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Analytic model for the electrowetting properties of oil-water-solid systems
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(Received 2 January 2016; published 13 April 2016)

The competitive wetting of oil and aqueous electrolytes on solid surfaces depends strongly on the surface
charge of the solid-water and the water-oil interface. This charge density is generally not known a priori but
changes as ions adsorb or desorb from or to the interfaces, depending on the composition of the fluid and the
thickness of thin films of the aqueous phase that frequently arise on hydrophilic surfaces, such as minerals. We
analyze the wettability of such systems by coupling standard Derjaguin-Landau-Verwey-Overbeek theory to a
linearized charge regulation model. The latter is found to play an important role. By linearizing electrostatic
interactions as well, we obtain a fully analytic description of transitions between different wetting scenarios as a
function of the surface potentials at infinite separation and the charge regulation parameters of the two interfaces.
Depending on the specific values of the regulation parameters, charge regulation is found to extend the parameter
range of partial wetting and complete wetting at the expense of pseudopartial wetting and metastable wetting
configurations, respectively. A specific implementation of the model is discussed for mica-water-alkane systems
that was investigated in recent experiments.

DOI: 10.1103/PhysRevE.93.042606

I. INTRODUCTION

Solid surfaces immersed in aqueous electrolytes typically
acquire a finite surface charge due to adsorption and desorp-
tion of ions, including protons. The surface charge attracts
counterions from the solution leading to the formation of
an electric double layer at the solid-electrolyte interface.
Many phenomena in colloid, soft matter, and interfacial
science are governed by the interaction forces that arise when
two interfaces approach each other such that their electric
double layers begin to overlap. Such electric double-layer
forces have been studied in great detail in various contexts,
including, in particular, colloidal stability, surface forces,
foam stability, and wetting. In classical Derjaguin-Landau-
Verwey-Overbeek (DLVO) theory, the electrostatic disjoining
pressure, i.e., the electrostatic interaction force per unit area,
depends on the distribution of the ions and the electrostatic
potential between the two interacting surfaces [1,2]. Both are
controlled indirectly by the charge (or the potential) on the two
interfaces, which enters the calculation of the electric potential
distribution as a boundary condition. Because of this indirect
control and the thermal equilibration of the counterions in the
diffuse part of the double layer, electric double-layer forces
display a richer behavior than bare electrostatic interactions
in vacuum. For example, interfaces with constant charges of
opposite sign always attract each other in vacuum. However,
in an electrolyte medium, the force between these interfaces
is only attractive at sufficiently large distance, but becomes
repulsive upon close approach, unless the two opposing surface
charge densities are exactly of the same magnitude (see, e.g.,
Refs. [1,3]). For the calculation of surface forces, classical
textbooks typically treat either the surface charge or the surface
potential as constant upon varying the distance between
the two interfaces [1,2]. However, measurements of surface
force with the surface forces apparatus (SFA) [4,5] and with
the atomic force microscope (AFM) [6,7] have shown that the
actual forces typically fall in between the limits of constant
charge and the constant potential boundary conditions. This
deviation is caused by the fact that usually neither the charges
nor the potentials remain constant upon varying the thickness

of a thin electrolyte film. Increasing double-layer overlap
changes the local concentration of ions at the two interfaces and
thereby shifts the chemical adsorption equilibria of ions and
thus the surface charge. This phenomenon, known as charge
regulation, was analyzed for the first time in detail by Ninham
and Parsegian [8]. A proper calculation of electric double-layer
forces therefore requires a self-consistent calculation of both
electric potential distribution and surface charge density. The
exact analytical solution for two identical surfaces presented
by Ninham and Parsegian has later between extended to the
general case of two dissimilar surfaces with dissimilar charge
regulation properties by Behrens and Borkovec [9].

In the present work, we are interested in the interaction
forces between two dissimilar surfaces, namely a solid-water
interface and a water-air or water-oil interface. While the
details of the charging mechanisms of water-air and water-oil
interfaces are generally less well understood than in the
case of solid-water interfaces, the conceptual framework of
calculating the electrostatic interaction forces is the same as
in the case of two solid-liquid interfaces approaching each
other. Although the exact analytical solutions of the Poisson-
Boltzmann equation for charge regulating surfaces are very
elegant, their expression in terms of Jacobian elliptic integrals
is rather complex and nonintuitive [8,9]. Therefore, following
Carnie and Chan [10], we resort to the simpler linearized
regime for our present analysis, in which we linearize both the
Poisson-Boltzmann equation to the Debye-Hückel equation
and the charge regulation problem. While applied widely
in the context of surface force measurements, systematic
studies of the consequences of surface charges and variations
thereof for wetting are rather scarce [11–14] and frequently
focused on the thickness and stability of thin wetting films.
Recent theoretical studies analyzed the impact of surface
charges on the order of wetting transitions [15,16]. Possibly,
the effect of electrostatic interactions has frequently been
overlooked because the absolute values of the electrostatic
interaction energies are typically only of the order of a
few mJ/m2 and thus much smaller than common surface
tension forces of chemical interaction. (An exception to this
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FIG. 1. Sketch of the system of interest, and corresponding electrostatic description.

rule is electrowetting, where the electric fields are spread
over an artificially thick insulating layers [17].) Nevertheless,
it was recently reported [14] that certain mineral-water-oil
systems, specifically mica-water-decane, display a transition
from (almost) complete water wetting to partial wetting upon
adding sufficient amounts of divalent Ca2+ or Mg2+ ions to the
aqueous phase. This transition is believed to play an important
role in modern enhanced oil recovery techniques, in particular,
in so-called low salinity water flooding [18–20]. The experi-
ments suggested that the transition is driven by a reversal of the
charge of the mica-water interface upon adsorption of divalent
cations. This interpretation was supported by calculations of
the interaction energies including an empirical expression for
short-range chemical forces, and standard expressions from
DLVO theory for van der Waals and electrostatic interactions.
Yet, the latter was calculated for the simplified constant charge
boundary condition and ignored the possibility of charge
regulation. The purpose of the present work is to extend that
previous model and to explore the consequences of charge
regulation for the wettability of such systems. To this end, we
recapitulate the formalism developed by Carnie and Chan and
others [10,21] in the first part of this work and calculate the
electrostatic interaction energy per unit area between the two
adjacent interfaces. Subsequently, we interpret this interaction
energy as an effective interface potential to evaluate the
consequences for the wettability of the system in the context
of an interface displacement model [22,23]. We identify four
generic shapes of the interface potential, corresponding to
complete wetting, partial wetting, pseudopartial wetting, and a
metastable wetting film. Finally, we discuss the occurrence of
these four scenarios in the parameter space that is given by the
surface charge densities and the so-called (charge) regulation
parameters of the two interfaces involved. In the Appendix, we
provide an explicit implementation of the general model for a
specific example of surface speciation reactions as applicable
for mica-water-alkane systems.

II. MODEL

In the following we consider the system sketched in
Fig. 1. The solid phase is kept in ambient oil, where the
intruding aqueous phase forms a drop of contact angle θ .
Irrespective of the magnitude of θ , which is 0 for a complete
wetting situation and >0 for pseudopartial wetting, there is a
water film of thickness h, containing different ionic species,
sandwiched between the solid substrate and the oil bath.

Both the solid-water and the water-oil interfaces [24] can
bind charged species, thus acquiring surface charge densities
σ1(φ) and σ2(φ), respectively. It is worth noticing that these
surface charges depend on the electrostatic potential, which
in turn affects the ionic concentration in the proximity of
each substrate. These interfaces are thus known as charge
regulating, as their charge is regulated by the electrostatic
potential.

At low ionic concentrations,1 this system can be appropri-
ately described by the Poisson-Boltzmann equation.

∂2φ

∂z2
= −e

εε0

∑
i

Zi[n∞]ie
−Zieφ/kBT (1a)

∂φ

∂z

∣∣∣∣
z=0

= −σ1(φ)

εε0
(1b)

∂φ

∂z

∣∣∣∣
z=h

= σ2(φ)

εε0
. (1c)

Here e is the electron charge, ε and ε0 the relative permittivity
of water and vacuum permittivity, respectively, Zi the valency
of the ith ionic species, [n∞]i the bulk concentration of
the ith ionic species (in molecules m−3), kB the Boltzmann
constant, and T the temperature. Charge neutrality in the bulk
introduces the further constraint

∑
i Zi[n∞]i = 0. Note that

the surface charge densities σ1 and σ2, that appear here as
boundary conditions for the Poisson-Boltzmann equation, are
required to be determined self-consistently as a part of the
solution procedure, as described in detail below. Defining the
ionic strength as I∞ = 1

2

∑
i Z

2
i [n∞]i and the ionic fraction

as xi = [n∞]i
2I∞

, we can write Eqs. (1a), (1b), and (1c) in
dimensionless form:

∂2ψ

∂ζ 2
= −

∑
i

Zixie
−Ziψ (2a)

∂ψ

∂ζ

∣∣∣∣
ζ=0

= −q1(ψ) (2b)

∂ψ

∂ζ

∣∣∣∣
ζ=κDh

= q2(ψ). (2c)

1So that ion-ion interactions can be neglected, and each ion is only
affected by the mean electrostatic field.
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Here ζ = κDz, ψ = eφ/kBT and σ (φ) = 2eI∞κ−1
D q(ψ). The

reciprocal Debye length is given by:

κD =
√

2I∞e2

εε0kBT
. (3)

It is easy to imagine that these highly nonlinear equations can
only be approached analytically under some simplifying as-
sumptions. For instance, in the large separation limit κDh�1,
Grahame equation [1] can be obtained integrating Eq. (2a)
once:

∂ψ

∂ζ
= ±

√∑
i

2xi(e−Ziψ − 1). (4)

Equating Eqs. (2b) and (4) allows us to calculate the surface
charge q1,∞(ψ1,∞) at infinite separation.

In the limit ψ � 1, we can Taylor expand the exponential
term in Eq. (2a), e−Ziψ � 1 − Ziψ . If we further employ the
charge neutrality condition, we obtain the linear Debye-Huckel
(DH) equation,

∂2ψ

∂ζ 2
= ψ. (5)

The choice of the Debye-Huckel approximation allows two
dramatic simplifications of the problem. First, the equation
keeps the same form for an arbitrary mixture of (m:n)
electrolytes, as the contribution of the different species appears
only through the ionic strength in κD . Second, it is easy to find
a suitable ansatz for the electrostatic potential in the electrolyte
between the interfaces,

ψ(ζ ) = Ae−ζ + Beζ−κDh. (6)

Despite the significant simplification introduced by linearizing
the PB equation, the charge regulation boundary conditions
prevent us from finding an analytic expression for the co-
efficients A and B in Eq. (6). Generally speaking q1,2(ψ)
are nonlinear functions, and solving Eq. (5) and (2b)–(2c)
requires a numerical step. An order zero approximation would
be to assume that each interface keeps its charge at infinite
separation, i.e., qi(ψ) = qi∞. This so-called constant charge
assumption is widely applied but in fact rather crude, as
it neglects any effect from the other interface. Following
Refs. [10,25], we therefore take a step further, and consider
the linearized approximation:

qi(ψ) = qi∞ + ∂q

∂ψ

∣∣∣∣
ψ=ψi,∞

(ψ − ψi,∞). (7)

We thus allow the charge of each interface to vary linearly
around its equilibrium value at infinite separation, as a
consequence of the proximity of the other substrate. If we
momentarily leave the nondimensional formulation, we see

that the units of the parameter ∂σ
∂φ

|
φ=φi,∞

= εε0κD
∂q

∂ψ
|
ψ=ψi,∞

are those of a capacitance, describing the sensitivity of the
surface charge to a change in the local potential, which is
sometimes denoted as regulation capacitance [10] or a surface
buffer capacitance [26]. In the following, we will denote the

nondimensional form of this capacitance as Ki = − ∂q

∂ψ
|
ψ=ψi,∞

.

With this definition, a constant charge boundary condition
corresponds to Ki = 0, while we recover the constant potential
behavior for K−1

i = 0.
The linearization of the boundary conditions makes our

system of equations suitable for an analytic solution. Solving
Eq. (5) with the ansatz of Eq. (6) and the boundary conditions
from Eq. (7), we obtain the following expression for the
electrostatic potential in the film (as originally derived by
Carnie and Chan) [10]:

ψ(ζ ) = ψ2,∞ − 
2ψ1,∞e−κDh

1 − 
1
2e−2κDh
e−(κDh−ζ )

+ ψ1,∞ − 
1ψ2,∞e−κDh

1 − 
1
2e−2κDh
e−ζ , (8)

where the parameter 
i is given by Ki−1
Ki+1 . We therefore have

that 
i = 1 denotes the constant surface potential boundary
condition and 
i = −1 represents the constant surface charge
boundary condition. Notice that both coefficients A and B

depend on the potentials at infinite separation ψ1∞ and ψ2∞.
This confirms that the total electrostatic potential is not just
a linear superposition of the potentials for each isolated
interface, and depends on the proximity h of the other substrate.
Interestingly, for 
1,2 = 0, we recover the linear superposition
result.

The reader may wonder if this linearization procedure is
suitable to describe solid-water-oil systems. To answer this
question, we need to discuss the structure of the σ (ψ) curve
for the interfaces under consideration. Water-solid interfaces
are often described in terms of a complexation model [28],
which accounts for the binding of different ionic species to the
substrate. For instance, a mica-water interface in the presence
of a single ionic species can be described by the reactions

S ≡ H � S− + H+ (9a)

S ≡ CZc−1 � S− + CZc . (9b)

In this model, each surface site S can bind a proton H+
or a cation CZc . This results in a distinct profile for the
σ (ψ) function, which is sketched in Fig. 2(a). σ (ψ) shows
two plateaus, corresponding to a fully deprotonated substrate,
with charge σmin, and a fully saturated one, of charge σmax.
As the dashed red line shows, this kind of behavior can be
quite accurately captured by a piecewise linear approximation,
with two constant-charge (
 = −1) regions and a linear
transition among them. The surface charge at the oil-water
interface has been the subject of extensive debate [24,29].
A general consensus has been achieved over two aspects:
first, an oil-water interface is negatively charged at pH larger
than 3–4 [30]. Second, the oil-water interface shows weak
ionic (particularly anionic) adsorption. These observation are
consistent with an enhanced water autolysis at the oil-water
interface, described by Eq. (A8):

S ≡ H2O � S ≡ OH− + H+ (10)

and resulting in the surface charge profiles shown in Fig. 2(b).
According to this description, the oil-water interface is neutral
at large negative potentials, and develops a negative charge for
increasing positive potential. For both interfaces, the details of
σ (ψ) depend of course on the specific chemistry of the surface,
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FIG. 2. (a) σ (ψ) profile for the mica-water interface, based on the
complexation model from Eqs. (9). The adsorption coefficients are
pKH = 4 and pKCa2+ = 1.5, for site density �mica = 0.8 sites/nm2

[27]. (b) σ (ψ) profile for the oil-water interface, based on the
complexation model from Eq. (10). The autolysis reaction coefficient
is pKH = 7, for site density �oil = 17.3 sites/nm2 [24]. All ψ values
are taken at the surface. Both curves are obtained for pH = 6 and
Ca2+ bulk concentration [Ca2+]∞ = 100 mM. The surface charge
at mica-water interface in (a) is positive because of strong cation
adsorption at this high salt concentration. Details on the derivation of
these curves can be found in the Appendix.

i.e., the equilibrium constant for each adsorption/desorption
reaction. However, the character of these curves, with plateaus
connected by sharp transitions, is rather universal, and can
be traced back to the Langmuir adsorption theory [31]
underlying these surface chemistry models. The value of σ∞
then determines which linear regime is relevant for the system.
In the Appendix, we discuss how to relate the surface chemistry
parameters to ψ∞ and 
, providing quantitative examples.

III. INTERMEZZO: INTERFACE POTENTIAL
AND WETTING CONFIGURATIONS

Equation (8) allows us to calculate the electrostatic energy
density per unit volume inside the film. This quantity, known
as disjoining pressure, is given by:

�el(h) = 4

[
ψ2 − 1

2

(
∂ψ

∂ζ

)2]

= 4

[
2ψ1,∞ψ2,∞e−κDh−[
1ψ2,∞2+
2ψ1,∞2]e−2κDh

(1−
1
2e−2κDh)2

− ψ1,∞ψ2,∞e−κDh

1 − 
1
2e−2κDh

]
. (11)

A positive disjoining pressure leads to a thicker film, a negative
value to a thinner one. The electrostatic interaction potential
per unit area is given by:

el(h) = −
∫ κDh

∞
�el(ζ )dζ

= 2ψ1,∞ψ2,∞e−κDh − [

1ψ

2
2,∞ + 
2ψ

2
1,∞

]
e−2κDh

1 − 
1
2e−2κDh

(12)

el(h) describes the electrostatic energy per unit area in
the film as a function of its thickness. el(h) and �el(h)
thus provide the key information on the wetting behavior of

the system. Please note that el can be dimensionalized by
multiplying with the factor kBT /e. Equations (11) and (12)
are deceptively compact, as they can lead to four qualitatively
distinct types of wetting behaviors, depending on the values of
ψ1,∞,ψ2,∞,
1 and 
2. In the next section we will analyze in
details how these parameters affect el(h). Before doing so,
however, we first discuss the connection between el(h) and
the wetting properties of the system, which we show in Fig. 3.

Figure 3(a) shows an asymptotically repulsive interface
potential. The minimum energy configuration is attained for
h → ∞. This corresponds to a complete wetting scenario.
Figure 3(b) shows an interface potential with a minimum at a
finite thickness hmin, and an attractive convex profile for large
h. If the interface potential is convex, it is thermodynamically
advantageous for a film of thickness h0 to split into two
films of thicknesses h1 and h2 covering fractions α1,α2 of
the substrate, so that α1 + α2 = 1. Due to convexity, we
indeed have (α1 + α2)(h0) > α1(h1) + α2(h2). Any film
of thickness larger than hmin will thus spontaneously evolve
into a macroscopic droplet (h → ∞) in equilibrium with a thin
film of thickness hmin [23]. The equilibrium contact angle θeq

can be found considering the horizontal force balance at the
edge of the drop, which reads (in dimensional representation):

γ + el(hmin) = γ cos θeq → γ (1 − cos θeq)

= −el(hmin). (13)

Notice also how the slope of el(h), and thus the disjoining
pressure �el(h), is the same at h = hmin and h → ∞,
which allows the two films of different thickness to coexist.
Figure 3(c) shows an asymptotically attractive concave poten-
tial. This scenario is analogous to Fig. 3(b), with hmin = 0.
Part of the film dries up (h = 0), and part forms a macro-
scopic droplet (h → ∞). We thus obtain a partial wetting
configuration. Finally, we consider the interface potential
in Fig. 3(d). which exhibits a long-range repulsion and a
short-range attraction. The associated wetting configuration
is metastable. Depending on its initial thickness, a film will
evolve into a completely wetting layer or a partial wetting
droplet.

IV. PHASE-SPACE ANALYSIS

We now discuss how these four different wetting config-
urations arise for varying boundary and charge regulation
conditions. First, we rewrite the disjoining pressure as

�el(h) = 4
e−κDh

(1 − 
1
2e−2κDh)2

[
ψ1,∞ψ2,∞

+
1
2ψ1,∞ψ2,∞e−2κDh

− [

1ψ

2
2,∞ + 
2ψ

2
1,∞

]
e−κDh

]
. (14)

The sign of �el(h) is uniquely defined by the term
in square brackets, which is a quadratic polynomial
in x = e−κDh, π (x) = [ψ1,∞ψ2,∞ + 
1
2ψ1,∞ψ2,∞x2 −
[
1ψ

2
2,∞ + 
2ψ

2
1,∞]x]. The roots of π (x) are x± =

{ ψ2,∞

2ψ1,∞

,
ψ1,∞


1ψ2,∞.
}. The corresponding equilibrium film thick-

nesses are thus h± = {κ−1
D ln 
2ψ1,∞

ψ2,∞
,κ−1

D ln 
1ψ2,∞
ψ1,∞

}. This in-
formation allows us to draw some very general conclusions.
If either h+ > 0 or h− > 0, the interface potential exhibits
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FIG. 3. The four interface potential el(h) predicted by our model, with corresponding wetting configurations: (a) complete wetting (CW,
red); (b) pseudopartial wetting (PP, light blue), (c) partial wetting (PW, dark blue), and metastable wetting (M, red-blue stripes). All interface
potentials are computed for 
1 = 0.5, 
2 = −0.5, and the values of ψ∞ shown for each curve.

one local extremum. Note that both solutions cannot be
positive at the same time, as it would imply 
1
2 > 1,
which is impossible by construction. The interface potential
will thus show at most one local maximum or minimum. As
el(∞) = 0, it is sufficient to check the sign of the potential
at h = 0 to distinguish between the two. If h+ and h− are
both negative, el(h) is monotonously attractive or repulsive.
Again, it is sufficient to check the sign of el(0) to discriminate
the latter two scenarios.

1. Constant-charge and constant-charge-like
interfaces: �1,2 < 0

We first consider the case 
1,2 < 0. As an example, Fig. 4
shows the possible wetting configuration for ψ1,∞,ψ2,∞ ∈
[−1,1], when [Fig. 4(a)] 
1 = 
2 = −1, (i.e., both surfaces
display constant charge behavior), and [Fig. 4(b)] 
1 =
−0.75, 
1 = −0.5, (i.e., both surfaces are weakly charge
regulating, closer to constant charge). If the charge of the
two substrates at infinite separation have the same sign,
sign(ψ1,∞) = sign(ψ2,∞), one can easily check that �el(h)
is always positive. The interaction of the interfaces is thus
always repulsive, leading to a complete wetting configuration.
If sign(ψ1,∞) 	= sign(ψ2,∞), el(h) shows a local minimum

(a)

−1 0 1−1

0

1

ψ1

FWPW
PP

0

1

CWPW PP

−1 0 1−1

0

1

ψ1

ψ
2

FW
PP

1

2

CW
PP

PP

∞ ∞

∞

(b)

CW
PP

PP
PWCW

PP

PP

FIG. 4. Phase-space maps for (a) 
1 = 
2 = −1, and (b) 
1 =
−0.75, 
2 = −0.5. The color coding is as in Fig. 3, i.e., red for
complete wetting (CW), dark blue for partial wetting (PW), and light
blue for pseudopartial wetting (PP).

for ψ1,∞ > ψ2,∞/
2 and ψ1,∞ < 
1ψ2,∞. For 
1ψ2,∞ <

ψ1,∞ < ψ2,∞/
2, the interface potential is monotonously
attractive, leading to a partial wetting configuration. We can
get a physical picture of these results starting from the extreme
case of constant charge at both interfaces, 
1,2 = −1. In this
case, the surface charge of each interface is not affected by
the proximity of the other one. This explains the repulsion be-
tween interfaces of same-sign surface charge, and long-range
attraction between opposite-sign interfaces. However, when
surface charges of different magnitude and sign are brought
together, a net charge will be localized between them, leading
to a strong imbalance of the local ionic concentration. Osmotic
pressure will thus oppose the further approach of the interfaces,
generating a strong short-range repulsion. For this reason, con-
stant charge interfaces exhibit (true) partial wetting only when
ψ1∞ = −ψ2∞. In this case, the two surface charges match
exactly, leading to zero net charge when the interfaces are
brought together. For the more general case −1 < 
1,2 < 0,
a wider region of partial wetting configurations appears, as
the interfaces will charge regulate to match their magnitude
at short separation, in order to avoid the energy-expensive
configuration with localized charge in a thin film. Whether the
charge regulation results in a pseudopartial or partial wetting
configuration depends on 
1,2 and the imbalance ψ1∞ − ψ2∞.
Large imbalances, and 
1,2 close to 1, lead to a stronger
short-range repulsion and thus more pseudopartial wetting.

2. Constant-potential and constant-potential-like
interfaces: �1,2 > 0

If the potential of the two substrates at infinite separation
has opposite sign, we see that �el(h) is always negative. The
interaction of the interfaces is thus always attractive, leading to
a partial wetting configuration. If the charge of the interfaces
at infinite separation has the same sign, we observe a local
maximum in (h) for ψ1,∞ > ψ2,∞/
2 and ψ1,∞ < 
1ψ2,∞.
As discussed in relation to Fig. 3, this range corresponds to
a metastable wetting configuration, which can evolve into a
partial or a complete wetting state depending on the initial
thickness of the film. For 
1ψ2,∞ < ψ1∞ < ψ2,∞/
2, the
interface potential is monotonously repulsive, leading to a
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FIG. 5. Phase-space maps for (a) 
1 = 
2 = +1, and (b) 
1 =
+0.75, 
2 = +0.5. The color coding is as in Fig. 3, i.e., red for
complete wetting (CW), dark blue for partial wetting (PW), and red-
blue stripes for a metastable wetting (M) state.

complete wetting configuration. Once again, we can get a
physical understanding of these results starting from the
constant potential case 
1,2 = 1 [Fig. 5(a)], and generalizing
some trends for 1 > 
1,2 > 0 [Fig. 5(b)]. It is convenient
to discuss the long- (κDh � 1) and short-range (κDh � 1)
interactions separately. For κDh � 1, the character of the
interface potential is largely defined by the sign of the surface
charge at infinite separation. We thus observe attraction for
opposite-sign surface charges, and repulsion for same-sign
ones. For κDh � 1, the electrolyte screening is much less
relevant. The two interfaces are kept at constant potential, and
thus act like the plates of a capacitor. If ψ1∞ 	= ψ2∞ an electric
field develops between them, whose intensity diverges while
the interfaces get closer, even if ψ1,∞ and ψ2,∞ have the same
sign. This leads to a diverging attractive interaction for any
case but ψ1∞ = ψ2∞. Once again, charge regulation softens
this behavior and leads to a wider range of complete wetting.
In Fig. 5(b) we plot the possible wetting configurations for
ψ1,∞,ψ2,∞ ∈ [−1,1], when 
1 = 0.75, and 
2 = 0.5. We
observe that a complete-wetting branch opens around the
ψ1∞ = ψ2∞ line. This is because the charge at the interfaces
regulates to reduce the strength of the electric field, and thus
avoid the divergent behavior of the constant-potential case.
Whether this leads to a finite attractive interaction at short
range, or even a repulsive one depends again on the 
1,2 and
the imbalance ψ1∞ − ψ2∞.

3. A mixed situation: �1 = 0.5, �2 = −0.5

The previous sections have shown how a rich wetting space
arises even among alike interfaces. In Fig. 6 we show a rather
complex scenario, where ψ1,∞,ψ2,∞ ∈ [−1,1], and 
1 = 0.5,

2 = −0.5. One can see that, for this choice of boundary
conditions, all four wetting configurations introduced earlier
are accessible. It is therefore interesting to consider the
different wetting transitions that could be observed for this
system. Let us consider path 1 in Fig. 6(a), which begins from
point ψ1,∞ = −0.2,ψ2,∞ = 0.5, corresponding to a partial
wetting state. If we increase ψ1,∞ while keeping ψ2,∞ fixed,
we move rightward in the phase space into a metastable
wetting region. The system will remain in a partial wetting
state, as that is one of the allowed equilibria in this region.
Moving even further, upon crossing the ψ1∞ = ψ2∞/
2 line,
the system evolves into a completely wetted state. If we now
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FIG. 6. (a) Phase-space maps for 
1 = +0.5, 
2 = −0.5. The
color coding is as in Fig. 3, i.e., red for complete wetting (CW),
dark blue for partial wetting (PW), light blue for pseudopartial
wetting (PP), and red-blue stripes for a metastable wetting (M)
state. The two wetting transitions discussed in the main text are
shown as white lines, and labeled “1” and “2”. (b) Interface potential
for selected configurations along path 1, complete wetting, red
(top) curve; metastable wetting (red-blue stripes, second curve from
top), followed by partial wetting (dark blue, bottom two curves).
(c) Interface potential for selected configurations along path 2,
complete wetting, red (top) curve; pseudopartial wetting (light blue,
second and third curve from top), followed by partial wetting (dark
blue, bottom curve).

move back along the same path, we will observe an hysteretic
effect. Inside the metastable region, the system will remain
in the completely wetted state, which is the other allowed
equilibrium. However, when ψ1∞ becomes negative, we
recover the partial wetting state. Let us now consider path 2 in
Fig. 6(a), which begins from point ψ1,∞ = 0.5,ψ2,∞ = −0.4,
also corresponding to a partial wetting state. We now fix the
value of ψ1,∞, and increase ψ2,∞ towards positive values.
Consequently, the system evolves from a partial wetting
state to a pseudopartial configuration, and eventually achieves
a complete wetting configuration. Notice how this wetting
transition is qualitatively different from the one along path 1,
as it involves different wetting states, and shows no hysteresis.
These observations suggest at least two different ways to
trigger a wetting transition in a solid-water-oil system. First,
by changing the pH and salt concentration in the water phase,
it is possible to affect the potential at infinite separation and the

 parameters at the interfaces. As observed in Ref. [14], such
processes indeed take place in real systems and give rise to ion
adsorption-induced wetting transitions. Second, it is possible
to apply a voltage between the solid substrate and the water,
and thus modify its equilibrium voltage. This latter approach
would provide an active control over the wetting configuration
of the system. Electrowetting on dielectric (EWOD) has been
extensively applied as a means to modify the contact angle
of partial wetting droplets. However, it is not possible to
obtain real wetting transition using electrowetting, due to the
well-known phenomenon of contact angle saturation where
the microscopic contact angle of the drops remains large
at all times [17]. These results suggest that electrowetting
on reactive substrates might access a much wider wetting
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configuration space. Recent experiments by Lomax et al.
[32] suggest that this might indeed be possible for specific
graphitic substrates. One should take into account, however,
that electrostatic interactions are always complemented by
other interaction forces such as long-range van der Waals
forces and short-range chemical (e.g., hydration) forces. As
a consequence, the range of wetting scenarios and the nature
of the various transitions may become even more complex.
Nevertheless, compared to the other forces the range of
tunability of electrostatics is arguably the widest and the most
easily accessible by external control parameters. Here, we have
proposed a method, which provides a trick to achieve a true
electrowetting-triggered wetting transition. In the Appendix,
we provide an example of a specific implementation of the
ideas explained in the work for a specific set of chemical
surface speciation reactions and their relation to the regulation
parameter discussed above.

V. CONCLUSION

In this paper we described the electrostatic contribution
to the wetting properties of oil-water-solid systems, using a
linearized Poisson-Boltzmann theory in combination with a
linearized charge-regulation model. We predict four distinct
wetting regimes, which are functions of the potential at
infinite separation and a charge regulation parameter 
 for
each interface. Using these boundary parameters as input, our
approach provides analytic expressions for the equilibrium
contact angle in the partial wetting configurations, and the
boundaries between wetting states. We observe that charge reg-
ulation relaxes the asymptotic repulsive or attractive behavior
that would arise for pure constant-charge or constant-potential
boundary conditions. In spite of the simplification of this
linearized model, we find complex wetting transitions upon
external charging of the substrates, both with and without
hysteresis. Finally, we show how a typical complexation
interface can be effectively described by a piecewise linear
charge-regulation model.

APPENDIX: EXPLICIT CALCULATION OF �

FROM A TWO-SPECIES COMPLEXATION MODEL

The analysis in the main text provides a detailed under-
standing of the electrowetting properties of an oil-water-solid
system from a physical point of view. However, we would
like to connect the parameters 
1,2,ψ1∞,2∞ to the surface
chemistry of the interfaces, and discuss how they can be
modified. We will thus consider a simple complexation model
for a mica-water interface, where each surface site can bind a
proton or a cation,

SH � S− + H+ (A1a)

SCZc−1 � S− + CZc . (A1b)

The equilibrium constant for the two processes are:

KC = {S−}[CZc ]

{SCZc−1} (A2a)

KH = {S−}[H+]

{SH} , (A2b)

where {A} is the surface density of specie A (in sites/nm2) and
[B] is the volume density of specie B (in mole/l). As the total
site density at the interface (�) is constant, we can write the
sum of all surface concentration contributions as:

{S−} + {SH} + {SCZc−1} = �. (A3)

We can use Eqs. (A2a)–(A2b) and (A3) to find the values of
{S−},{SH} and {SC(Zc−1)+}, which, in turn, provide the surface
charge at the interface:

σ (ψ) = −{S−}+(Zc − 1){SCZc−1}=e�

(Zc−1)[CZc ]
KC

− 1

1 + [H+]
KH

+ [C(Zc )+]
KC

.

(A4)

The dependence on the electrostatic potential ψ in Eq. (A4)
is implicit, and arises from the relation between the concen-
trations of cations and protons at the interface with their bulk
concentrations, [H+]∞ and [CZc ]∞, through the Boltzmann
distribution:

[H+] = [H+]∞e
− eφs

kB T (A5a)

[CZc ] = [CZc ]∞e
− Zceφs

kB T . (A5b)

Let us analyze the asymptotic behavior of Eq. (A4). For
ψ → +∞, we get σ (ψ) = σmin = −e�. This corresponds
to {S−} = �, i.e., all surface sites are depleted, as the large
positive potential repels all cations and protons. For ψ →
−∞, we have σ (ψ) = σmax = e�(Zc − 1). If Z � 2, all sites
are thus accepting a cation, while for Z = 1 the substrate
charge is zero. Thus, as we can see in Fig. 7(a), σ (ψ) has a
characteristic profile, with two plateaus for ψ → ±∞, and a
sharp transition in between. The inputs to the Debye-Huckel
equation from this complexation model are the potential ψ∞
and the slope dσ

dψ
|
ψ=ψ∞

, from which the parameter 
 is easily

derived. The first value is easily obtained equating Eq. (A4)

−2 −1 0 1 2

−10

0

10

ψ

q

2+[Ca ]

(b)(a)

−6 −4 −2 0 2

−8

−4

0

ψ

+[H ]

FIG. 7. (a) q(ψ) profiles for the mica-water interface, for Ca2+

bulk concentrations between 1 and 500 mM at pH = 6. The dashed
blue lines are obtained by linearizing the charge potential relation
around the point of zero charge [blue (upper) dots, arising from
crossing the complexation charge curve with the Grahame equation],
while the red (lower) dots indicate the charge for an isolated surface,
q∞. The surface chemistry coefficients are: � = 0.8 sites/nm2,
pKH = 4, and pKCa2+ = 1.5 (b) q(ψ) profiles for the oil-water
interface, for pH = 4,6,7,8, �ow = 17.3 sites/nm2 and pKH,w = 7.
The dashed red lines are obtained linearizing the charge potential
relation around the charge at infinite separation (red dots).
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and Grahame relation Eq. (4). An analytic expression,

dσ

dψ
= −e�

[H+]
KH

+ Z2
c

[CZc ]
KC

+ (Zc − 1)2 [H+]
KH

[CZc ]
KC(

1 + [H+]
KH

+ [C(Zc )]
KC

)2 , (A6)

can be easily derived from Eq. (A4) and evaluated at ψ =
ψ∞, though the result is in general quite complex. Eq. (A6)
simplifies dramatically if we evaluate it at the isoelectric point
ψiso, for which σ (ψiso) = 0. We then get:

dσ

dψ

∣∣∣∣
ψ=ψiso

= −e�
Zc − 1

1 + [H+]∞
KH

Zc

√
Zc−1
Z2

c

KC
[C(Zc )]∞

, (A7)

Linearizing Eq. (A6) around the isoelectric point can be a
rather good approximation for the intermediate behavior of
amphoteric substrates. In Fig. 7(a) we plot σ (ψ) for a mica
substrate at pH = 6 and CaCl2 concentration in the range 1–
500 mM. We can see that the linear approximation at the
isoelectric point (dashed blue line) captures very accurately
the transition regime of the full σ (ψ) curves (solid lines).

As mentioned in the main text, the oil-water interface can
be described in terms of the autolysis reaction:

S ≡ H2O � S ≡ OH− + H+ (A8)

The expression for σ (ψ) is easily derived analogously to what
we did for the mica-water interface:

σ (ψ) = −{S−} = e�ow

−1

1 + [H+]
KH,w

. (A9)

Notice how the the oil-water interface can only assume
negative charge. Here �ow is the water molecule density at
the oil-water interface, and KH,w is the autolysis constant.
In Fig. 7(b), we plot σ (ψ) at the oil-water interface for
pH 4,. . .,8, �ow = 17.3 sites /nm2 and pKH,w = 7 [24].
As expected from experimental data, the charge at infinite
separation becomes progressively more negative for increasing
pH [30]. While in principle this σ (ψ) curve should also exhibit
a negative plateau, the large number of available sites makes
the maximum negative charge very large, and in practice not
relevant in most situations.

Finally, in Fig. 8 we show in green which regions of the
σ (ψ) curves are accessed when the two interfaces are brought
together. This analysis allows us to assess the validity of the
linearization approach, shown as dashed red lines in each plot.
At pH = 3, the mica-water interface shows a charge regulation
parameter 
 = 0.024, while the oil-water interface exhibits
constant zero charge. Both regimes are accurately captured by
the linearization, and the charge does not deviate significantly
from the value at infinite separation, shown as a red dot in
both plots. For pH = 6 both interface show a charge-regulating
behavior. The linear approximation is somewhat less accurate,
but the agreement is still qualitatively good. At pH = 9, the
mica-water interface moves into the positive constant-charge
plateau. A piecewise linear description is necessary in this

−6 −4 −2 0 2

−8

−6

−4

−2

0

−4 −2 0 2 4−5

0

5

q 
−4 −2 0 2 4

−8

−6

−4

−2

0

ψ

−4 −2 0 2 4−5

0

5

ψ 
q 

−14 −12 −10 −8 −6

−8

−6

−4

−2

0

−8 −6 −4 −2 0−5

0

5

q

(b)(a)

(d)(c)

(f)(e)

FIG. 8. q(ψ) profiles for the mica water and oil-water interfaces,
at (a), (b) pH = 9. (c), (d) pH = 6, and (e), (f) pH = 3. In all plots,
the black curve represents the q(ψ) according to Eqs. (A4) and (A9)
and the red dashed line shows the linear approximation around the
charge at infinite separation, shown as a red dot. The green solid line
shows the change in surface charge when the interfaces are brought
from infinite to zero separation.

case, employing the linearization around q∞ for charges
below the maximum value of +e�, and a constant-charge
description for when the interfaces are drawn closer. In all these
scenarios, at least one of the interfaces is charge regulating.
The two substrates will then have the same potential and
opposite surface charges at zero separation, thus avoiding
the singularities associated to the constant-charge and the
constant-potential scenarios. The generality of the approach
described in this Appendix shows that our model could be
extended to other solid-water-hydrophobic interface systems.
One example would be a solid-water-air system. However,
when compared to the oil-water interface, the air-water one
will exhibit major qualitative differences, such as a different
surface chemistry (complexation model) and a much larger
surface tension.

A final remark concerns the bulk properties of the sub-
strates. In our model, the solid substrate and the oil phase
are only accounted for through their surface charge. However,
bulk properties such as their dielectric permittivities would
play a role for other interfacial forces, such as Van der Waals
interactions, which we do not address in this paper.
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