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Abstract: We study the non-linearly realized spontaneously broken supersymmetry of the

(anti-)D3-brane action in type IIB string theory. The worldvolume fields are one vector

Aµ, three complex scalars φi and four 4d fermions λ0, λi. These transform, in addition to

the more familiar N = 4 linear supersymmetry, also under 16 spontaneously broken, non-

linearly realized supersymmetries. We argue that the worldvolume fields can be packaged

into the following constrained 4d non-linear N = 1 multiplets: four chiral multiplets S,

Y i that satisfy S2 = SY i = 0 and contain the worldvolume fermions λ0 and λi; and four

chiral multiplets Wα, H i that satisfy SWα = SD̄α̇H̄
ı̄ = 0 and contain the vector Aµ and the

scalars φi. We also discuss how placing an anti-D3-brane on top of intersecting O7-planes

can lead to an orthogonal multiplet Φ that satisfies S(Φ − Φ̄) = 0, which is particularly

interesting for inflationary cosmology.
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1 Introduction

In attempts to describe the observable universe one finds that non-linearly realized su-

persymmetry in string theory and supergravity is a helpful tool. Good examples are de

Sitter vacua in 4-dimensional N = 1 supergravity that describe dark energy. Such de Sitter

supergravities, without scalar fields, were recently constructed in [1–4] by promoting the

Volkov-Akulov (VA) model with global non-linear supersymmetry [5, 6] to supergravity

with local supersymmetry. The corresponding chiral nilpotent Goldstino multiplet S [7–13]

constrained by the condition

S2 = 0 , (1.1)

is equivalent to the VA theory via a non-linear local field redefinition [14]. This kind of

multiplet is present on a D3-brane as well as on an anti-D3-brane [15] in a gauge of the local

fermionic κ-symmetry where the Wess-Zumino term vanishes [16, 17]. This is in agreement

with the fact [18] that in the absence of scalars and vectors the D3-brane as well as the

anti-D3-brane have a Volkov-Akulov type action.

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
0
6
3

In the context of the KKLT construction of de Sitter vacua in string theory [19] a

different choice of κ-symmetry fixing, compatible with an anti-D3-brane placed on the top of

an orientifold plane, is useful. In this more appropriate gauge, the analysis of [20–24] allows

an interpretation of the KKLT construction of de Sitter vacua within a four-dimensional

supersymmetric theory. This builds upon early investigations on supersymmetry breaking

in string theory [25–32], and it transpires that the low energy effective action for an anti-

D3-brane on top of an O3-plane in a supersymmetric GKP background [33] is just the VA

action [20, 21]. Such an anti-D3-brane on top of an O3-plane can arise in many warped

throats [22–24] (including the Klebanov-Strassler throat [34]).

An early argument that D-branes have to be associated with spontaneously broken,

rather than explicitly broken supersymmetry, was given by J. Polchinski in his book [35]

(brane actions as effective descriptions of partially spontaneously broken supersymmetry

even go back to [36]). A more specific prediction with regards to anti-D3-branes was

presented in a series of papers by S. Kachru and his collaborators in [37–40]. It was argued

there that the system must be viewed as spontaneous breaking of supersymmetry, because

it can tunnel to a supersymmetric vacuum. Recent holographic studies point towards

spontaneous breaking as well [41]. The nilpotent N = 1 multiplet is the beginning of the

explicit realization of the expectation in [35, 37–40] and it is natural to look at anti-D3-

branes to find other constrained superfields which transform under the non-linearly realized

spontaneously broken N = 1 supersymmetry. This is the goal of this paper.

In [42] it was already shown, using the same type of gauge-fixing as in [20, 21], that,

in absence of vectors and scalars on the brane, in addition to a 4d nilpotent multiplet

S2 = 0, there is also a triplet of ‘scalar-less’ chiral multiplets Y i present, that satisfies

SY i = 0, i = 1, 2, 3. It was also conjectured there that the worldvolume vector field Aµ
and the transverse complex scalars φi can be packaged into constrained multiplets that

satisfy SWα = 0 and SDα̇H̄
ı̄ = 0, respectively.1

The purpose of this paper is to establish that indeed all world-volume fields on the

anti-D3-brane, which under linearly realized supersymmetry represent a 4d N = 4 vector

multiplet, a vector Aµ, 6 real scalars φIr and 4 spinors λA, can be packaged into constrained

N = 1 superfields with a non-linearly realized supersymmetry. For this purpose we will use

the κ-symmetry gauge fixing where the Wess-Zumino term vanishes [16, 17].2 This leads

to the gauge-fixed Dirac-Born-Infeld-Volkov-Akulov action which is the same for the D3-

brane and for the anti-D3-brane. It has 16 linear supersymmetries, the usual linear N = 4

supersymmetry preserved by an (anti-) D3-brane in flat space, and another 16 non-linear

supersymmetries of Volkov-Akulov type that are spontaneously broken.

We are, in particular, motivated here by the issue of cosmology, where constrained

superfields proved to be very useful [15, 53, 54], see also the reviews [55–57]. We would like

to find out which particular N = 1 superfields, in addition to S2 = 0, live on a D-brane.

1The coupling of S and Y i to supergravity was studied in [43]. A general approach to couple constrained

superfields to gravity was developed recently in [44] and a universal way of obtaining constrained multiplets

was derived in [45].
2A related class of κ-symmetry gauges for a D3-brane in a supergravity backgrounds was studied

in [46–52].
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For example, it would be nice to see if the orthogonal nilpotent inflaton superfield [11–

13, 58, 59], of the type SB = 0 with B = 1
2i(Φ − Φ̄) and B3 = 0 lives on a D-brane

and might allow string theory realizations of the models of inflation without sGoldstino,

sinflaton and inflatino [60]. We argue here that such an orthogonal nilpotent superfield can

indeed arise on an anti- D3-brane but we leave a detailed study for the future.

The outline of the paper is as follows: in section 2 we discuss a variety of different

truncations of the D3-brane action that have already appeared in the literature. These

provide strong support for our identification of the worldvolume degrees of freedom with the

above constrained chiral multiplets. In section 3 we review the D3-brane action and show

that the non-linear supersymmetry transformations of the worldvolume fields take, after

appropriate field redefinitions, a standard non-linear form. We conclude and summarize

our findings in section 4. Appendix A contains some technical details of the calculations

performed in section 3 and appendix B contains more information on non-linear realizations

of supersymmetry and on constrained superfields.

2 Evidence from different N = 1 truncations

In this section we gather evidence from the literature to support our claim that the world-

volume fields on an anti-D3-brane that spontaneously breaks N = 1 supersymmetry give

rise to constrained N = 1 chiral multiplets S, Y i, H i,Wα that satisfy

S2 = 0 , SY i = 0 , SD̄α̇H̄
ı̄ = 0 , SWα = 0 . (2.1)

We will do so in three different N = 1 truncations, for which we also provide an interpre-

tation in terms of ten-dimensional string theory models. These truncations are simplified

models of a D3-brane in flat space in ten dimensions, which breaks supersymmetry spon-

taneously to 16 linear and 16 non-linear supersymmetries. The worldvolume fields that

transform under these supersymmetries are a vector field Aµ, three complex scalars φi,

i = 1, 2, 3, and four spinors λ0, λi. The three truncations discussed in this section have a

nilpotent Goldstino S obeying S2 = 0, supplemented by either

1. a non-linearly transforming vector field constrained by SWα = 0,

2. fermions described by SY i = 0, or

3. a transverse scalar from the constraint SD̄α̇H̄ = 0.

2.1 Goldstino plus vector

The N = 1 supersymmetric Born-Infeld action of a 3-brane in four dimensions is the N = 1

supersymmetrization of the bosonic Born-Infeld action [61]

S = −
∫

d4x
√
− det(ηµν + Fµν) , µ, ν = 0, 1, 2, 3 . (2.2)

It has a hidden supersymmetry that is non-linearly realized. One can understand the action

as the spontaneous breaking of N = 2 to N = 1.

– 3 –
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The field content, a vector and a fermion, can be described by chiral N = 1 multiplets

S and Wα, satisfying the condition [62]

W 2 + S

(
1− 1

4
D̄2S̄

)
= 0 , S2 = 0 . (2.3)

This gives rise to a complete supersymmetric Born-Infeld action [61]. It was shown in [63]

that N = 1 supersymmetric nonlinear electrodynamics has a fermionic action which up to

non-linear field transformations is in agreement with VA model.

The N = 1 Lagrangian for the field strength superfield Wα is

S =

∫
d2θ S(W, W̄ ) +

∫
d2θ S̄(W, W̄ ) . (2.4)

One can understand Wα and S to be the components of an N = 2 vector multiplet [64];

since the N = 2 supersymmetry is spontaneously broken one finds that the N = 2 vector

multiplet is constrained by (2.3).

Since WαW
2 = 0 and W 2W 2 = 0, the supersymmetric Born-Infeld action can be de-

scribed using one nilpotent field and an orthogonal vector field strength chiral superfield Wα

SWα = 0 , S2 = 0 . (2.5)

See also [65, 66] where this fact was discussed recently. Note that the condition SWα = 0

is a consequence of the one in (2.3) but not vice versa.

Many earlier studies of nonlinear supersymmetry and duality can be found in [67–70],

including hidden supersymmetries. It has been argued in [70] that this hidden super-

symmetry happens if and only if there is a Born-Infeld dependence on the Maxwell field

strength and a Volkov-Akulov dependence on the Goldstino, up to local nonlinear field

redefinitions. The relation to duality for the N = 2 superfield action with manifest N = 2

supersymmetry and hidden N = 2 supersymmetry at the level up to order W10, where W
is an N = 2 vector multiplet, was tested numerically and confirmed in [70].

There is a very familiar string theory construction in which this particular 4d super-

symmetric theory arises, namely KKLT [19]. An anti-D3-brane in the KKLT setup can

uplift a supersymmetric AdS vacuum to a dS vacuum. The anti-D3-brane breaks the N = 1

supersymmetry spontaneously. Generically, the only massless fields on the anti-D3-brane

are a vector field Aµ, whose gauge invariance forbids a mass term, and the Goldstino that is

similarly protected from developing a mass. The scalar fields on the anti-D3-brane as well

as the fermion triplet obtain a non-zero mass [71, 72] and decouple from the low energy

effective action. To make the connection with the above discussed supersymmetric Born-

Infeld action fully transparent, we can think of the setup as an anti-D3-brane in a CY3

compactification with fluxes. This CY3 compactification preserves N = 2 supersymmetry

in four dimensions. In the presence of the anti-D3-brane four supersymmetries are linearly

realized and four are non-linearly realized and spontaneously broken as above. In the full

KKLT setup we need to include an orientifold projection, which actually removes the four

linearly realized supersymmetries in the presence of the anti-D3-brane, so that we are only

left with the four supersymmetries that are non-linearly realized and spontaneously broken.

– 4 –
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2.2 Goldstino plus fermions

In [42], two of us discussed the truncation of the N = 4 Born-Infeld action where we only

keep the 4 fermions λ0, λi of the 3-brane worldvolume theory:

Sfermions = −2

∫
Ẽ0 ∧ Ẽ1 ∧ Ẽ2 ∧ Ẽ3 with Ẽµ = dxµ +

3∑
A=0

λ̄AγµdλA . (2.6)

We found that the fermions λ0, λi can be described by one nilpotent superfield and three

orthogonal superfields:

S2 = 0 , SY i = 0 . (2.7)

We want to stress that the spinor components of S and Y i are not to be exactly identified

with λ0 and λi. There is a non-linear field redefinition involved S(λA, λ̄A), Y i(λA, λ̄A). We

refer to [42] for more information and only summarize the main points here.

The lowest order action in the fermion expansion is reproduced by the following Kähler

and superpotential for S and Y i

K = cSS̄ + δīıY
iȲ ı̄ , W = fS + hijY

iY j , (2.8)

where c ∈ R and f, hij ∈ C. The coefficient c is needed to give a canonical kinetic term for

the spinors after the field redefinition S(λA, λ̄A). The parameter f controls the size of the

supersymmetry breaking and hij is the mass matrix mij = hij for the fermions λi.

Imposing the constraints in equation (2.7) leads to higher order terms in the fermions

that also appear in the 3-brane action. In [42], it was shown that in order to get the entire

3-brane action one would have to demand invariance under an enhanced non-linear N = 4

supersymmetry and not just the residual N = 1 supersymmetry, since the later is not

sufficient to obtain terms that are quartic or higher in the spinors λi, i = 1, 2, 3.

The string theory setup that gives rise to this truncation with only spinors is an

anti-D3-brane on top of an O3-plane (see for example [28, 73, 74]). The corresponding

anti-D3-brane action in equation (2.6) was derived in [20, 21]. It was also shown in [71, 72]

that an anti-D3-brane on top of an O3-plane in a non-trivial flux background of the GKP

type [33] can have mass terms for the spinors. In particular, if the background fluxes are

imaginary self-dual and of type (2,1) so that they by themselves would preserve a linearly

realized N = 1 supersymmetry, then the fermion triplet λi obtains a mass proportional to

the flux quanta. The anti-D3-brane action in this background is only known to quadratic

order in the fermions and agrees (to this order) with the action in equation (2.6), if we

identify hij with the fermionic mass matrix mij (see [72] for details).

2.3 Goldstino plus complex scalar

One can realize another N = 1 truncation of the three-brane action, such that the only

non-zero fields are one complex scalar and one fermion. These fields describe the N = 1

supersymmetric Nambu-Goto action of a 3-brane in a 6-dimensional spacetime [36], whose

bosonic action is

S = −
∫

d4x
√
− det(ηµν + ∂µφLr ∂νφr,L) , (2.9)

with L = 1, 2.

– 5 –
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The supersymmetric Nambu-Goto action for the transverse real degrees of freedom

φ1
r , φ

2
r and the fermion can again be realized as a spontaneous breaking of N = 2 to

N = 1 [64, 75, 76]. The Goldstone multiplet of this breaking is now not an N = 2 vector

multiplet, but an N = 2 tensor multiplet. Its N = 1 components are a chiral nilpotent

superfield S and a real linear superfield G obeying the constraint

S = SD̄2S̄ +
1

2
D̄α̇GD̄α̇G , (2.10)

from which one derives

SD̄α̇G = 0 , (2.11)

since S2 = 0. The Lagrangian can be given in the form LG = −1
2G

2 + Lint
G

LG = −1

2
G2 + D̄α̇GD̄α̇GD

αGDαGF (G2, Ḡ2) , (2.12)

where F is some function of G2 = (DαD̄α̇G)(DαD̄α̇G) and its conjugate Ḡ2 and can be

obtained by solving the constraint (2.10). To show that this is indeed the supersymmetric

Nambu-Goto action of a three-brane in flat space, one adds a Lagrange multiplier G(H+H̄)

and changes variables to a chiral superfield H. The scalar component of H describes the

transverse directions to the 3-brane in 6-dimensions. One finds that

H + H̄ = G+ (D̄β̇G)X β̇ , (2.13)

where X β̇ depends on G, Ḡ,G2, Ḡ2 and their derivatives. Therefore

D̄α̇(H + H̄) = D̄α̇(G+ (D̄β̇G)X β̇) , (2.14)

and since H is chiral, D̄β̇H = 0, and G is linear, D̄α̇D̄
β̇G = 0, we find that

D̄α̇H̄ = D̄α̇G+ (D̄β̇G)D̄α̇X
β̇ . (2.15)

We multiply it by S and get the desired result of a relaxed and a nilpotent multiplet

SD̄α̇H̄ = 0 , S2 = 0 . (2.16)

One can rewrite this equally well as a nilpotent chiral multiplet S and two orthogonal chiral

multiplets H = Φ1 + iΦ2 that satisfy the constraints (see [11–13])

S(Φ1 − Φ̄1) = S(Φ2 − Φ̄2) = 0 , S2 = 0 . (2.17)

We present a simple string theory construction that gives rise to such a nilpotent

and two orthogonal multiplets.3 We use zi with i = 1, 2, 3, to denote the three complex

transverse direction for an anti-D3-brane in flat ten-dimensional spacetime. We again write

the world volume fermions in terms of 4D spinors λ0 and λi. Now we follow [22–24] and

do an O7-orientifold projection ΩpR1(−1)FL . We take the geometric action such that it

3We thank Angel Uranga and Iñaki Garćıa-Etxebarria for useful discussions of this setup.

– 6 –
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leaves z1 and z2 invariant and maps R1 : z3 → −z3. If the anti-D3-brane is on top of the

O7-plane, at z3 = 0, then the orientifold projection removes the vector field Aµ, the scalar

φ3, and the two fermions λ1 and λ2.

Now let us look at another O7-plane with geometric action that only acts non-trivially

on z2 as R2 : z2 → −z2. For an anti-D3-brane at z2 = 0 it removes the vector field

Aµ, the scalar φ2, and the two fermions λ1 and λ3. If we do both of these orientifold

projections, and place the anti-D3-brane at z2 = z3 = 0, then we remove everything but

the scalar φ1 and the spinor λ0. This setup preserves in 4d N = 1 + 1 supersymmetry:

a linear N = 1 supersymmetry under which the two fields form a chiral multiplet and a

non-linearly realized and spontaneously broken N = 1 supersymmetry for which λ0 is the

Goldstino. As in the case of the 3-brane in a 6-dimensional space, we have a complex scalar

φ1 = φ1
r + iφ2

r that controls the position in the two real transverse directions.

Embedding this setup into a more complicated space transverse to the anti-D3-brane

and/or turning on (2,1) ISD fluxes as in GKP, will break the linearly realized N = 1

supersymmetry while the non-linearly realized supersymmetry remains. We expect this to

generate a potential for the scalar φ1, however, the Goldstino λ0 is protected. Similarly to

the anti-D3-brane in KKLT, where generic fluxes give a mass to all transverse scalars and

special fluxes preserve flat directions, we suspect that it is likewise possible to give only a

mass to for example the real or imaginary part of φ1. The low energy effective action would

then contain the Goldstino λ0 and a real scalar φr. These low energy degrees of freedom

would then be described by a nilpotent chiral multiplet S and an orthogonal multiplet Φ

that satisfies

S2 = 0 , S(Φ− Φ̄) = 0 . (2.18)

It would be very interesting to make this precise and work out a concrete string compact-

ification that gives rise to such an orthogonal multiplet.

3 The D3-brane action and its non-linear supersymmetries

We now discuss the D3-brane action in flat space and its κ-symmetry.4 The brane action is

invariant under 16 linearly realized supersymmetries, and 16 non-linear ones [77]. From the

four-dimensional world volume viewpoint, this represents a spontaneous breaking of the

N = 8 supersymmetry of flat space to N = 4. After a review of the D3-brane action, we

identify the relevant linear and non-linear supersymmetry transformations of the worldvol-

ume fields. We show that, after field redefinitions, the non-linear transformations take the

standard form in equations (3.22) and (3.26) below, in line with the constraints (2.1). We

also explain how the particular truncations of the previous section can be obtained. For a

review of the connection between these non-linear transformations and the constraints, we

refer to appendix B.

3.1 The generic D3-brane action and its symmetries

The κ-symmetric D3-brane action [16, 17, 78–80] in a flat background geometry consists

of the Dirac-Born-Infeld-Nambu-Goto term SDBI and the Wess-Zumino term SWZ with

4The case of the anti-D3-brane in flat space is the same up to some irrelevant sign flips.

– 7 –
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world-volume coordinates σµ, µ = 0, 1, 2, 3. It was studied mostly a couple of decades ago

and reviewed recently in [81].

Here we use the more recent analysis and notation of [82] and [20, 21] (we will however

set α′ = 1). The action for a D3-brane in flat space, including all the fermionic terms, is

given by

SD3 = SDBI + SWZ = −
∫
d4σ
√
−det(Gµν + Fµν) +

∫
Ω4 . (3.1)

We denote the longitudinal and transverse coordinates as

XM = {Xm, φIr} , M = 0, 1, . . . , 9 , m = 0, 1, 2, 3, I = 1, 2, 3, 4, 5, 6 , (3.2)

where m refers to the worldvolume coordinates and I to the six real transverse coordinates,

which we will often write as three complex directions φi = φ2i−1
r + iφ2i

r , i = 1, 2, 3. The φi

are the scalar fields that control the position of the anti-D3-brane. The metric including

fermionic terms is given by

Gµν = ηmnΠm
µ Πn

ν + δIJΠI
µΠJ

ν , Πm
µ = ∂µX

m − θ̄Γm∂µθ , ΠI
µ = ∂µφ

I
r − θ̄ΓI∂µθ , (3.3)

where ηmn is the Minkowski metric, ΓM are 10D gamma matrices and θ = (θ1, θ2) denotes

a doublet of 16 components MW spinors of the same chirality so that θ̄ = (θT1 C, θ
T
2 C) with

C being the 10D charge conjugation matrix. When it is clear from the context, we omit

the doublet index. We always omit the spinorial indices.

The Born-Infeld field strength Fµν is given by

Fµν = Fµν − bµν , bµν = θ̄σ3ΓM∂µθ

(
∂νX

M − 1

2
θ̄ΓM∂νθ

)
− (µ↔ ν) , (3.4)

where Fµν = ∂µAν − ∂νAµ is the field strength of the worldvolume gauge field Aµ. Lastly,

the 4-form Ω4 is defined via a closed 5-form

I5 = dΩ4 = dθ̄

(
σ1F Γ̃ + iσ2

Γ̃3

3!

)
dθ , Γ̃ = ΓMΠM = ΓM (dXM + θ̄ΓMdθ) , (3.5)

where wedge products are implicit and the plus sign in the last equation above is explained

on page 5 of [16].

The D3-brane action given above in equation (3.1) is invariant under several symme-

tries (as discussed for example in appendix A of [82]). The worldvolume fields transform

under global supersymmetry with the parameters ε̃1, ε̃2, local κ-symmetry with the pa-

rameters κ1 and κ2 and under world volume diffeomorphisms parameterized by ξµ. The

transformation laws are as follows

δθ = ε̃+ (1 + Γ)κ+ ξµ∂µθ ,

δXM = −θ̄ΓM ε̃+ θ̄ΓM (1 + Γ)κ+ ξµ∂µX
M ,

δAµ = −θ̄ΓMσ3ε̃∂µX
M+

1

6
θ̄σ3ΓM ε̃θ̄Γ

M∂µθ+
1

6
θ̄ΓM ε̃ θ̄σ3ΓM∂µθ+θ̄σ3ΓM (1+Γ)κ ∂µX

M

− 1

2
θ̄σ3ΓM (1 + Γ)κ θ̄ΓM∂µθ −

1

2
θ̄ΓM (1 + Γ)κ θ̄σ3ΓM∂µθ + ξνFνµ , (3.6)

where we omitted the U(1) gauge transformation for Aµ and the definition of Γ is not

relevant for us here (but given in eqs. (A.9)–(A.14) of [82]).
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3.2 The DBI-VA model

The κ-symmetry allows one to remove half of the 32 fermionic degrees of freedom in θ so

that after κ-fixing we are left with a single physical 10d MW fermion λ with 16 components.

A particularly simple way of fixing the κ-symmetry is given by [16]

(1 + σ3)θ = 0 ⇔ θ1 = 0 . (3.7)

The physical worldvolume fermion is then λ ≡ θ2. In this gauge the WZ-term is constant

and the action substantially simplifies to the Dirac-Born-Infeld-Volkov-Akulov action

SDBI−VA = −
∫
d4σ

[√
−det(Gµν + Fµν)

]
θ1=0

. (3.8)

We can also fix the diffeomorphism invariance by imposing Xm(σ) = δmµ σ
µ. The resulting

transformations of the worldvolume fields in this gauge have been worked out in appendix

A of [82]. Defining the new 16 component MW spinors ε and ζ via

ε̃1 = −1

2
Γ0123ε, ε̃2 = −1

2
ε+ ζ , (3.9)

the transformations can be written as

δεφ
I
r =

1

2
λ̄ΓI [1 + β] ε+ ξµε ∂µφ

I
r ,

δελ = −1

2
[1− β] ε+ ξµε ∂µλ ,

δεAµ = −1

2
λ̄
(
Γµ + ΓI∂µφ

I
r

)
[1 + β] ε+

1

2
λ̄Γm

[
1

3
1 + β

]
ε λ̄Γm∂µλ+ ξνε Fνµ , (3.10)

and

δζφ
I
r = −λ̄ΓIζ + ξµζ ∂µφ

I
r ,

δζλ = ζ + ξµζ ∂µλ ,

δζAµ = λ̄
(
Γµ + ΓI∂µφ

I
r

)
ζ − 1

3
λ̄Γmζ λ̄Γm∂µλ+ ξνζFνµ , (3.11)

where

ξµε = −1

2
λ̄Γµ[1 + β]ε , ξµζ = λ̄Γµζ ,

β = −iG
(
1 +

1

2
Γ̂µνFµν +

1

8
Γ̂µ1ν1µ2ν2Fµ1ν1Fµ2ν2

)
ΓD3

(0)Γ
(3)
∗ ,

ΓD3
(0) =

1

4!
√
|G|

εµ1...µ4Γ̂µ1...µ4 , Γ̂µ = ΠM
µ ΓM , Γ

(3)
∗ = −iΓ0123 ,

G =

√
|G|√

|G+ F|
= [det (δµ

ν + FµρGρν)]−1/2 . (3.12)

Expanding β as a function of the fields, one finds to leading order that β = 1+ . . .. The

transformations given in eq. (3.10) then look like linear supersymmetry transformation that

are deformed by higher order contributions from the expansion of β. The transformations

in eq. (3.11) however are non-linear and these supersymmetries are spontaneously broken

since the fermion λ transforms as δζλ = ζ + . . ..
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3.3 Identifying the non-linear transformations

Due to the constant shift in δζλ this symmetry is non-linear, however, so is any combina-

tion of the ζ-transformation and the ε-transformation. So the question is how we identify

the correct non-linearly realized supersymmetries on the D3-brane? A simple way to ac-

complish this is to recall some basic facts about the standard O3-plane projection. This

projection preserves the sixteen supercharges that are linearly realized on the D3-brane

and projects out the 16 supercharges that are non-linearly realized on the D3-brane. The

projection constrains the spinors to satisfy

ε̃1 = Γ456789ε̃
2 = −Γ0123ε̃

2. (3.13)

If we now plug in the spinor redefinitions from eq. (3.9) into the above equation, we find

ζ = 0 . (3.14)

As expected the O3 orientifold projection preserves only the linearly realized SUSY trans-

formations for a D3-brane, which are generated by ε (since our equation above implies that

the non-linear trafos generated by ζ are absent). So the linear transformations are given

by eq. (3.10).

After this trivial check we can now identify the correct non-linear supersymmetries.

The sixteen supercharges that would be projected out by an O3-orientifold projection are

given by a spinor that satisfies

ε̃1 = −Γ456789ε̃
2 = +Γ0123ε̃

2. (3.15)

These are the 16 supersymmetries that are non-linearly realized on a D3-brane. Let us

again plug in the redefinitions from equation (3.9) and we find

ε = ζ . (3.16)

So we find that the correct non-linear transformations are given by the combination of the

ε and ζ transformations with ε = ζ.

Having identified the correct linear and non-linear supersymmetries on the D3-brane

we can now spell out the explicit transformation laws. Note that these transformations

are not unique, in the sense that we can change them by redefining the worldvolume fields.

This usually allows one to simplify the transformations substantially and bring them into

a standard form. We show this explicitly for the non-linear transformation by expanding

β to next to next to leading order. After field redefinitions we find (to the order we are

working in) the standard non-linear transformations laws one expects.5

The explicit expansion of β as defined in (3.12) is given to a certain subleading order in

appendix A. Using this result, we find for the non-linear supersymmetry transformations

5The expansion of β in terms of the worldvolume fields leads to an infinite series, so the field redefinitions

likewise do not terminate at any finite order in the fields.
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with ζ = ε

(δε+δζ)φ
I
r =

1

2
λ̄ΓI

(
1

2
ΓµνFµν + ∂µφJr ΓJµ

)
ε+ . . .

=
1

2
(λ̄Γµε)∂µφ

I
r +

1

4
(λ̄ΓIµνε)Fµν +

1

2
(λ̄ΓIJµε)∂µφr,J + . . . ,

(δε+δζ)λ = ε− 1

2
(λ̄ΓM∂µλ)ΓMµε+

1

4
FµνΓµνε+

1

2
∂µφIrΓIµε−

1

8
FµνFµν+

1

8
FµνF̃

µνΓ0123ε

− 1

4
∂µφ

I
r∂

µφr,Iε−
1

4
∂µφIr∂

νφJr ΓIJµνε+
1

4
Fµν∂σφIrΓIµνσε+ . . . ,

(δε+δζ)Aµ = −1

2
λ̄Γµ

(
1

2
FρσΓρσ + ∂ρφIrΓIρ

)
ε+ . . .

=
1

2
(λ̄Γνε)Fνµ+

1

2
(λ̄ΓIε)∂µφ

I
r−

1

2
(λ̄ΓIρµε)∂

ρφIr−
1

4
(λ̄Γµρσε)F

ρσ+ . . . . (3.17)

In the transformations of the scalars and the vectors, we recognize the first term as the

standard non-linear transformation, see (B.2) and appendix B for more information on

non-linear realizations. For the spinor, such a term is however absent. We will massage the

purely fermionic term in the transformation to obtain the standard transformation. For

three 10d spinors of the same chirality we can use the Fierz identity

ΓMλ1(λ̄2ΓMλ3) + ΓMλ2(λ̄3ΓMλ1) + ΓMλ3(λ̄1ΓMλ2) = 0 , (3.18)

to rewrite the purely fermionic term in (δε + δζ)λ as follows

− 1

2
(λ̄ΓM∂µλ)ΓMµε=

1

2
(λ̄Γµε)∂µλ−

1

4

(
ΓMµε (λ̄ΓM∂µλ)+ΓMµλ (ε̄ΓM∂µλ)

)
−P (ε)ΓM∂Mλ ,

(3.19)

with P (ε) defined as

P (ε) = −1

4

(
λ⊗ ε̄− ε⊗ λ̄+ ΓM (ε̄ΓMλ)

)
. (3.20)

The first term in (3.19) is the non-linear transformation we are after. The term between

brackets can be absorbed into a field redefinition. The last term in (3.19) can be compen-

sated by a transformation that leaves the action trivially invariant (this is called a ‘zilch

symmetry’ or ‘trivial symmetry’ [82]). The leading order term in such a transformation

is δPλ = PΓM∂Mλ, with (CP )T = CP and C the charge conjugation matrix. This is an

invariance of the leading term in the action λ̄Γµ∂µλ.

We can now simplify the above transformations by field redefinitions. In particular,

we define

φ̃Ir = φIr −
1

8
(λ̄ΓIµνλ)Fµν −

1

4
(λ̄ΓIJµλ)∂µφr,J ,

λ̃ = λ+
1

4
ΓMµλ (λ̄ΓM∂µλ)− 1

4
FµνΓµνλ− 1

2
∂µφIrΓIµλ+

1

8
FµνFµν −

1

8
FµνF̃

µνΓ0123λ

+
1

4
∂µφ

I
r∂

µφr,Iλ+
1

4
∂µφIr∂

νφJr ΓIJµνλ−
1

4
Fµν∂σφIrΓIµνσλ ,

Ãµ = Aµ +
1

4
(λ̄ΓIρµλ)∂ρφIr +

1

8
(λ̄Γµρσλ)F ρσ . (3.21)
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To the order we are working in this leads, after an additional rescaling of the fermions

λ̃, ε→
√

2λ̃,
√

2ε, to the simplified non-linear sixteen supersymmetry transformations

δφ̃Ir ≡ (δε + δζ)φ̃
I
r |ζ=ε = (

¯̃
λΓµε) ∂µφ̃

I
r ,

δλ̃ ≡ (δε + δζ + δP (ε))λ̃|ζ=ε = ε+ (
¯̃
λΓµε) ∂µλ ,

δÃµ ≡ (δε + δζ)|ζ=εÃµ = (
¯̃
λΓνε) F̃νµ + (

¯̃
λΓIε)∂µφ̃

I
r . (3.22)

Note that we cannot remove any further terms via field redefinitions since
¯̃
λΓM λ̃ = 0, ∀M .

The above transformations are consistent with applying T-duality to the standard

non-linear transformations for a D9-brane. In particular, the standard transformation for

a 10d vector field

δAM = (λ̄ΓN ε)FNM , (3.23)

gives after T-duality, AM → {Aµ(σµ),−φIr(σµ)}, the following transformations for the

scalar φIr and the vector Aµ

δφr,I = (λ̄Γνε)∂νφr,I ,

δAµ = (λ̄Γνε)Fνµ + (λ̄ΓIε)∂µφr,I . (3.24)

Since this argument does not rely on the particular range of µ and I we conclude that the

non-linearly transformations that we derived in eq. (3.22) for a D3-brane are the same for

any Dp-brane.

We can also reduce the above transformation laws in eq. (3.22) to four dimensions

by decomposing the 10d spinor λ̃ into four 4d Majorana spinors λ̃0 and λ̃i, i = 1, 2, 3,

where λ̃0 is a singlet and λ̃i is a triplet under the SU(3) symmetry acting on the three

complex transverse directions. We also switch to complex scalars φ̃i = φ̃2i−1
r + iφ̃2i

r . We

are particularly interested in the 4d N = 1 supersymmetry generated by ε0, the SU(3)

singlet component of the 10d spinor ε = ζ. This is the non-linearly realized N = 1 that

is preserved for example in CY3 compactifications. Restricting to these four supercharges

and switching to 4d γµ matrices, we find the following 4d N = 1 non-linear supersymmetry

transformations

δε0 φ̃
i = (

¯̃
λ0γµε0)∂µφ̃

i ,

δε0 λ̃
0 = ε0 + (

¯̃
λ0γµε0)∂µλ̃

0 ,

δε0 λ̃
i = (

¯̃
λ0γµε0)∂µλ̃

i ,

δε0Ãµ = (
¯̃
λ0γνε0)F̃νµ −

1√
2
δīı

[
(
¯̃
λi+ε

0
+)∂µ

¯̃
φı̄ + (

¯̃
λı̄−ε−)∂µφ̃

i
]
, (3.25)

where we used ± to denote 4d spinors that satisfy λ± = 1
2(1 ± γ∗)λ, where γ∗ = −iγ0123.

After an additional field redefinition Ãµ → Ãµ+ 1√
2
δīı

[
(
¯̃
λi+λ̃+)∂µ

¯̃
φı̄ + (

¯̃
λı̄−λ̃−)∂µφ̃

i
]

we find
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the standard non-linear 4d N = 1 supersymmetry transformations

δε0 φ̃
i = (

¯̃
λ0γµε0)∂µφ̃

i ,

δε0 λ̃
0 = ε0 + (

¯̃
λ0γµε0)∂µλ̃

0 ,

δε0 λ̃
i = (

¯̃
λ0γµε0)∂µλ̃

i ,

δε0Ãµ = (
¯̃
λ0γνε0)F̃νµ . (3.26)

Note again that field redefinitions could not remove a term like (
¯̃
λ0γµε0)∂µφ̃

i since
¯̃
λ0γµλ̃0 = 0. So it is a very non-trivial check that the transformation laws take this form

after appropriate field redefinitions. It provides strong support for your conjecture since

fields that transform as above can be packaged into the constrained superfields in eq. (2.1),

as we review in appendix B.

3.4 A different κ-symmetry gauge fixing

In the subsection above we chose a particular simple κ-symmetry gauge fixing to derive

the general non-linear supersymmetry transformations for the worldvolume fields on a D3-

brane in flat space. The corresponding non-linear transformations for an anti-D3-brane

in flat space are identical. These general transformations given in eq. (3.26) are certainly

consistent with the truncation discussed above in subsection (2.1), where one only keeps

the Goldstino λ̃0 and the vector Ãµ. As discussed above such a truncation arises in the

KKLT setup where the triplets φ̃i and λ̃i get a mass. However, for the other truncations

we need to place the D3-brane or anti-D3-brane on top of orientifolds to remove some of

the worldvolume fields. In this case the κ-symmetry fixing has to be compatible with the

orientifold projection and we can normally not use the above κ-symmetry gauge fixing.

The particular case of an anti-D3-brane on top of an O3-plane, discussed in subsection 2.2,

was worked out in [20, 21]. So here we work out the truncation discussed in subsection 2.3.

We can use XM = {Xm, φIr} in the general transformation laws given in eq. (3.6) and

rewrite them as

δθ = ε+ (1 + Γ)κ+ ξµ∂µθ ,

δXm = −θ̄Γmε+ θ̄Γm(1 + Γ)κ+ ξµ∂µX
m ,

δφIr = −θ̄ΓIε+ θ̄ΓI(1 + Γ)κ+ ξµ∂µφ
I
r ,

δAµ = −θ̄ΓMσ3ε∂µX
M+

1

6
θ̄σ3ΓM εθ̄Γ

M∂µθ+
1

6
θ̄ΓM εθ̄σ3ΓM∂µθ+θ̄σ3ΓM (1 + Γ)κ ∂µX

M

− 1

2
θ̄σ3ΓM (1 + Γ)κ θ̄ΓM∂µθ −

1

2
θ̄ΓM (1 + Γ)κ θ̄σ3ΓM∂µθ + ξνFνµ . (3.27)

We take the anti-D3-brane to extend along the 0123 directions and fix the diffeomor-

phism invariance Xm = δmµ σ
µ. Next we do two O7 orientifold projections that remove the

complex scalars φ2 = φ3
r + iφ4

r , φ
3 = φ5

r + iφ6
r and the gauge field Aµ. Since the anti-D3-

brane is placed on top of the O7-planes all spinor doublets f = (f1, f2), i.e. the background

supersymmetries ε as well as the worldvolume spinor θ and κ, have to satisfy

f1 = −Γ01234567f
2 = −Γ01234589f

2 . (3.28)
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Each of these conditions removes half the supercharges so that we are left with 8 super-

charges, half of which are linearly and half of which are non-linearly realized, so that we

have N = 1 + 1 in 4d.

The Γ-matrix that appears in the κ-symmetry (cf. eq. (3.6)) takes in this case the form

Γ = iσ2ΓD3
(0) (3.29)

= iσ2Γ0123

(
1 + (∂µφLr − θ̄ΓL∂µθ)ΓLµ −

1

2
∂µφ

L
r ∂

µφr,L −
1

2
∂µφL1

r ∂νφL2
r ΓL1L2µν + . . .

)
,

where L = 1, 2 and . . . denotes higher order terms. We choose the κ-gauge fixing to be

(1 + iσ2Γ0123)θ = 0 ⇒ θ1 = Γ0123θ2 . (3.30)

The above orientifold projections in eq. (3.28) together with this κ-symmetry gauge fixing

removes all but four components of the worldvolume spinors. The remaining four compo-

nents correspond to the SU(3) singlet spinor λ0.

We now work out the explicit transformations for the fields to the relevant order. The

orientifold truncation preserves for each 16 component 10d MW doublet two 4d spinors

that satisfy

(1± iσ2Γ0123)f± = 0 , f± =
1

2
(1∓ iσ2Γ0123)f . (3.31)

Here f+ corresponds to the SU(3) singlet and f− to the spinor with the 1 index (the same

index as φ1). We have gauged away the worldvolume field θ− corresponding to λ1 and kept

θ+ corresponding to λ0. θ+ transforms non-linearly under ε+ and linearly under ε−. We

are interested in the non-linear symmetries generated by ε+, which in particular means we

can set ε− = 0.

In order to preserve our κ-symmetry gauge fixing in eq. (3.30) we have to demand that

(cf. eq. (3.27))

0 = δθ− = [(1 + Γ)κ]− , (3.32)

where we used ε− = 0 and θ̄ΓL∂µθ = θ̄+ΓL∂µθ− + θ̄−ΓL∂µθ+ = 0 for θ− = 0. To leading

order we find, using (3.29)

κ− = −1

2
∂µφLr ΓLµκ+ + . . . . (3.33)

This relation dramatically simplifies the leading order result for the other chirality of

(1 + Γ)κ

[(1 + Γ)κ]+ = 0 . (3.34)

This then leads to the expected fermion transformation

δθ+ = ε+ + ξµ∂µθ+ + . . . . (3.35)

The parameter ξµ can be obtained by demanding the preservation of the diffeomorphism

gauge fixing δXm = 0

ξµ = θ̄+Γµε+ + . . . , (3.36)

where we used that θ̄(1 + Γ)κ = θ̄+[(1 + Γ)κ]+.
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Now let us look at the transformation of the φIr

δφIr = θ̄+ΓI [(1 + Γ)κ]− + ξµ∂µφ
I
r = ξµ∂µφ

I
r , (3.37)

where we used eq. (3.32). The above transformation is the expected one for φ1 = φ1
r + iφ2

r

and is consistent with the vanishing of φ3
r , φ

4
r , φ

5
r and φ6

r .

Lastly we can check δAµ. We find by explicit calculation that δAµ = ξνFµν , which is

consistent with Aµ = 0.

To summarize, after reducing the spinors to four dimensions and dropping the in this

case irrelevant sub- and superscripts, we get the following transformation rules for the

single 4d fermion λ and the one complex scalar φ

δλ = ε+ (λ̄γµε)∂µλ ,

δφ = (λ̄γµε)∂µφ . (3.38)

So again we find the expected non-linear transformations that match the transforma-

tions of the constrained chiral multiplets S and H after the field redefinitions discussed in

appendix B.

4 Discussion

D-branes play an important role in string phenomenology. They have been used to con-

struct (semi-) realistic models of particle physic and are also often used in string models

of inflation and the construction of dS vacua. Any realistic string model of our universe

requires the breaking of supersymmetry. If supersymmetry is broken by (anti-) D-branes,

then this breaking is spontaneous and we should be able to write down a 4d supersym-

metric action.6 Here we have taken an important step in this direction by working out the

explicit non-linear supersymmetry transformations for the worldvolume fields of an (anti-)

D3-brane. We also provided evidence that the worldvolume fields, the vector Aµ, the three

complex scalars φi and the four spinors λ0, λi, can be packaged into the 4d N = 1 super-

fields Wα, H i, S and Y i which satisfy the constraints S2 = SWα = SD̄α̇H̄
ı̄ = SY i = 0.

We hope this allows for detailed future studies of the phenomenological aspects of string

vacua with spontaneously broken supersymmetry of the type performed in [83–85].

For cosmology we have to be able to promote the global supersymmetry of the con-

strained multiplets from the D3-brane to a local supersymmetry, since we have to solve

Einstein’s equations in order to get the cosmological evolution. Fortunately, this problem

was solved recently for rather general constraints on multiplets in [44, 45], in some details

for de Sitter supergravity in [1–4] and for the Born-Infeld multiplet in [86].

We have shown here that all for cosmology interesting constrained multiplets can arise

in simple string theory constructions, including the real orthogonal multiplet Φ that satisfies

the constraint S(Φ−Φ̄) = 0. Therefore we believe that the importance of such cosmological

models is significant, beyond the successful phenomenological applications to cosmology,

which they represent.

6The constraints on the interactions of the Goldstino with other fields, that arise from the non-linearly

realized supersymmetry, are discussed for intersecting D-brane models in [83].

– 15 –



J
H
E
P
0
9
(
2
0
1
6
)
0
6
3

Acknowledgments

We are grateful to I. Antoniadis, E. Dudas, I. Garćıa-Etxebarria, S. Kachru, A. Linde,
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A Expanding β

In this appendix we expand β as defined in eq. (3.12) up to terms of dimension four.

We restrict to the κ and diffeomorphism fixing described in subsection 3.2 (see also

appendix A.2 in [82]).

For the determinants we use the expansion valid for (4 × 4)-matrices M

det(1 +M) = 1 + TrM +
1

2
((TrM)2 − Tr(M2)) + . . . . (A.1)

For the metric we have

− det(G) = 1 + ∂µφ
I
r∂

µφr,I − 2λ̄Γµ∂µλ+ . . . . (A.2)

This then gives
1√

−det(G)
= 1− 1

2
∂µφ

I
r∂

µφr,I + λ̄Γµ∂µλ+ . . . . (A.3)

Next we look at G

G =

√
−det(G)√

−det(G+ F)
=
[
det
(
δνµ + FµρGρν

)]− 1
2 =

[
1 + FµρGρµ +

1

2
FµνFµν + . . .

]− 1
2

=

[
1 +

1

2
FµνFµν + . . .

]− 1
2

= 1− 1

4
FµνFµν + . . . . (A.4)

From these two expansions above, it is clear that the expansion of β will not terminate but

rather lead to ever higher powers of subsonic fields that will appear in the transformation

laws. We expect that these can be removed via field redefinitions as is the case for the

lower dimensional terms.

We also need

1

2
Γ̂µνFµν =

1

2

[
Γµν + 2∂[µφIrΓI

ν] + . . .
] (
Fµν + 2λ̄Γ[ν∂µ]λ+ . . .

)
=

1

2
ΓµνFµν + Fµν∂µφ

I
rΓIν − Γµν λ̄Γµ∂νλ+ . . . (A.5)
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and

1

8
Γ̂µ1ν1µ2ν2Fµ1ν1Fµ2ν2 =

1

8
Γµ1ν1µ2ν2Fµ1ν1Fµ2ν2 + . . . =

1

4
Γ0123FµνF̃

µν + . . . (A.6)

where F̃µν = 1
2ε
µνρσFρσ.

Lastly we need

ΓD3
(0) =

1

4!
√
− detG

εµ1...µ4Γ̂µ1...µ4

=
1

4!
εµ1...µ4

1√
− detG

Πm1
µ1 Πm2

µ2 Πm3
µ3 Πm4

µ4 Γm1...m4

=
1

4!
εµ1µ2µ3µ4

(
1− 1

2
∂µφ

I∂µφI+λ̄Γµ∂µλ+. . .

)(
Γµ1µ2µ3µ4 +4(∂µ!φ

I−λ̄ΓI∂µ1λ)ΓIµ2µ3µ4

− 4(λ̄Γν∂µ1λ)Γνµ2µ3µ4 + 6∂µ1φ
I∂µ2φ

JΓIJµ3µ4

)
= −Γ0123

(
1+(∂µφIr−λ̄ΓI∂µλ)ΓIµ−

1

2
∂µφ

I
r∂

µφr,I−
1

2
∂µφIr∂

νφJr ΓIJµν + . . .

)
(A.7)

where we used ε0123 = −1 and the identities

ΓµνΓ0123 =
1

2
εµνρσΓρσ , ΓµΓ0123 = − 1

3!
εµνρσΓνρσ . (A.8)

Now we put everything together to get from eq. (3.12) the following expansion

β = G
(
1 +

1

2
Γ̂µνFµν +

1

8
Γ̂µ1ν1µ2ν2Fµ1ν1Fµ2ν2

)
ΓD3

(0)Γ0123

= 1−(λ̄ΓM∂µλ)ΓMµ+
1

2
ΓµνFµν+∂µφIrΓIµ−

1

2
∂µφ

I
r∂

µφr,I −
1

4
FµνFµν+

1

4
FµνF̃

µνΓ0123

− 1

2
∂µφIr∂

νφJr ΓIJµν +
1

2
Fµν∂σφIrΓIµνσ + . . . . (A.9)

B Non-linear realizations and constrained multiplets

We give a brief review of constrained superfields and non-linear realizations of supersymme-

try. In short, the constraints act as effective ways to reduce the components of multiplets.

The remaining components can have a non-linearly realized supersymmetry.

The constraints we advocate in eq. (2.1), offer a convenient way of putting every

worldvolume field in a different constrained multiplet. To map the field content on the

brane (with transformations (3.26)) to the fields in the constrained multiplets, one needs

to perform a field redefinition that we spell out below.

B.1 Non-linear realization of supersymmetry

It is important to note how one arranges the components of superfields to transform non-

linearly under broken supersymmetries, even before using constraints. The VA realization

on the Goldstino of broken supersymmetry is

δλ = ε+ (λ̄Γµε)∂µλ , (B.1)
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and matter fields (scalars, vectors, fermions . . . ) transform as

δεφ = (λ̄Γµε)∂µφ . (B.2)

This follows from the discussion of Coleman, Wess and Zumino on non-linear realiza-

tions of a broken bosonic symmetry group [87] and the extension to broken supersymme-

try [7–10]. The results can be paraphrased as linear representations (multiplets) of a group

can be decomposed into direct sums of non-linearly transforming fields, by using a group

transformation with the Goldstone field acting as the group parameter. This means that

for any superfield Φ, one can define a non-linearly transforming version Φ̂ as:

Φ̂(x, θ) ≡ Φ(x′, θ′) ≡ exp(λ̄Q) · Φ(x, θ) , (B.3)

with Q the generator of broken supersymmetry and λ the Goldstino field. As discussed in

the second reference of [7–10], this transforms as

δεΦ̂ = (λ̄Γµε)∂µΦ̂ . (B.4)

In particular, all the components of the superfield individually transform as (B.2).

To describe effective Lagrangians for low mass modes, one can eliminate components

of a superfield that describe very massive fields by constraints. Those constraints become

exact in the limit where these massive fields become infinitely massive [11–13, 88]. One has

to take care when identifying the correct non-linearly transforming low mass fields after

the constraints have been incorporated. We illustrate this with some examples.

B.2 Superfield constraints to remove components

Constrained superfields are useful tools to organize the field content when supersymmetry

is broken. However, one still needs to perform a field redefinition to find components that

transform as in (B.2). We give these explicit field redefinitions here. We only discuss

the constraints (2.1) in rigid supersymmetry. A more general approach to properties of

constrained superfields coupled to gravity was developed recently in [44]. A simple classifi-

cation of constrained multiplets was proposed in [45], where the authors suggest that to get

rid of super-partners one can take any multiplet Q and impose the constraint SS̄Q = 0.

The constraints we discuss in this paper follow from this more general discussion. The

universal formula is presented in eq. (6) of [45].

In the rest of this section we work in four-dimensions and we use the conventions of [89]

(see their appendix 14A for superfields). In particular we denote

γ∗ = iγ0123 , PL =
1

2
(1 + γ∗) , PR =

1

2
(1− γ∗) . (B.5)

B.2.1 Goldstino

When supersymmetry is broken, we can describe the Goldstino with a nilpotent chiral

superfield obeying

S2 = 0 , S = s+
1√
2
θ̄PLG+

1

4
θ̄PLθF . (B.6)
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This constraint eliminates the boson from the spectrum, as it puts s = GαGα/2F . The

Goldstino transforming as (B.1) is related to the fermion G of the nilpotent field as

λ0(x) ≡ G(x−)√
2F (x−)

, x− = x− 1

2
λ̄0(x)γµγ∗λ

0(x) . (B.7)

For more information on this field redefinition, see for instance [90] or the appendix of [42].

B.2.2 Fermions

In addition to the nilpotent Goldstino, one can take other constrained superfields. Take

for instance “orthogonal” chiral superfields, obeying

SY i = 0 , Y i = yi +
1√
2
θ̄PLψ

i
y +

1

4
θ̄PLθF

i
y . (B.8)

As explained in [11–13], this makes the scalars dependent fields

yi =
ḠPLψ

i
y

F
− ḠPLG

2F 2
F iy , (B.9)

and hence each orthogonal multiplet describes only one fermion ψiy.

However, the spinors ψiy do not by themselves transform in the standard way (B.2).

One can work out the components of the non-linearly transforming superfields λi, defined

through (B.3). The non-linearly transforming scalar components is zero, while the non-

linearly transforming fermion λi ≡ ψ̂iy is implicitly defined by

λi = [1 +Q(λ0(x))][ψiy(x−)− 2F i(x−)λ0(x)] ,

Q(λ0) = 2PLγ
µλ⊗∂µλ̄

0PL − 2PRγ
µλ0 ⊗ ∂µλ̄0PR ,

x− = x− 1

2
λ̄0(x)γµγ∗λ

0(x) . (B.10)

For more details and notation in other superspace conventions we again refer to the

appendix of [42].

B.2.3 Scalars

To describe complex scalars, one can take chiral superfields H i = hi+ 1√
2
θ̄PLψ

i+ 1
4 θ̄PLθF

i

obeying the constraint

SD̄α̇H̄ = 0 . (B.11)

This constraint makes the fermion a function of the (derivative of) the scalar component,

see for instance [11–13].

Note that the complex scalar h does not transform in the standard way. The scalar

that transforms according to (B.2) is rather

ĥ(x) ≡ h(x+) , x+ = 1 +
1

2
λ̄0(x)γµγ∗λ

0(x) . (B.12)
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B.2.4 Vector

It might seem troublesome that the vector on the brane does not have a standard trans-

formation of the form (B.2), but rather

δµAµ = λ̄0γνεFνµ . (B.13)

However, this can be compensated by a gauge transformation and a contraction with the

VA vielbein dxµ + λ̄0γµdλ0. See [91] for a discussion on this point.

One can eliminate the gaugino from a field-strength superfield Wα, by the constraint

SWα = 0. The field redefinition that brings the gauge field in Wα to a non-linearly

transforming vector Aµ can be found in [91].

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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