� 16.7 1352–2629 8 268
J1738+0333 7.3 1366–1630 3 318
J1744−1134 17.3 323–2634 9 536
J1751−2857 8.3 1397–1631 3 144
J1801−1417 7.1 1395–1697 3 126
J1802−2124 7.2 1366–2048 4 522
J1804−2717 8.1 1374–1698 3 116
J1843−1113 10.1 1335–1629 5 224
J1853+1303 8.4 1397–1698 3 101
J1857+0943 17.3 1335–2632 9 444
J1909−3744 9.4 1367–2681 3 425
J1910+1256 8.5 1366–1630 3 112
J1911−1114 8.8 1397–1630 4 130
J1911+1347 7.5 1365–1698 3 140
J1918−0642 12.8 1372–1630 6 278
J1939+2134 24.1 820–2278 12 3172
J1955+2908 8.1 1395–1629 4 157
J2010−1323 7.4 1381–2298 5 390
J2019+2425 9.1 1365–1629 3 130
J2033+1734 7.9 1367–1631 4 194
J2124−3358 9.4 1365–2298 5 544
J2145−0750 17.5 323–2683 12 800
J2229+2643 8.2 1355–2637 6 316
J2317+1439� 17.3 1352–2637 8 555
J2322+2057 7.9 1395–1698 4 229

measurements and corrections of the DM variations impossible. It
is however possible to extrapolate the signal measured in the sec-
ond epoch to the first, under the assumption that the DM variations
signal is stationary (see Lee et al. 2014). This is performed us-
ing the Bayesian analysis methods described in Section 3.2. For a
number of MSPs (e.g. PSR J1713+0747, PSR J1012+5307), mul-
titelescope coverage begins in 1999 with PuMaI data, which contain
good quality low-frequency data, allowing direct measurements of
the DM variations almost throughout the data set. We note that four
MSPs (see Table 1) suffer from a gap in the Effelsberg L-band data
for the period between 1999 April and 2005 October. The gap is
due to changes in the observing priorities.
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3 M E T H O D S FO R E S T I M AT I N G N O I S E
PROPERTIES

For the estimation of the noise properties, we use two different
methods. The first method follows a Bayesian approach, in the
time-frequency domain and is described in Lentati et al. (2014). The
second method uses frequentist statistics based on power-spectral
estimation of the residuals and using algorithms described in Section
3.3, which are an extension of those introduced in Coles et al. (2011).
We first discuss the noise model components, which we use for both
approaches, and then present the details of each method used.

3.1 Noise modelling

We form the timing residuals using the pulsar timing analysis pack-
age TEMPO2 (Hobbs, Edwards & Manchester 2006), which itera-
tively performs a weighted least-squares (wLS) fit of the model to
the TOAs until the reduced chi-squared of the residuals is mini-
mized. Timing models are gradually improved over many years by
incorporating more data. These solutions will often result in tim-
ing residuals scattered beyond what would be expected based on
their formal uncertainties, due to the absence, at this point, of the
stochastic signals in the model. These signals are in general divided
into the time-correlated and uncorrelated components.

The uncorrelated (white-noise) components correct the uncer-
tainties of the timing residuals. The formal uncertainties of the
TOAs are derived by the cross-correlation of the recorded inte-
grated pulse profile with a reference template, which is constructed
using the best available observations. These uncertainties are cor-
rect if the recorded profiles are characterized solely by (white)
radiometer noise and the profile template precisely represents the
intrinsic shape of the integrated profile. However, possible presence
of un-excised radio frequency interference (RFI), temporal varia-
tions in the pulse profile, artefacts in the profiles from instrumental
instabilities or imperfect profile templates can lead to errors in the
uncertainty estimations (e.g. Liu et al. 2011). It is therefore com-
mon practice to include a multiplicative correction factor called
error factor (EFAC). We also add a correction term quadratically
to the formal uncertainty to account for additional scatter in the
TOAs caused by statistically independent physical processes, such
as pulse phase jitter noise (e.g. Shannon et al. 2014). This term is
commonly referred to as error added in quadrature (EQUAD). We
do not investigate the physical origin of the noise included in the
EQUADs. This requires a more detailed analysis of the white noise;
for example, jitter noise is dependent on the integration time of the
observation and this needs to be properly taken into consideration if
one wants the EQUAD number to describe an underlying physical
process.

We include one EFAC and one EQUAD term per observing sys-
tem to mathematically model the uncorrelated noise from all pos-
sible processes. The white-noise correction factors should be such
that the data satisfy the central assumption of pulsar timing, that
they are drawn from a random Gaussian process. In other words,
when subtracting the waveforms (induced residuals) of all calcu-
lated stochastic signals from the residuals, their uncertainties should
be such that the residuals are white and the timing solution has a re-
duced chi-squared of unity. The original TOA uncertainty, σ , EFAC
(f), EQUAD (q) and corrected uncertainty, σ̂ , are related2 as

σ̂ 2 = (σ · f )2 + q2. (1)

2 This definition is not unique. TEMPO2 by default defines the correction as
σ̂ 2 = f 2 · (σ 2 + q2).

We include two stationary time-correlated noise components,
namely the chromatic low-frequency noise from DM variations
and the achromatic TN. Previous studies (e.g. Shannon & Cordes
2010; Coles et al. 2011) have shown that the low-frequency power
spectra of pulsar timing residuals can be adequately modelled with
single power laws for the majority of MSPs. This does not mean
that the TN is necessarily a pure power law, but rather that this func-
tional form is sufficient to describe the data, given the measurement
precision. We examined whether deviations from the single power-
law model are supported by the data using the Bayesian analysis
method. In particular, we performed the noise analysis with two
additional models for the TN spectrum: (i) a model that allows the
power of individual frequency bins to vary independently from the
power-law model and (ii) a model that includes the power law and
an additional sinusoid signal of varying frequency, amplitude and
phase. We evaluated the results using the Bayes factor, i.e. the ratio
of the Bayesian evidence of two competing models (see also Section
3.2). A common interpretation of the Bayes factor is given by Kass
& Raftery (1995), based on which we required a value equal or
greater than 3 to justify the addition of any extra model parameter.
This was not the case for any of the models we compared to the
simple single power-law model.

In this work, we have followed the single power-law formalism
for both analysis methods in order to facilitate their comparison
and the comparison of the measured TN parameters with those
usually used as GW stochastic parameters in the PTA literature.
For isotropic GW signals (see Section 7) one of the most important
properties is the characteristic strain spectrum, hc(f), of the GWB on
the one-sided power spectrum of the induced timing residuals. For
most models of interest, this can be written as a power-law function
of the GW frequency (e.g. Jenet et al. 2005), f as

hc(f ) = A

(
f

fr

)α

, (2)

where A is the (dimensionless) amplitude of the wave, α is the
spectral index3 and fr is the reference frequency, typically set to
1 yr−1. The one-sided power-spectral density of the signal is then
given by

S(f ) = A2

12π2

(
f

fr

)−γ

, (3)

where the power spectrum and strain spectral indices are related as
γ ≡ 3 − 2α. This is the functional form we use to model the TN. We
set a cut-off at frequency 1/T, where T is the time-span of the data.
The cut-off arises naturally because the fitted pulsar’s spin and spin-
down absorb the power from any achromatic low-frequency signal
below the cut-off frequency. It has been shown (van Haasteren et al.
2009; Lee et al. 2012) that if the spectral index is γ � 7 (which is
the case for all MSPs in this paper), the cut-off at frequency 1/T is
sufficient.

The DM variations have been mitigated using first- and second-
order DM derivatives in the timing model (which are first- and
second-order polynomials) and additionally a power law equivalent
to equation (3). The DM derivatives absorb any power from the
stochastic DM component below the cut-off frequency, in the same
way the spin and spin-down do for the achromatic TN (Lee et al.
2014). The observing frequency dependence of the DM variations
signal is measured in the time-domain via the (multifrequency) tim-
ing residuals, as we show in Section 3.2. The choice of a power-law

3 We define the index positive, but note that in the literature it is sometimes
defined as a negative number.
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spectrum for the DM variations is motivated by the fact that, across a
wide spatial frequency range, the electron density fluctuation spec-
trum usually follows a power law (Armstrong, Rickett & Spangler
1995).

3.2 Noise parameter estimation using Bayesian inference

The first Bayesian investigation of the GWB detectability with PTAs
was performed by van Haasteren et al. (2009). The algorithms were
later applied on EPTA data to derive the EPTA GWB upper limit
(van Haasteren et al. 2011). In that analysis, the TN parameters of
the MSPs were simultaneously estimated with the GWB parameters.
Further work on Bayesian analysis methods for pulsar timing pro-
vided more algorithms, both in time- and time-frequency-domains,
to characterize the properties of TN and DM variations and to per-
form robust pulsar timing analysis in the presence of correlated
noise (e.g. van Haasteren & Levin 2013; Lentati et al. 2013; Lee
et al. 2014).

Bayes’ theorem, which is the central equation for these analysis
methods, states that

Pr(�) = L(�)π (�)

Z
, (4)

where � is the model’s parameters, Pr(�) is the posterior proba-
bility distribution (PPD) of the parameters (probability distribution
of the parameters given the model and the data), π (�) is the prior
probability distribution (pPD) of the parameters (the initial hypoth-
esis of the probability distribution of the parameters for a given
model), L(�) is the likelihood function (which gives the probability
that the data are described by a given model) and Z is the Bayesian
evidence. Following Feroz & Hobson (2008), Z is only a normal-
izing factor independent of � and can therefore be ignored when
one is interested only in parameter estimation, such that Pr(�) ∝
L(�)π (�). On the other hand, when one is interested in model se-
lection, the ratio of the evidence between two different models, R,
known as the Bayes factor, is used. The probability, P , of a model
compared to another, can the expressed (Kass & Raftery 1995) as

P = R
1 + R . (5)

The various Bayesian analysis algorithms are distinguished by
the mathematical description of the model parameters and the com-
putational methods used to sample the unnormalized PPD.

Lentati et al. (2014) introduced TEMPONEST, a Bayesian software
package for the analysis of pulsar timing data, available to use as
a TEMPO2 plug-in. The timing solution and the additional stochastic
parameters such as EFACs, EQUADs, DM variations and the TN
(referred to as ‘excess red noise’) can be determined simultaneously.
TEMPONEST uses the Bayesian inference tool MULTINEST (Feroz &
Hobson 2008) to explore this joint parameter space, whilst using
TEMPO2 as an established means of evaluating the timing model at
each point in that space. For the PPD sampling, TEMPONEST uses the
nested sampling Monte Carlo method (Skilling 2004).

We perform a joint analysis for the timing model and the stochas-
tic parameters. Both the TN and the DM variations are modelled
as Gaussian stochastic signals with power-law spectra as described
by equation (3). TEMPONEST employs the time-frequency analysis
described in Lentati et al. (2013). The TN waveform is expressed
as (here, and henceforth we use boldface characters in equations to
denote matrices) tTN = FTNa, where FTN is the Fourier transform
with elements F = sin(2πf ) + cos(2πf ) and corresponding coef-
ficients, a, which are free parameters. The Fourier frequencies take

values f = n/T, with n integers ranging from 1 up to the value nec-
essary to sample frequencies as high as 1/14 d−1. The covariance
matrix of the TN is then described by the following equation (see
Lentati et al. 2015):

CTN = C−1
w − C−1

w FTN

[
(FTN)TC−1

w FTN + (	)−1
]−1

(FTN)TC−1
w . (6)

Here, 	 = 〈aiaj〉, is the covariance matrix of the Fourier coefficients
and Cw is the covariance matrix of the white-noise component, a
diagonal matrix with the main diagonal populated by the residual
uncertainties squared, σ̂ 2 (as in equation 1). The superscript T
denotes the transpose of the matrix.

The covariance matrix for the DM variations, CDM, is equivalent
to equation (6), but including an observing frequency dependence.
This is achieved by replacing the F elements with FDM

ij = FijDiDj ,
where the i,j indices denote the residual numbers, Di = 1/(Kiν

2),
ν i is the observing frequency of the TOA, typically set as the central
frequency of the observing band, and K=2.41×10−16 Hz−2cm−3pc
s−1, is the dispersion constant.

The likelihood function is the probability that the data (TOAs),
noted as t, are fully described by the timing model signal, τ (ε),
with parameters ε and the stochastic noise. The latter is encoded in
the residuals’ total covariance matrix,

C = Cw + CDM + CTN. (7)

Following van Haasteren et al. (2009), and noting that the dif-
ference t − τ (ε) gives the timing residuals vector, we can write the
likelihood function as:

L = 1√
(2π)n|C| e− 1

2 (t−τ (ε))TC−1(t−τ (ε)). (8)

After the noise properties are estimated, we produce the TN wave-
forms, which can be estimated from the data using the maximum
likelihood (ML) value of its statistical model parameters, A and
γ . As shown in Lee et al. (2014), the ML waveform, tTN, and its
uncertainties, σ TN, are optimally estimated as

tTN = CTNC−1t, (9)

with uncertainties estimated as

σTN = CTN − CTNC−1CTN. (10)

The uncertainties are estimated as the standard deviation of the
estimator. However, as noted in Lee et al. (2014), since the data
points of TN waveforms are correlated, their interpretation in terms
of uncertainties is meaningless, since this is only valid under the
assumption that the noise is uncorrelated. The uncertainties can
therefore only be used as an indication of the variance of each
point.

We have performed the Bayesian inference analysis twice using
different combinations of pPDs. The pPDs on the timing parameters
are always uniform, centred around the value from the wLS fit of
the timing model by TEMPO2 with a range of 10–20 times their 1σ

TEMPO2 uncertainties. This range was chosen after testing verified
that is sufficient for all timing parameters PPDs to converge. For the
noise parameters, the ranges are from 0 to 7 for spectral indices, −20
to 8 for the logarithm of the amplitudes, −10 to −3 for the logarithm
of the EQUADs and 0.3 to 30 for the EFACs. For EQUADs, TN
and DM variations amplitudes, we used two different types of pPDs.
The first is a uniform distribution in log space (log-uniform) and
the second is a uniform distribution in linear space (uniform). Log-
uniform pPDs assume that all orders of magnitude are equally likely
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4426 R. N. Caballero et al.

for the parameter value while for uniform pPDs, we assign the same
probability for all values. The uninformative log-uniform pPDs
will result in PPDs for the parameters that are the least affected
by the pPD and therefore are what we consider as the parameter
measurement. If no significant noise can be detected in the data,
the PPDs are unconstrained and the distribution’s upper limit is
dependent on the lower limit of the pPD. Therefore, a separate
analysis is required using uniform pPDs in order to obtain robust
upper limits. If the signal is strong and the result from a log-uniform-
pPD analysis is a well-constrained PPD, then the change of the pPD
should not affect the result significantly and the PPDs should be
almost identical. As a result, we performed the analysis with the
following combinations of pPDs.

(a) Uniform EQUAD pPDs and log-uniform pPDs for TN and
DM variation amplitudes. This set of pPDs results in upper limits for
EQUADs. As such, the solutions have the highest possible timing
residuals uncertainties, resulting in weaker TN and DM variations
detections. The TN and the DM variations are treated in the same
way, giving no prior information that can favour the one over the
other when multifrequency data are not sufficient to de-couple them.
In the absence of multifrequency data one can therefore expect that
their PPDs will not be well constrained.

(b) Uniform TN amplitude and log-uniform pPDs for EQUADs
and DM variation amplitudes: The total white-noise levels of these
solutions are lower, since EQUAD PPDs can be flat if the data do
not support them to be measurable. The use of uniform pPDs for
the TN amplitude and log-uniform for the DM variations results
in solutions in favour of the TN against the DM variations in the
absence of multifrequency data. This set of pPDs will provide the
strictest upper limits on the TN amplitudes. We used the PPDs from
this analysis to calculate the amplitude upper limits at the 95 per cent
confidence level (CL).

3.3 Noise parameter estimation using power-spectral analysis

Power-spectral analysis of pulsar timing data using standard discrete
Fourier transforms is complicated by highly variable error bars, ir-
regular sampling, data gaps (due to difficulties in being granted tele-
scope time at exact regular intervals but also due to loss of data from
technical difficulties, weather conditions, telescope maintenance or
from weak pulses on particular days due to unfavourable interstellar
scintillation) and the presence of TN which has a steep red spectrum.
Fourier transforms require equispaced data points. Interpolation of
data points on regular grids introduces time-correlations in data
points and the presence of strong TN introduces spectral leakage.
In order to bypass such problems, Coles et al. (2011) introduced an
algorithm for pulsar timing analysis in the presence of correlated
noise which employs the use of generalized least-squares (GLS)
analysis of the timing data using the covariance matrix of the resid-
uals (as described in Section 3.2). In brief, the covariance matrix of
the residuals is used to perform a linear transformation that whitens
both the residuals and the timing model. The transformation is based
on the Cholesky decomposition of the covariance matrix.

For this algorithm, initial estimates of the residuals covariance
matrix are necessary, and are obtained using the Lomb-Scargle
periodogram (LSP), which can calculate the power spectrum of
irregularly sampled data. Spectral leakage in the presence of strong
TN with steep power-law spectra is mitigated with pre-whitening
using the difference filter. The difference pre-whitening filter of any
order, k, can be described by yw, k = yw, k − 1(ti) − yw, k − 1(ti − 1),
where ti is the ith sampling time and yw, k is the whitened residual

of difference order k (k = 0 corresponds to the original residuals).
It was suggested to use the lowest order necessary to whiten the
data enough to mitigate spectral leakage. Effectively, this filter is
equivalent to multiplying the power spectrum by a filter (e.g. for
first-order difference, the filter is the square of the transfer function).
After the spectrum is estimated using the pre-whitened data, one
corrects the power spectrum by dividing it with the same filter, a
process known as post-darkening. The low-frequency spectrum can
be fitted with a power-law model leading to the first estimation of
the covariance matrix. Through an iterative process, new estimates
of the spectrum can be achieved by using LSP after whitening the
data using the Cholesky decomposition of the covariance matrix.

Coles et al. (2011) have demonstrated that the implementation of
this method allows better timing solutions with more robust timing
parameters and uncertainty calculations. In particular, the measured
spin and spin-down of the pulsar show the largest improvements,
since they have low-frequency signatures in the Fourier domain
and correlate with TN. However, this method is not optimized to
accurately estimate the TN properties through detailed fitting of
a noise model to the power spectrum. The algorithm described in
Coles et al. (2011) focuses on obtaining a linear, unbiased estimator
of the timing parameters. For this purpose, they demonstrate that
using the GLS timing solutions using the covariance matrices of any
TN models which whiten the data sufficiently to remove spectral
leakage, are statistically consistent. In this work, we extend the
algorithms of Coles et al. (2011), focusing on the precise evaluation
of the power spectra and the power-law model parameters. To this
end, we have developed an independent power-spectral analysis and
model fitting code.

A fully frequentist analysis should include a white-noise and
DM-correction analysis. However, in order to focus on comparing
the methods with regards to the estimation of the TN properties,
we use the ML EFAC and EQUAD values and subtract the ML
DM-variations waveforms derived from the Bayesian analysis.

Our spectral analysis code calculates a generalized LSP, i.e. it
performs a wLS fit of sine and cosine pairs at each frequency. We
follow an iterative procedure as follows: (1) We first use TEMPO2
to obtain the wLS post-fit residuals, while subtracting the ML DM
variations signal estimated with the Bayesian methods described in
Section 3.2. (2) We calculate the spectrum of these residuals using
a chi-squared minimization fit on all frequency points. (3) TEMPO2
is re-run using the covariance matrix of the initial noise model
to perform a GLS fit. (4) Finally, we re-run the spectral analysis
code on the residuals from the GLS timing solution to update the
TN model and repeat steps 3 and 4 until the solution converges.
Typically, this required no more than one iteration.

Our code implements a generalized LSP to account for the tim-
ing residual uncertainties. Denoting each pair of time and residual
as (ti, yi), the LSP is formed by fitting sine–cosine pairs of the
form ŷ(ωk, ti) = ak cos(ωkti) + bk sin(ωktj ) at all angular frequen-
cies, ωk = 2πfk , with fk the frequency. The solution is obtained by
minimizing the chi-squared for each ωk, weighted by the summed
uncertainties of the timing residuals as

χ2
k =

∑
i

⎛
⎝ yi − a sin(ωti) − b cos(ωti)

σ̂i

⎞
⎠

2

. (11)

Once the LSP is calculated, noting the number of timing residuals
as N, the spectral density is finally computed as

S(f ) = 2|ŷ|2T
N2

. (12)
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We examine whether spectral leakage is present following the
same routine as in Coles et al. (2011). Visual inspection of the
original spectrum allows us to approximately define the frequency
where the red component of the spectrum intersects the flat,
white component. We apply a low-pass filter in time-domain to
separate the high-frequency from the low-frequency residuals and
calculate their individual spectra. The high-frequency spectrum
should be consistent with the high-frequency part of the spectrum
of the original data. If that is not the case, and instead the high-
frequency spectrum is significantly weaker, then leakage is impor-
tant and we need to apply the pre-whitening filter. The code allows
for any order of difference whitening. For this data set, we required
only up to second order. We then proceed with calculating the LSP
as before and finally post-darken the spectrum before calculating
the final spectral density.

We fit the power spectrum with the following function:

S(f ) = S0

(
f

fr

)−γ

+ SW, S0 = A2

12π2
. (13)

Here, SW is the spectral density of the high-frequency (white) com-
ponent. The power-law description of the low-frequency component
is equivalent to equation (3), with S0 the spectral density at reference
frequency, fr, which is set to 1yr−1. A fit of only the low-frequency
component is proven difficult; due to the steepness of the spectrum
at low frequencies and moderate power of the TN in many MSPs,
only about five frequency points would be included in a pure power-
law fit of only the red part of the spectrum. This leads to unstable
fits without meaningful error estimations.

The fit minimizes the chi-squared, χ2
S . Chi-squared minimization

assumes that the spectrum is normally distributed. In principle, the
power spectrum is a chi-squared distribution. However, in logarith-
mic space, the distribution is approximately Gaussian with variance
of order unity. Therefore this is a good approximation if we fit the
power-law model to the spectrum in logarithmic space. By doing
so, we minimize the chi-squared defined as

χ2
S =

N∑
i=1

{
log Si − log

(
S0

(
fi

fr

)−γ

+ SW

)}2

, (14)

where Si and fi define the points of the spectrum for each frequency
bin, i, while simultaneously fitting for S0, γ and SW. We first fit the
spectrum while setting the uncertainties of the LSP points to one
and then scale the uncertainties to achieve a reduced chi-squared of
unity.

Once we obtain the values for the noise parameters, we construct
the covariance matrix of the TN, CTN. The Fourier transform of
the TN power-law model gives the covariance function, cTN(τ ) =
〈tTN,itTN,j 〉. The i and j indices refer to the time epoch of the ob-
servation and τ = ti − tj . The TN covariance matrix is then formed
by the elements CTN, ij = c(τTN, ij), where τij = |ti − tj |. Using the
total covariance matrix (equation 7), we then perform a TEMPO2 GLS
fit on the TOAs, repeat the power-spectrum analysis and power-law
fit to update the model parameter values and iterate these steps until
we converge to a stable solution.

For the cases where the spectra are white-noise dominated and
no measurement of the TN parameters can be achieved on a 3σ

level, we derived upper limits for the TN amplitude. The limits are
at the 95 per cent CL and are calculated as the 2σ upper limit of the
white-noise level (SW in equation 13 and Table 3).

4 R ESULTS

Table 2 summarizes the results of the noise properties determined
using TEMPONEST, while Table 3, summarizes the results from the
power-spectral analysis. The reader can find online4 the PPDs of
the TN properties from the Bayesian analysis, the power spectra and
the TN waveforms from both methods. In the rest of this section,
we first discuss the framework under which we compare the results
from the two methods and then proceed with the comparison of
the results in more detail. We conclude this section by presenting
and discussing the results on the white-noise parameters from the
Bayesian analysis.

4.1 Comparing Bayesian and frequentists results

Bayesian analysis is based on the principle that we test a hypothesis
(model) given the data and a pPD. The latter is essential in Bayesian
inference and states our prior degree of confidence on what the PD
of the parameter is. The inference results in the PPD, which is the
updated probability distribution for the unknown parameter, based
on the information provided by the data.

Bayesian inference also assigns the likelihood value for each
model (i.e. for each set of values for all unknown parame-
ters), providing a measure of how well the model describes the
data. To evaluate the TEMPONEST results, we report in Table 2
the ML values of the TN parameters and the median value and
1σ uncertainties of the one-dimensional marginalized PPDs. The
uncertainties are calculated such that 68 per cent of the area un-
der the distribution is symmetrically distributed around the me-
dian. The asymmetry of many PPDs will result in asymmetric error
bars.

We sort the PPDs in three categories, and show representative
examples in Fig. 1. We name the first category of distributions
‘well-constrained’; this represents cases where the data were suf-
ficient to obtain good measurements of the noise parameters. As
seen in Fig. 1 for the case of PSR J1012+5307, the PPDs are well
defined and very close to symmetric. As a result, the median values
of the one-dimensional PPDs coincide well with the ML solution.
There are cases where the PPD of at least one of the TN parameters
suffers from long tails due to strong covariances between unknown
parameters (e.g. amplitude of TN and amplitude of DM variations
in the absence of sufficient multifrequency data). We refer to these
distributions as ‘semi-constrained’. As seen for the case of PSR
J0751+1807 in Fig. 1, the two-dimensional distribution shows a
main area of high probability as well as many smaller regions of
local maxima. The tails in the one-dimensional distribution of am-
plitude (which in general extend to ±∞), causes the median val-
ues to vary significantly from the ML values. Moreover, the large
amount of area under the curve, along the tail, causes the uncertain-
ties around the median to have large and very asymmetric values.
Finally, when the data do not support any evidence of TN, the PPDs
are flat. We refer to these as ‘unconstrained’. As seen for the case of
PSR J2229+2643 in Fig. 1, the reported median and ML values do
not hold a strong significance. The only meaningful result to report
in such cases is the upper limits for the amplitude, as seen in the
bottom-right panel of Fig. 1.

Power-spectral analysis provides single-value results from the
power-law model fit to the power spectrum. This fit is performed
under the assumption of Gaussian statistics. As discussed above, in

4 http://www.epta.eu.org/aom/DR1noise.html
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Table 2. Timing-noise characteristics of EPTA MSPs based on Bayesian inference for a single power-law model
as described by equation (3). The results are divided based on the quality of the PPDs as described in Section 4.1.
We tabulate the ML and median (med) values of the dimensionless amplitude, A, at reference frequency of 1 yr−1

and the spectral index, γ . For A, we also tabulate the 95 per cent confidence upper limits. The 1σ uncertainties
are calculated such that the 68 per cent of the area under the one-dimensional marginalized PPD of the parameter
is symmetrically distributed around the median. As described in Section 4.1, for unconstrained PPDs we only
consider the upper limits analysis results.

PSR log(AML) log(Amed) log(A95
UL) γML γmed

J-Name

Well-constrained PPDs
J0621+1002 −12.029 −12.07+0.06

−0.06 −11.9 2.5 2.4+0.3
−0.2

J1012+5307 −13.20 −13.09+0.07
−0.07 −12.94 1.7 1.7+0.3

−0.2

J1022+1001 −13.2 −13.0+0.1
−0.2 −12.8 2.2 1.6+0.4

−0.4

J1600−3053 −13.35 −13.28+0.06
−0.06 −13.11 1.2 1.7+0.3

−0.2

J1713+0747 −14.7 −15.2+0.5
−0.5 −13.8 4.8 5.4+0.9

−1.0

J1744−1134 −13.7 −13.8+0.2
−0.3 −13.3 2.2 2.7+0.7

−0.6

J1857+0943 −13.3 −13.3+0.2
−0.3 −12.9 2.6 2.4+0.7

−0.6

J1939+2134 −14.2 −14.5+0.3
−0.3 −13.7 5.9 6.2+0.5

−0.6

Semi-constrained PPDs
J0030+0451 −14.9 −14.9+0.8

−2.1 −13.0 6.3 5.2+1.2
−2.1

J0218+4232 −13.1 −14.1+1.0
−1.7 −12.4 2.7 3.9+1.7

−1.6

J0610−2100 −18.7 −16.0+2.9
−2.7 −12.4 1.4 2.7+2.8

−2.1

J0613−0200 −13.7 −14.4+0.7
−0.9 −13.0 2.8 4.1+1.6

−1.5

J0751+1807 −18.8 −15.9+2.6
−2.7 −12.9 6.5 3.0+2.0

−1.4

J1024−0719 −14.0 −16.3+2.1
−2.4 −13.1 5.3 3.9+2.0

−2.5

J1455−3330 −19.8 −14.2+1.0
−3.7 −12.7 0.8 3.6+1.9

−1.6

J1640+2224 −13.2 −13.1+0.2
−3.4 −12.8 0.01 0.4+1.7

−0.3

J1643−1224 −17.7 −13.3+0.6
−2.4 −12.5 1.8 1.7+0.9

−0.6

J1721−2457 −11.7 −13.5+1.7
−4.5 −11.5 1.1 1.9+2.7

−1.0

J1730−2304 −12.8 −14.7+1.7
−3.6 −12.6 1.8 2.9+1.9

−1.3

J1801−1417 −14.4 −15.1+2.5
−3.4 −12.2 6.3 3.3+2.2

−1.8

J1802−2124 −17.0 −15.6+3.2
−3.0 −12.2 4.5 2.3+2.9

−0.8

J1843−1113 −13.0 −12.9+0.2
−3.3 −12.5 0.6 1.5+3.1

−0.5

J1909−3744 −14.1 −14.1+0.2
−1.9 −13.8 2.4 2.3+1.0

−0.6

J1918−0642 −16.9 −14.5+0.7
−0.5 −12.6 1.7 5.4+1.1

−1.6

J2145−0750 −14.4 −14.0+0.6
−0.8 −12.9 5.2 4.1+1.6

−1.3

Unconstrained PPDs
J0034−0534 – – −12.3 – –
J0900−3144 – – −12.7 – –
J1738+0333 – – −12.7 – –
J1751−2857 – – −12.4 – –
J1804−2717 – – −12.3 – –
J1853+1303 – – −12.4 – –
J1910+1256 – – −12.1 – –
J1911−1114 – – −12.1 – –
J1911+1347 – – −12.9 – –
J1955+2908 – – −12.1 – –
J2010−1323 – – −12.8 – –
J2019+2425 – – −11.9 – –
J2033+1734 – – −12.0 – –
J2124−3358 – – −12.8 – –
J2229+2643 – – −12.7 – –
J2317+1439 – – −13.1 – –
J2322+2057 – – −12.3 – –

the case of power spectra, this is only an approximation. Finally, the
fit is dependent on the estimation of the uncertainties of the power
spectrum points, which was ensured to be properly calculated by
pre-whitening the data when TN caused spectral leakage.

The comparison of the results derived with these two methods
should also consider the effects of the Bayesian ML DM-variations
waveform subtraction from the residuals before performing the
power-spectral analysis. In the case of semi-constrained PPDs, the
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Table 3. Timing-noise characteristics of EPTA MSPs based on power-spectral analysis for a single power-law
model as described by equation (3). We tabulate the dimensionless amplitude, A, at reference frequency of
1yr−1, the spectral index, γ , and the white-noise power level, SW, and their respective 1σ uncertainties. We also
tabulate the pre-whitening level used (levelpw). For the pulsars where the measurement of TN was not possible,
we quote the 95 per cent confidence upper limits for the amplitude. The table is divided as Table 2 for easier
comparison.

Measured

PSR log(A) γ log(SW(yr3)) levelpw

J-Name

J0621+1002 −12.3 ± 0.1 2.8 ± 0.6 −26.94 ± 0.04 1
J1012+5307 −13.01 ± 0.07 1.7 ± 0.3 −28.60 ± 0.02 1
J1022+1001 −13.2 ± 0.2 2.0 ± 0.6 −27.97 ± 0.03 0
J1600−3053 −13.6 ± 0.1 1.3 ± 0.5 −29.36 ± 0.05 0
J1713+0747 −14.2 ± 0.2 4.9 ± 0.6 −30.146 ± 0.02 2
J1744−1134 −13.6 ± 0.2 3.0 ± 0.6 −28.90 ± 0.03 1
J1857+0943 −13.2 ± 0.2 2.3 ± 0.7 −27.97 ± 0.04 1
J1939+2134 −14.3 ± 0.1 6.7 ± 0.5 −30.27 ± 0.02 2

J0030+0451 −13.2 ± 0.4 4.5 ± 1.0 −27.78 ± 0.03 2
J0218+4232 −12.6 ± 0.2 2.3 ± 0.6 −26.69 ± 0.03 0
J0610−2100 −13.6 ± 0.1 2.1 ± 0.6 −29.62 ± 0.03 0
J0613−0200 −14.9 ± 0.9 5.2 ± 1.8 −28.45 ± 0.03 0
J0751+1807 −14.3 ± 0.7 5.2 ± 1.6 −27.86 ± 0.03 1
J1024−0719 −13.0 ± 0.1 4.1 ± 0.5 −28.15 ± 0.03 2
J1455−3330 −13.4 ± 0.4 3.5 ± 1.2 −27.59 ± 0.03 0
J1640+2224 −13.0 ± 0.1 1.4 ± 0.4 −27.96 ± 0.05 0
J1643−1224 −13.2 ± 0.1 3.5 ± 0.4 −28.25 ± 0.03 0
J1721−2457 −12.3 ± 0.3 2.7 ± 0.8 −26.01 ± 0.09 0
J1730−2304 −12.8 ± 0.2 1.7 ± 0.5 −27.31 ± 0.06 0
J1801−1417 −13.3 ± 0.3 2.4 ± 1.1 −28.41 ± 0.10 0
J1802−2124 −12.8 ± 0.2 2.9 ± 0.7 −27.93 ± 0.04 0
J1843−1113 −12.8 ± 0.1 3.0 ± 0.6 −27.93 ± 0.05 1
J1909−3744 −14.5 ± 0.7 1.6 ± 1.7 −30.05 ± 0.04 0
J1918−0642 −13.0 ± 0.2 2.8 ± 0.8 −27.72 ± 0.05 1
J2145−0750 −13.7 ± 0.3 3.5 ± 0.7 −28.36 ± 0.03 0

Upper limits
PSR log(A95

UL) log(SW(yr3)) levelpw

J-Name

J0034−0534 −12.4 – −27.02 ± 0.05 0
J0900−3144 −12.8 – −28.0 ± 0.1 0
J1738+0333 −12.6 – −27.36 ± 0.04 0
J1751−2857 −12.1 – −27.3 ± 0.6 0
J1804−2717 −12.2 – −26.57 ± 0.09 0
J1853+1303 −12.7 – −27.7 ± 0.1 0
J1910+1256 −12.6 – −27.38 ± 0.06 0
J1911−1114 −12.2 – −26.7 ± 0.1 0
J1911+1347 −12.8 – −27.88 ± 0.1 0
J1955+2908 −12.1 – −26.46 ± 0.06 0
J2010−1323 −12.9 – −27.95 ± 0.04 0
J2019+2425 −12.0 – −26.14 ± 0.08 0
J2033+1734 −12.0 – −26.15 ± 0.06 0
J2124−3358 −12.8 – −27.69 ± 0.04 0
J2229+2643 −12.7 – −27.66 ± 0.05 1
J2317+1439 −12.8 – −27.678 ± 0.03 0
J2322+2057 −12.3 – −26.78 ± 0.05 0

amplitude parameters for the two TN and DM variations are nat-
urally highly correlated. When this is the case, the ML parameter
estimates are not as reliable, as the particular ML solution might cor-
respond to either significant DM variations and no TN, or significant
TN and no DM variations. This can lead to over- or underestimations
of the DM variations which will lead to either part of the TN being
subtracted as well or part of the DM signal leaking into the TN.

As an example, we show in the left-hand panel of Fig. 2 the
two- and one-dimensional marginalized PPDs for the amplitudes of

the TN and DM variations for PSR J0751+1807 (semi-constrained
PPDs case). One can see the strong covariance between the two
parameters. The data support that the TN amplitude is more likely
to be very low (the TN tail has more probability than the DM tail),
however, there is still a non-zero probability that the DM variations
signal is weaker than the ML model suggests. For well-constrained
PPDs, DM variations and TN are de-coupled, as seen in the right-
hand panel of Fig. 2 for the case of J1012+5307, and the DM ML
waveform subtraction is more reliable. If the statistical assumptions
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4430 R. N. Caballero et al.

Figure 1. Two- and one-dimensional marginalized PPDs for the timing-noise parameters of three pulsars: J1012+5307, J0751+1807 and J2229+2643. In
the two-dimensional distributions, the solid, dashed and dotted contours represent the 68, 95 and 99.7 per cent (1σ , 2σ and 3σ ) confidence intervals and the
red star marks the ML solution. The one-dimensional distributions have the median and 1σ uncertainties marked as dashed and solid lines, respectively. For
J2229+2643, the right-hand figure shows the distribution of the noise parameters from the upper limits analysis. Note the different ranges on the amplitude
axes. See text in Section 4.1 for discussion.

of the Bayesian and frequentist analysis are valid, the results for
the TN of pulsars with well-constrained PPDs should be consistent
between the two methods.

4.2 Timing-noise parameters

Out of the 42 sources, the Bayesian analysis resulted in well-
constrained PPDs for both the amplitude and the spectral index of
the TN power-law model for eight sources. For these, the Bayesian
ML and median values are always consistent at the 1σ level. The
two methods are always consistent at the 1σ level for the spectral in-
dex, while for the amplitude, three sources show deviations, though
consistency remains at the 2σ level. (Fig. 3, top row).

For 17 MSPs, the PPDs of at least one of the TN parameters is
semi-constrained. The Bayesian ML and median values show in-
consistencies at the 1σ level in four pulsars (Fig. 3, middle row). The

power-spectral analysis results are in agreement with the Bayesian
median values. All Bayesian upper limits are in agreement with the
rest of the results. We note that for PSR J1909−3744, we did not
achieve a 3σ measurement for the spectral index with the power-
spectral analysis.

The rest of the sources, 17 in total, show flat, unconstrained
PPDs. The bottom row of Fig. 3 shows the 95 per cent CL upper
limits from the two methods. Given the low significance of the TN
measurement in these cases, inconsistencies in the amplitudes do
not have statistically significant effects on the timing solutions when
using the total covariance matrix to perform GLS timing analysis.

The agreement between the two methods for the sources with
statistically significant TN measurements, supports the confidence
in the methods and the results. When covariances between noise
properties cannot be decoupled by the data, the interpretation of
the results requires more attention. For this reason, we propose that
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Noise properties of 42 EPTA MSPs 4431

Figure 2. Two- and one-dimensional marginalized PPDs for the TN and DM variations amplitudes for J0751+1807 and J1012+5307. In the two-dimensional
distributions, the solid, dashed and dotted contours represent the 68, 95 and 99.7 per cent (1σ , 2σ and 3σ ) confidence intervals and the red star marks the ML
solution. The one-dimensional distributions have the median and 1σ uncertainties marked as dashed and solid lines, respectively. Note the different ranges on
the amplitude axes. See text in Section 4.1 for discussion.

cross-checks of the results with various methods should become
common practice.

4.3 White-noise parameters

Radiometer noise estimation is typically robust when the pulse has a
medium to high signal-to-noise ratio (S/N) (Taylor 1992), so EFACs
are expected to be close to unity for most observing systems. The
EQUADs results indicate for which observing systems there may
be additional scatter in the residuals from physical processes related
to the pulsars (e.g. pulse phase jitter) or RFI.

Fig. 4 shows the distribution of the ML EFAC values. As ex-
pected, the distribution strongly peaks around unity. A few systems
show EFAC values up to ∼5. These are typically high-frequency
observations with very weakly detected pulses. The cases where
EFACs take values significantly lower than one are either due to
strong overestimation of the uncertainties or when a system’s EFAC
and EQUAD are highly correlated.

We examine in a similar way the distribution of EQUAD values.
Fig. 5 shows the distribution of the measured ML EQUAD values
from the analysis using log-uniform EQUAD pPDs, and the dis-
tribution of their upper limits. As expected, in the vast majority
of cases, the EQUADs are much below the TOA precision, which
typically ranges from 0.5 to 10 μs (D15).

We have examined the EQUAD PPDs from the analysis with
log-uniform pPDs to determine the cases where EQUADs have
well-constrained PPDs and therefore show measurable EQUADs.
For some of these cases, this could reflect signs of jitter noise present
in the data. We list these pulsars and observing systems in Table 4.
We note that there are 49 cases where the EQUAD PPDs are semi-
constrained and significantly covariant with EFACs, and therefore
cannot be considered as significant EQUAD measurements. From
Table 4, we can see that the vast majority of EQUADs come from L-
band systems, which typically have the most sensitive data. For each
pulsar there are usually only one or two systems with clear EQUAD
measurement with the exception of PSR J1022+1001. This source
is known to require a high level of polarimetric calibration (van

Straten 2013) and to show phase jitter noise (Liu et al. 2015). Only
part of the NRT data were fully calibrated and this may explain the
high levels of EQUADs in this source. We stress once again, that
more detail investigation is required to comment on the origin of
the EQUAD measurements. It is likely that EQUADs could reflect
additional scatter in the residuals from instrumental instabilities or
analysis systematics, which could explain the EQUAD measure-
ments in systems where the TOA precision is too low to expect
any measurements of pulse jitter noise (as in the case e.g. of PSR
J2033+1734, see Table 4.)

5 T I M I N G - N O I S E FRO M IN D I V I D UA L
OBSERV I NG SYSTEMS

For MSPs which have large enough data span with overlapping
data from various observing systems, we examine whether part of
the measured TN is present only in specific observing systems. We
perform the noise analysis on selected pulsars with data from one
telescope removed at a time. For the Effelsberg data, this is more
complicated for many MSPs where it is the only telescope with data
in the first half of the data set, so removing its data automatically
means a loss of about half the data span. We note that this test
may not be feasible in some cases with this data set, e.g. when a
significant fraction of the residuals sensitivity to the TN is lost when
removing a set of dominant, very precise data points. When the TN
was absent after removing data from one telescope, we confirmed
that the rest of the data would be sufficient to detect the noise by
simulating realizations of the new data and performing the noise
analysis after injecting TN with the measured properties.

Our analysis shows evidence for TN specific to the NRT data.
Fig. 6 shows the PPDs for the TN parameters when using the full
data set and when excluding the NRT data, and the respective ML
TN waveforms. For PSR J1022+1001, the PPDs become signif-
icantly broader when excluding the NRT data. The mean value
of the amplitude reduces by two orders of magnitude and the TN
waveform becomes smoother, although the waveform has almost
unchanged peak-to-peak variations. The TN parameters PPDs of
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4432 R. N. Caballero et al.

Figure 3. Comparison of the timing-noise parameters estimated with the Bayesian (blue, filled diamonds for the ML values, black, filled circles for the median
values with 1σ error bars and blue, filled triangle for upper limits) and frequentist method (red, filled squares and red, open triangles for upper limits). Top
row: results for the cases where the Bayesian analysis resulted in well-constrained PPDs for both parameters. Middle row: results for the cases where the
Bayesian analysis resulted in semi-constrained PPDs for at least one of the parameters. Bottom row: results for the cases where the Bayesian code resulted in
unconstrained PPDs for at least one of the parameters.

PSR J2145−0750 show a bimodality, which is not present when re-
moving the NRT data. The two TN waveforms are almost identical,
apart from the fact that the waveform of the full data set shows a
bump around MJD 56000, which is not present when removing the
NRT data. These effects are most likely caused either by additional

noise in the NRT data from instrumental instabilities or by some
additional non-instrumental noise component that only the NRT
data are sensitive to, having indeed the highest precision TOAs.
We stress that since we have assumed the TN to be stationary, the
properties of instrumental noise during a specific time-interval can
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Noise properties of 42 EPTA MSPs 4433

Figure 4. Distribution of EFAC values for all MSPs and observing systems.
The black, solid line refers to the results of the Bayesian analysis for which
the EQUAD priors are set to uniform to get their upper limit values, while the
blue, dashed line is for the analysis were EQUAD priors are uninformative
log-uniform.

Figure 5. Distribution of EQUAD values for all MSPs and observing sys-
tems. The solid line refers to the results of the Bayesian analysis for which
the EQUAD priors are set to uniform to get their upper limit values, while
the dashed line is for the analysis were EQUAD priors are uninformative
log-uniform.

leak into the estimated TN waveform throughout the pulsar data set.
We note that there were known instrumental instabilities at the NRT
during the period between MJD 54300 and 54500 (2007 July–2008
February).

This analysis can be better performed using the IPTA data set
(Verbiest et al. submitted) where data from another three telescopes
are included, offering a larger amount of multitelescope overlapping
data. The presence of observing system-dependent noise is more
extensively investigated in the paper examining the noise properties
of the IPTA data set (Lentati et al. submitted).

6 TI M I N G - N O I S E FRO M ER RO R S IN
T ERRESTRIAL TIME STANDARDS

During pulsar timing observations, the TOAs are referenced against
the local atomic clock (e.g. hydrogen maser clock) or a Global Posi-

Table 4. List of the pulsars and observing systems for which we have well-
constrained PPDs for the EQUADs. The last column shows the EQUADs
ML values from a Bayesian analysis with log-uniform EQUAD prior distri-
bution. The telescope and backend acronyms are as introduced in Section
2.

PSR Telesc. Backend Freq. EQUADML

J-Name (MHz) (µs)

J0751+1807 EFF EBPP 1360 5.0
J1012+5307 EFF EBPP 1360 3.4
J1022+1001 JBO DFB 1520 1.4

NRT BON 1400 1.3
EFF EBPP 1410 3.9

J1643−1224 JBO DFB 1520 2.5
J1744−1134 JBO DFB 1520 1.0
J1857+0943 NRT BON 1400 0.9
J1939+2134 NRT DDS 1400 0.3

EFF EBPP 1410 0.3
J2033+1734 NRT BON 1400 25
J2145−0750 NRT BON 2000 0.3

JBO DFB 1520 0.9

tioning System (GPS) clock.5 These clocks are stable on time-scales
of weeks, allowing good phase keeping (1-pulse-per-second signal)
during observations. These clocks, however, show instabilities on
time-scales of months to years and the TOAs recorded using them,
are therefore not suitable for high-precision pulsar timing projects.
This problem can be mitigated through the application of a series of
corrections based on monitoring the offsets between pairs of clocks
(see e.g. Hobbs et al. 2006, 2012).

Cross-correlating the pulse profiles with the template profile ref-
erences all arrival times to the same (arbitrary) phase, forming the
topocentric TOAs. Unless the time-stamping was performed using
a GPS clock, the TOAs are then converted to GPS-based Universal
Coordinated Time (UTC) time, using clock correction files, created
by calculating the difference between the local atomic clock and
the GPS times. This is then converted to UTC and subsequently
to the International Atomic Time (TAI) standard. TAI is formed
by the weighted average of the time-scales of several hundred atomic
clocks around the world and subsequent frequency adjustments us-
ing primary frequency standards. These adjustments are made over
time-scales of years, a process known as ‘steering’. As a result, TAI
can have errors during the steering periods which are never retroac-
tively corrected. For these reasons, for pulsar timing we use the
corrections on TAI provided by the Bureau International des Poids
et Mesures (BIPM).6 These corrections are made through measur-
ing offsets between various clock pairs to achieve the best possible
precision and are regularly updated.

Any possible remaining errors in the BIMP terrestrial time stan-
dard or error propagated to the TOAs by systematics when refer-
encing the TOAs to the various time standards, will lead to a ‘clock
error’ signal, a monopolar correlated signal in the PTA sources,
i.e. a signal with the same waveform in all pulsars and observing
systems. As discussed in Tiburzi et al. (2016), the mitigation of
the clock error signal is of central importance in PTA efforts for
GW detection. In this section, we search for a terrestrial clock error
in the data set to determine how much of the measured noise can
be attributed to clock error noise. Previously, Hobbs et al. (2012)
presented their measurement of the clock error using data from

5 This is the case for the NRT data.
6 http://www.bipm.org/

MNRAS 457, 4421–4440 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/457/4/4421/2588960 by U
niversiteit van Am

sterdam
 user on 20 July 2020

http://www.bipm.org/


4434 R. N. Caballero et al.

Figure 6. Top panel: comparison of the one-dimensional marginalized PPDs of the TN parameters when using the full EPTA data set (solid, black lines) and
the data subset which does not include any NRT-BON data (blue, dashed lines). Bottom panel: comparison of the TN waveforms (tTN) when performing the
noise analysis on the full EPTA data set (filled black diamonds) and the data subset which excludes the NRT-BON data (open blue circles). See Section 5 for a
discussion.

the PPTA and discussed how pulsars can serve as an independent,
non-terrestrial time standard.

6.1 Methodology and results

We use an ML estimator to infer the clock error signal. The clock
error noise is modelled as a red-noise process power law with power-
spectral density described by equation (3), with amplitude Aclk and
spectral index γ clk. Using the results on these parameters, we sub-
sequently construct the ML signal waveform.

For this analysis, we set the TN parameters of the MSPs to
the ML values from the Bayesian analysis with uniform pPDs on
the TN amplitude (as described in Section 3.2). In this way, we
derive the ML solution for the clock error noise with the higher
possible amplitude, given our TN results. We use the residuals after
subtracting the ML DM variations signal as in Section 3.3, to focus
on the TN only. The likelihood function is similar to equation (8)
but with the extension to multiple pulsars to investigate the clock
signal, which is identical among all pulsars, as

L ∝ 1√|C| e− 1
2

∑
i,j ,I ,J (tI ,i−τI,i )C−1

I ,J ,i,j (tJ ,j −τJ ,j )
, (15)

where the index I, J are for pulsars, and index i, j are for the time
epoch. The total covariance matrix now includes the covariance

matrix of the clock error signal, Cclk, while not including the matrix
of the DM variations such that, C = Cw + CTN + Cclk. The intrinsic
noise of pulsars is not correlated between pulsar pairs, so Cw I, J = 0
and CTN I, J = 0 for I 
= J. The clock error waveform is identical in all
pulsars, therefore its covariance matrix elements can be expressed as
Cclk I,J,i,j = Cclk(ti − tj )Cclk I ,J , with Cclk I, J = 1 for all I,J pairs. The
likelihood function shows that for the estimation of the clock noise
parameters, we consider both the clock error signal on the residuals
of each pulsar (autocorrelation effect) and the cross-correlation of
the residuals between pulsar pairs.

We make the linear approximation of the timing model as de-
scribed in van Haasteren et al. (2009), i.e. considering linear devia-
tions of the true timing parameter values, ε, from the least-squares
fit timing model values, ε0, via the linear relation δ(ε) = ε − ε0.
We therefore substitute the expression for the residuals in equation
(15), t − τ (ε), with δt = δtpost − Mδ(ε); δtpost are the post-fit tim-
ing residuals and M is the design matrix of the timing parameters.
We marginalize analytically over all timing parameters and get the
reduced likelihood function:

L ∝ 1√|C| e− 1
2

∑
i,j ,I ,J (δtI ,i )C′−1

I ,J ,i,j (δtJ ,j ), (16)
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Noise properties of 42 EPTA MSPs 4435

Figure 7. The estimated waveform of the clock error noise. The filled cir-
cles is the ML waveform (tclk). The dashed lines indicate the 68 per cent
confidence intervals. For the estimation of the waveform, we used the up-
per limits for the values of the individual pulsar timing-noise parameters
providing upper limits for the clock error noise parameters.

with C′ = C−1 − C−1M(MTC−1M)−1MTC−1. Going one step
further, we split the deterministic signal between that of parameters
for which we want to marginalize over (usually the timing model
parameters), δ t ′ and the signal of parameters we assume unknowns
of the likelihood function (see e.g. Section 7.2). We note the latter
parameters with the vector lambda, and assume their waveforms to
be described by the S(λ). The likelihood function is then re-written
as

L ∝ 1√|C| e− 1
2

∑
i,j ,I ,J (δt′I ,i−S(λ)I ,i )C′−1

I ,J ,i,j (δt′J ,j −S(λ)J ,j ), (17)

We sample Aclk and γ clk over a uniform grid of values and search for
the model that maximizes the likelihood. The amplitude is sampled
with values of log(Aclk) ranging from −17.0 to −14.0 with a step of
0.1, while the spectral index values range from 0.5 to 5 with a step of
0.1. Due to the large condition number of the clock error’s covari-
ance matrix, the individual likelihood computations are unstable.
As such, the direct search for the ML solution with uniform grids
produces non-desirable artefact (non-physical likelihood maxima).
To avoid these effects, we performed a large number of trials by
dithering noise parameters with randomized offset values within
each search grid. The likelihood value of the grid is taken to be the
maximum of all trials.

To reduce the computational cost of the analysis we use the ‘re-
stricted data set’ proposed in Babak et al. (2016). This consists
of six MSPs from the full data set, which give 90 per cent of
the sensitivity to CGWs. This ‘restricted data set’ has also been
used in the derivation of upper limits to the amplitude of GWs
with the EPTA Data Release 1.0 (Lentati et al. 2015; Taylor et al.
2015; Babak et al. 2016). The ‘restricted data set’ contains the pul-
sars PSRs J0613−0200, J1012+5307, J1600−3053, J1713+0747,
J1744−1134 and J1909−3744.

We find an ML solution at Aclk = −15.2 and γ clk = 4.8. We use
these values to calculate the ML waveform of the signal, shown in
Fig. 7. The clock signal waveform can be estimated in the same way
we did for TN:

tclk = CclkC
−1t. (18)

with uncertainties estimated as

σclk = Cclk − CclkC
−1Cclk. (19)

The upper limit clock error waveform has an rms value of 0.17μs.
By integrating equation (3) from the lowest to the highest spec-
tral frequency for the clock error noise, we derive the average
power of the signal. We can compare this to the average power
of the noise for each MSP, which is calculated by adding the
TN average power and the white-noise average power (SW, as
in equation 13). We find that the contribution of the clock error
noise to the total noise levels of the individual pulsars is less than
1 per cent.

7 EFFECTS O F TI MI NG-NOI SE O N
P RO S P E C T S FO R G R AV I TAT I O NA L - WAV E
D E T E C T I O N

Various studies have examined the sensitivity of PTAs to GWB
signals (e.g. Jenet et al. 2005; Lee et al. 2012; Siemens et al.
2013). These studies focus on making detection significance esti-
mations and projections based on analytic formulae or scaling laws,
which are derived assuming a given detection technique. These
estimates are usually made based on specific assumptions, such
as: the TOAs are regularly sampled and simultaneous across pul-
sars, that the measurement precision is constant and identical for
all pulsars and the absence of low-frequency noise. The detec-
tion significance is usually expressed as the precision by which
the dimensionless amplitude can be measured for a given spectral
index.

In this paper, we make use of the Crámer-Rao lower bound
(CRLB) to investigate the limitations of using the present data set
in detecting GWs, both for stochastic isotropic GWBs and CGWs
from SMBHBs. The advantage of this method is that it takes into
account all the observational properties of the data, such as cadence,
white and TN levels, while still using analytic calculations that de-
mand very few computational resources and does not require data
simulations. The impact of the TN present in the data on the PTA’s
sensitivity to GWs can then be estimated by comparing the CRLB
when using the full covariance matrix and when omitting the TN
component.

The CRLB states that, for any unbiased estimator, the variance
is equal to or higher than the inverse of the Fisher information
matrix, I. When the equality is valid the estimator is also ‘fully
efficient’ (Fisz 1963). As discussed in Vallisneri (2008), the ML
estimator (which we use in this analysis for the GW amplitude as
described below) can achieve the bound in the high S/N regime.
For the amplitude of GW signals, the CRLB represents the low-
est uncertainties (in case of detection) or upper limits (in case on
non-detection) any unbiased estimator can achieve. We note, that
although the CRLB is underperformed by all unbiased estimator, in
principle it can be outperformed by a biased estimator (Vallisneri
2008). The interpretation of the bound as the amplitudes upper limit
in the non-detection case warrants more caution, since by default it
assumes we are outside the high S/N regime. Nevertheless, it is un-
likely that other estimators can provide lower upper limits than the
CRLB under the same assumptions. For the purpose of evaluating
the role of TN on the data’s sensitivity to GWs, we are primarily
interested in the ratio of the CRLB when assuming only white noise
in the data and when the TN is taken into account. Therefore, even
if the individual CRLB results are not optimal, their ratio should
be representative of the effects of TN. The CRLB calculated in the
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4436 R. N. Caballero et al.

presence of TN are in fact comparable7 to the amplitude limits de-
rived in Lentati et al. (2015) and Babak et al. (2016) using more
rigorous algorithms.

In its general form, the CRLB is formulated as follows. Given
a likelihood function, f (λ, x), where x is the data and λ are the
model parameters, the CRLB is

Cov(λ) = 〈σλi
σλj

〉 ≥ I−1
ij , (20)

where the indices i and j denote the different parameters and Iij is

Iij =
〈

∂ ln f (x, λ)

∂λi

∂ ln f (x, λ)

∂λj

〉
≡ −

〈
∂2 ln f (x, λ)

∂λi∂λj

〉
. (21)

It is well known that I can be analytically calculated for Gaussian
likelihood functions (as is equation 8), and results in the so-called
Slepian–Bangs formula (Slepian 1954; Bangs 1971):

Iij = 1

2

{
t r

[
C−1 ∂C

∂βi

C−1 ∂C

∂βj

]
+ ∂S(λ)T

∂λi

C−1 ∂S(λ)

∂λj

}
. (22)

Here, β i are the model parameters describing the covariance
matrix, λi, are the parameters describing the unknown waveform S
and t r is the matrix trace.

We make use of the same ML estimator as in Section 6 (equation
17), but we replace the stochastic clock error signal with that of a
stochastic and isotropic GWB and we set S(λ) to be the CGW signal
from a single SMBHB, as detailed in Section 7.2. The likelihood
function (equation 17) uses a total covariance matrix which includes
the covariance matrix of the GWB, such that C = Cw + CTN +
Cgwb. The GWB’s covariance matrix, is dictated by the expected
correlation coefficient in the residuals of every pulsar pair, described
by the overlap reduction function (Finn, Larson & Romano 2009),
�(ζ ), defined as

�(ζ ) = 3

8

[
1 + cos ζIJ

3
+ 4(1 − cos ζIJ)ln

(
sin

ζIJ

2

)]
(1 + δIJ).

(23)

Here, ζ IJ is the angular separation between the I-th and the J-th
pulsar, and δIJ is the Kronecker delta. In principle, both the Earth and
a pulsar term contribute to the correlation and δIJ accounts for the
latter. In the short-wavelength approximation, i.e. when the pulsars
are separated from the Earth and from each other by many GW
wavelengths, the overlap reduction function is also known as the
Hellings–Downs curve (Hellings & Downs 1983). The elements of
the covariance matrix of the GWB are then expressed as CgwbI, J, i, j

= Cgwb(ti − tj)�(ζ IJ). As in the case of the clock error covariance
matrix (Section 6.1), the form of the covariance matrix allows the
calculation of the CRLB to include both the autocorrelation and
cross-correlation effects of the GW.

For this analysis, we use the same six MSPs that we used to
estimate the clock error noise parameters in Section 6.1 and we set
the TN properties to their ML values as estimated with the Bayesian
pulsar noise analysis described in Section 3.2 and presented in Table
2. As discussed in Section 6.1, the estimation that the sensitivity loss
to GWs when using this data subset is below 10 per cent was made
for the case of CGWs. For low-frequency stochastic signals such
as the GWB or the clock error signal, the sensitivity loss should be
less. For CGWs, adding a pulsar with precise data only in part of

7 Note that the CRLB refers to the equivalent of a 68 per cent CL. Typically,
the 95 per cent CL is reported in the PTA literature for the amplitude of
GWs.

its data span can increase the S/N of a detection significantly if the
SMBHB orbit is fully sampled. In the case of the GWB, however,
the targeted correlated signal must be found in cross-correlations of
TOAs across a long time-span of order equal to the inverse of the
GW frequency, with sufficient precision. We have verified this by
calculating the CRLB for the GWB using 40 MSPs and noting an
improvement in the amplitude limit of the order of 2 per cent. The
scaling of the sensitivity to GWs with the number of MSPs, the S/N
regime of the targeted signal and other factors have been studied
elsewhere (e.g. Babak & Sesana 2012; Siemens et al. 2013) and is
outside the scope of this work.

In order to focus on the impact of TN only, we mitigate the DM
variations beforehand by subtracting the ML DM variations wave-
forms from the residuals. For detailed derivations and astrophysical
interpretations on GW limits using the EPTA Data Release 1.0, we
refer the reader to Lentati et al. (2015), Taylor et al. (2015) and
Babak et al. (2016) for the cases of a stochastic and isotropic GWB,
the anisotropy in the GWB and the CGW from individual SMBHBs,
respectively.

7.1 Stochastic gravitational wave background

When estimating the CRLB for the GWB amplitude, the terms with
partial derivatives of S are zero and equation (22) reduces to

Iij = 1

2
t r

[
C−1 ∂C

∂βi

C−1 ∂C

∂βj

]
. (24)

We calculate the CRLB for the GWB amplitude, keeping each time
the GWB spectral index fixed. We do so for a range of spectral
indices, from −2 to 1, which covers GWB signals often discussed
in PTAs literature, e.g. from SMBHBs, cosmic strings and the relic
GWB from the inflationary era.

This simplified approach intends to provide an understanding of
the difficulties the TN imposes on the detection of the various GWBs
probed by PTAs. It is not exhaustive, since each of these GWBs can
in general have a range of possible spectral index values. In the case
of SMBHBs, this depends on the orbital eccentricities and whether
the SMBHBs are coupled to their stellar and gaseous environment
or they are driven by GW emission only (Sesana 2013). The often
used power-law index of −2/3 refers to circular, GW-driven SMB-
HBs (Rajagopal & Romani 1995; Jaffe & Backer 2003). Strong
environment coupling and high orbital eccentricities can cause a
turnover of the spectrum at low frequencies (e.g. fig. 2 in Sesana
2013). The value −7/6 we have used for the spectral index of the
cosmic string GWB has been analytically derived using a simpli-
fied approximation of the loop number density and assuming cusp
emission (e.g. Damour & Vilenkin 2005). However, especially in
the frequencies probed by PTAs, a wide range of spectral indices
is possible, depending on some characteristic parameters used to
describe the evolution of the network and the details of the domi-
nant GW emission mechanism, and one typically sets limits on the
amplitude for a range of these parameters (Sanidas et al. 2012) For
the cosmological relic GWB, a spectral index of −1 is often cited
(Grishchuk 2005). For more details on the sources of the various
GWBs and details on the derivation of amplitude limits as function
of the spectral index and other physical parameters, we refer the
reader to Lentati et al. (2015) and Arzoumanian et al. (2015)

The CRLBs are calculated using the TN parameters from the two
Bayesian analyses, using different types of pPDs on the TN noise
amplitude. For each set of TN results, we calculate the CRLB for
two cases, namely assuming the presence of the measured white
and TN, or assuming only the measured white-noise levels, and
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Figure 8. CRLBs for the strain amplitude of GWBs, AGWB for a range of spectral indices, αGWB. Squares denote the values shown in Table 5. Left-hand
panel: CRLBs calculated bounds using the timing-noise ML parameters from the Bayesian analysis using log-uniform priors on the timing-noise amplitude
(solid lines and filled squares) and using uniform priors on the timing-noise amplitude (upper limits; dashed lined with open squares). Blue (grey for black and
white prints) symbols are for limits calculated assuming timing and white noise, while black symbols when only the white-noise levels are taken into account.
Right-hand panel: the ratio of the CRLBs when considering the white- and timing-noise levels of the data and when assuming no timing noise present in the
data. The blue solid line is when using the timing-noise properties the analysis with log-uniform priors and the while the black dashed line is for the analysis
with uniform priors.

Table 5. Results for the CRLB on a GWB for the expected signals from
SMBHBs (α = −2/3), cosmic strings (α = −7/6) and cosmological relic
GWs (α = −1) (see Section 7.1 for a discussion on the noted spectral
indices). We tabulate the CRLB when considering both the white- and
timing-noise levels (AGWBwr ) and when assuming no timing noise present
in the data (AGWBw ). Results were derived using the noise parameters from
both Bayesian analyses, with uniform (ML TN) and log-uniform priors (TN
upper limits) on the timing-noise amplitude.

αGWB AGWBwr AGWBw
AGWBwr
AGWBw

ML TN
−2/3 8.3× 10−16 9.1× 10−17 9.1
−7/6 4.6× 10−17 4.4× 10−18 10.3
−1 3.5× 10−16 3.5 × 10−18 10.0

TN upper limits
−2/3 9.2× 10−16 8.5× 10−17 10.7
−7/6 4.7× 10−17 4.1× 10−18 11.4
−1 3.7× 10−16 3.3× 10−17 11.1

finally, calculate their ratios. Fig. 8 shows the results for both cases.
The results for the spectral indices representative of GWBs from
SMBHBs, cosmic strings and relic GWs are presented in Table 5.
The improvement factor on the lower bound when assuming no TN
in the data is about an order of magnitude, ranging from 9.1 to 11.4.
These results demonstrate how strongly TN can reduce the data’s
sensitivity to stochastic GWBs. To stress this even further, we note
that the upper limits on the GWB amplitude by SMBHBs (spectral
index −2/3) by PTAs have improved by a factor of 10 over the past
10 yr.

7.2 Gravitational waves from single SMBHBs

Here we focus on CGWs from resolvable, GW-driven SMBHBs
with circular orbits and without measurable frequency evolution
of the signal due to energy loss from the binary by GW emis-
sion over the observing interval (an effect known as frequency
chirping, see e.g. Hughes 2009). The waveform (S) of CGWs has
been calculated by many independent studies (e.g. Wahlquist 1987;

Blanchet 2006; Hughes 2009). For each SMBHB, the waveform is
characterized by seven parameters, namely the GW amplitude, fre-
quency and phase, the SMBHB’s sky co-ordinates (right ascension
and declination), orbital inclination and direction of the binary’s
ascending node on the sky. Clearly, the terms with partial deriva-
tives of C are zero for the single SMBHB signal and equation (22)
reduces to

Iij = 1

2

∂ST

∂λi

C−1 ∂S

∂λj

. (25)

Due to the seven parameters, the covariance matrix for the single
GW source is a 7 × 7 matrix. The CRLB of the single source
amplitude depends on the GW frequency, source position, orbital
inclination and orientation. It has been shown (Lee et al. 2011) that
the precision estimation of the GW source position using CRLB
would be poor, due to the lack of a unique unbiased estimator for
the single source problem. The statistics of the amplitude estima-
tor, on the other hand, can be well described by the CRLB, which
determines the sensitivity of a PTA as function of frequency. The
sensitivity depends on the GW source position. We estimate the
CRLB for three scenarios: placing the SMBHB at the sky position
where the PTA has the minimum and maximum sensitivity as well
as the average of all positions on the sky. Our results are given in
Fig. 9. The low-frequency sensitivity extends to values lower than
the frequency resolution (1/T) because the GW low-frequency sig-
nal still leaks power into the observing window after the pulsars’
spin and spin-down fitting. This causes the curve to rise below the
frequency resolution. The rise of the curve at high GW frequen-
cies is due to the PTA frequency response, as the GW induced
timing residuals are the time integral of the GW strain. The peak
at 1 yr−1 (3.17× 10−8 Hz) is caused by the pulsar sky position
fitting.

The improvement in the PTA sensitivity at low frequencies is
obvious from Fig. 9. One can clearly notice how the presence of TN
flattens the sensitivity below ∼10 nHz, which, in contrast, keeps
improving in the case of timing data free of TN. In the absence
of TN, the sensitivity at low GW frequencies is only limited by
the PTA’s frequency resolution. Table 6 summarizes the CRLBs
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Figure 9. Results for the CRLB on the strain amplitude of CGWs, ACGW, against the CGW frequency, fCGW, from resolvable SMBHBs with circular orbits
and without measurable frequency chirping. The different curves are for the cases where the SMBHB is at the sky location where the PTA has the maximum
(cyan, dot–dashed lines) and minimum (black, dotted lines) sensitivity, and the average of all positions on the sky (red, solid lines). The vertical line show the
frequency resolution of the PTA, 1/T, where T is time-span of the pulsar with the longest data set. Left-hand panel: sensitivity curves when accounting for
the white and the TN of the data. Right-hand panel: sensitivity curves when only accounting the white noise of the data. The additional blue, thick double
dot–dashed line is the case for mean PTA sensitivity when including the TN as in the left-hand panel (red, solid line) for better comparison.

Table 6. Results for the CRLB on the strain amplitude of CGWs from
resolvable SMBHBs with circular orbits and without measurable frequency
chirping. We quote the limits for the cases when the SMBHB is at the
sky location where the PTA has the maximum (max) and minimum (min)
sensitivity, and the average of all sky positions (avg) at GW frequencies of
5 and 7 nHz. For each case, we quote the limits when accounting for the
white and the TN of the data, ACGWwr and for the white noise only, ACGWw .
The last column shows the ratio of the limits for these two cases.

GW freq. ACGWwr ACGWw
ACGWwr
ACGWw

(nHz)

Max PTA Sensitivity
5 1.2× 10−14 2.1× 10−15 5.6
7 9.1× 10−15 3.8× 10−15 2.4

Avg PTA Sensitivity
5 4.0× 10−15 8.1× 10−16 5.0
7 2.7× 10−15 1.1× 10−15 2.4

Min PTA Sensitivity
5 1.3× 10−15 2.4 × 10−16 5.3
7 1.0× 10−15 4.4 × 10−16 2.3

for the CGWs amplitude at frequencies of 5 and 7 nHz and the
improvement factors to the sensitivity when the data do not have
TN, which range from 2.3 to 5.6.

8 C O N C L U S I O N S

In this paper, we have characterized the noise properties for 42
MSPs, using the EPTA Data Release 1.0. While the central focus
is on the TN properties, we have also characterized the white-noise
properties of the data. The long time-spans of the pulsar data sets
(the shortest being 6.9 yr and the longest 24.1 yr long) of high-
quality timing data, are especially valuable for determining the TN.
In order to increase our confidence in the results, we have employed
two established methods, one based on Bayesian and the other one
on power-spectral analysis. We used the Bayesian pulsar timing
analysis package TEMPONEST to simultaneously determine the time-
correlated TN, DM variations and uncorrelated noise (white-noise)
properties. In order to focus the comparison between the methods

on the TN characterization, we used the ML TEMPONEST results
on DM variations and white-noise parameters as a priori known
information when performing the frequentist analysis, based on
a developed power-spectral analysis code described in this paper.
For pulsars with statistically significant TN measurements, the two
methods give statistically consistent results.

The lack of sufficient multifrequency data in 17 pulsars where
TN is detected leads to strong covariances between the TN and
DM variations, causing the posterior distributions of the noise pa-
rameters derived from the Bayesian analysis to have probability
tails extending to ±∞. These reflect the small probabilities of the
noise amplitude to be zero, causing some deviations between the
ML and mean values of the parameters. The values of the ML and
mean parameters as well as the parameter values estimated with the
power-spectral analysis, are still however statistically consistent.
Upper limit analysis is performed in these cases to set robust upper
limits on the TN amplitude.

Our analysis shows evidence of TN specific to the NRT data,
which are likely linked to improper polarization calibration in a
roughly six-month-long epoch. We have also placed an upper limit
on clock error TN and find that it contributes at most 1 per cent to
the total noise in the MSPs under examination. Finally, we assessed
the role of TN in the efforts for GW detection using PTAs. We did
so by estimating the CRLB on the strain amplitude of a stochastic
GWB and CGWs from resolvable SMBHBs, accounting only for
the measured white noise first and then adding the measured TN
properties. We find that, for GWBs, the TN in this data set reduces
the sensitivity of this data set by a factor of 9.1–11.4, depending
on the GWB spectral index. For CGWs, the sensitivity reduces by
a factor of 2.3–5.6, depending on the GW frequency and the sky
position of the SMBHB with respect to the sky position where the
PTA is most sensitive.

The results of this paper stress in a clear way the imperative
need of PTAs to improve the noise characterization and mitigation
techniques and the development of good observing and data reduc-
tion practices to avoid introducing TN due to systematics. It also
demonstrates the demand for new discoveries of MSPs that are not
only bright, but also exhibit stable rotation. The rotational stability
of pulsars can only be evaluated via TN characterization on data
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sets that are at least five years long, making the long-term follow-up
timing observations of newly discovered MSPs essential for PTA
observing campaigns.
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