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1 Introduction

Maxwell’s theory of electromagnetism is one of the cornerstones of modern physics being

the first theory that incorporates Lorentz invariance, thus playing a crucial role in the

development of special relativity. Nevertheless there are reasons why it is interesting to

study non-relativistic limits of the theory, as first considered in the pioneering paper by Le

Bellac and Lévy-Leblond [1]. As is often the case in physics, by considering limits one may

learn more about properties of the theory and in particular in the case of electromagnetism

it may teach us which electromagnetic effects are truly relativistic and which ones are not.

Moreover, it is interesting to see whether and how precisely one can define a consistent

limit of electromagnetism, including Maxwell’s field equations and the Lorentz force, and

how the corresponding fields transform under Galilean symmetries. More generally, these

theories are non-trivial examples of non-relativistic dynamical theories and from a certain

point of view the natural theories to which one may wish to couple charged non-relativistic

matter.

In fact, as also emphasized in [1], one may wonder what type of electromagnetism a

post-Newtonian but pre-Maxwellian physicist would have written down guided by Galilean

invariance. For instance, when one gives up Lorentz symmetry there is going to be a

different interplay between symmetries and the continuity equation of charge and current.

One may also ask what symmetry structures non-relativistic theories of electromagnetism
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exhibit and how one can couple these theories to charged point particles and other types of

charged matter. Finally, a natural question to ask is how non-relativistic electrodynamics

can be covariantly coupled to an appropriate background geometry.

In this paper we will in part revisit these questions and also address a number of new

ones, which are especially intriguing in view of the renewed interest in Newton-Cartan (NC)

geometry as the non-relativistic background geometry to which one can covariantly couple

non-relativistic field theories.1 In particular, focussing first on flat backgrounds, we will

present new angles on the various non-relativistic limits considered in the literature, find

novel effects and phenomena when coupling non-relativistic electromagnetism to charged

particles and matter fields and uncover new extended symmetries of the theories.

Moreover, we will show how one can couple non-relativistic electrodynamics to the most

general torsional Newton-Cartan (TNC) geometry [3–5] or, as turns out to be relevant in

some cases, twistless torsional Newton-Cartan (TTNC) geometry. This is also interesting

in light of our recent work [14] in which (linearized) TNC geometry is shown to arise

by applying the Noether procedure for gauging space-time symmetries to theories with

Galilean symmetries, including both massless and massive realizations. This analysis shows

that even in the massless case it is necessary to introduce the Newton-Cartan one-form Mµ,

which couples to a topological current in that case, while for the massive case it couples

to the conserved mass current. Non-relativistic electrodynamics (in particular Galilean

electrodynamics, see below) is a prominent example of a massless non-relativistic theory.

The coupling of non-relativistic electrodynamics to TNC geometry derived in this paper

provides a nice check with the general linearized results obtained in [14] with the Noether

method, including the particular form of the topological current.

Besides the above-mentioned motivations, there are a number of further reasons for

our study originating from holography, field theory and gravity. TNC geometry was first

observed [3–5] as the boundary geometry in holography for Lifshitz space-times in the bulk

(see [15] for a review on Lifshitz holography), characterized by anisotropic scaling between

time and space. If one wishes to consider these systems at finite charge density, e.g. by

adding a bulk Maxwell field, one might expect non-relativistic electromagnetic potentials

on a TNC geometry to appear as background sources in the boundary theory.

Furthermore, it was shown in [16] that dynamical NC geometry corresponds to the

known versions of (non)-projectable Hořava-Lifshitz (HL) gravity. For these dynamical

non-relativistic gravity theories it is interesting in its own right to examine how they

couple to non-relativistic electrodynamics, being the non-relativistic analog of Einstein-

Maxwell theory. This will be moreover relevant for using HL-type gravity theories as

bulk theories in holography [17, 18]. In line with this, it was recently shown that three-

dimensional HL gravity theories can be written as Chern- Simons gauge theories on various

1There is a growing literature on this in the last three years. Early papers include [2] which introduced

NC geometry to field theory analyses of problems with strongly correlated electrons, such as the fractional

quantum Hall effect. The novel extension with torsion was first observed as the background boundary

geometry in holography for z = 2 Lifshitz geometries [3, 4] and a large class of models with arbitrary z [5].

Further field theory analysis can be found in [6–9]. Some of the later works that are relevant in the context

of the present paper, dealing with aspects of the coupling to non-relativistic electrodynamics, are [7, 10–13].
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non-relativistic algebras, including a novel version of non-projectable conformal Hořava-

Lifshitz gravity, also referred to as Chern-Simons Schrödinger gravity [19]. These theories

are again interesting in holography but also as effective field theories for condensed matter

systems, and one may wonder whether there are likewise Chern-Simons versions of non-

relativistic electromagnetism.

As a final motivation we note that NC geometry and gravity can be made compati-

ble with supersymmetry [20–24], and thus can provide tools to construct non-relativistic

supersymmetric field theories on curved backgrounds, following the relativistic case [25]

potentially allowing to employ powerful localization techniques to compute certain observ-

ables [26]. A particularly interesting case here could be a quantum mechanically consistent

supersymmetric version of non-relativistic electromagnetism, for which our results could

provide useful input.

An outline and main results of the paper is as follows. We start in section 2 by reviewing

three Galilean invariant non-relativistic theories of electromagnetism in the absence of

sources. These include the electric theory and magnetic theory of [1] as well as a larger

theory [27],2 which we call Galilean Electromagnetism, and which includes the former two.

For GED it is possible to find an off-shell formulation, which is not the case for the electric

and magnetic theory. Obtaining GED from a non-relativistic limit requires to add a scalar

field to Maxwellian electromagnetism before taking the limit, as described in [13].3 The

non-relativistic limits from which these three theories are obtained are discussed, while we

also show how to obtain GED via a null reduction of the Maxwell action in one dimension

higher.4

We then turn in section 3 to the coupling of charged massive point particles in the

three different limits of electromagnetism. Depending on the case, there are a number

of interesting features, in terms of the backreaction of the particle on the non-relativistic

electromagnetic fields and the dynamics (forces) that a charged massive particle experiences

in a given background. In particular, we will see that for the case of GED the particles

act as a source for all gauge invariant fields, and that the force term includes electric and

magnetic components but also a novel contribution. The interpretation of this is that one

of the three GED fields describes a mass potential, which thus supplements the electric

and magnetic fields of the theory. We will also show that the minimal coupling of GED to

point particles can be obtained by null reduction of the charged point particle in Maxwell

theory. Section 4 treats the electric, magnetic and GED limits for scalar electrodynamics,

and we will observe a number of parallels with the results for charged point particles.

In section 5 we study the symmetries of the three limit theories, by determining the

most general set of (linear) transformations of the fields that leave the theories invariant.

The main result is that the on-shell electric and magnetic theory have a very large invariance

group containing (in any dimension) both the infinite Galilean conformal algebra and a U(1)

current algebra as subgroups. Our results are consistent with the results in [34] for these

2See also refs. [28, 29].
3See also [30] in which non-relativistic limits are revisited.
4For some early work on null reductions see e.g. [31, 32] and the connection between null reduction and

GED was also discussed in [33].
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two theories,5 but we find a larger symmetry algebra, as this paper did not consider the

most general ansatz. We also show that the on-shell GED theory has a smaller set of

symmetries, though still infinite dimensional. Furthermore, we show that in the specific

case of 3 + 1 dimensions the finite Galilean conformal algebra is a symmetry. Finally the

off-shell GED theory has only the Galilean algebra extended with two dilatations as its

invariance group. The two dilatations originate from the fact that we can independently

rescale time and space, and as a consequence we conclude that the GED action has Lifshitz

scale invariance for any value of z.

The general covariant coupling of the three theories to arbitrary curved non-relativistic

spacetime backgrounds, i.e. TNC geometry is presented in section 6. After giving a brief

review of TNC geometry, we first treat the GED case which is the simplest case, as it

admits a Lagrangian description. We also show that the resulting action can also be

obtained by a null reduction from Maxwellian electromagnetism coupled to a Lorentzian

metric. The linearized version of the GED action coupled to TNC geometry agrees with

the one obtained in [14] via the Noether procedure. We then give the covariant form of the

equations of motion for the magnetic and electric theories, and in both cases it is found

that the spacetime background should be restricted to twistless torsional Newton-Cartan

(TTNC) geometry. We conclude the section by constructing a covariant minimal coupling

to charged scalar fields, which can be obtained as well from null reduction of scalar QED in

one dimension higher coupled to a Lorentzian metric, and generalize this to non-minimal

couplings. We end the paper in section 7 with some interesting open problems.

2 Non-relativistic limits of Maxwell’s equations

In this section we will discuss how to obtain Galilean invariant theories by taking a non-

relativistic limit of electromagnetism. Following the seminal work [1] there are two such

limits usually referred to as the “electric” limit and the “magnetic” limit. We will review

how these limits arise and show how they can both be embedded in a larger theory [27]

which we will refer to as Galilean Electromagnetism (GED). For simplicity in this section

we will work in the absence of sources which will be added later.

Consider a U(1) gauge field Aµ in Minkowski space-time with Cartesian coordinates

(t, xi). The gauge transformations are given by

A′
t = At +

1

c
∂tΛ , A′

i = Ai + ∂iΛ

while the equations of motion ∂µF
µν = 0 read explicitly:

∂i

(

∂iAt −
1

c
∂tAi

)

= 0 ,
1

c
∂t

(

∂iAt −
1

c
∂tAi

)

+ ∂jFji = 0 . (2.1)

Here c is the speed of light and Fij = ∂iAj − ∂jAi. There exist two non-relativistic limits

known as the electric and magnetic limits, depending on whether the vector potential Aµ

is timelike or spacelike, respectively.

5Symmetries of non-relativistic electrodynamics were also studied from the Newton-Cartan point of view

in [35].
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The “electric” limit of these equations can be obtained as follows

(electric limit) At = −ϕ , Ai =
1

c
ai , Λ =

1

c
λ , c → ∞ with ϕ, ai, λ fixed. (2.2)

This results in

∂i∂iϕ = 0 , −∂t∂iϕ+ ∂jfji = 0 , (2.3)

where fij = ∂iaj − ∂jai is the magnetic field. The contraction of the relativistic gauge

transformations leads to δλϕ = 0 and δλai = ∂iλ so that the scalar ϕ is invariant. The

equations (2.3) respect a symmetry under Galilean boosts x′i = xi + vit, t′ = t acting on

the the fields ϕ and ai as

ϕ′ = ϕ a′i = ai + viϕ .

This follows from first performing a Lorentz boost on Aµ and then taking the c → ∞ limit.

The “magnetic” limit can be similarly defined by setting

(magnetic limit) At = −ϕ̃ , Ai = cai , Λ = cλ , c → ∞ with ϕ̃, ai, λ fixed. (2.4)

In this case the equations of motion (2.3) reduce to

∂iẼ
i = 0 , ∂jfji = 0 , (2.5)

where Ẽi = −∂iϕ̃ − ∂tai is the electric field. Gauge transformations act as δλϕ̃ = −∂tλ

and δλai = ∂iλ so that the electric field is invariant. In this limit the potentials ϕ̃ and ai
transform under Galilean boosts as

ϕ̃′ = ϕ̃+ viai , a′i = ai . (2.6)

In 3+1 dimensions the electric and magnetic limits are related by electric/magnetic dual-

ity [12].

Finally we can define a third limit that has the advantage of allowing an off-shell

description. Consider the Maxwell action for Aµ with an additional free real scalar field χ ,

L =
1

2c2
(

∂tA
i − c∂iAt

)

(∂tAi − c∂iAt)−
1

4
F ijFij +

1

2c2
∂tχ∂tχ− 1

2
∂iχ∂iχ . (2.7)

The limit is given by

(GED limit) χ = cϕ , At = −cϕ− 1

c
ϕ̃ , Ai = ai , c → ∞ with ϕ, ϕ̃, ai fixed. (2.8)

By substitution in (2.7) we obtain the action for Galilean electrodynamics (GED)

S =

∫

dd+1x

(

−1

4
f ijfij − Ẽi∂iϕ+

1

2
(∂tϕ)

2

)

. (2.9)

This action was first introduced in [27] and the limit from which it arises is described

in [13]. Under gauge transformations the fields transform as

δΛϕ̃ = −∂tΛ , δΛai = ∂iΛ , δϕ = 0 .
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The action (2.9) is invariant under Galilean boosts acting on the fields as

ϕ̃′ = ϕ̃+ viai +
1

2
viviϕ , a′i = ai + viϕ , ϕ′ = ϕ . (2.10)

The equations of motion are given by (2.3) together with an additional equation of motion

obtained by varying ϕ which reads

∂2
t ϕ− ∂iẼi = 0 . (2.11)

At this point it could be argued that the action (2.9) provides an off-shell formulation

of the electric limit because its equations of motion comprise (2.3) and (2.11) does not

further constrain ai nor ϕ and can be used to solve for ϕ̃. There are however a number of

reasons why these should be considered as separate theories.

• In section 5 we will show that the symmetries of (2.3) comprise a larger set of trans-

formations than the symmetries that preserve the GED equations of motion.

• As will see in the next section the two theories couple to sources with distinct prop-

erties.

• In sections 6.4 and 6.5 we will show that the two theories couple differently to curved

space.

The magnetic limit (2.5) arises from the equations of motion of GED by noticing that

it is consistent to set ϕ = 0 in (2.3) and (2.11). We are not aware of an action for the

magnetic limit fields ϕ̃ and ai (and potentially other fields) whose equations of motion lead

to (2.5).

GED from null reduction. Another way to obtain the GED action is by performing

a null reduction of the Maxwell action in one higher dimension. Indeed consider the d+ 2

dimensional Maxwell action

S =

∫

dudtddx

(

−1

4
ηACηBDFABFCD

)

, (2.12)

where ηABdX
AdXB = 2dtdu + dxidxi. We can now set Au = ϕ, At = −ϕ̃ and Ai = ai

and impose that all the fields are independent of the u coordinate to obtain the GED

action (2.9). We will generalize this null reduction to the case of a curved background in

section 6.3.

The three limits discussed here can be expressed in terms of three different gauge

invariant quantities: the electric field Ẽi, the magnetic field fij and the scalar ϕ. We will

show that ϕ should not be interpreted as an electric potential. Instead we will refer to

ϕ as a mass potential for reasons that will become clear in the next section as well as in

section 6.5.

– 6 –
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3 Coupling to point particles

Here we will consider how to couple the different limits of electromagnetism we discussed

in the last section to charged massive particles. As c → ∞ the particles are slowly moving

(non-relativistic). We will see that in the electric limit the point charges experience only

electric forces but act as a source both for the electric and magnetic fields. In the magnetic

limit the Lorentz force is also Galilean invariant but the charged particles do not backreact

on the magnetic fields. Finally for GED the particles act as a source for all gauge invariant

fields. In this case the forces acting on the charged particles are both of electric and

magnetic form but also of a novel kind for which we will put forward an interpretation.

The Lagrangian density for a relativistic point particle of mass m and charge q mini-

mally coupled to the Maxwell gauge potential is given by

L =



−mc2

√

1− ẊiẊi

c2
+mc2 + qAt + qAi

Ẋi

c



 δ(d)(~x− ~X(t)) , (3.1)

where ~X(t) is the position of the particle at time t.

We can add (3.1) to the lagrangian for the gauge fields given by (2.7) (excluding the

uncoupled scalar field χ). This results in the following equations of motion for the gauge

fields and X(t),

∂i

(

∂iAt −
1

c
∂tAi

)

= qδ(d)(~x− ~X(t)) ,

1

c
∂t

(

∂iAt −
1

c
∂tAi

)

+ ∂jFji = −q
Ẋi

c
δ(d)(~x− ~X(t)) ,

m
d

dt





Ẋi

√

1− ẊjẊj

c2



 = q

(

∂iAt −
1

c
∂tAi

)

+
q

c
ẊjFij . (3.2)

In the electric limit these equations reduce to:

∂i∂iϕ = −qδ(d)(~x− ~X(t)) ,

∂t∂iϕ− ∂jfji = qẊiδ(d)(~x− ~X(t)) ,

mẌi = −q∂iϕ . (3.3)

Hence the charged particle sources both the magnetic field fij and electrostatic potential ϕ

but is not acted upon by the magnetic field. This is consistent with the analysis presented

in [1] where it was found that slowly moving charges generate fields of the electric kind

and that in this limit it is only possible to describe electric forces (whence the name).

In the magnetic limit we obtain instead:

∂iẼi = qδ(d)(~x− ~X(t)) , ∂jfji = 0 . (3.4)

mẌi = qẼi + qẊjfij .

– 7 –
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In this case the particle is acted upon by both electric and magnetic forces but does not

source the magnetic field which can be considered as an external background. Because

the particle is slowly moving this procedure does not give rise to the most general source

terms that can be consistently coupled to the electromagnetic fields in the magnetic limit.

Indeed according to [1] it is possible to introduce a charge density ρ(x) and a current Ji(x)

whose divergence vanishes ∂iJ
i = 0 and is not related to charge transport (so that there

is no continuity equation relating ρ and Ji). These can then act as sources for the electric

and magnetic fields

∂iẼi = ρ , ∂jfji = Ji . (3.5)

In order to ensure invariance under Galilean boosts the sources6 have to transform as

J ′ = J and ρ′ = ρ + viJi. As a consequence the only force term involving these sources

that stays the same in different inertial reference frames is of magnetic type

Fi =

∫

d3xfijJ
j . (3.6)

Next we will couple charged particles to GED. We will consider the Lagrangian (2.7)

for the Maxwell gauge fields coupled to the scalar χ and add to it the Lagrangian density

for the point particle (3.1). In order to obtain a finite non-relativistic limit we will also

introduce a coupling between χ and the point particle whose form is reminiscent of the

dilaton coupling to a D-brane Nambu-Goto action,

∆LGED = qχ

√

1− ẊiẊi

c2
δ(d)(~x− ~X(t)) . (3.7)

We can then take the limit c → ∞ keeping q̂ = q/c constant while the Maxwell fields and

χ scale as in (2.8). As a result the GED fields described by (2.9) couple to the point charge

according to

L =

(

1

2
(m− q̂ϕ) ẊiẊi − q̂ϕ̃+ q̂aiẊ

i

)

δ(d)(~x− ~X(t)) . (3.8)

Hence the equations of motion for the GED fields (2.3) and (2.11) are modified to:

∂i∂iϕ = −q̂δ(d)(~x− ~X(t)) , (3.9)

∂t∂iϕ− ∂jfji = q̂Ẋiδ(d)(~x− ~X(t)) , (3.10)

∂2
t ϕ− ∂iẼi = −1

2
q̂ẊiẊiδ(d)(~x− ~X(t)) , (3.11)

while the equation of motion for the point particle is given by

d

dt

[

(m− q̂ϕ) Ẋi
]

= q̂Ẽi + q̂Ẋjfij −
q̂

2
ẊjẊj∂iϕ . (3.12)

It can be checked that these equations of motion are invariant under Galilean boosts acting

on the GED fields according to (2.10). We see that Ẽi acts on the point particle as an

6Sources Ji and ρ with these properties can be constructed starting with configurations of charges in

the relativistic theory such that Ji ∼ cρ and taking the magnetic limit.
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electric field and fij as a magnetic field. The field ϕ couples to the time component of the

mass current of the point particle, it effectively changes m to a local function m− q̂ϕ. We

will refer to ϕ as the mass potential. The term ∂2
t ϕ in equation (3.11) has no counterpart

in electrodynamics and we cannot remove it by setting ϕ = 0 consistently. Hence GED

coupled to point particles is markedly different from what we obtained either for the electric

or magnetic limit in equations (3.3) and (3.4). Nevertheless GED also arises from the non-

relativistic limit of a relativistic theory albeit one that contains a real scalar field in addition

to the gauge fields. Note that because ϕ(x) is boost and gauge invariant there are many

non-minimal couplings in addition to those appearing in (3.8). For instance we could add

a further term linear in the GED fields

∆L = −γ

2
q̂ ϕ δ(d)(~x− ~X(t)) . (3.13)

Because we have taken a limit where the speed of light is infinite the GED fields

propagate instantaneously. It is therefore easy to determine their values at a given time

knowing the distribution of charges (and its time derivatives) at the same time. These

fields can then be substituted back in (3.8) resulting in the following Lagrangian for a

collection of point charges qi with masses mi

L =
∑

i

1

2
miv

2
i − γ

∑

i 6=j

qiqj
4πrij

−
∑

i 6=j

qiqj
4πrij

(vi − vj)
2 . (3.14)

Here (vi − vj) is the relative speed between two particles and rij is their separation. This

is similar in spirit to Darwin’s Lagrangian [36] describing interactions among pointlike

charges in electrodynamics up to order c−2 in a large c expansion.7 However (3.14) does

not involve any approximation. Note that the strength of the Coulomb interaction is set

by the arbitrary parameter γ appearing in (3.13). This is possible because the Coulomb

interaction is Galilean invariant by itself. In Darwin’s Lagrangian instead the Coulomb

term is related to other terms of order v2

c2
by Lorentz transformations.

Minimal coupling from null reduction. Another way of obtaining the minimal cou-

pling of GED to point particles is by null reduction of Maxwell’s theory coupled to a point

particle in one dimension higher. At the end of the previous section we already showed that

the GED action can be obtained by null reduction of Maxwell’s theory. Here we will show

that the point particle action obtained from (3.8) can be obtained by the null reduction of

the action of a massless charged relativistic particle on Minkowski space-time i.e.

S =

∫

dλ

(

1

2e
ηABẊ

AẊB + q̂AAẊ
A

)

. (3.15)

Let us take for ηABdX
AdXB = 2dtdu+ dXidXi so that we find

S =

∫

dλ

(

1

e

(

1

2
ẊiẊi + ṫu̇

)

+ q̂ϕu̇− q̂ϕ̃ṫ+ q̂aiẊ
i

)

, (3.16)

7A more apt parallel should perhaps be drawn with Weber’s electrodynamics which is also manifestly

Galilean invariant.
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where we wrote Au = ϕ, At = −ϕ̃ and Ai = ai. We will set the momentum conjugate to u̇

equal to a constant m:
∂L

∂u̇
=

ṫ

e
+ q̂ϕ = m, (3.17)

from which we can solve for e and substitute into the action to obtain

S =

∫

dλ

(

1

2
(m− q̂ϕ)

ẊiẊi

ṫ
− q̂ϕ̃ṫ+ q̂aiẊ

i

)

. (3.18)

This action has worldline reparametrization invariance δλ = ξ(λ), δXµ = ξẊµ. We can

gauge fix this symmetry by setting ṫ = 1 so that worldline time and coordinate time are

the same; this choice reproduces (3.8).

4 Non-relativistic limits of scalar electrodynamics

In this section we will consider the electric, magnetic and GED limits for scalar electrody-

namics drawing parallels with the results of the previous section. The starting point is a

massive charged complex scalar minimally coupled to U(1) gauge fields

L =
1

c2
(∂t − iqAt)φ(∂t + iqAt)φ

⋆ −
(

∂i − i
q

c
Ai

)

φ
(

∂i + i
q

c
Ai

)

φ⋆ −m2c2φφ⋆ , (4.1)

giving rise together with (2.7) to the following equations of motion

∂i

(

∂iAt−
1

c
∂tAi

)

=i
q

c2
(φ⋆(∂t−iqAt)φ−φ(∂t+iqAt)φ

⋆),

1

c
∂t

(

∂iAt−
1

c
∂tAi

)

+∂jFji=i
q

c

(

φ⋆
(

∂i−i
q

c
Ai

)

φ−φ
(

∂i+i
q

c
Ai

)

φ⋆
)

,

1

c2
(∂t−iqAt)(∂t−iqAt)φ−

(

∂i−i
q

c
Ai

)(

∂i−i
q

c
Ai

)

φ+m2c2φ=0. (4.2)

In order to analyse their various limits we need to specify how to scale the complex

scalar fields as c → ∞. We will define a field ψ(x, t) so that

φ(t, x) =
1√
2m

e−imc2tψ(t, x) . (4.3)

This allows to take a finite limit of the equations of motion for φ(x, t) where the classical

mass m and ψ(x, t) are kept fixed as c → ∞.

In conjunction with the Electric limit scaling for the gauge fields (2.3) the equations

of motion (4.2) become

∂i∂iϕ = −q ψ⋆ψ ,

∂t∂iϕ− ∂jfji = −i
q

2m
(ψ⋆∂iψ − ψ∂iψ

⋆) ,

(∂t + iqϕ)ψ =
i

2m
∂i∂iψ . (4.4)
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Note that in the electric limit the Schrödinger field ψ(t, x) is inert under gauge transforma-

tions. The last equation of motion is the Schrödinger equation coupled to the electrostatic

potential ϕ. The magnetic fields do not appear in the equation of motion for ψ but this field

acts as a source for both the electrostatic potential and the magnetic fields. This is indeed

consistent with what we found for pointlike charged particles in the electric limit (3.3).

As for the magnetic limit described in (2.5) it results in

∂iẼ
i = −q ψ⋆ψ , ∂jfji = 0 ,

(∂t + iqϕ̃)ψ =
i

2m
(∂i − iqai)(∂i − iqai)ψ . (4.5)

In this case the Schrödinger field varies under gauge transformations and its equation of

motion involves couplings to both electric and magnetic fields. However ψ(t, x) sources

only electric fields. This is consistent with the point particle case (3.4) as expected. Indeed

it was recognized in [37] that the Schrödinger field cannot be coupled to either the electric

limit or the magnetic limit of the Maxwell equations in such a way that8

• The resulting model is Galilean invariant,

• The field ψ sources both electric and magnetic fields,

• Both magnetic and electric couplings to ψ are present.

Next we will move to the coupling to GED. In analogy with the case of point-particles

described in the previous section, before taking any limit, we will add to scalar electrody-

namics a coupling to the scalar field χ appearing in (2.7)

∆L =
1

c2
(2qmc2χ− q2χ2)φφ⋆ . (4.6)

By sending c → ∞ keeping q̂ = q/c and ψ(x, t) fixed and with the GED fields scaling as

in (2.8) we get a Lagrangian describing the coupling of the Schrödinger model to GED.

L = i
(m− q̂ϕ)

2m

(

ψ⋆(∂t + iqϕ̃)ψ − ψ(∂t − iqϕ̃)ψ⋆
)

− 1

2m
(∂i − iqai)ψ(∂i + iqai)ψ

⋆ , (4.7)

Also in this case as for the case of point-particles the GED field ϕ(x) plays the role of an

effective mass. We are allowed to add non-minimal interactions to (4.7). For instance, in

analogy with (3.13) we can consider a coupling proportional to ϕψψ⋆.

5 Symmetries

Here we identify what symmetries are present in the various limits discussed in section 2.

We will first compute the invariance group of the electric and magnetic limit, i.e. equa-

tions (2.3) and (2.5). Then we will work out the invariance group of the on-shell GED

theory, i.e. the equations of motion of (2.9) which are (2.3) and (2.11). Finally we will

8It was argued in [38] that these issues could be overcome by introducing appropriate nonlinearities in

the constitutive relations entering the Maxwell equations.
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check which of these on-shell symmetries are symmetries of the action (2.9). We will always

assume that d > 1.

The main results are that the on-shell electric and magnetic theory have a very large

invariance group that in any dimension contains both the infinite Galilean conformal al-

gebra and a U(1) current algebra as subgroups. The infinite dimensionality comes from

the fact that the equations of motion are time reparametrization invariant and from the

fact that we can perform time dependent translations as well as time dependent spatial

dilatations. The GED theory on-shell has a smaller set of symmetries that is still infinite

dimensional due to the freedom to perform time-dependent translations. Here we see that

3 + 1 dimensions is special in that this is the only dimension in which the finite Galilean

conformal algebra is a symmetry of on-shell GED. Finally the off-shell GED theory has

only the Galilean algebra extended with two dilatations as its invariance group. The two

dilatations originate from the fact that we can independently rescale time and space. An-

other way of saying this is that the GED Lagrangian has Lifshitz scale invariance for any

value of z.

In order to find the most general set of transformations that leave the various theories

we described in section 2 invariant we start by writing down the most general set of linear

transformations of all the fields

δϕ = ξt∂tϕ+ ξk∂kϕ+ α1ϕ+ α2ϕ̃+ αk
1ak , (5.1)

δϕ̃ = ξt∂tϕ̃+ ξk∂kϕ̃+ α3ϕ+ α4ϕ̃+ αk
2ak , (5.2)

δai = ξt∂tai + ξk∂kai + ak∂iξ
k + αi

3ϕ+ αi
4ϕ̃+ αikak , (5.3)

where ξt, ξk, α1, etc. are all functions of t, xi. These transformations are written with the

understanding that in the case of the electric limit we do not transform any field into ϕ̃

and likewise in the magnetic limit we do not transform the fields into ϕ.

Electric limit. Demanding invariance of the first equation in (2.3), i.e. that ∂i∂iδϕ = 0

upon use of the equation of motion, leads to the following conditions

α2 = 0 , αk
1 = 0 , ∂iξ

t = 0 , ∂iξ
j + ∂jξ

i = 2Ωδij ,

∂i∂iξ
k + 2∂kα1 = 0 , ∂i∂iα1 = 0 , (5.4)

where Ω is a function of t and xi. Using these results we find after performing the same

analysis for the second equation (2.3) the following conditions

α1 = (d− 2)Ω + γ, αk
3 = −∂tξ

k, αk
4 = 0, αik =

(

α1 − 2Ω + ∂tξ
t
)

δik,

∂iΩ = 0, ξi = ζi(t) + λi
jx

j +Ω(t)xi, (5.5)

where γ and λi
j = −λj

i are constants. There are two arbitrary scalar functions of time,

namely ξt and Ω and there is one vector ζi whose time dependence is arbitrary. These

correspond to time reparametrization invariance (ξt), time dependent spatial dilatations

(Ω) and time dependent spatial translations (ζi). The fact that one cannot have time
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dependent rotations was also observed in [34]. The symmetries of the electric limit thus

constitute a very large group that acts on ϕ and ai as

δϕ = ξt(t)∂tϕ+ ξk∂kϕ+ ((d− 2)Ω(t) + γ)ϕ ,

δai = ξt(t)∂tai + ξk∂kai + ak∂iξ
k − ϕ∂tξ

i +
(

(d− 4)Ω(t) + ∂tξ
t(t) + γ

)

ai (5.6)

= ξt(t)∂tai + ξk∂kai − λi
kak − ϕ

(

∂tζ
i + xi∂tΩ

)

+
(

(d− 3)Ω(t) + ∂tξ
t(t) + γ

)

ai ,

where ξi is given by the expression appearing in (5.5).

Magnetic limit. If we perform a similar analysis in the case of the magnetic limit we

ask for the invariance group of the equations (2.5). We start with the first of these two

equations and demand that we find zero when transforming ϕ̃ and ai as in (5.2) and (5.3)

(with no terms going into ϕ). The transformation of the equation of motion leads to terms

that involve two, one and zero derivatives on ϕ̃ and ai. At each order in derivatives we

should demand invariance. Doing this first at 2nd order in derivatives up to the use of the

equations (2.5) and then at first order etc we find

∂iξ
t = 0 , αi

4 = 0 , αi
2 = −∂tξ

i , ∂iξ
j + ∂jξ

i = 2Ωδij ,

αij = γ̄δij , ∂tξ
t + γ̄ = α4 , ∂i∂iξ

j = 0 , ∂t
(

∂iξ
j − ∂jξ

i
)

= 0 , (5.7)

where γ̄ is a constant. Using these results and repeating the procedure for the invariance

of the second equation of (2.5) we obtain the extra condition

∂i
(

∂iξ
j − ∂jξ

i
)

= 0 . (5.8)

From all of the above we derive that Ω = Ω(t) and that ξµ takes the same general form

as in the case of the electric limit, namely ξt = ξt(t) and ξi = ζi(t) + λi
jx

j + Ω(t)xi. The

difference between the two cases lies in the way in which the fields transform into each

other. For the magnetic limit theory the symmetries are

δϕ̃ = ξt(t)∂tϕ̃+ ξk∂kϕ̃− ∂tξ
kak +

(

∂tξ
t + γ̄

)

ϕ̃ ,

δai = ξt(t)∂tai + ξk∂kai + ak∂iξ
k + γ̄ai . (5.9)

Symmetry generators. The generator ξ can be written as

ξ = ξµ∂µ = ξt∂t + ζi∂i +
(

∂tξ
t + Ω̄

)

xi∂i + λi
jx

j∂i , (5.10)

where we defined

Ω = ∂tξ
t + Ω̄ . (5.11)

If we take t to be a complex variable we can perform a Laurent expansion of the functions

ξt, ζi and Ω̄ as follows

ξt = −
∑

n

ant
n+1 , ζi =

∑

n

bint
n+1 , Ω̄ =

∑

n

cnt
n . (5.12)

Defining

ξ =
∑

n

(

anL
(n) + binM

(n)
i + cnK

(n)
)

− 1

2
λijJij , (5.13)
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this gives rise to the following set of generators

L(n) = −tn+1∂t − (n+ 1)tnxi∂i , K(n) = tnxi∂i , M
(n)
i = tn+1∂i , (5.14)

where n ∈ Z. These generators satisfy the algebra

[L(n) , L(m)] = (n−m)L(n+m) , [L(n) ,M
(m)
i ] = (n−m)M

(n+m)
i ,

[K(n) ,M
(m)
i ] = −M

(n+m)
i , [L(n) ,K(m)] = −mK(n+m) , (5.15)

with all other commutators zero. The rotation generators commute with L(n) and K(n)

while the M
(n)
i transform as a vector under SO(d). The generators L(n) and M

(n)
i span

the infinite dimensional Galilean conformal algebra observed in [39] (see also [40]). It was

shown in [34] that this is a symmetry of the electric and magnetic theory for d = 3. Here we

see that this algebra exists for any dimension. Further the actual symmetry algebra of the

equations of motion of the electric and magnetic limit is larger than the one of [34] because

it includes the U(1) current algebra spanned by theK(n) generators. The action of the L(n),

M
(n)
i and K(n) on the fields appearing in the electric and magnetic limits can be inferred

from (5.6) and (5.9). In both cases there is also an additional symmetry corresponding

to an overall rescaling of all the fields whose parameters are γ and γ̄. The subalgebra of

L(n) and K(n) is the same infinite dimensional algebra observed in the context of warped

CFTs [41, 42]. Here we did not study any possible central charges.

On- and off-shell GED. We will now add the equation of motion (2.11) and demand

it is invariant under (5.6). This leads to severe constraints on the scalars ξt and Ω. The

transformations leaving the equations of motion of the action (2.9) invariant are9

δϕ = ξt∂tϕ+ ξk∂kϕ+ [(d− 2)ct+ (d− 2)µ+ γ]ϕ , (5.16)

δϕ̃ = ξt∂tϕ̃+ ξk∂kϕ̃+ α3(t)ϕ− ak∂tξ
k + [−(d− 4)ct+ 2λ+ (d− 4)µ+ γ] ϕ̃ , (5.17)

δai = ξt∂tai + ξk∂kai + ak∂iξ
k − ϕ∂tξ

i + [λ+ (d− 4)µ+ γ] ai , (5.18)

where ξt and ξi are given by

ξt = ζt + λt− 1

2
(d− 4)ct2 , (5.19)

ξi = ζi(t) + λi
jx

j + µxi + ctxi = ζi(t) + λi
jx

j + ∂tξ
txi + Ω̄xi , (5.20)

and where Ω̄ is defined in (5.11) and given by Ω̄ = µ−λ+(d− 3)ct. With the exception of

α3(t) and ζi(t) all parameters are constants. The parameters λ and µ are two independent

scaling parameters corresponding to the fact that we can scale time and space independently

accompanied by appropriate rescalings of the fields. The parameter γ corresponds to a

rescaling of all the fields that follows from the fact that the equations of motion are linear

9Note that the parameter c entering in (5.16) and the discussion below should not be confused with the

speed of light.
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in the fields. The algebra is infinite dimensional because of the time dependent translations

ζi(t). The generators of this infinite dimensional algebra are

M
(n)
i = tn+1∂i , H = ∂t , D1 = t∂t , D2 = xi∂i , Jij = xi∂j − xj∂i ,

K = −1

2
(d− 4)t2∂t + txi∂i . (5.21)

The nonzero commutators are given by

[K ,M
(n)
i ] = −1

2
(d− 2 + (d− 4)n)M

(n+1)
i , [H ,M

(n)
i ] = (n+ 1)M

(n−1)
i ,

[D1 ,M
(n)
i ] = (n+ 1)M

(n)
i , [K ,H] = (d− 4)D1 −D2 , [D1 ,K] = K ,

[D1 , H] = −H . (5.22)

The parameter c corresponds for d = 3 to a special conformal transformation. In fact

transformations for which µ = λ and d = 3 so that Ω̄ = 0 contain the finite dimensional

Galilean conformal algebra consisting of the generators H, D1 +D2, K, Jij , M
(−1)
i , M

(0)
i

and M
(1)
i .

Finally we will determine which of these on-shell symmetries leave the GED action

invariant. Invariance of (2.9) is obtained if the Lagrangian density obeys δL = ∂µ (ξ
µL).

This leads to the following restrictions

α3 = 0 , ζi(t) = ζi + vit , c = 0 , γ = −1

2
λ− 1

2
(d− 4)µ . (5.23)

Hence the off-shell symmetries of GED are

δϕ = ξt∂tϕ+ ξk∂kϕ+

[

−1

2
λ+

d

2
µ

]

ϕ , (5.24)

δϕ̃ = ξt∂tϕ̃+ ξk∂kϕ̃− ak∂tξ
k +

[

3

2
λ+

1

2
(d− 4)µ

]

ϕ̃ , (5.25)

δai = ξt∂tai + ξk∂kai + ak∂iξ
k − ϕ∂tξ

i +

[

1

2
λ+

1

2
(d− 4)µ

]

ai , (5.26)

where ξt and ξi are given by

ξt = ζt + λt , (5.27)

ξi = ζi + vit+ λi
jx

j + µxi . (5.28)

The translational and rotational symmetries are obvious. The Galilean invariance has

already been discussed in section 2. The finite version of the scale symmetries are

t → λt , ϕ → λ1/2ϕ , ϕ̃ → λ−3/2ϕ̃ , ai → λ−1/2ai ,

xi → µxi , ϕ → µ−d/2ϕ , ϕ̃ → µ−(d−4)/2ϕ̃ , ai → µ−(d−2)/2ai . (5.29)

Note that the scaling weight of ai gets a contribution from the ak∂iξ
k term in (5.18).

These symmetries form a Lie algebra consisting of the Galilei algebra and two dilatations

generators.
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The generators of the symmetries of the action are

H = ∂t , Pi = ∂i , Jij = xi∂j − xj∂i , Gi = t∂i ,

D1 = t∂t , D2 = xi∂i . (5.30)

The first line gives the Galilean algebra and the second line are the two dilatation genera-

tors. The nonzero commutators of D1 and D2 with the Galilean algebra are

[D1 , H] = −H , [D1 , Gi] = Gi ,

[D2 , Pi] = −Pi , [D2 , Gi] = −Gi , (5.31)

while D1 and D2 commute with each other. The off-shell GED theory is an example of a

Galilean field theory that has a Lifshitz scale invariance for any value of z. This is a very

attractive property because it means that we can couple GED to all matter theories with

any critical exponent z without breaking the scale symmetry of the matter theory.

We thus see that the off-shell theory has fewer symmetries than the on-shell theory. In

particular GED ceases to be conformal for d = 3 off-shell. This is different from Maxwell’s

theory in 3 + 1 dimensions. This can be understood from the fact the GED Lagrangian is

the contraction of Maxwell coupled to a free scalar with a shift symmetry (see section 2).

It is well-known that free scalars with a shift symmetry are off-shell scale invariant theories

that are not conformally invariant. This is because the total derivative term that one

would have to add to the Lagrangian to improve the energy-momentum tensor to one that

is traceless breaks the shift symmetry.

6 Coupling to TNC geometry

We will study the coupling of the three different limit theories discussed in section 2 to

an arbitrary curved background described by torsional Newton-Cartan geometry (TNC).

We will start with the coupling of the GED limit to TNC curved space. This case is

simpler because it admits a Lagrangian description. We will then consider the electric and

magnetic limits and conclude that in order to have local equations of motion the space-

time geometry needs to be restricted. In particular the geometry will be twistless torsional

Newton-Cartan (TTNC) whose definition we will review.

6.1 Summary of TNC geometry

Here we briefly review TNC geometry and our conventions following [5, 8, 9, 16, 43] (see

also [44] for further details of TNC connections).

A Torsional Newton-Cartan background in d + 1 dimensions is given by a set of one

forms (vielbeins)
(

τµ , e
a
µ

)

where a = 1 . . . d and a one form Mµ. The inverse vielbeins vµ

and eµa are defined through

vµeaµ = 0 , vµτµ = −1 , eµaτµ = 0 , eµae
b
µ = δba . (6.1)

The determinant of the square matrix
(

τµ , e
a
µ

)

is denoted by e. The vielbeins can be used

to construct a degenerate “spatial metric” hµν = δabe
a
µe

b
ν and similarly hµν = δabeµaeνb .
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When τµ is surface orthogonal the geometry is referred to as Twistless TNC and hµν is a

Riemannian metric on the surfaces orthogonal to τµ.

Besides transforming under diffeomorphisms as usual, the one forms τµ, e
a
µ and Mµ

transform under various local transformations: Galilean boosts with λa as local parame-

ter, local SO(d) rotations parametrized by λab = −λba and U(1)σ gauge transformations

parametrized by σ,

δτµ = 0 , δeaµ = τµλ
a + λa

be
b
µ

δvµ = λaeµa , δeµa = λa
beµb ,

δMµ = λae
a
µ + ∂µσ . (6.2)

The inverse vielbein eµa and hµν are invariant under local Galilean transformations. It

is useful to define other objects with this property v̂µ, êaµ, ĥµν and Φ̃,10 via

v̂µ = vµ − eµaMνe
νa , êaµ = eaµ −Mνe

νaτµ ,

ĥµν = hµν −Mµτν −Mντµ , Φ̃ = −vµMµ +
1

2
hµνMµMν . (6.3)

These objects satisfy the relations:

v̂µêaµ = 0 , v̂µτµ = −1 , eµaτµ = 0 , eµa ê
b
µ = δba . (6.4)

6.2 GED on a TNC background

We introduce the U(1) gauge field Āµ and the scalar field ϕ which transform as follows

under local Galilean boosts

δĀµ = ϕeaµλa , δϕ = 0 , (6.5)

Under local U(1)σ transformations and SO(d) rotations Āµ and ϕ are both invariant. The

gauge field Āµ has the usual gauge redundancy: Āµ ∼ Āµ + ∂µΛ.

We can write Āµ = aµ − ϕ̃τµ where vµaµ = 0. We find that aµ and ϕ transform as

follows under local Galilean boosts and gauge transformations:

aµ ∼ aµ + τµv
ν∂νΛ , δaµ = ϕeaµλa + τµaνe

ν
aλ

a , ϕ̃ ∼ ϕ̃+ vν∂νΛ , δϕ̃ = aνe
ν
aλ

a . (6.6)

In the flat limit of the TNC geometry we have τµ = δtµ, eµa = δµa , vµ = −δµt and eaµ = δaµ.

The flat space GED fields are given by ai = aµe
µ
i , ϕ̃, and ϕ. Indeed these fields transform

as in (2.10) under infinitesimal Galilean boosts parametrized by constant λa.

We will define the following field strength for Āµ

F̄µν = ∂µĀν − ∂νĀµ − ϕ (∂µMν − ∂νMµ) .

We can then write down an action for GED coupled to an arbitrary TNC background as

follows

SGED =

∫

dd+1x e

(

−1

4
hµρhνσF̄µνF̄ρσ − hµνvρF̄ρν∂µϕ+

1

2
(vµ∂µϕ)

2

)

. (6.7)

10Φ̃ is related to the Newtonian potential [9, 43].
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In this form the action is manifestly invariant under diffeomorphisms and U(1)σ transfor-

mations. It is also invariant under local Galilean boosts and rotations.

Alternatively we can forgo manifest U(1)σ invariance and rewrite the action in terms

of Galilean invariant objects. Indeed we can define a new gauge potential

Aµ = Āµ − ϕMµ = aµ − τµϕ̃− ϕMµ ,

which is inert under local Galilean boosts and transforms under U(1)σ as δAµ = −ϕ∂µσ.

In terms of Aµ the action (6.7) is given by

SGED=

∫

dd+1x e

(

−1

4
hµρhνσFµνFρσ − hµν v̂ρFρν∂µϕ− Φ̃hµν∂µϕ∂νϕ+

1

2
(v̂µ∂µϕ)

2

)

,

(6.8)

where Fµν = ∂µAν − ∂νAµ.

By varying the GED action (6.8) we obtain the equations of motion

∂µ

(

e F̃µν
)

= 0 , ∂µ

(

e G̃µ
)

= 0 (6.9)

where F̃µν and G̃µ are defined as

F̃µν = hµρhνσFρσ + (v̂µhνρ − v̂νhµρ) ∂ρϕ , (6.10)

G̃µ = hµν v̂ρFρν + 2Φ̃hµν∂νϕ− v̂µv̂ν∂νϕ . (6.11)

Note that F̃µν is invariant under both U(1)Λ and U(1)σ transformations while G̃µ is U(1)Λ
invariant but transforms under U(1)σ as δσG̃

µ = F̃µν∂νσ. Hence the equation of motion

∂µ
(

e G̃µ
)

= 0 is U(1)σ invariant by virtue of the other equation of motion ∂µ
(

eF̃µν
)

= 0.

We remark that the linearized version of the GED action coupled to TNC was also

obtained in [14] via the Noether procedure. This paper also shows that in theories with

massless Galilean symmetries, of which GED is an example, the TNC vector Mµ couples

to a topological current. We refer the reader to this paper for the explicit form of this

topological current for GED, along with the other (improved) currents.

6.3 Null reduction of Maxwellian electromagnetism

The GED action on TNC geometry can also be obtained by null reduction of Maxwellian

electromagnetism in one dimension higher. Consider the Maxwell action coupled to a

background Lorentzian metric γAB,

S = −
∫

dd+2x
√−γ

1

4
FABF

AB , (6.12)

where F = dA. We can now restrict the background metric to possess a null isometry,

which in suitably chosen coordinates is generated by ∂u

ds2 = γABdx
AdxB = 2τµdx

µ (du−Mνdx
ν) + hµνdx

µdxν , (6.13)
√−γ = e , γuu = 2Φ̃ , γuµ = −v̂µ , γµν = hµν , Au = ϕ . (6.14)

This form of the metric is preserved by the following changes of coordinates:
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• x′µ = x′µ(x) identified with diffeomorphisms in the lower dimensional TNC geometry.

• u′ = u+ σ(x) that give rise to U(1)σ transformations.

The Galilean invariant objects of section 6.1 correspond to the components of γAB as

in (6.14).

We want to reduce (6.12) along the null isometry. For this we will restrict the gauge

field AM and the U(1) gauge parameter Λ to be invariant along ∂u. We can then use

AM = (Au, Aµ) to define two lower dimensional fields. The first one ϕ ≡ Au is a gauge

invariant scalar. The second one Āµ ≡ Aµ + ϕMµ is a lower dimensional gauge field that

is invariant under U(1)σ transformations. This procedure leads directly to the action (6.8)

for GED coupled to a TNC background.

6.4 The magnetic and electric theory on a TTNC background

We can obtain the equations of motion for the magnetic theory by solving for ϕ in the

GED equations of motion (6.10). In parallel to flat space we can consider

τν∂µ

(

e F̃µν
)

= 0 ⇒ 1

e
∂µ(eh

µν∂νϕ)− v̂µ (∂µτν − ∂ντµ)h
νρ∂ρϕ =

1

2
(∂µτν−∂ντµ)h

µρhνσFρσ .

(6.15)

In general solving this equation for ϕ and substituting back into the remaining equations

of motion would not result in local expressions. However if τ ∧ dτ = 0 the right hand side

of the equation above vanishes and ϕ = 0 is a solution. The equations of motion for the

magnetic theory on a TTNC background can then be written as:

∂µ
(

ehµρhνσ(∂ρĀσ − ∂σĀρ)
)

= 0 , (6.16)

∂µ
(

ehµσ v̂ρ(∂ρĀσ − ∂σĀρ)
)

= 0 . (6.17)

Because of (6.5) and the fact that ϕ = 0 it follows that Āµ is now inert under local Galilean

boosts.

Turning to the electric theory, we can use the second GED equation (6.10) to solve

for ϕ̃. In parallel with what happens in flat space the first equation in (6.10) would then

describe the electric theory coupled to curved space. This in general will result in nonlocal

equations for the electric fields. However note that defining Ael
µ = Aµ + τµϕ̃ = aµ − ϕMµ

we can write

hµρhνσFρσ = hµρhνσ(∂ρA
el
σ − ∂σA

el
ρ )− ϕ̃hµρhνσ (∂ρτσ − ∂στρ) . (6.18)

When the geometry is twistless the term proportional to ϕ̃ in the above equation vanishes.

As a consequence on a twistless background ϕ̃ does not appear in the GED equation of

motion ∂µ
(

eF̃µν
)

= 0. We conclude that on a TTNC background the equations of motion

for the electric fields aµ and ϕ are still local after solving for ϕ̃ and are given by:

∂µ
(

eFµν
el

)

= 0 , Fµν
el = hµρhνσ(∂ρA

el
σ − ∂σA

el
ρ ) + (v̂µhνρ − v̂νhµρ) ∂ρϕ , (6.19)

For instance contracting ∂µ
(

eF̃µν
el

)

= 0 with τν we find

e−1∂µ (eh
µν∂νϕ)− v̂µhνρ (∂µτν − ∂ντµ) ∂ρϕ = 0 , (6.20)

which is the TTNC generalization of the first equation in (2.3).
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The field ϕ is inert under local Galilean boosts, gauge transformations and U(1)σ
transformations. The field aµ, which satisfies vµaµ = 0 is also invariant under U(1)σ but

transforms under Galilean boosts and gauge transformations as follows:

δaµ = ϕeaµλa + λaeνaaντµ , δΛaµ = ∂µΛ + τµv
ν∂νΛ .

6.5 Coupling to charged matter

The GED action (6.7) or (6.8) has a local U(1)Λ×U(1)σ symmetry. We will first construct

a minimal coupling to charged scalar fields that respects this symmetry and then we will

generalize it by inclusion of non-minimal couplings. We will obtain the minimal coupling

as the null reduction of scalar QED in one dimension higher.

The (d+ 2)-dimensional theory is

S =

∫

dd+2x
√−γ

(

−γABDAψDBψ
⋆ − 1

4
FABF

AB

)

, (6.21)

where DAψ = ∂Aψ− iqAAψ and q is the electric charge. The metric has the same form as

in (6.13). Writing ψ = eimuφ with φ independent of u and reducing along u we obtain:

S =

∫

dd+1xe
(

− i(m− qϕ)φ⋆v̂µDµφ+ i(m− qϕ)φv̂µDµφ
⋆ − hµνDµφDνφ

⋆

−2(m− qϕ)2Φ̃φφ⋆
)

+ SGED . (6.22)

Here Dµ = ∂µ−ieAµ . The scalar field φ is inert under local Galilean boosts but transforms

under U(1)Λ and U(1)σ as δφ = i(qΛ −mσ)φ. The invariance of the action under boosts

is explicit; in order to make the U(1)σ invariance manifest we can rewrite the action as

S=

∫

dd+1xe
(

−i (m− qϕ)φ⋆vµD̂µφ+ i (m− qϕ)φvµD̂µφ
⋆ − hµνD̂µφD̂νφ

⋆
)

+SGED ,

(6.23)

where

D̂µφ = Dµφ+ i (m− qϕ)Mµφ = ∂µφ− iqaµφ+ iqϕ̃τµφ+ imMµφ . (6.24)

The equations of motion for the gauge fields are given by:

e−1∂µ

(

e F̃µν
)

= Jν , e−1∂µ

(

e G̃µ
)

= ρ̃ (6.25)

Jµ = 2q(m− qϕ)φφ⋆v̂µ − iqhµν (φDνφ
⋆ − φ⋆Dνφ) , (6.26)

ρ̃ = iqv̂µ (φDµφ
⋆ − φ⋆Dµφ)− 4q(m− qϕ)Φ̃φφ⋆ . (6.27)

They can be shown to be invariant under U(1)σ using δσρ̃ = Jµ∂µσ. The equation of

motion for the scalar field φ reads

− 2i(m− qϕ)v̂µDµφ− iφe−1∂µ (e(m− qϕ)v̂µ) + e−1Dν (eh
µνDµφ)− 2(m− qϕ)2Φ̃φ = 0 ;

(6.28)

it can be used to check that ∂µ(eJ
µ) = 0 as required by the first equation in (6.25).
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Next we will consider the electric theory coupled to matter in curved space. In the

electric limit the scalar φ does not transform under U(1)Λ. The equations of motion in flat

space (4.4) are extended to a TTNC spacetime as

Jν = e−1∂µ
(

e Fµν
el

)

,

Jµ = 2qmφφ⋆v̂µ − iqhµν (φ∂νφ
⋆ − φ⋆∂νφ) ,

0 = 2im(v̂µ∂µ − iqϕ)φ+ imφe−1∂µ (ev̂
µ)− e−1∂ν (eh

µν∂µφ) + 2m2Φ̃φ .

(6.29)

The magnetic theory in flat space can be coupled to sources as in (3.5). In a curved

TTNC background the sources modify (6.16) as follows:

e−1∂µ
(

ehµρhνσ(∂ρĀσ − ∂σĀρ)
)

= Jν , e−1∂µ
(

ehµσ v̂ρ(∂ρĀσ − ∂σĀρ)
)

= ρ−MνJ
ν .

(6.30)

Here the current Jµ satisfies τµJ
µ = 0 and is conserved ∂µ(eJ

µ) = 0. Under U(1)σ both ρ

and Jµ are invariant while under local Galilean boosts we have δJµ = 0 and δρ = Jνeaνλa.

As in flat space a charged scalar field gives rise to source terms for the magnetic theory

that are not of the most general form: Jµ = 0 and ρ = −qφφ⋆. The equation of motion of

the charged scalar reads

−2imv̂µDµφ− imφe−1∂µ (ev̂
µ) + e−1Dν (eh

µνDµφ)− 2m2Φ̃φ = 0 , (6.31)

where Dµφ = ∂µφ − iqĀµφ = ∂µφ − iqaµφ + iqτµϕ̃φ. This equation of motion can be

obtained from the action

S =

∫

dd+1xe (−imφ⋆vµDµφ+ imφvµDµφ
⋆ − hµνDµφDνφ

⋆) , (6.32)

where Dµφ = ∂µφ− iqĀµφ+ imMµφ. If the gauge potential of the magnetic theory Āµ is

a fixed background field then this action is Galilean invariant in a general TNC geometry

and the restriction to TTNC which was required for (6.30) to make sense is no longer

needed. In this case the action (6.32) agrees with the one presented in [7] where Āµ is

absorbed into Mµ. However in general this is not possible. If we consider several copies of

φ, say φ1 and φ2 with charges and masses (q1,m1) and (q2,m2) respectively and such that

q1/m1 6= q2/m2 the couplings to Āµ and Mµ are no longer proportional and we cannot

absorb Āµ into Mµ.

For completeness we also consider the Lagrangian for a charged point particle coupled

to GED (3.18) which can be extended to a curved TNC background:

S =

∫

dλ

(

1

2
(m− qϕ)

h̄µνẊ
µẊν

τρẊρ
+ qAµẊ

µ

)

, (6.33)

where ĥµν is defined in section 6.1 and dots denote derivatives with respect to λ. The

Galilean boost invariance is manifest. To see the invariance under U(1)σ it is useful to go

from h̄µν to hµν . This action is the generalization to the charged case of the action given

in [9, 45, 46].
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Non minimal couplings. An interesting example of a non-minimal model is obtained

by the null reduction of the following (Pauli coupling) relativistic action

S =

∫

dd+2x
√−γ

(

−γABDAψDBψ
⋆ − 1

4
(1 + gψψ⋆)FABF

AB

)

, (6.34)

where g is a coupling constant. After null reduction we obtain

S =

∫

dd+1xe

[

−i(m−qϕ)φ⋆v̂µDµφ+i(m−qϕ)φv̂µDµφ
⋆−hµνDµφDνφ

⋆−2(m−qϕ)2Φ̃φφ⋆

+(1+gφφ⋆)

(

−1

4
hµρhνσFµνFρσ−hµν v̂ρFρν∂µϕ−Φ̃hµν∂µϕ∂νϕ+

1

2
(v̂µ∂µϕ)

2

)]

. (6.35)

We can also generalize the higher dimensional model by adding a potential term

−√−γV (ψψ⋆) which reduces to −eV (φφ⋆).

7 Outlook

We conclude by mentioning a number of interesting directions for further work.

First of all, we recall the directions mentioned in the introduction as motivations for the

present work which will be worthwhile to study given our results. These include examining

the appearance of non-relativistic electrodynamic fields as background sources in Lifshitz

holography with extra bulk Maxwell fields, e.g. by adding a Maxwell field to the EPD model

of [3–5]. Another application is to consider dynamical (T)TNC gravity [16, 19] coupled

to GED as a holographic bulk gravity theory. Furthermore, it would be interesting to see

whether one can construct a supersymmetric version of GED.

We also note that the scalar field ϕ (mass potential) in the GED action is invariant

under all the relevant symmetries, including Galilean boosts, the Bargmann U(1)σ and

gauge U(1)Λ. Consequently we can add potential terms such as V (ϕ) since they preserve the

symmetries.11 It would be interesting to study the effect of these terms on the symmetries

and couplings that we have found. Another generalization would involve adding higher

spatial derivative terms, as seen in Lifshitz scalar field theories. Furthermore, one could

examine Hodge duality and electromagnetic duality for non-relativistic electrodynamics,

including the coupling of magnetic monopoles to GED.

We have seen in this paper that performing null reductions on relativistic theories is

a powerful tool to obtain consistent non-relativistic theories and provides a simple way

to derive the couplings to non-relativistic backgrounds. It would thus be interesting to

apply this to relativistic fields of spin s (massive or massless) and Yang-Mills theories, and

compare to the works [13, 47, 48] in which various non-relativistic cases are considered. For

example (twisted) null reduction of N = 4 SYM plays an important role in the description

of the boundary theory of 4-dimensional z = 2 Lifshitz space-times following [4]. In another

direction, it would be interesting to add a Chern-Simons coupling to Einstein-Maxwell in

five dimensions and determine the resulting terms in four-dimensional GED after null

reduction.
11We can also add a term like −x

2
(∂iϕ)

2 but this can be removed by redefining ϕ̃ in (2.9) to ϕ̃− x

2
ϕ.
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Another extension of the present work is to consider the Proca theory. Using null

reduction of the D + 1 dimensional Proca term µ2ABA
B/2 it is not difficult to see that

this adds the terms

∆SGED = −
∫

dd+1x e
µ2

2

(

hµνAµAν − 2v̂µAµϕ+ 2Φ̃ϕ2
)

. (7.1)

to the action (6.7) of GED coupled to TNC. On flat TNC space this leads to the modified

equations of motion

∂2
t ϕ+

(

∂i∂
iϕ̃+ ∂t∂ia

i
)

= µ2ϕ̃ (7.2)

−∂i∂
iϕ = µ2ϕ (7.3)

∂t∂iϕ+ ∂i∂ka
k − ∂k∂

kai = −µ2ai . (7.4)

One could thus study how these terms affect the degrees of freedom and the symmetries of

the theory.

A further natural direction would be to consider the ultra-relativistic limit of electro-

magnetism, i.e. the Carrollian limit of Maxwell’s theory (see e.g. [10]). The equations of

motions follow again by appropriately scaling the fields, using Maxwell’s equations (2.1)

and the limit c → 0. In particular for the electric limit theory one takes At = −ϕ̃ and

Ai = cai, leading to the equations of motion

∂i(∂tai + ∂iϕ̃) = 0 , ∂t(∂tai + ∂iϕ̃) = 0 (7.5)

where we note that the first equation coincides with the first equation of the non-relativistic

magnetic limit (2.5). This limit can also be taken at the level of the Maxwell action leading

to an action proportional to 1
2(∂tai + ∂iϕ̃)

2. For the magnetic limit theory the fields scale

as At = −ϕ and Ai = ai/c, leading to the equations of motion

∂t∂iai = 0 , ∂2
t ai = 0 . (7.6)

It would be interesting to study the symmetries of these theories [49], their cou-

pling to charged matter, and the covariant coupling to curved Carrollian geometry (see

e.g. [10, 50, 51]).

Finally, it would be interesting to apply our results to non-relativistic condensed mat-

ter systems, which could be relevant in situations where the electromagnetic field is a

static electric or magnetic field, so that there are no electromagnetic waves. In this con-

text, Chern-Simons formulations of non-relativistic electrodynamics might be worthwhile

to consider as well. It remains an intriguing open question whether GED is realized in

concrete real-life systems.
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