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ABSTRACT
We present a model-independent analysis of the short-time-scale energy dependence of low-
frequency quasi-periodic oscillations (QPOs) in the X-ray flux of GRS 1915+105. The QPO
frequency in this source has previously been observed to depend on photon energy, with
the frequency increasing with energy for observations with a high (�2 Hz) QPO frequency,
and decreasing with energy for observations with a low (�2 Hz) QPO frequency. As this
observed energy dependence is currently unexplained, we investigate if it is intrinsic to the
QPO mechanism by tracking phase lags on (sub)second time-scales. We find that the phase lag
between two broad energy bands systematically increases for 5–10 QPO cycles, after which
the QPO becomes decoherent, the phase lag resets and the pattern repeats. This shows that the
band with the higher QPO frequency is running away from the other band on short time-scales,
providing strong evidence that the energy dependence of the QPO frequency is intrinsic. We
also find that the faster the QPO decoheres, the faster the phase lag increases, suggesting that
the intrinsic frequency difference contributes to the decoherence of the QPO. We interpret our
results within a simple geometric QPO model, where different radii in the inner accretion flow
experience Lense–Thirring precession at different frequencies, causing the decoherence of the
oscillation. By varying the spectral shape of the inner accretion flow as a function of radius,
we are able to qualitatively explain the energy-dependent behaviour of both QPO frequency
and phase lag.

Key words: accretion, accretion discs – black hole physics – X-rays: individual:
GRS 1915+105.

1 IN T RO D U C T I O N

Accreting stellar-mass black holes in binary systems regularly dis-
play quasi-periodic oscillations (QPOs) in their X-ray flux with
frequencies drifting from ∼0.1–10 Hz (e.g. Van der Klis 1989).
Three main components can be identified in the spectrum of these
sources: disc blackbody emission, power-law emission from the in-
ner accretion flow, and a reflection spectrum from photons reflected
off the disc (Done, Gierlinski & Kubota 2007). So-called Type-C
low-frequency QPOs (Casella, Belloni & Stella 2005) are believed
to originate from the inner accretion flow/corona that is associated
with the Comptonized power-law component of the X-ray spec-
trum, as this component shows a much larger variability amplitude
than the blackbody disc component (Sobolewska & Zycki 2006;
Axelsson, Hjalmarsdotter & C. 2013). Since currently no consensus
on the origin of QPOs exists, we can generally divide QPO models
into two broad categories: geometric and intrinsic models. In the

� E-mail: a.j.vandeneijnden@uva.nl (JvdE); p.uttley@uva.nl (AI);
a.r.ingram@uva.nl (PU)

former, the X-ray emission is constant but an oscillating accretion
geometry quasi-periodically alters the observed flux. A possible
origin for these geometric oscillations could be Lense–Thirring
precession of the Comptonizing medium, due to misalignment of
the black hole spin and the binary orbit (Stella & Vietri 1997; Stella,
Vietri & Morsink 1999; Ingram, Done & Fragile 2009). Alterna-
tively, in intrinsic models the emitted luminosity itself varies, for
example due to changes in mass accretion rate (Tagger & Pellat
1999; Cabanac et al. 2010) or due to a standing shock in the accre-
tion flow (Chakrabarti & Molteni 1993). Recently, Heil, Uttley &
Klein-Wolt (2015) and Motta et al. (2015) confirmed that the QPO
amplitude depends on the inclination of the binary orbit, strongly
suggesting a geometric origin (Schnittman, Homan & Miller 2006).
Ingram & Van der Klis (2015) found that the iron line equivalent
width changes over a QPO cycle in GRS 1915+105, also strongly
pointing towards a geometric origin.

GRS 1915+105 is a Galactic low-mass black hole binary (BHB)
located at a distance of 8.6+2.0

−1.6 kpc (Reid et al. 2014), that was
discovered in 1992 by Castro-Tirado et al. (1992). It shows a
wide variety of variability properties (Belloni et al. 1997a,b),
which are difficult to interpret within the standard picture of BHB

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/458/4/3655/2613869 by U
niversiteit van Am

sterdam
 user on 06 July 2020

mailto:a.j.vandeneijnden@uva.nl
mailto:p.uttley@uva.nl
mailto:a.r.ingram@uva.nl


3656 J. van den Eijnden, A. Ingram and P. Uttley

accretion states (Belloni 2010, see Van Oers et al. 2010 for a spectral
comparison). Belloni et al. (2000) report the presence of 12 accretion
classes based on the properties of its light curve and colour–colour
diagrams, which can be interpreted as transition between three main
states: a hard state (C) where the disc is truncated, and two soft states
(A & B, with a low and high flux, respectively) where the inner disc
extends further inwards. However, all three states show similarities
to the canonical very high state of BHBs (Reig, Belloni & Van
der Klis 2003). GRS 1915+105 shows QPOs in various frequency
ranges in several of its classes (Morgan, Remillard & Greiner 1997).
In this paper, we will focus on the low-frequency QPO with fre-
quencies between ∼0.5 and 10 Hz, which occurs only in the (hard)
C state and is probably equivalent to Type-C QPOs in other sources
(Casella et al. 2005).

Recently, the QPO frequency has been found to change with ob-
served energy band in several BHBs. The energy dependence of
the QPO in GRS 1915+105 has been studied by Qu et al. (2010)
and Yan et al. (2012). Yan et al. (2012) analysed all RXTE observa-
tion of GRS 1915+105 up to 2010, and found a smooth evolution
of the dependence of QPO frequency on photon energy. For ob-
servations with a low QPO frequency (∼0.4–2.0 Hz) in the full
energy band, the QPO frequency decreases with energy, while for
observations with a high QPO frequency (∼2.0–8.0 Hz) in the full
energy band, the QPO frequency increases with energy. Similarly,
Li et al. (2013a) found an increase in QPO frequency with energy
in XTE J1550-564 for frequencies above ∼3.3 Hz. However, be-
low ∼3.3 Hz no variations with energy were observed. Li et al.
(2013b) reported comparable behaviour in the QPO in H1743-322,
also exclusively showing frequency increases with photon energy.
GRS 1915+105 is thus the only source to systematically show
decreases of QPO frequency with energy. As this decrease is partic-
ularly surprising within the standard picture of accreting compact
objects, we have chosen GRS 1915+105 for our further analysis of
the energy dependence.

Similarly, the QPO phase lag is known to be energy dependent.
Pahari et al. (2013), Qu et al. (2010) and Reig et al. (2000) all
found a smooth relation between this phase lag and energy in
GRS 1915+105. The same behaviour is present in XTE J1550-564
(Wijnands, Homan & van der Klis 1999). For GRS 1915+105, Qu
et al. (2010) show that the slope of this energy dependence changes
systematically from positive for observations with low QPO fre-
quency (i.e. hard photons lag soft photons) to negative for obser-
vations with high frequency (i.e. soft photons lag hard photons).
Furthermore, by comparing multiple observations, Qu et al. (2010)
and Pahari et al. (2013) also show that the phase lag between hard
and soft photons decreases approximately log–linearly as a func-
tion of QPO frequency in the full band, switching from a hard to
soft lag around ∼2 Hz. This frequency of ∼2 Hz is of particular
interest; in observations with this QPO frequency, also no energy
dependence of the QPO frequency and zero phase lag is observed.
As such, this frequency sets the border between the low and high
QPO frequencies.

These recent results on the energy dependence of both the QPO
frequency and phase lags pose several challenges for current QPO
models: not all models predict an energy-dependent QPO frequency,
and none can account for the decrease of frequency with energy ob-
served in GRS 1915+105 (Qu et al. 2010). Intuitively, both a higher
frequency and harder spectrum can be associated with a smaller ra-
dius in the accretion flow. Thus an increase of QPO frequency
with energy could be expected, but a decrease is counterintuitive.
Furthermore, no explanation exists for the energy and frequency
dependence of the phase lags. Finally, the link between all three

is not fully understood. Hence, the simplest explanation is that the
QPO mechanism possesses only a single oscillation frequency. The
observed relation between QPO frequency and energy could sim-
ply arise if the hardness of the QPO light curve correlates with the
QPO frequency. In that interpretation, both the hard and soft band
always show the same frequency jitter, but the changing hardness
weights the QPO frequency differently in different energy bands.
This would lead to observed differences in QPO frequency between
different energy bands, even though there is only a single underlying
QPO frequency.

In this paper, we test this hypothesis that the observed energy de-
pendence of the QPO frequency arises due to hardness–frequency
correlations in the QPO light curve. We have developed a novel,
model-independent approach to investigate properties of the QPO,
such as hardness, frequency and phase lag, on the time-scale of
single QPO cycles, by removing non-QPO variability from the ob-
served light curves. This allows us to test for biases causing the
observed energy dependence, as explained above, by tracking QPO
frequencies and hardness on short time-scales. Unexpectedly, we
find strong evidence that the observed frequency differences are a
genuine property of the underlying QPO mechanism. We also find
that the phase lag at the QPO frequency increases systemically on
the time-scale of 5–10 QPO cycles as a result of this frequency dif-
ference, before resetting once the QPO has become decoherent. We
interpret our results in a geometric toy model where the innermost
accretion flow is subject to differential precession. By varying the
shape of the emitted X-ray spectrum as a function of radius, we are
able to qualitatively explain the observed energy dependences of
the QPO properties.

2 O B S E RVAT I O N S A N D T I M I N G A NA LY S I S

In this paper, we consider two plausible origins for the energy depen-
dence of the QPO frequency, which are depicted schematically in
Fig. 1. In the left scenario, the QPO light curves in the two energy
bands always have the same frequency. However, this frequency
changes as a function of time. Whenever the frequency is high, the
hard band light curve has a large amplitude compared to the soft
band light curve (where amplitude refers to the maximum deviation

Figure 1. Cartoon depiction of the two considered scenarios for the ob-
served energy dependence of the QPO frequency. In the scenario on the
left, the frequencies in both energy bands are always the same, while in the
scenario on the right, the frequencies are different. For clarity, the differ-
ences in frequency are exaggerated compared to actual observed frequency
differences (listed in Table 1).
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Table 1. Overview of analysed RXTE observations. Listed are the ObsId, observation date, fundamental QPO frequency in the reference band νref
0 ,

the difference in QPO frequency (hard − soft) �ν0, the Q-factor in the full energy band (νQPO/FWHM), the used energy bands (I: 1.94–6.89 and
6.89–12.99 keV; II: 1.94–6.54 and 6.54–12.99 keV; III: 2.13–6.72 and 6.72–12.63 keV), the reduced χ2 of the power spectral fit χ2/d.o.f., and the
slope and offset of the phase lag evolution (see Section 3.2).

ObsID Date νref
0 (Hz) �ν (Hz) Q-factor Energy bands χ2/d.o.f. Slope Offset

10258-01-06-00a 29-08-1996 5.141 ± 0.024 0.078 ± 0.036 5.9 I 1.02 −0.20 −0.06
10408-01-21-02 07-07-1996 8.107 ± 0.043 0.313 ± 0.071 6.2 I 1.11 −0.40 0.01
10408-01-22-00 11-07-1996 3.480 ± 0.004 0.008 ± 0.008 8.5 I 1.22 −0.08 −0.06
10408-01-22-01 11-07-1996 2.777 ± 0.005 0.003 ± 0.007 6.8 I 1.24 −0.03 −0.03
10408-01-22-02 11-07-1996 2.560 ± 0.004 0.000 ± 0.007 6.3 I 1.36 −0.04 −0.02
10408-01-27-00 26-07-1996 0.632 ± 0.002 −0.003 ± 0.002 5.3 I 1.08 0.08 0.13
10408-01-28-00 03-08-1996 0.966 ± 0.002 −0.005 ± 0.003 5.3 I 1.34 0.04 0.10
10408-01-29-00a 10-08-1996 1.658 ± 0.004 −0.004 ± 0.006 10.8 I 1.03 −0.01 0.06
10408-01-29-00b 10-08-1996 1.856 ± 0.004 0.006 ± 0.005 9.9 I 1.18 −0.07 0.07
10408-01-29-00c 10-08-1996 1.963 ± 0.004 −0.010 ± 0.006 6.8 I 1.40 −0.03 0.02
10408-01-30-00 18-08-1996 4.944 ± 0.010 0.041 ± 0.017 3.0 I 1.07 −0.05 −0.11
10408-01-31-00a 25-08-1996 4.084 ± 0.008 0.013 ± 0.01 9.5 I 0.96 −0.05 −0.09
10408-01-31-00b 25-08-1996 4.439 ± 0.009 0.04 ± 0.014 5.0 I 1.17 −0.11 −0.07
10408-01-31-00c 25-08-1996 3.514 ± 0.006 0.008 ± 0.009 6.7 I 1.25 −0.0 −0.08

10408-01-32-00 31-08-1996 6.121 ± 0.018 0.296 ± 0.029 3.9 I 1.38 −0.39 −0.02
20402-01-48-00 29-09-1997 7.639 ± 0.034 0.242 ± 0.054 5.9 II 1.35 −0.43 −0.02
20402-01-50-01 16-10-1997 1.042 ± 0.003 −0.005 ± 0.004 6.1 II 1.11 0.03 0.10
30182-01-01-00 08-07-1998 1.870 ± 0.009 0.007 ± 0.013 8.1 II 1.08 −0.08 0.04
30402-01-11-00a 20-04-1998 5.245 ± 0.032 0.127 ± 0.033 7.3 II 1.09 −0.33 −0.01
30402-01-11-00b 20-04-1998 5.857 ± 0.017 0.129 ± 0.039 3.6 II 1.23 −0.24 −0.06
30703-01-20-00 24-05-1998 0.696 ± 0.002 −0.004 ± 0.003 5.3 II 1.01 0.03 0.14

30703-01-35-00 25-09-1998 2.464 ± 0.006 0.008 ± 0.009 5.9 II 1.14 −0.03 −0.05
40703-01-38-01 15-11-1999 7.114 ± 0.030 0.373 ± 0.044 4.1 III 1.09 −0.57 0.09
40703-01-38-02 15-11-1999 7.943 ± 0.032 0.282 ± 0.048 7.2 III 1.27 −0.89 0.22

from the mean and not the rms amplitude). When the frequency is
low, the amplitudes are reversed, i.e. the amplitude is higher in the
soft band. In this scenario, the power spectra in the two energy bands
would show a QPO frequency weighted towards the high amplitude
segments of the light curve. Thus the power spectra would show a
different QPO frequency, even though the frequencies are always
the same. In the alternative scenario, on the right, the QPO light
curves in the two energy bands simply posses a different frequency.
While this might seem to be a simpler explanation of the observed
energy dependence of the QPO frequency, the former scenario is
more consistent with current models as there is only a single QPO
frequency. Furthermore, in the latter scenario, the different QPO
frequencies would cause a runaway between different energy bands
over long time-scales, which is contradicted by the coherent nature
of the QPO.

There are two tests to distinguish between these two possible
explanations: first, in the left scenario in Fig. 1, the amplitude of the
QPO light curve should be either correlated with the frequency in
the hard band and anti-correlated with frequency in the soft band,
or vice versa. In the right scenario, such (anti)correlations are not
necessarily expected. Secondly, if the QPO frequency in both energy
bands is always the same, the phase lag is expected to stay constant.
However, if both energy bands posses a different QPO frequency,
this phase lag would systematically change over time. As we know
that the QPO is coherent on long time-scales, these changes in phase
lag would occur only on very short time-scales.

We have developed a model-independent method to search both
for correlations between QPO frequency and amplitude, and for
short-time-scale variations in phase lag. The method consists of
broadly four steps: we (1) extract light curves in two broad energy
bands and calculate their power spectra, (2) filter these light curves
in order to conserve only the QPOs, (3) determine the frequency and

amplitude of each QPO cycle, and (4) track the phase lag between
the energy bands on the time-scale of individual QPO cycles. Steps
(1–3) are described in Section 2.1, while step (4) is described in
Section 2.2.

2.1 Data reduction and optimal filtering

For our analysis, we select 24 Rossi X-ray Timing Explorer (RXTE)
Proportional Counter Array (PCA) observations of GRS 1915+105,
based on the observations discussed in Qu et al. (2010), Pahari
et al. (2013) and Yan et al. (2013). The observations are selected to
evenly span a range in QPO frequency from ∼0.5 to 8 Hz. Table 1
summarizes the main properties of these observations. Using the
standard FTOOLS1 package, we extract binned mode data to produce
light curves in three energy bands: a soft band from ∼2 to ∼6.7 keV,
a hard band from ∼6.7 to ∼13 keV, and a reference band covering
both energy ranges. Due to changes in the PCA gain, the exact
energy bands differ slightly between observations. The exact energy
bands are indicated in Table 1 for all observations. We extract all
observations using a 1/128 s time resolution, which yields a Nyquist
frequency of 64 Hz for the subsequent analysis.

We divide all light curves into 8 second segments and for each
one calculate the power density spectrum (PDS) with a 1/8 Hz
resolution. After applying the rms-squared normalization (Belloni
& Hasinger 1990) we average the separate power spectra into one
PDS per light curve to reduce the standard errors. Using XSPEC

v12,2 we fit the average power spectra with a model consisting of
a constant white noise, two broad-band noise (BBN) Lorentzians

1 https://heasarc.gsfc.nasa.gov/ftools/ftools_menu.html
2 https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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with a fixed centroid frequency of 0 Hz, and a Lorentzian for the
QPO fundamental and each (sub)harmonic. We fit all energy bands
within the same observation separately with the same model, as
linking parameters between energy bands generally results in worse
fits. Details of the resulting fits, including reduced χ2 values and
QPO frequencies, are listed in Table 1. The errors shown are the 1σ

confidence intervals.
In order to study the behaviour of only the QPO, and remove

broad-band and Poisson noise contributions to the variability, we
apply an optimal filtering technique based on the method in Press
et al. (1997). We assume that the observed count rate c(t) consists
of the true QPO signal q(t) and an added noise component n(t):

c(t) = q(t) + n(t) (1)

Our aim is to remove n(t) in order to estimate q(t) as accurately as
possible. The optimal filter provides such an estimate of the true
QPO signal, q̃(t), by minimizing the squared difference between
q(t) and q̃(t). In practice, the filter F(ν) is applied by multiplication
with the Fourier transform of the count rate (capitalized variables
indicate the Fourier transform):

Q̃(ν) = F (ν) C(ν) (2)

The filter in Fourier space is given by

F (ν) = |Q(ν)|2
|C(ν)|2 (3)

and thus requires an estimate of the actual QPO power spectrum
|Q(ν)|2, for which we apply the fitted QPO Lorentzian. The remain-
ing time series q̃(t) estimates the true QPO light curve, without
other variability contributions.

The optimal filter assumes that the QPO signal q(t) and the noise
contribution n(t) are uncorrelated. In our method, the noise consists
of the white noise, the BBN and any (sub)harmonic QPO peaks.
Since the (sub)harmonics are clearly related to the fundamental
QPO and correlations between the BBN and the QPO are known to
exist (Heil, Vaughan & Uttley 2011), the assumption of uncorrelated
noise does not fully hold. This will especially spoil the filter at low
frequencies, where the BBN is dominant, and at the (sub)harmonic
frequencies. To cancel these effects, we apply an extra cut that
removes all high and low frequencies outside the range νQPO ±
FWHM, where νQPO is the fitted QPO frequency in the considered
energy band. As this does not remove the correlations at the QPO
frequency, the filter remains slightly less then optimal. Alternative
filters, that do not make assumptions about noise correlations, exist:
for example, the tophat filter simply removes all power outside
a certain frequency range. These filters are less accurate than the
optimal filter and do not use any known properties of the QPO
peak. For this reason, we apply the optimal filter for the subsequent
analysis. However, our main results, presented in the next section,
do not differ significantly when using the tophat filter.

Both the optimal and alternative filters only affect the amplitude
of the power spectrum, while leaving the phases unaltered. This
implies that we can use the filtered light curves to measure phase
lags in the subsequent analysis. However, this also means that while
the BBN amplitude is removed, its phase lags are still present in the
filtered light curve. This requires us the make the assumption that, at
νQPO, the phase lags are dominated by the QPO and the contribution
of the BBN is neglegible. We will discuss the effects of our choice
of filter and the validity of this assumption in Section 4.1.

Fig. 2 shows an example of an unfiltered and filtered power
spectrum. The peak of the QPO is clearly sampled by the filtered
power spectrum, while the power becomes zero outside the allowed

Figure 2. Explanatory example of the optimal filter in the frequency do-
main. The black points correspond to the observed power spectrum, the red
and blue stars to the filtered power spectrum. We only use the inner (red)
part of the filtered power spectrum, within the range shown by the dotted
lines (νQPO ± FWHM), to produce QPO light curves.

Figure 3. Example of the optimal filter in the time domain. The black and
red curves are the light curves corresponding to respectively the black and
red power spectra in Fig. 2. The filtered light curve (red) clearly picks out
the QPO, while removing other variability present in the observation.

frequency range. We use 64 second segments of the light curves to
produce the power spectra that are filtered, causing the difference
in frequency resolution in Fig. 2. It is possible to select longer
segments since the power spectra are already fitted, so there is no
need to average many power spectra to reduce standard errors. Fig. 3
shows the light curves corresponding to the power spectra in Fig. 2
in the same colours. As intended, the filtered light curve tracks
the large overall oscillations, but does not sample the added noise
contributions.

In order to track each QPO cycle individually, we use simple
linear interpolation to estimate the mean-crossings and extrema
of the filtered reference band light curves. Defining a QPO cycle
as a light curve segment including either three consecutive mean-
crossings or two consecutive maxima, we can determine both the
maximum amplitude and frequency of each individual cycle. This
allows us to perform the first test of the energy dependence of the
QPO frequency: the aforementioned presence of (anti)correlations
between amplitude and frequency.

MNRAS 458, 3655–3666 (2016)
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Figure 4. Categorizing method for the position of segments in the filtered
light curve. The dotted lines indicate the edges of each segment. Segments
containing the start of a coherent interval, equivalent to a minimum QPO
amplitude, are indicated by a grey band. Segments are grouped together
based on either absolute label (upper) or ratio of label to full coherent
interval length (lower).

2.2 Phase lags

The second method to test the energy dependence of the QPO
frequency is to track the phase lag over time: if the different energy
bands harbour a different QPO frequency, this phase lag should
change systematically. But as was already stated, these changes
should occur on short time-scales only, since the QPO is coherent
on longer time-scales. Hence, we first need to identify the time-scale
on which to search for variations in phase lag.

As is visible in Fig. 3, the filtered light curves show that the QPO
amplitude repeatedly rises and falls in an enveloping modulation.
While the individual envelopes differ in length, the mean length of
the envelopes in an observed light curve is tightly correlated with the
Q-factor (νQPO/FWHM) in that light curve. In other words, the more
coherent the QPO, the longer the envelopes in the filtered QPO light
curve. Hence, we name these envelopes coherent intervals and select
these as the time-scales within which we search for the changes
in phase lag that might signal a genuine energy dependence. We
designed our subsequent analysis such that it allows us to track the
phase lag throughout these coherent intervals. As such, it consists of
three independent steps: (1) splitting each observation in segments,
(2) identifying the positions of these segments in coherent intervals,
and (3) calculating the phase lag by combining light-curve segments
located at similar positions in their respective coherent interval.

First, we divide the time-axis of each observation into short seg-
ments of length 1/νref

0 , where νref
0 is the QPO frequency in the full

2–13 keV band (hereafter referred to as the full-band QPO fre-
quency). Using the optimally-filtered reference band light curve,
we search for minima in QPO amplitude and identify these as the
start and end points of coherent intervals. For the second step, we
label each segment with a number based on its position inside its
respective coherent interval, as illustrated in Fig. 4: starting with
zero for the segment containing the start of the coherent interval,
we increase the label of each successive segment by one, up until
the end of the coherent interval. We define the absolute position as
the label of a segment, and the fractional position as the ratio of
the label to the total amount of segments in the coherent interval.
These positions are shown in Fig. 4 as the upper and lower num-
bers, respectively. As we only used the filtered QPO amplitudes in

this process of defining segment labels, this first step is completely
independent of the phase or frequency properties of the QPO.

As the final step, we filter the hard and the soft band using their
respective best-fitting parameters. We normalize both light curves
in each segment by subtracting their mean and dividing by their
standard deviation, and cross-correlate each set of simultaneous
segments in the two energy bands. The position of the peak in the
resulting cross-correlation function (CCF) indicates the time lag
between the two energy bands in that specific segment. In order to
increase the signal-to-noise ratio in the CCFs, we average CCFs
with either the same absolute or similar relative positions. In order
to account for the uncertainty in our simple determination of the
starts of the coherent intervals, we do not consider the zero-labelled
segments in the subsequent analysis.

The time lag τ (νref
0 ) between the hard and soft band can then be

measured as the location of the peak of the averaged CCF. Due to the
extra cuts in the optimal filter and the frequency difference between
the two energy bands, no analytical description of this CCF exists.
Therefore, we fit a skewed Gaussian model to the central peak of the
averaged CCF. As the maximum of the skewed Gaussian model is
not represented by a single parameter, we then apply bootstrapping
to the averaging of the CCFs to determine the 1σ uncertainty on the
time lag (see e.g. Press et al. 1997, section 15.6). Finally, we convert
the time lags into phase lags φ(νref

0 ) using φ(νref
0 ) = τ (νref

0 ) 2πνref
0 .

Thus, we obtain an estimate of the average phase lag between the
hard and soft band at different absolute or fractional positions in the
coherent intervals.

3 R ESULTS

3.1 Test 1: frequency–amplitude correlations

In Fig. 5, we show a representative example of the relation between
the amplitude and frequency of single QPO cycles. The panels show
a two-dimensional histogram of the amplitude and frequency of in-
dividual QPO cycles, rescaled such that the highest counts are equal
to one. The left-hand and right-hand panel show the relation for the
soft and hard band, respectively. Two immediate conclusions can
be drawn from the figure: first, both the soft and hard band show no
apparent (anti)correlation between frequency and amplitude. Sec-
ondly, the panels of the energy bands appear strikingly similar,
even though the centre of the distribution lies at a different QPO
frequency. This lack of correlation and similarity between the en-
ergy bands is present in all observations analysed. Thus, this first
tests unexpectedly points towards different QPO frequencies in the
different energy bands, i.e. a genuine energy dependence of the
QPO frequency.

As a test of our method, we converted the observed power spectra
into maximally stochastic light curves using the method of Timmer
& Koenig (1995), i.e. the best-fitting power spectra were used to
generate simulated light curves with the properties of Gaussian
noise. After applying the optimal filtering and the tracking of QPO
properties, these simulated light curves show a completely simi-
lar relation between amplitude and frequency as the observed ones
shown in Fig. 5. This similarity indicates that the triangular shapes
in the amplitude–frequency plane are simply an inherent property
of a noise process with the observed power spectra. The triangular
shape itself is likely due to fact that at lower amplitudes, the de-
termination of individual QPO cycles becomes less precise due to
noise contributions.
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Figure 5. Representative example of the relation between amplitude and frequency of individual QPO cycles. The panels show a two-dimensional histogram
of these amplitudes and frequencies, rescaled such that the highest counts are equal to one. The left-hand and right-hand panel show the relation for the soft
and hard band, respectively.

Figure 6. Evolution of the phase lag between the hard and soft QPO light curve throughout a coherent interval for a ∼6.1 Hz QPO (�ν0 ∼ 0.3 Hz). Panels 1
and 2 show the phase lags versus fractional and absolute position in a coherent interval, respectively. The lag evidently increases and resets at the end. Panels 3
and 4 show the corresponding randomized checks of our method, and are expected to hover around the average phase lag, shown by the grey band. Positive
values of φ indicate hard lags. See full text for details.

3.2 Test 2: phase lag evolution

As a second test, we search for changes in the phase lag on short
time-scales. In panel 1 of Fig. 6, we show a representative exam-
ple of the evolution of the phase lag φ as a function of fractional
position within a coherent interval, with φ > 0 corresponding to
hard lags. The phase lag clearly increases from no lag at the start
of the coherent intervals (fractional position of 0.0) to a significant

soft lag at the end (fractional position of 1.0). This shows that the
hard band oscillation is systematically faster than, and hence ‘runs
away from’, the soft band within a coherent interval, and thus that
the two light curve possess a different QPO frequency. Further-
more, the phase lag resets at the start of each coherent interval,
causing the QPO to stay coherent on longer time-scales. This re-
set is already visible as the turnover around a cycle fraction of 0.9,
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Short-time-scale evolution of QPO phase lags 3661

Figure 7. Evolution of the phase lag between the hard and soft QPO light curve throughout a coherent interval for a ∼0.6 Hz QPO (�ν0 ∼ −0.003 Hz). Same
as Fig. 6.

which is present in almost all observations. We will discuss the pres-
ence and interpretation of this turnover in more detail in the next
section.

In order to test our method for systematic effects and biases,
we repeat the analysis, but randomize the measured start times of
the coherent intervals. In other words, the assigned label of each
segment is randomized, and does not represent the actual segment
position. We show the result of this check in panel 3 of Fig. 6. All
phase lags are consistent with the grey band, which represents the
average phase lag, independently calculated by averaging all CCFs
without regard for their positions. This consistency indicates that
the increase in panel 1 is inherently linked to the existence of and
position within the coherent intervals.

Panels 2 and 4 show the phase lag behaviour as a function of
absolute position. In order to compare phase lag behaviour be-
tween coherent intervals of different lengths, we apply an extra
selection before averaging the CCFs: segments should not only
have the same absolute position, but also be located in coherent
intervals of the same total length. Interestingly, as can be seen in
panel 2, shorter coherent intervals systematically show a steeper
phase lag increase, but typically reach the same maximum lag be-
fore resetting. This suggests an underlying relation between the
origin of the coherent intervals and the observed phase lag be-
haviour, that we will discuss in Section 4. Similar to panel 3,
panel 4 shows the results of randomizing the assigned labels. Again,
the observed effect disappears and only the average phase lag
remains.

In Fig. 7, we show the same relations for a lower frequency QPO,
where the frequency difference is opposite (i.e. the QPO frequency
decreases with energy). The general trends are similar to, but, as
expected, in the opposite direction as those in Fig. 6. The main
difference is the presence of a non-zero phase lag at start of the
coherent interval. The similarity of the phase lag behaviour at both
high and low frequencies suggests that the runaway is a global
characteristic of the observed QPO.

As a quantification of the increase in phase lag, we fit the phase
lag as a function of fractional position with a straight line with
non-zero offset:

φ(x) = αx + β (4)

where x is the fractional position. We do not propose this as the
correct empirical representation of the lag behaviour, but it allows us
to characterize and compare all observations: the slope α quantifies
the total change in phase lag in a full coherent interval and the
offset β estimates the starting phase lag. In other words, the slope
characterizes the runaway between the two energy bands. Fig. 8
summarizes all observations by plotting the slope and offset of this
straight line model against both full-band QPO frequency νref

0 and
QPO frequency difference between the hard and soft band, �ν0.
The slope and offset corresponding to the first panel in Figs 6 and 7
are shown as the red triangle and blue square, respectively. Due to
the relatively large uncertainties at the fractional position of 0.95,
we find no significant difference between fitting all phase lags or
disregarding the turnover.

Fig. 8 shows that the runaway effect within coherent intervals
is present in all observations with a non-zero frequency difference,
and is small but significant for small values of �ν0. The sign of
the slope, indicating which energy band lags the other, is consistent
within 1σ with the sign of �ν0 in all observations. Panel 2 clearly
shows that the slope increases as the frequency difference grows,
as expected if the runaway is caused by a frequency difference.
Panel 3 shows that the offset, i.e. the phase lag at the start of the
coherent interval, follows a log–linear dependence on νref

0 , similar
to the behaviour of the average phase lag in Qu et al. (2010), Pahari
et al. (2013) and Reig et al. (2000), up to νref

0 ∼ 3.5 Hz. At higher
frequencies, the offset diverges from the log–linear relation back
to positive values. The observations with these diverging offsets
correspond to the observations with large frequency differences in
panel 4. Using a completely different approach, Qu et al. (2010)
concluded that the frequency difference contributes only a small
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Figure 8. Fitted slope α and offset β of the phase lag evolution plotted against both QPO frequency νref
0 and frequency difference �ν0. The vertical dotted

line in panels 1 and 3 indicates νref
0 = 1.9 Hz, where the average phase lag at the QPO frequency changes sign. The red triangle and blue square correspond to

the slope and offset of the phase lag evolution in panel 1 of Figs 6 and 7, respectively. The inset in panel 1 shows a zoom in of the region below 5 Hz, showing
a significant change from positive to negative slopes around 1.9 Hz.

fraction to the average phase lag at low frequency but becomes
dominant above νref

0 ∼ 3.5 Hz. In our analysis, this is visible in this
divergence of β from a log–linear dependence on frequency above
approximately the same value of 3.5 Hz.

4 D I S C U S S I O N A N D C O N C L U S I O N

4.1 Robustness of the method

We have tested our method for systematic biases at several important
steps and have not found any significant effects. The choice of
energy band to determine the start times of the coherent intervals
has no effect on our results: our conclusions hold when using either
the full, hard or soft band in this process. The same holds for the
definition of a QPO cycle used while tracking the filtered light
curves: we find no difference between defining a QPO cycle as
two consecutive maxima or crossings of the mean photon rate. We
find slight changes in our results if we replace the optimal filter
by a tophat filter, which simply removes all variability outside a
frequency range of νQPO ± FWHM. The phase lags do still increase
in the coherent interval, but with a shallower slope. However, these
changes can be expected since the tophat filter is less efficient than
the optimal filter. This causes a decrease in the accuracy of our
filtered QPO amplitude estimation and thus the determination of
the coherent intervals. Finally, we find no significant changes in our
results if we fit the CCFs with other functions, such as a damped
sine wave, instead of a skewed Gaussian model. However, we apply
the skewed Gaussian model to more accurately account for the
asymmetry in the CCF when �ν0 is significant.

The robustness of our method also follows from the effect of
randomizing the coherent interval start times (panels 3 and 4 in
Figs 6 and 7). In all observations, the phase lag evolution disappears
and only the average phase lag remains. This shows that our method
is capable of correctly estimating known phase lags. It also indicates

that the observed phase lag evolution is inherently connected to the
coherent intervals and cannot be attributed to biases in our method.
Alternatively, if we distribute the start times evenly over the full light
curve, the phase lag evolution disappears as well. This reinforces
the notion that the evolution does not simply occur in any short
time-scale segment, but only in the actual coherent cycles.

In order to interpret our results as a property of the QPO, we
make the assumption that the phase lag at νQPO is dominated by the
QPO. For observations with a full-band QPO frequency �5 Hz, the
lag spectrum shows a clear, distinct feature at the QPO frequency,
while at other frequencies it appears featureless and hovers around
zero. This implies that the phase lag is dominated by the QPO. At
lower full-band QPO frequencies, these features in the lag spectrum
become more diluted. Hence, we apply another test to our method:
instead of calculating the CCF from optimally filtered light curves,
we calculate it from light curves produced using a narrow tophat
filter. If this narrow tophat filter is not centred on the QPO frequency,
this method simply searches for phase lag evolution associated
with the BBN. We perform this test several times per observation,
sliding the tophat filter from low to high frequency. We find that
the observed phase lag evolution is only present when applying
the filter at the QPO frequency, and disappears otherwise. This
indicates that the phase lag evolution is fundamentally linked to the
QPO mechanism, and not to the BBN.

4.2 Phase lags

As previously shown by Qu et al. (2010), Pahari et al. (2013) and
Reig et al. (2000), the average phase lag measured for an entire
observation evolves smoothly with the QPO frequency of that ob-
servation. We demonstrate this relation in Fig. 9, where we plot
average phase lag determined from the CCF versus QPO frequency
for each analysed observation. Our results from the CCF confirm
the aforementioned smooth evolution, which was previously only
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Figure 9. The average phase lag 〈φ〉 as a function of fundamental QPO
frequency νref

0 . Positive values of 〈φ〉 correspond to hard lags. The straight
line shows a log–linear model fit of 〈φ〉 = k log νref

0 + φ0.

measured using the cross spectrum. To quantify this evolution, we
fit the average phase lags with a simple log–linear model

〈φ〉 = k log(νref
0 ) + φ0 (5)

which yields φ0 = 0.096 ± 0.001 rad and k = −0.348 ± 0.003 rad
for νref

0 in Hz. These values correspond to a switch from hard to soft
lags at a QPO frequency of approximately 1.9 Hz. Interestingly, this
is consistent with the frequency where �ν0 changes sign.

It seems remarkable that the phase lags show such complexity
within each coherent interval, yet the average phase lag falls on
such a neat relation. An apparent discrepancy is clearly visible in
Fig. 8. As long as the slope α is small (νref

0 < 3.5 Hz), the offset
β follows a log–linear relation with frequency. This is expected,
since in the absence of any significant phase lag evolution, the offset
will simply track the average phase difference. However, for higher
QPO frequencies, where �ν0 is large and the hard band quickly runs
away from the soft band in each coherent interval (νref

0 > 3.5 Hz,
α becomes significantly less than 0), the offset β diverges from the
log–linear relation. This behaviour of the offset allows the average
phase lags to remain on a log–linear relation with QPO frequency,
by compensating for the short time-scale phase lag evolution.

To demonstrate this compensating behaviour, we plot the average
phase lags measured from the CCF against those measured from the
phase lag evolution (equation 4) in Fig. 10. The latter are simply
given by 〈φ〉 = 〈αx + β〉 = α/2 + β. All observations clearly
scatter around the dotted line, which represents the diagonal. Even
at the most negative phase lags, corresponding to the highest QPO
frequencies and largest values of the slope α, the relation holds.
The relatively large error bars in the y-direction are caused by cor-
relations between α and β in fitting the phase lag evolution, which
are not large enough to explain the relation over the entire range
of observations. Thus, this tight agreement over the entire range
indicates that the slope α and offset β of each observation indeed
compensate such that the average phase lag depends log–linearly
on QPO frequency. This shows that the phase lag evolution sim-
ply pivots around the centre of each coherent interval. Of course,
this does not explain why on long time-scales, fundamentally,
the average phase lag should follow a log–linear dependence on
QPO frequency.

A possible way to explain the smooth log–linear relation between
the frequency and phase lag on long time-scales, could be by con-
sidering the dependence of phase lag on photon energy. Pahari et al.

Figure 10. The measured average phase lag, 〈φ〉, versus the predicted
average phase lag based on the fitted phase lag evolution, α/2 + β. The
dotted line shows the diagonal. The tight correlation indicates that the latter
is an adequate predictor of the average phase lag at all QPO frequencies.

(2013) studied this energy dependence and found that the phase lag
at the QPO frequency follows a log–linear dependence on photon
energy. A similar relation is found by Qu et al. (2010), and hints of
it are present in Reig et al. (2000). The exact slope of this relation
varies between different observations, and several observations also
show hints of a break around ∼4–6 keV. Next to GRS 1915+105,
Wijnands et al. (1999) showed log–linear relations between phase
lag and energy in XTE J1550-564. The smooth relation between
phase lag and QPO frequency might be equivalent to a simple rota-
tion of the dependence of phase lag on energy, where the rotational
angle depends on the frequency of the QPO. This scenario is en-
couraged by the presence of the same phase lag–frequency relation
in Pahari et al. (2013), Qu et al. (2010) and our results, despite
differences between the compared energy bands, both in width of
the bands and centroid energies. In Section 4.4, we propose a pos-
sible mechanism that can explain these two observed dependences
of the phase lag and their possible equivalence based on a simple
toy model.

4.3 Decoherence of the QPO

As part of our analysis, we have identified the envelopes in the QPO
amplitude as so-called coherent intervals in all observations. These
successive coherent intervals can be interpreted as subsequent, in-
dependent excitations of the QPO mechanism with a lifetime of
approximately a coherence time. In this scenario, each single QPO
excitation starts with the same initial phase lag between the hard
and soft band. Subsequently, the frequency difference leads to the
observed phase lag evolution as the excitation decays through the
coherent interval. The observed turnover in the phase lag evolu-
tion could arise from the emergence of the next QPO excitation,
which takes over from the previous one. In this interpretation, the
frequency difference would play a vital role in the decay of the
coherence through each interval. Here, we will discuss earlier evi-
dence for separate QPO excitations and the relation between QPO
frequency difference and (de)coherence. In Section 4.4, we will
discuss our results in the light of a simple physical toy model.

Using adaptive decomposition in a single ∼4 Hz QPO observa-
tion of XTE J1550-564, Su et al. (2015) identify intermittent oscil-
lations of ∼3 s, where the QPO is coherent. Similar to our coherent
intervals, these intermittent oscillations consist of high amplitude
segments of the QPO light curve and are separated by short, lower
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amplitude segments. Su et al. (2015) interpret this behaviour within
the Lense–Thirring precession model as the alternation between
steady precession (high amplitude) and unstable precession (low
amplitude) of the inner hot flow. The ∼3 second time-scale is in-
terpreted as the viscous time-scale at the outer radius of the inner
hot flow. BHB XTE J1550-564 shows energy-dependent QPO fre-
quencies similar to GRS 1915+105 (Li et al. 2013a), suggesting
that these intermittent oscillations are in fact the same as coherent
intervals.

Lachowicz & Done (2010) expanded the standard Fourier meth-
ods using wavelet analysis and the Matching Pursuit algorithm to
track the QPO properties over time. They are able to reconstruct
the observed properties of the QPO using multiple short time-scale
QPO signals with random amplitudes. Given these existing results
in XTE J1550-564, the similarity between intermittent oscillations
and coherent intervals, and the simple explanation of the short time-
scale phase lag evolution, we adopt the interpretation of coherent
intervals as a manifestation of distinct, independent excitations of
the QPO mechanism.

Identifying coherent intervals as separate QPO excitations does
not provide an explanation for the decoherence of the QPO through
the interval. However, the systematic phase lag evolution might be
accountable for that. Interestingly, we find that the speed of the
phase lag evolution is linked to the length of the coherent interval:
as is visible in panel 2 in Figs 6 and 7, shorter coherent intervals
have a significantly quicker phase lag evolution. Moreover, for all
coherence lengths, the phase lag reaches approximately the same
maximum value for the same QPO frequency before turning over.
Only when we account for the length of the coherent interval, are
all phase lag evolutions mapped on to one relation (panel 1 in
Figs 6 and 7). In other words: the length of the coherent interval
appears to be set at the start of each interval and the phase lag evolves
accordingly. This suggests a causal relation between the length of
a coherent interval and the frequency difference in that particular
coherent interval: a larger frequency difference leads more quickly
to a large phase lag, which in turn reduces the coherence of the
QPO and thus the length of the coherent interval. This is consistent
with the interpretation of coherent intervals as independent QPO
excitations, since in this case each individual excitation can have a
distinct frequency difference. Even though the hard and soft band
are not completely out of phase at the end of each coherent interval,
the phase lag could still contribute to the decoherence.

A final property of the coherent intervals is not directly accounted
for by the observed phase lag evolution: the QPO shows coherent
intervals in all observations, even when no phase lag evolution is ob-
served. In other words, the oscillations are always quasi-periodic,
regardless of the presence of a frequency difference between en-
ergy bands. This can be seen clearly in Fig. 11, where we plot the
Q-value of the hard band as a function of relative frequency dif-
ference �ν0/ν

ref
0 . In the figure, no clear relation between �ν0 and

Q exists, contrary to what is expected if the frequency difference and
resulting phase lag evolution causes the decoherence. In the next
section, we offer a toy model based on our results that accounts for
this last difficulty in explaining the decoherence through the phase
lag evolution.

4.4 A unifying model: differential precession
and spectral evolution

Any model to explain the decoherence of QPO excitations should
account for both the sign of the frequency difference at low
QPO frequencies and the link between phase lag evolution, QPO

Figure 11. The quality factor Q of the QPO in the hard band of each
observation as a function of the relative QPO frequency difference �ν0/ν

ref
0 .

frequency difference and length of the coherence interval. The for-
mer is especially challenging: phenomenologically, an increase of
frequency with energy can be understood by considering different
radii in the accretion flow. If the QPO frequency can be associated
with characteristic time-scales in the accretion flow, a higher fre-
quency would correspond to a smaller radius. Simultaneously, from
these smaller radii, a harder spectrum is expected to be emitted. In
this simple picture, it is possible to account for a positive correla-
tion between frequency and energy. However, this simple scenario
is unable to explain the anti-correlation between frequency and en-
ergy that is observed at low QPO frequencies. This does not even
touch upon the fact that the slope of the relation between energy
and QPO frequency changes very systematically with νref

0 , which
adds another layer of difficulty to this problem. Since we conclude
that the frequency difference is intrinsic, any viable interpretation
should relax either the assumption that a smaller radius corresponds
to shorter time-scales, or to a harder emission. Moreover, any model
should also account for the observed properties of the phase lags on
long time-scales, both as a function of frequency and energy.

One possible interpretation of our results and the observed sign
of �ν0 incorporates spectral changes of the inner accretion flow as
the full-band QPO frequency decreases. In this approach, we stick
to the anti-correlation between oscillation frequency and radius and
instead loosen the view that hardness tracks proximity to the black
hole. As the QPO amplitude is known to depend on inclination,
favouring a geometric QPO mechanism (Heil et al. 2015; Motta
et al. 2015), we assume a toy model where the QPO is caused by
vertical precession of the inner flow (as in e.g. Ingram et al. 2009). In
this toy model, we consider this inner flow to consist of two separate
halves, which differentially precess at slightly different frequencies.
In agreement with the expected dependence of frequency on radius,
we assume that the inner half always causes a higher QPO frequency
than the outer half: �ν0(Inner − Outer) > 0. Dividing the inner
flow into two halves is of course an extremely simplified picture.
More realistically, the inner flow might show a more continuous
evolution in precession frequency over radius. However, as our
analysis only compares two broad energy bands, the simplified
approach is sufficient for a quantitative comparison with our results.

To qualitatively explain our results in the light of this simplified
model, we introduce an evolution of the spectral properties of the
inner and outer half of this differentially precessing flow. At high
full-band QPO frequencies (>2 Hz), the inner half has a harder
spectrum than the outer half, as expected. As the full-band frequency
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Figure 12. Cartoon depiction of the proposed geometry and spectral evo-
lution in the differential precession model. Combined, the inner and outer
part constitute the inner accretion flow, while the disc is not shown. νref

0
corresponds to the QPO frequency in the full energy band, while νqpo refers
to the QPO frequency observed in a narrow energy band.

decreases, the spectral shapes change, such that at ∼2 Hz, both the
inner and outer spectrum have the same hardness. Below ∼2 Hz,
the spectral hardness of the inner and outer parts have switched
around so that the outer half is harder than the inner half. In this
scenario, the hard and soft band are not always accurate tracers of
the inner and outer parts of the inner flow. This causes the observed
�ν0(hard − soft) to change from positive to negative as frequency
evolves from high to low, while the physical frequency difference
�ν0(Inner − Outer) stays positive, as expected. In Fig. 12, we show
a simplified sketch of the model geometry and associated spectral
evolution.

This differential precession model is able to explain several of
the observed features of the QPO frequency and phase lag. A first
advantage is the fact that the difference in QPO frequency is always
intrinsically present, even when it is not observed. Thus, the phase
lag between the inner and outer half can always evolve and decohere
the precession. As each QPO excitation �ν0 can change stochasti-
cally, coherent intervals will vary in length. Thus, this mechanism
can explain both why the QPO is always quasi-periodic, even when
no frequency difference is observed, and why the phase lags evolve
quicker as the QPO decoheres faster. While intrinsically, the inner
and outer half might get completely out of phase as the QPO deco-
heres (φintrinsic = ±π), we observe the spectrally weighted energy
bands. Thus, the maximum observed phase lags are actually smaller
than φ = ±π, as in our results.

Secondly, this model can explain the observed properties of the
average phase lags as a function of both energy and frequency. On
average, the outer half will lag behind the inner half with a lag of
∼π/2, assuming that the two halves get completely out of phase
during a coherent interval. When the inner half has a harder spectrum
(high full-band QPO frequencies), this causes an observed soft
lag. However, when the spectrum is reversed (low full-band QPO
frequencies), the observed phase lag becomes hard. Thus, this model

can explain the change from hard to soft lags as the QPO frequency
increases. This intrinsically constant average phase lag will also
display an energy dependence similar to the QPO frequency, as
is observed. An important argument for our interpretation is the
peculiarity that the energy dependence of both the QPO frequency
and phase lag flip over at ∼2 Hz, where the lags change from hard to
soft. In this model, this frequency of ∼2 Hz is simply the frequency
where the spectra of the inner and outer halves have the same shape.

This interpretation with a differentially precessing inner flow in-
troduces a fairly complicated extra geometry, with different intrinsic
precession frequencies. Nixon et al. (2012) have shown that in cases
with a sufficient misalignment between the outer disc and the black
holes spin axis, Lense–Thirring torques can break the inner flow
into separately rotating rings. However, to explain the coherent in-
tervals as subsequent QPO excitations, these rings should set up and
decay on very short time-scales. Thus, it could be envisioned more
as the introduction of a gradual warp in the inner accretion flow.
However, due to our limited energy resolution of two broad energy
bands, it is not possible to distinguish between a gradual warp or
two independently precessing parts.

Several possible explanations for the required spectral evolution
could exist. Here, we discuss two options, although others might be
possible as well. First, the reflected spectrum could contribute: in the
differential precession model, this reflected spectrum is expected to
be dominated by photons emitted by the outer precessing half, as
this blocks photons from the inner half. Thus, the reflected spec-
trum will show a relatively low precession frequency. However, the
hardness of the reflected spectrum can change: based on observed
relations between spectral and timing properties of accreting black
holes, the disc ionization is expected to increase with full-band QPO
frequency (see e.g. Gilfanov 2010 for an overview or Shaposhnikov
& Titarchuk 2009 and Garcia et al. 2015 for specific examples). This
would imply a relatively soft reflected spectrum at high full-band
QPO frequencies, and a relatively hard reflected spectrum at low
full-band QPO frequencies. As the reflected spectrum shows a slow
precession, this effect could possibly cause the QPO frequency to
change from increasing to decreasing as a function of energy.

A second explanation could be the presence of an extra cooling
process very close to the black hole. At high full-band QPO fre-
quency, the differentially precessing inner flow is expected to be
small. In this scenario, the cooling process would be present in the
entire flow, leading to a steepening of the spectrum everywhere. At
lower full-band QPO frequencies, the inner flow extends further out
– if the extra cooling term is only present in the innermost part,
this might cause a steepening of the spectrum only for the regions
precessing most quickly. Thus, at these low frequencies, this addi-
tional cooling term could cause the outer part to be harder than the
inner part. Such an extra cooling process could for instance be pair-
production and annihilation, which, if present, would be expected
close to the black hole due to the high densities in the flow (Fabian
et al. 2015).

The origin of the spectral evolution as a function of full-band
QPO frequency might also account for the differences in en-
ergy dependence of the QPO frequency between GRS 1915+105,
XTE J1550-564 and H1743-322, and the lack of observed energy
dependence in other BHBs. For example, if the reflected spectrum
plays a significant role, its inclination dependence could contribute
to differences in behaviour between these sources. The role of re-
flection could be tested by considering the energy-dependence of
the QPO frequency below ∼2 keV: if this role is indeed signifi-
cant, reprocessing of photons by the disc is also expected at lower
energies. As the reprocessed photons also originate from the slower
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oscillating outer half, this would cause a low observed QPO fre-
quency below ∼2 keV, similar to the QPO frequency in our hard
band. This energy range could in the future be probed by for in-
stance the Neutron star Interior Composition ExploreR (NICER;
Gendreau, Arzoumanian & Okajima 2012) to search for this effect.

5 C O N C L U S I O N

We have developed and implemented a new model-independent
method to compare QPO properties between different energy bands
on short time-scales. This has allowed us to test whether the ob-
served energy dependence of the QPO frequency corresponds to
a genuine difference in this frequency between energy bands. We
find that no clear (anti)correlations exist between QPO frequency
and amplitude in filtered QPO light curves, and that the phase lag
between two energy bands increases throughout each coherent in-
terval (∼5–10 QPO cycles), before resetting at the end. We also
find that the speed of this phase lag evolution is larger when the
coherent interval is shorter. These results lead us to conclude that
the QPO possesses a genuinely different frequency in different en-
ergy bands. We interpret this in the context of a geometric toy
model, where the QPO is caused by differential precession of the
innermost accretion flow. This toy model allows us to qualitatively
explain (1) the energy dependence of the QPO frequency and phase
lag, (2) the smooth relation between full-band QPO frequency and
phase lag and (3) the decoherence of the QPO on the time-scale of
∼5–10 QPO cycles.

Our newly developed method to track the evolution of QPO prop-
erties on short time-scales shows promise for a more general coher-
ent interval resolved analysis of the QPO. For instance, next to the
phase lag, it is possible to track the QPO frequency and frequency
difference and compare these within and between coherent intervals.
This would yield a much more detailed look at the relations between
the length of coherent intervals, the QPO frequency difference and
the speed of the phase lag evolution. Such an analysis could shed
more light on the intricacies of the underlying QPO mechanism. Ap-
plying this method using narrower energy bands could also provide
a useful handle on the physical location where the phase lag evo-
lution and the frequency difference originate. Finally, the method
could be extended by implementing the Hilbert–Huang transform
(Huang et al. 1998, see Su et al. 2015 for its application to QPO
light curves) to obtain the instantaneous frequency and amplitude in
each position in the filtered light curve. This would increase the ac-
curacy of the determination of the coherent intervals, which would
be especially useful when applying this technique to sources with a
lower X-ray flux.
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