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Hyperstatematrixmodels: extending demographic state

spaces to higher dimensions

GregoryRoth* andHal Caswell

Institute for Biodiversity and EcosystemDynamics, University of Amsterdam, 1090GEAmsterdam, TheNetherlands

Summary

1. Demographic models describe population dynamics in terms of the movement of individuals among states

(e.g. size, age, developmental stage, parity, frailty, physiological condition).Matrix population models originally

classified individuals by a single characteristic. This was enlarged to two characteristics in vec-permutation mod-

els and the closely related megamatrix models. However, it has been recognised that the interplay of more than

two characteristics can affect the population dynamics.

2. Here, we present a framework, called hyperstate matrix model, in which individuals may be classified by any

number of characteristics, using the generalisation of the vec-permutation approach to hypermatrices. These

models are constructed from a simple block-diagonal matrix formulation of the movement of individuals among

each dimension of the i-state.

3. This framework provides a step-by-step construction and makes available the usual demographic analysis

developed for classical matrix models. In particular, we derive a general formula for the sensitivity of any output

of the hyperstatematrixmodel, to any vector of parameters. In spite of the technicalities underlying thesemodels,

implementation is straightforward andwe provide theMATLAB code to carry it out.

4. We apply this approach to a three-dimensional example in which individuals are classified by developmental

stage, age and heterogeneity classes. The analysis of this model provides insights into how the heritability of the

heterogeneity classes affects the long-term growth rate of the population.

5. As the questions in conservation biology become more sophisticated and data on threatened species become

more detailed, multiple dimensions in demographic models will become increasingly important. Hyperstate

matrix methods will make such analyses possible and directly applicable to conservation and population

management.

Key-words: matrixmodels, modelling, population ecology, sensitivity analysis

Introduction

Demographic models describe population dynamics in terms

of the states of the individuals making up the population

(i-states in the terminology of Metz & Diekmann (1986)). The

state of the population (the p-state) is a distribution over the

set of possible i-states. Thus, age as an i-state leads to models

of the age distribution, size as an i-state leads to models of the

size distribution and so on. The model of the population is

formulated in terms of the movement of individuals among

i-states by survival, development and reproduction.

Multi-state models are those in which individuals are classi-

fied by two different characteristics (e.g. age and stage). Each

of the characteristic is described by a finite set of classes; for

example, age is described by a set of age classes. If the sets of

classes are denoted by S1 and S2, then the multistate model

operates on the two-dimensional i-state space given by

S1 � S2. Multistate models originated in the work of Rogers

(1967, 1975) onmultiregional (or metapopulation) models and

have been applied by both ecologists and human demogra-

phers (e.g. Land & Rogers 1982; Andersen et al. 1993; Lebre-

ton 1996; Willekens 2014) to many other multiple

classifications.

A systematic approach to the construction and analysis of

multistate models, using the vec-permutation matrix, was

introduced byHunter & Caswell (2005). The approach tomul-

tistate models has been applied to models in which individuals

are classified by stage and location (Burns & Grear 2008; Tin-

ker, Doak & Estes 2008; Ozgul et al. 2009; Ezard et al. 2010;

Goldberg et al. 2010; Strasser et al. 2012; Flockhart et al.

2015; Warden et al. 2015), age and developmental stage (Cas-

well 2012; Caswell & Salguero-G�omez 2013), age and frailty

(Caswell 2014b), age and parity (Caswell 2014a), stage and

infection status (Klepac & Caswell 2011; Metcalf et al. 2012)

and combinations of stage and time or environmental state

(Caswell , 2006, 2011; Hernandez-Suarez, Rabinovich & Her-

nandez 2012; Perez-Heydrich, Oli & Brown 2012). One case of

the vec- permutation model yields the widely used ‘megama-

trix’ model (e.g. Pascarella & Horvitz 1998; Tuljapurkar, Hor-

vitz & Pascarella 2003; Dostal 2007; Yule, Miller & Rudgers

2013).*Correspondence author. E-mail: greg.roth51283@gmail.com
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An obvious extension of the vec-permutation approach is to

models including more than two individual characteristics. We

refer to these as hyperstate matrix models. Whereas a multi-

state matrix population model describes the state of the popu-

lation by a matrix N , a hyperstate matrix model describes the

state of the population by a hypermatrix with more than two

dimensions. Among the possible applications are models for

migration including age, size and spatial location; models for

reproductive performance including age, parity and duration;

models for mortality including age, stage and frailty; and

stochastic models including size, frailty and environmental

state.

Section ‘The vec-permutation approach to multistate models’

describes the vec-permutation approach to multi-state matrix

models and introduces the main necessary ingredients that will

be generalised later on. In Section ‘The vec-permutation

approach to hyperstate matrix models’, hyperstate matrix mod-

els are introduced and the vec-permutation approach is gener-

alised step by step. The detailed mathematical justification for

these generalisations is in the Appendix S2, Supporting Infor-

mation; in the main text, we present only the essential tools for

constructing a hyperstate matrix model. The only technical

concept that we introduce in the main text is the linear indexing

of a hypermatrix, which numerates its entries (see Section ‘From

arrays to vectors: linear indexing and the vec operator’). This

indexing allows us to transform, in a very simple way, a hyper-

matrix into a vector. In Section ‘Sensitivity analysis’, we

provide a formula that permits the sensitivity analysis of a gen-

eric- dependent variable of the model. In Section ‘An example:

stage, age, and frailty’, we apply the vec-permutation approach

to a (hypothetical) three-dimensional hyperstate matrix model

in which individuals are classified by developmental stage,

chronological age and heterogeneity classes. The sensitivity

analysis of the long-term population growth rate to the demo-

graphic parameters is presented in Section ‘Effect of heteroge-

neous frailty on population growth rate’.

Although the formalism of the vec-permutation is quite

technical and abstract, it is easily implemented in MATLAB.

Throughout the paper, we dedicate special boxes – called

Implementation – to the implementation in MATLAB of the

different key mathematical objects. Moreover, the

Appendix S1 provides a step-by-step procedure to imple-

ment a generic hyperstate matrix model and the implementa-

tion in MATLAB of the example presented in Section ‘An

example: stage, age, and frailty’. Because it is designed

throughout for matrix manipulations, MATLAB is the most

appropriate language to implement hyperstate matrix mod-

els. Of course, any calculation can be implemented in any

general-purpose computer language, including hyperstate

matrix models; this can be done by translating our code or

by following the step-by-step procedure.

The vec-permutation approach tomultistate
models

Multistate models classify individuals by two characteristics.

For convenience, we will call these stages and groups, with

stage 2 S1 ¼ f1; . . .; sg eqn 1

group 2 S2 ¼ f1; . . .; gg eqn 2

Within group i, the movement of individuals among stages is

described by a s 9 s matrix Bi. Within stage j, the movement

of individuals among groups is described by a g 9 gmatrixCj.

The p-state is a density function over S, which can be written

as a two-dimensional arrayN ,

N ¼
n11 � � � n1g

..

. ..
. ..

.

ns1 � � � nsg

0
B@

1
CA eqn 3

where nij is the number of individuals in stage i and group j.

To project the density function N using matrix multiplica-

tion, it must first be transformed into a population vector. The

vector can be created in twoways,

vec N ¼

n11
..
.

ns1

..

.

n1g

..

.

nsg

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

or vec ðN>Þ ¼

n11
..
.

n1g

..

.

ns1
..
.

nsg

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

eqn 4

In the vector vec N , stages are arranged within groups; in

vec ðN>Þ, groups are arranged within stages. The two vectors

are related by the vec-permutationmatrixKs;g,

vecðN>Þ ¼ Ks;gvecN eqn 5

where the vec-permutationmatrix is indexed by the dimensions

of the matrix N to which it is applied (Magnus & Neudecker

1979; Henderson & Searle 1981). We choose to use the vector

~n ¼ vecN as the state variable for themultistatemodel.

The model is constructed from the matrices Bi, i = 1,. . .,g

and the matrices Cj, j = 1,. . .,s. Define B and C as the block-

diagonal matrices with the Bi andCj, respectively, on the diag-

onal:

B ¼
B1

. .
.

Bs

0
B@

1
CA C ¼

C1

. .
.

Cg

0
B@

1
CA eqn 6

The stage and the group dynamics operate sequentially (see

Fig. 2). Because of the arrangement of stages within groups in

~nðtÞ (the population vector at time t), multiplication by B

moves individuals among stages, keeping groups fixed. The

result is rearranged to correspond to vecðN>Þ and then multi-

plied by C to move individuals among groups, keeping stages

fixed, and the result of this multiplication is rearranged to

obtain ~nðtþ 1Þ,
~nðtþ 1Þ ¼ K>

s;gCKs;gB ~nðtÞ eqn 7

¼ ~A~nðtÞ eqn 8

In the multistate projection matrix ~A defined in (8), the vec-

permutation matrix K performs the task of rearranging the

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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population vector to permit multiplication by the block-diago-

nal matrices. The great advantage of this is that it keeps the

processes determining stage and group transitions in well-

defined locations, so that analyses – particularly sensitivity

analyses – can operate on them directly (Caswell 2006, 2012

2014b; Caswell & Salguero-G�omez 2013).

The vec-permutation approach to hyperstate
matrixmodels

In a multi-state matrix model, the two-dimensional array N
in (3) is transformed into a vector by the vec operator and

rearranged by the vec-permutation matrix so that the

block-diagonal matrices B and C can be applied. This Sec-

tion develops hyperstate matrix models as a step-by-step

generalisation of the vec-permutation approach. In Section

‘Hypermatrix and i-state space’, we define the i-state space

and the p-state of a hyperstate matrix model. In Sec-

tion ‘From arrays to vectors: linear indexing and the vec

operator’, we introduce the linear indexing of a hypermatrix

and generalise the vec operator. In Section ‘Population vec-

tors and projection matrices’, we first define the population

vectors which are the generalisation of the vectors defined

in eqn (4). Then, we build the block-diagonal projection

matrices that operates on those vectors which are the gener-

alisation of the matrices B and C defined in eqn (6).

Finally, in Section ‘Vec-permutation matrices’, we define

the vec-permutations matrices that connect the different

population vectors with each other, and in Section ‘Sequen-

tial dynamics of ~nðtÞ’, we write the model as a product of

the block-diagonal projection matrices. Specifying these

models requires some careful and (unfortunately) elaborate

notation, which we begin to introduce in the next Section.

HYPERMATRIX AND I -STATE SPACE

In the familiar multistate model presented in the ‘The vec-

permutation approach to multistate models’ Section, individu-

als are classified by two characteristics. The i-state space is a

two- dimensional product space; one dimension identifies

‘stages’ and the other identifies ‘groups’. In the general case,

individuals are classified by m characteristics, called 1-stages,

2-stages, . . . ,m-stages, with

1� stage i1 2S1 ¼ f1; . . .; s1g
..
.

m� stage im 2Sm ¼ f1; . . .; smg

The i-state space is then the product space

S ¼ S1 � � � � � Sm of dimensionm. For any k, the kth dimen-

sion of S identifies k-stages. The state of an individual is a vec-

tor ði1; � � � ; imÞ 2 S that specifies its category according to each

of the m characteristics. The space S contains s ¼ s1 � � � sm
possible i-states. In the example to be presented in Section ‘An

example: stage, age, and frailty’, the number of dimensions is

m = 3, the 1-stages are the stages, the 2- stages are the age

classes, and the 3-stages are the frailty classes.

The state of the population, or p-state, is a density function

over S, which can be written as a m-dimensional hypermatrix

of size s1 � � � � � sm

N ¼ ðni1 ; � � � ; imÞ 1� i1 � s1; � � � ; 1� im � sm eqn 9

where ni1 ; � � � ; im is the number of individuals in 1-stage i1, 2-

stage i2, . . . andm-stage im.

In the particular casem = 3, the hypermatrixN can be visu-

alised as a file drawer of matrices as illustrate in Fig. 1. The

reader should refer to this diagram and the three-dimensional

example of Section ‘An example: stage, age, and frailty’ to help

visualise the definitions stated in next sections.

FROM ARRAYS TO VECTORS: L INEAR INDEXING AND THE

VEC OPERATOR

A hypermatrix is an m-dimensional array, the entries of which

are identified by their subscripts ði1; . . .; imÞ. The key element

in transforming a hypermatrix into a vector is the numeration

of its entries, which associates a single index, i = 1,. . ., s, with

each entry of the hypermatrix. Given a rule for this numera-

tion, the kth entry of the resulting vector is unambiguously

identified with a specific entry of the hypermatrix, that is the

entry associated with the single index k.

Defining such a rule is equivalent to assigning, for each entry

i1; � � � ; im of the hypermatrix N , a number fði1; � � � ; imÞ, and
conversely, assigning for each number k an entry

gðkÞ ¼ ði1; � � � ; imÞ of the hypermatrix. Formally, f is a one-

to-one function

f : S1 � � � � � Sm �! f1; � � � ; sg; eqn 10

that maps hypermatrix subscripts to a vector indices, and g is

the inverse function of f

g : f1; � � � ; sg �! S1 � � � � � Sm eqn 11

Fig. 1. HypermatrixN whenm = 3.

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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thatmaps the vector indices to the hypermatrix subscripts.

The linear indexing of a hypermatrix is defined by a particu-

lar numeration of its entries. The resulting vector n is the gener-

alisation to higher dimension of the two-dimensional vec of a

matrix. Those particular functions f and g, which depend on

the sizes s1; � � � ; sm of the hypermatrix, are called the index

functions associated with the sizes s1; � � � ; sm, and they are

inverses of each other.

Before stating the general definition of the index function

f, we consider a simple example. Consider a clock with dials

that show the seconds ðs1 ¼ 60Þ, minutes ðs2 ¼ 60Þ, hours
ðs3 ¼ 24Þ and days ðs4 ¼ 365Þ within a year, so that

m = 4. On this clock, any second within the year can be

identified by its subscript ði1; i2; i3; i4Þ or by its index, which

tells which of the 60 9 60 9 24 9 365 = 31 536 000 s it is.

Each revolution of the seconds dial moves the minutes dial

by one position; each revolution of the minutes dial moves

the hours dial by one position and so on. The number

fði1; � � � ; i4Þ assigned to the time ði1; � � � ; i4Þ is the number of

seconds required to go from the initial time (1, 1, 1, 1) to

the time ði1; � � � ; i4Þ, that is
fði1; i2; i3; i4Þ ¼ i1 þ 60ði2 � 1Þ þ 60 � 60ði3 � 1Þ

þ 24 � 60 � 60ði4 � 1Þ: eqn 12

Formally, the index function f is defined as

fði1; . . .; imÞ ¼ i1 þ
Xm
k¼2

ðik � 1Þsk�1sk�2 � � � s1 eqn 13

The inverse function g ¼ f�1 is explicitly defined in Section

2.5 inAppendix S2.

The vec operator transforms the hypermatrix N of size

s1 � � � � � sm into the s 9 1 column vector

vec ðN Þ :¼
Xs
i¼1

ngðiÞei ¼

ngð1Þ
ngð2Þ
..
.

ngðsÞ

0
BBB@

1
CCCA; eqn 14

where g is the inverse of the index function f defined in

eqn (13), and ei is the column vector of dimension s with

one in its ith entry and zero elsewhere. In the two-dimen-

sional case, the vec operator stacks the columns of the

matrix one on top of the other. This fact passes to higher

dimension; the vec operator defined in eqn (14) stacks the

columns of the hypermatrix one on top of the other (see

Theorem 1 in the Appendix S2).

Implementation 3.1 Conveniently, in MATLAB a multidi-

mensional array is stored as a column vector, although it

is displayed as a hypermatrix. The index functions f and g

allow one to go back and forth from the display and

the storage of the array. The MATLAB functions

that carry out the functions f and g are sub2ind and

ind2sub, respectively. MATLAB’s ‘colon’ notation pro-

duces the vec of a multidimensional array using this index-

ing. That is, if X is a MATLAB array, then X(:) is the

vec of X.

POPULATION VECTORS AND PROJECTION MATRICES

To project the population by matrix multiplication, the

hypermatrix N is transformed into the population vector

~n ¼ vec ðN Þ: eqn 15

The population vector is projected by the projection matrix
~A of size s 9 s containing the transition rates between all

i-states,

~nðtþ 1Þ ¼ ~A~nðtÞ;
from a specified initial population ~nð0Þ ¼ ~n0. The goal of the

vec-permutation approach is to write the projection matrix ~A

as a product of matrices, each of which projects one dimension

of the i-state space.

To do this, we partition the i-state vector by identifying one

dimension at a time as stage and allow the remaining dimen-

sions to specify a group complementary to that stage. For-

mally, for each dimension k, we say that an individual in state

ði1; � � � ; imÞ 2 S is in:

k� stage ik 2 Sk eqn 16

k� group ði1; � � � ; ik�1; ikþ1; � � � ; imÞ 2 Gk ¼ S1 � � � � � Sk�1

�Skþ1 � � � � Sm

eqn 17

The k-group space Gk is the product space over all the

dimensions other than the one (k in this case) chosen to

represent stages; it is of dimension m�1 and it contains

s=sk elements. In particular, the vector ~n has the 1-stages

arranged within 1 groups as the vec operator stacks the

columns of the hypermatrix one on top of the other.

For each k, the k-stage transitionmatrix

Ak
i1���ik�1ikþ1 ���im eqn 18

projects the k-stages within the k-group ði1; � � � ; ik�1;

ikþ1; � � � ; imÞ. The matrix in (18) is of size sk � sk, and it

operates on the sk � 1 vector, denoted by nki1 ;���;ik�1;ikþ1;���;im ,
describing the density of the population within the k- group

ði1; � � � ; ik�1; ikþ1; � � � ; imÞ. This vector is extracted from the

hypermatrix as follows

nki1;���;ik�1;ikþ1;���;im ¼

ni1;���;ik�1; 1; ikþ1;���;im
ni1;���;ik�1; 2; ikþ1;���;im

..

.

ni1 ;���;ik�1; sk; ikþ1 ;���;im

0
BBB@

1
CCCA: eqn 19

In the two-dimensional case (i.e.m = 2), the matrixA1
j is the

matrix Bj, defined in eqn (6), operating on the jth column of

the matrixN , and the matrix A2
i is the matrix Ci operating on

the ith row of thematrixN .

Implementation 3.2 The transition matrices fAk
i1���ik�1ikþ1���img

are the base of the hyperstate matrix model. They are

assumed to be known by the person who intends to

implement the model. Following the step-by-step procedure

(see Appendix S1), these matrices are stored in a cell

array a.

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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To simultaneously project the k-stages within all the k-

groups, the matrices Ak
i1���ik�1ikþ1���im are arranged in the

s 9 s block-diagonal matrix Ak. The order in which they

are arranged in the diagonal has to be determined. Here,

again the key element is the linear indexing. Denote by

f�k and g�k the index functions associated with the sizes

s1; � � � ; sk�1; skþ1; � � � ; sm. Each block Ak
i1���ik�1ikþ1���im is identi-

fied by its subscript ði1; � � � ; ik�1; ikþ1; � � � ; imÞ, and the

index function f�k associates to this subscript the number

f�kði1; � � � ; ik�1; ikþ1; � � � ; imÞ. Now, the blocks are numer-

ated and they are arranged in the diagonal of Ak in the

ascending order,

Ak ¼
Xs=sk
i¼1

Eii � Ak
g�kðiÞ; eqn 20

where B ⊗ C is the Kronecker product of the matrices B and

C, andEii is the s=sk � s=sk matrix with one in its i, j entry and

zero elsewhere.

Implementation 3.3 In the Supporting Information material,

we provide the MATLAB code for the function BD_proj_

mat that computes the block-diagonal projection matrix Ak

from the cell array a containing the transition matrices

fAk
i1���ik�1 ikþ1 ���img. More precisely, the function BD_proj_mat

applied to a{k} returns the block-diagonal projection matrix

Ak.

The matrixAk operates on a vector nk which is a rearrange-

ment of the population vector ~n,

nk ¼
Xs=sk
i¼1

ei � nkg�kðiÞ ¼
nkg�kð1Þ

..

.

nkg�kðs=skÞ

0
BB@

1
CCA; eqn 21

where ei is the column vector of dimension s=sk with one in its

ith entry and zero elsewhere. Within the vector nk, the vectors

nkg�kðiÞ are stacked one on top of the other in the same order

than the matrices fill the diagonal ofAk. In other words, the k-

stages are arranged within the k-group. The vector nk is called

the kth population vector.

VEC-PERMUTATION MATRICES

The vec-permutation approach aims to project the dimen-

sions of the i-state space one after the other, that is multiply-

ing successively by the matrices A1; . . .;Am. However, each

matrix applies to a different population vector (the projec-

tion matrix Ak applies to the vector nk). Hence, at each step,

the population vector must be rearranged – for matrix Ak,

k-stages must be arranged within k-groups. This rearrange-

ment is made by multiplying the population vector by an

appropriate permutation matrix. In the two-dimensional case,

the population vectors defined in ((4) are related by the vec-

permutation matrix Ks;g defined in (5). In the general case,

there exists a set of matrices K2; � � � ;Km such that

nj ¼ Kjnj�1 eqn 22

for all j = 2,. . .,m. The population vectors nj�1 and nj have

the same entries but they are arranged in a different order.

The matrix Kj shuffles the entries of the vector nj�1 to arrange

them in the order of the vector nj. Each row and each column

of the matrix Kj has a unique entry equal to one and the

others equal to zero. The matrices K2; � � � ;Km belong to the

larger family called the vec-permutation matrices which relate

the vec of a hypermatrix to its transposes (see Section 2.3

in Appendix S2 for more details). These vec-permutation

matrices are orthogonal; that is, their inverse is their trans-

pose. In particular, the inverse the matrix Kj is its transpose

K�1
j ¼ K>

j : eqn 23

Implementation 3.4 In the Supplementary Information mate-

rial, we provide theMATLAB code of the function vecperm_

hyp that returns the vec-permutation matrix Kj associated with

a hypermatrix of size s1 � � � � � sm.

In the remainder of this section, we explicitly describe the

matrices K2; � � � ;Km. For any integers u, v > 0, let Eij ðu; vÞ be
the u 9 vmatrix with a one in the (i, j) position and zeros else-

where and define the uv 9 uvmatrix

Qðu; vÞ ¼
Xu
i¼1

Xv
j¼1

Eijðu; vÞ � Eijðu; vÞ>: eqn 24

For any integers u1; � � � ; um and any k ≥ 0, define thematrix

Pkðu1; � � � ; umÞ

¼
Iukþ1���um �Qðu1 � � � uk�1; ukÞ if 2 � k � m� 1

Iu1���um if k ¼ 1

Qðu1 � � � um�1; umÞ if k ¼ m

8><
>:

eqn 25

where Id is the identity matrix of dimension d. Then, the vec-

permutationmatrices are given by

Kj ¼ Pkðs1; � � � ; smÞPk�1ðs1; � � � ; smÞ>; eqn 26

for j = 1,. . ., m. Note that the matrix Kj depend on the

sizes s1; � � � ; sm. When it is needed, we explicitly write those

sizes as parameters, Kjðs1; � � � ; smÞ. For example, the matrix

K2ðs; gÞ is the matrix Ks;g defined in eqn (5) for the two-

dimensional model.

The mathematical difficulties of the formalism of the hyper-

state matrix model is concentrated in the proof that the matri-

ces K2; � � � ;Km satisfy eqn (22). This proof is presented in

Appendix S2 (see Theorem 13).

SEQUENTIAL DYNAMICS OF ~nðtÞ

Combining the ingredients introduced above gives the hyper-

state projectionmatrix ~A as the product of matrices

~A ¼ ðKm � � �K2Þ>AmKmAm�1Km�1 � � �A2K2A1 eqn 27

and the dynamics of ~nðtÞ
~nðtþ 1Þ ¼ ~A~nðtÞ eqn 28

where ~nð0Þ ¼ vecðN ð0ÞÞ is the initial population vector.
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Each of the matricesAk describes movement of the popula-

tion along one dimension, which we have identified as a set of

k- stages. Each of the matrices Kj is a vec-permutation matrix

that rearranges the population vector. The dynamics of each of

the dimensions operate sequentially (Fig. 2). Equation (27)

can be read from right to left as follows: the population vector

is set up with 1-stages arranged within 1-groups, the popula-

tion is projected within each of those 1-groups (by A1), the

new population vector is shuffled to arrange the 2-stages within

2-groups (by K2) and so on until the population is projected

within each of the m-groups (by Am); finally the population

vector is shuffled back to its initial arrangement (by

ðKm � � �K2Þ>).
Note that the order in which the matrices are applied mat-

ters, because matrix multiplication is not commutative. Cyclic

permutations of the matrices (e.g. changing 1 ? 2 ? 3 to

2 ? 3 ? 1) correspond to observing the population at differ-

ent points in the cyclic dynamics. Some properties (e.g. asymp-

totic population growth rates) are invariant under such

permutations; others (e.g. eigenvectors, the net reproductive

rate) are not invariant, but change in understandable ways (Cas-

well , 2001, 2009). The importance of the order in which the

matrices are applied is also discussed in Section ‘Discussion’.

Implementation 3.5 In Appendix S1, we provide a step-by-step

procedure to generate the matrix ~A from the list of transition

matrices fAk
i1���ik�1ikþ1 ���img. This makes it possible to carry out

population growth calculations directly from the demographic

processes operating in all m dimensions.

SENSIT IV ITY ANALYSIS

One advantage of the vec-permutation approach to hyperstate

matrixmodels is that it makes possible a systematic calculation

of the sensitivity of demographic results to changes in

parameters. The dynamics of the population are determined

by the matrix ~A, which in turn depends on the m block-diago-

nal matricesAk, as shown in (27). The matrixAk contains the

matrices AgðiÞ, for i ¼ 1; . . .; s=sk, as shown in (20). And

finally, depending on the parameters of interest, each of those

matrices may depend in its own way on some vector h of

parameters. Untangling all the causal links from the parame-

ters to the model output is difficult, but the vec-permutation

formulation permits a straightforward methodological

approach using matrix calculus (Magnus & Neudecker (1985,

1999); see Caswell (2007, 2008, 2012); see Caswell & Shyu

(2012); Caswell & Salguero-G�omez (2013) for ecological

presentations).

Consider the sensitivity analysis of a generic-dependent vari-

able (vector or scalar), which we will denote ξ, calculated from

the projection matrix ~A. Let h be a vector of parameters; these

could be entries of the matrices, or lower level parameters

determining those entries. The goal is to obtain the derivative

of ξwith respect to h. This derivative,

dn

dh>
¼ dni

dhj

� �
; eqn 29

is a matrix whose i,j entry is the derivative of ni with respect to

hj.
By the chain rule of matrix calculus,

dn

dh>
¼ dn

dvec> ~A
dvec~A

dh>
: eqn 30

The first term in (30) is specific to the choice of the depen-

dent variable ξ and its calculation from ~A. The second term is

specific to the choice of the parameter vector h and the way

that all the components of ~A depend on h. In Section ‘Effect of

heterogeneous frailty on population growth rate’, we present

an example where ξ is the population growth rate k and h is a

measure of the accuracy of parent-to-offspring transmission of

frailty.

The projectionmatrix ~A is defined by (27). For each value of

k, we partition the product in (27) into components to the left

and to the right ofAk, writing

Lk ¼ ðK2 � � �KmÞ>Am � � �Kkþ2Akþ1Kkþ1 eqn 31

Rk ¼ KkAk�1 � � �K2A1 eqn 32

for k = 1,. . .,m.

Differentiating ~A gives

dvec~A

dh>
¼
Xm
k¼1

ðR>
k � LkÞdvecAk

dh>
: eqn 33

This reduces the problem to that of calculating the deriva-

tives of the matrices Ak. Applying Theorem 11 in Magnus &

Neudecker (1985), on the derivative of the Kronecker product,

to (20) gives

dvecAk

dh>
¼
Xs=sk
i¼1

ðIs=sk �K2ðsk;s=skÞ� IskÞðvecEii� Is2
k
Þ dvecA

k
gðiÞ

dh>
:

eqn 34
Fig. 2. The sequential operation of the transitions in a multistate (top)

and hyperstate (bottom)matrixmodel.
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Everything in (34) is constant except for the derivatives of

theAk
gðiÞ with respect to h. These derivatives contain all the bio-

logical content of the model. Substituting eqn (34) into

eqn (33) and then substituting eqn (33) into eqn (30) yield the

derivative

dn

dh>
¼ dn

dvec> ~A

"Xm
k¼1

ðR>
k � LkÞ

Xs=sk
i¼1

Is=sk � K2ðsk; s=skÞ � Isk
� �

vecEii � Is2
k

� � dvecAk
gðiÞ

dh>

 !#

eqn 35

The formula (35) provides the sensitivity of a generic

variable, ξ, to any set of parameters, h. Moreover, each

of the terms in the summation in eqn (35) provides the

contribution to the sensitivity of ξ from parameter effects

on the transition matrices of each of the groups along

each of the dimensions.

Anexample: stage, age and frailty

In this Section, we construct and analyse a (hypothetical)

three-dimensional (i.e. m = 3) hyperstate matrix model.

We start from a multistate model of Caswell (2012), in

which individuals are classified by age and developmental

stage. We add a third dimension by assuming that hetero-

geneous frailty may affect mortality. Frailty is a concept

introduced by human demographers Vaupel, Manton &

Stallard (1979) to explain deviations in the age trajectories

of mortality from simple parametric models. Since then, it

has been extensively studied as a way to incorporate indi-

vidual differences in susceptibility to mortality risks (e.g.

Yashin, Iachine & Begun 2000; Wienke 2011). We include

two developmental stages, juvenile and adult, and two

frailty classes, weak and strong.

Thus, S1 ¼ f1; 2g is the set of developmental stages,

S2 ¼ f1; � � � ;xg is the set of age classes, and S3 ¼ f1; 2g is

the set of frailty classes. An individual in the i-state (i, j, k)

is in developmental stage i, age class j and frailty class k.

With this order, individuals first move among developmen-

tal stages and reproduce, as a function of their age and

frailty. Then, ageing acts to advance individuals to the next

age class, and finally, the frailty class of surviving individu-

als is updated. Then, the process repeats.

Wemake the following assumptions:

(H1) The mortality of juveniles is independent of their age

and their frailty. The mortality of adults depends on frailty

but is independent of age.

(H2) Mortality happens during the second phase of the

dynamics when individuals advance to the next age class

(this permits easy addition of an age-specificmortality com-

ponent if desired).

(H3) Transitions of existing individuals among frailty

classes depend on their stage but not on their age.

The transmission of frailty from parents to offspring is

independent of the age and stage of the parents.

(H4) there is an interval of ages ½amin; amax� within which

adults reproduce at rate r ≥ 0.

Each of these could be replaced with different assump-

tions about the action of frailty, the timing of mortality,

the dynamics of frailty and/or the schedule of reproduc-

tion. In Section ‘The hyperstate projection matrix’, we use

H1–H4 to demonstrate the step-by-step construction of

the hyperstate matrix model and its implementation in

MATLAB. The resulting model can be analysed like any

other matrix model (Caswell 2001) to obtain a complete

set of demographic outputs, both at the population level

(e.g. population growth rate, stable structure, reproductive

value) and at the cohort level (e.g. longevity, net repro-

ductive rate). In Section ‘Effect of heterogeneous frailty

on population growth rate’, we illustrate this potential by

analysing the effect of heterogeneous frailty on population

growth rate.

THE HYPERSTATE PROJECTION MATRIX

It is convenient to decompose the projection matrix as

A = U + F, where U describes the transitions and survival of

existing individuals andF describes the creation of new individ-

uals by reproduction. Here, we do the same for the hyperstate

projectionmatrix

~A ¼ ~Uþ ~F eqn 36

Both components, ~U and ~F, are built following the method

presented in Section ‘The vec-permutation approach to hyper-

statematrixmodels’.

Construction of thematrix ~U

Following eqn (27) with m = 3, the hyperstate matrix ~U is the

product of three block-diagonal matrices, which we denote

here by U;DU;HU, respectively. The elements in these block-

diagonal matrices are described below; they appear in the

hyperstatematrix

~U ¼ ðK3K2Þ>HUK3D
UK2U eqn 37

where thematricesK2 andK3 are the vec-permutationmatrices

defined in (26) and associated with the sizes 2,x, 2.

Implementation 4.1 Following Implementation 3.4, the vec-

permutation matrices K2 and K3 are given by vecperm

_hyp(2,[2, x, 2]) and vecperm_hyp(3,[2, w, 2]), respectively.

Reading from right to left within the matrix product

ðK3K2Þ>HUK3D
UK2U the matrix U moves extant individ-

uals among stages without changing their age or frailty.

Then, the matrix K2 rearranges the age classes within

weak and strong juvenile and within weak and strong

adults groups. The matrix DU advances surviving individ-

uals to the next age class without changing their stage or

© 2016 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,

Methods in Ecology and Evolution, 7, 1438–1450

1444 G. Roth & H. Caswell



frailty. The matrix K3 rearranges frailty classes within

juveniles of each age class and within adults of each age.

The matrix HU moves individuals among frailty class

without changing their stage or age. Finally, the permuta-

tion matrixðK3K2Þ> rearranges the vector back to the

stage-within-age-frailty groups arrangement of ~n. The

description of all these matrices is summarised in Table 1.

The families of matrices fUjkg, fDU
ikg and fHU

ij g that

appear in the block-diagonal matrices U;DU;HU are the

basis of the model. In the following we describe those

matrices according to assumptions H1–H4. The stage

transition matrix

Ujk ¼ ujk 0
1� ujk 1

� �
eqn 38

contains the transition probabilities between stages of extant

individuals for stage j and frailty class k. Since death hap-

pens only in the second phase of the dynamics (assumption

(H2)), each column of Ujk sums to 1.

To construct the matrices describing age transitions and

mortality, define the x 9 x matrix Y with ones on the

subdiagonal and in the lower right corner, for example

for x = 3:

Y ¼
0 0 0
1 0 0
0 1 1

0
@

1
A eqn 39

The 1 in the (x,x) entrymakes the last age class open-ended.

The age transition matrices for juveniles and adults in frailty

class k are

DU
1k ¼ e�mY eqn 40

DU
2k ¼ e�lzkY: eqn 41

The parameter m is the mortality rate of juveniles (stage 1),

which advance to the next age class with probability e�m

regardless of age or frailty. The survival of adults (stage 2)

depends on frailty. The parameter l is the baseline mortality

rate of adult individual, and z1 and z2 aremultiplicative factors

associated with frailty classes 1 and 2. Since individual are sup-

posed to be strong in frailty class 1 and weak in frailty class 2,

we assume z1\z2.

The frailty transitionmatrix

HU
ij ¼ hi1 1� hi2

1� hi1 hi2

� �
eqn 42

contains the transition probabilities between frailty classes for

individuals for stage i and age class j. If frailty is a fixed prop-

erty, thenHU is an identitymatrix.

To arrange the matrices Ujk;D
U
ik and HU

ij into the block-

diagonal matricesU;DU,HU, we follow eqn (20)

U ¼ diag ðU11; � � � ;Ux1;U12; � � � ;Ux2Þ eqn 43

DU ¼ diag ðDU
11;D

U
21;D

U
12;D

U
22Þ eqn 44

HU ¼ diag ðHU
11;H

U
21; � � � ;HU

1x;H
U
2xÞ eqn 45

Construction of the fertility matrix ~F

Following eqn (27) with m = 3, the hyperstate matrix ~F is

constructed from the block-diagonal matrices F, DF and HF

~F ¼ ðK3K2Þ>HFK3D
FK2F: eqn 46

Reading from right to left within the matrix product

ðK3K2Þ>HFK3D
FK2F, the block-diagonal matrix F first cre-

ates new individuals and places them in the juvenile stage,

within the age and frailty class of their parents. Then, the

matrix K2 rearranges the age classes within weak and

strong juvenile and within weak and strong adults groups.

The matrix DF places newborn individuals in the first age

class without changing their stage or frailty. The matrix K3

Table 1. Matrices used in Section ‘An example: stage, age, and frailty’.x denotes the number of age classes

Notation Expression Size Description

Matrix describing the full population
~A ~Uþ ~F 4x 9 4x Hyperstate population projectionmatrix

Matrices describing transitions and survival of existing individuals
~U K3K2ð Þ>HUK3D

UK2U 4x 9 4x Hyperstate transitions and survival matrix

U diagðU11; � � � ;Ux1;U12; � � � ;Ux2Þ 4x 9 4x Block-diagonal stage transitionmatrix

DU diagðDU
11;D

U
21;D

U
12;D

U
22Þ 4x 9 4x Block-diagonal age transitionmatrix

HU diagðHU
11;H

U
21; � � � ;HU

1x;H
U
2xÞ 4x 9 4x Block-diagonal frailty transitionmatrix

Ujk Ujk 2 9 2 Stage transitionmatrix for age class j and frailty class k

DU
ik DU

ik x 9 x Age transitionmatrix for stage i and frailty class k

HU
ij HU

ij 2 9 2 Frailty transitionmatrix for stage i and age class j

Matrices describing reproduction
~F ðK3K2Þ>HFK3D

FK2F 4x 9 4x Hyperstate reproductionmatrix

F diagðF11; � � � ;Fx1;F12; � � � ;Fx2Þ 4x 9 4x Block-diagonal reproductionmatrix

DF diagðDF;DF;DF;DFÞ 4x 9 4x Block-diagonal age assignmentmatrix

HF diagðHF;HF; � � � ;HF;HFÞ 4x 9 4x Block-diagonal frailty heritabilitymatrix

Fjk Fjk 2 9 2 Reproductionmatrix for age class j and frailty class k

DF
ik DF

ik x 9 x Age assignmentmatrix of for stage i and frailty class k

HF
ij HF

ij 2 9 2 Frailty heritabilitymatrix of for stage i and age class j
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rearranges frailty classes within juveniles of each age class

and within adults of each age. The matrix HF assigns new-

born individuals to a frailty class, dependent on the frailty

of their parents, without changing their stage or age.

Finally, the permutation matrix ðK3K2Þ> rearranges the

vector back to the stage-within-age-frailty groups arrange-

ment of ~n. The description of all these matrices is sum-

marised in Table 1.

The families of matrices fFjkg, fDF
ikg and fHF

ijg which

appear in the block-diagonal matrices F, DF, HF are con-

structed according to assumptions H1–H4. The reproduction

matrix

Fjk ¼ 0 fjk
0 0

� �
; eqn 47

describes the production of births by juveniles and adults of

age class j and for frailty class, k. By assumption on the repro-

duction schedule (assumptionH4),

fjk ¼ r if j 2 ½amin; amax�
0 elsewhere.

�
eqn 48

Newborn individuals are placed in the first age class, regard-

less of the stage, age or frailty class of their parents by the age

assignment matrix with ones in the first row and zeros else-

where, for example whenx = 3

DF
ik ¼ DF ¼

1 1 1
0 0 0
0 0 0

0
@

1
A eqn 49

The transmission of frailty from parent to offspring is

defined by the frailty heritabilitymatrix

HF
ij ¼ HF ¼ p 1� q

1� p q

� �
; eqn 50

where p is the probability of inheriting parental frailty for the

offspring of a strong individual and q is the probability of

inheriting parental frailty class for offspring of a weak indivi-

dual. Assumption H3 implies that the relation between the

frailty of parents and offspring is independent of parental age

and stage.

As in eqns (43–45), we arrange the matrices Fjk;D
F
ik;H

F
ij

according to (20) into the block-diagonal matrices F;DF;HF,

respectively,

F ¼ diag ðF11; � � � ;Fx1;F12; � � � ;Fx2Þ eqn 51

DF ¼ diag ðDF;DF;DF;DFÞ eqn 52

HF ¼ diag ðHF; � � � ;HFÞ eqn 53

Sequential dynamics of ~nðtÞ
The hypermatrix N describing the initial state of the pop-

ulation has the structure in Fig. 1 with rows (left to right)

corresponding to developmental stages, columns (top to

bottom) to age classes and skewers (front to back) to

frailty classes. The resulting population vector is

~n ¼ vecðN Þ ¼

n111
n211

..

.

n1x1
n2x1
n112
n212

..

.

n1x2
n2x2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

eqn 54

The vector ~n is obtained by stacking the columns of the

first page of the hypermatrix, then the columns of the sec-

ond page (cf. Fig. 1). In the first half of the vector, develop-

mental stages are arranged within age classes for frailty

class 1, and in the second half, the developmental stages are

arranged with age classes for the frailty class 2.

The hyperstate population projectionmatrix is

~A ¼ ~Uþ ~F eqn 55

and dynamics of ~nðtÞ is
~nðtþ 1Þ ¼ ~A~nðtÞ eqn 56

where ~nð0Þ ¼ ~n.

The matrix ~A can be subjected to all the usual demo-

graphic analyses, including sensitivity analysis. In Sec-

tion ‘Effect of heterogeneous frailty on population growth

rate’, we present an analysis of the sensitivity of the popula-

tion growth rate to changes in parameters.

Implementation 4.2 In the file hyper_state_example.m, avail-

able in the Supplementary Information material, we provide the

MATLAB code for computing the hyperstate projection

matrices ~U and ~F for this example, given the transition rates

r; ujk; h
i
1; h

i
2; p and q, and the parameters amin; amax; l; m, z1

and z2.

EFFECT OF HETEROGENEOUS FRAILTY ON POPULATION

GROWTH RATE

In this example, frailty is an organismal trait, not accounted

for by age or stage, that affects mortality. Such a trait, if not

accounted for, can distort the results of analyses based on

other state variables. In this section, we investigate how the

dynamics of frailty affect the long-term growth rate of a popu-

lation. First, we investigate a scenario where frailty is an inher-

ited trait that is constant over the lifetime of an individual.

Secondly, we investigate a scenario where frailty is a changing

trait along the lifetime of an individual, but it is not inherited.

While in the former scenario the frailty is seen as a fixed trait of

the individual, in the latter scenario, it is seen as a health status

that varies during the lifetime of an individual. Frailty may or

may not be inherited from parent to offspring.

Heritable frailty

Suppose that the frailty class of an individual is unchang-

ing, and that new individuals inherit the frailty of their
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parents with probability p. This scenario is incorporated

in our model by defining the frailty heritability matrices

HU
1j ¼ HU

2j ¼ HU 1 0
0 1

� �
eqn 57

HF
ij ¼ HF p 1� p

1� p p

� �
: eqn 58

When frailty is perfectly heritable (p = 1), the population

in frailty class 1 is independent of the population in frailty

class 2. The long- term growth rate k of the total popula-

tion is the long-term growth rate of the strongest subpopu-

lation (here the population in frailty class 1), and the

frequency of the weaker subpopulation declines to 0.

The long-term growth rate k is an increasing function

of the probability p; the full heritability scenario (p = 1)

maximises the long-term growth rate (Fig. 3). We say that

the model is fair when p = 1/2; that is, distribution of off-

spring among frailty classes is independent of the frailty

of their parents. Deviation from the fair scenario can

enhance or harm the population. Deviations in the direc-

tion of isolating strong and weak classes by increasing p

increase k. Forcing ‘alternate’ mixing (i.e. decreasing p)

reduces k.

Reduction phenomenon for heritability

In this model, the heritability parameter p is responsible for

‘mixing’ the low frailty and high frailty components of the

population. Figure 3 shows that k is an increasing function

of p; that is , that greater mixing reduces growth. Altenberg

(2012) has proven that mixing leads to reduced growth

rates for a large class of unstructured population models,

where the mixing may occur because of dispersal in spatial

models, mutation in genetic models, etc. Li & Schreiber

(2006) have proven a weaker version of the reduction prin-

ciple for multistate odels. In particular, their result implies

that when the mixing only occur in one stage and one age

class – as it is the case here – it reduces growth. Because

increases in p reduce the mixing between the more and less

frail components of the population, the results in Fig. 3 is

an example of this reduction phenomenon. Moreover, we

can prove that k is an increasing function of p for any

reproductive rate r > 0 and any choice of frailty values z1
and z2. (The proof, not shown here, uses the sensitivity

analysis of k to changes in p). This result does not hold

universally; if other parameters (e.g. reproductive rate)

depend on frailty, k need not be an increasing function of

p. Also, following Li & Schreiber (2006), if the mixing

occurs in multiple age classes, mixing need not reduce

growth.

Dynamic frailty

So far, we have assumed that frailty is fixed over the life-

time of an individual. However, individual frailty may

increase or decrease dynamically due to stress, disease, etc

(see Vaupel & Yashin 2006). In this section, we examine a

dynamic frailty model. Frailty class 1 is healthy; frailty class

2 is associated with some event that affects individual

health.

Following Vaupel &Yashin (2006), we set the frailty class of

a newborn individual to 1 (healthy). The frailty of adults

changes from class 1 to class 2 with probability a and from

class 2 to class 1 with probability b. Vaupel & Yashin (2006)

considered irrevocable changes, with b = 0, but we will con-

sider reversible changes (e.g. disease that can be fully healed)

with b > 0.

To incorporate dynamic frailty, we define frailty heritabil-

ity matrices

HU
1j ¼

1 0
0 1

� �
eqn 59

HU
2j ¼

1� a b
a 1� b

� �
eqn 60

HF
ij ¼

1 1
0 0

� �
: eqn 61

The matrix HU
1j describes the unchanging frailty state of

juvenile individuals of any age j. The stochastic matrix HU
2j

describes a two stages (healthy and ill) Markov chain that

models the health status of adults of any age j. This process

can be characterised by its autocorrelation q and the fre-

quency of the healthy state during adult life. A positive

autocorrelation leads to long runs of healthy or ill status; a

negative autocorrelation leads to frequent reversals of health

status. The matrix HF
ij assigns all newborn individuals,

regardless of the health state or the age of their parents, to

the healthy state.

Figure 4 shows that the long-term growth rate increases

with the frailty autocorrelation for any frequency. The popula-

tion increases more rapidly when sick individuals take a long

time to recover and healthy individual stay healthy for long

period of time. The same pattern is observed for any frailty

inheritancematrixHF.
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Fig. 3. The long-term growth rate k as a function of p. The parameters

are x ¼ 10; r ¼ 1�3; ujk ¼ 0�5; amin ¼ 0; amax ¼ 10; l ¼ 0�8;
m ¼ 0�2; z1 ¼ 0�2 and z2 ¼ 5.
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Discussion

Matrix population models project the density of a struc-

tured population to the next time step by matrix multiplica-

tion. It is often useful to classify individuals on two or

more dimensions (e.g. Rogers 1967; Land & Rogers 1982;

Andersen et al. 1993; Pascarella & Horvitz 1998; Hunter &

Caswell 2005; Willekens 2014). Models with two dimensions

are called multistate models; we have generalised this to an

arbitrary number of dimensions in what we call hyperstate

models.

In order to take advantage of the power of matrix anal-

ysis, when individuals are classified on more than one

dimension, those dimensions must be rearranged into a

vector, and an appropriate matrix must be constructed to

project that vector. The vec-permutation model provides a

methodical approach to writing the projection matrix as a

product of block-diagonal matrices. The great advantage

of this is that the transitions between stages along each

dimension of the i-state space appear in well-defined loca-

tions, so that analyses can operate on them directly. In

particular, it permits straightforward calculation of the sen-

sitivity of any demographic output of the model to changes

in any parameters.

The hyperstate model framework provides step-by-step

construction and analysis for any number of dimensions.

Naturally, as the number of dimensions increases, the amount

of data required also increases. The number of transitions

rates that must be specified increases exponentially with the

number of dimensions. A model with s stages requires a

matrix with s2 entries. A two-dimensional model with s stages

and g groups requires gs2 entries in matrices describing stage

transitions for each group, and sg2 entries for matrices

describing group transitions within each stage. A three-

dimensional model with s, g and h stages along the three

dimensions requires ghs2 þ shg2 þ sgh2 entries and so on.

This is to be expected. The claim that the demography

of a species depends on say, age, stage and frailty carries

the consequence that stage transitions may depend on age

and frailty, while age transitions depend on stage and

frailty, and frailty transitions depend on age and stage. If

these three dimensions are truly important, so that their

interactions must be included in the model, it should come

as no surprise that the model requires data on those inter-

actions.

In some special cases, the data requirements for hyper-

state models can be reduced. The structure of the matrices

describing transitions along certain dimensions may be con-

strained (e.g. age-specific matrices have positive entries only

on the subdiagonal and the first row). In some cases,

demographic information is available as a function of an

environmental state (e.g. weather conditions or seasons).

That state can be included as an additional dimension in a

hyperstate model; if the environment affects the individuals

but not the reverse, then only a single environment transi-

tion matrix must be estimated. Such extensions have been

used to study stage-classified models in varying environ-

ments (Caswell 2009).

A key step in writing hyperstate models as a product of

block-diagonal matrices is specifying the sequence of opera-

tion of the processes along each dimension of the i-state

space. The order in which the block-diagonal matrices are

multiplied in the formula (27) affects the resulting projec-

tion matrix ~A and thus any demographic output of the

model. Sometimes an order is naturally imposed by sea-

sonal variation: plants grow to maturity, then flower and

then produce seeds, etc. Sometimes there is not an imposed

order. For example, in a spatial size-structured model, the

dispersal event can happen anytime in the time step. In

this case, the order has to be chosen and the transition

rates have to be estimated in accordance with this choice.

The sequence can be particularly important in nonlinear

models. For example, seasonal compensation (Boyce, Sin-

clair & White 1999), modifies the effects of mortality

depending on whether it occurs before or after the opera-

tion of seasonal density dependence. Likewise, in a stage-

structured host–parasite model, the sequence in which the

mortality factors operate in the host’s life cycle modifies

the stability properties of the system (Wang & Gutierrez

1980; May et al., 1981).

We note parenthetically here that hyperstate models can

also be considered in the context of tensor mathematics, which

is designed to handle spaces of multiple dimensions. However,

the conceptual framework and the analytical methods for the

application of tensor methods to population models have yet

to be developed.

The generalisation of the vec-permutation matrix (Mag-

nus & Neudecker 1979) to higher dimensions involves sig-

nificant technical difficulties. Those results have their own

mathematical importance and are detailed in the

Appendix S2. However, in spite of the technicalities under-

lying these models, implementation is straightforward. In

Appendix S1, we provide the detailed description of the

MATLAB functions needed to run the model. Also, the

MATLAB code of the example described in Section ‘An

Frequency
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Fig. 4. The long-term growth rate k as a function of the autocorrela-

tion q and the frequency f of the low frailty state. The parameters

are x ¼ 10; r ¼ 1�3; ujk ¼ 0�5; amin ¼ 0; amax ¼ 10; l ¼ 0�8;
m ¼ 0�2; z1 ¼ 0�2 and z2 ¼ 5.
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example: stage, age, and frailty’ is given in the supplemen-

tary material; its adaptation to a different scenario would

be straightforward.
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Supporting Information

Additional Supporting Information may be found online in the support-

ing information tab for this article:

Appendix S1. Implementing hyperstatematrixmodels inMATLAB.

Appendix S2.Mathematical appendix.

Data s1 Matlab files. We provide the MATLAB files to carry out the

functions described in Appendix S1 and the Example presented in the

main text.
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