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MIND THE GAP: INDUCTIVE BIASES                                               
IN PHONOLOGICAL FEATURE LEARNING 

KLAAS SEINHORST 
Amsterdam Center for Language and Communication, University of Amsterdam 

Amsterdam, The Netherlands 
seinhorst@uva.nl 

Although extensive research has been done into the acquisition of non-linguistic feature 
combinations, empirical evidence about phonological feature learning is scarce. I present 
results from learning experiments in which participants learnt a data set with the internal 
structure of a plosive segment inventory. The outcomes suggest that learning biases may 
indeed play a role in phonological typology, and that learners reduce the cumulative 
complexity in the data set considerably. These results support the hypothesis that the 
reduction of complexity is a driving force in the evolution of language.  

1. Introduction: feature learning 

Recent years have seen an impressive body of research investigating the 
question how cognitive constraints operate on linguistic typology: considering 
that language has been passed on between countless generations, any learning 
biases that humans may possess must have had a profound effect on phenomena 
that we observe in languages today (Christiansen & Chater 2008, Chater & 
Christiansen 2010, and many others), and much empirical work has been done to 
show that some properties of language indeed emerge as a result of the repeated 
acquisition process.  

One striking property of spoken languages is that they seem to prefer sound 
systems without gaps (De Groot 1931, Martinet 1968, Clements 2003). 
Surprisingly, very few attempts have been made to explain this observation. 
Martinet (1968) suggests almost casually that this observation may have 
something to do with the way we learn a language, but does not expound on this 
suggestion, and empirical evidence has mostly been lacking. In the last few 
years, however, some experiments have been done to investigate how humans 
learn phonological feature combinations. These experiments have been inspired 
by experiments from cognitive psychology starting in the 1960s, in which 
participants learnt non-linguistic feature combinations. These stimuli could be 



  

described as a combination of three binary feature values; the complete stimulus 
set, then, comprised 23 = 8 categories, of which subjects were shown 4. There 
are six different ways in which four categories can be drawn from the complete 
data set, nowadays often referred to as the six Shepard types (after the researcher 
who invented them, cf. Shepard et al. 1961): 
 

 
 

 
 

 
       I                    II                 III                   IV                  V                  VI 
Fig. 1. The six types from Shepard, Hovland & Jenkins (1961). 

In memorization and classification tasks, learners of type I did best; learners of 
type II fared worse, but still better than those trained on types III-V; and type VI 
proved to be very difficult. Feldman (2000) suggests that the difficulty of a type 
is correlated with its logical complexity, a measure of the complexity of the 
internal structure of the type: more compressible inventories have lower 
complexity indices. Griffiths et al. (2008) carried out a slightly modified version 
of Shepard et al.’s experiment within the iterated learning paradigm, and it 
turned out that participants increasingly often selected Type I, the type with the 
lowest logical complexity. These results suggest that our learning biases cause 
us to prefer compressible data sets, and indeed Kirby et al. (2015) argue that the 
reduction of complexity is a major factor in the evolution of language. 

2. The acquisition of phonological feature combinations 

Both Shepard et al. (1961) and Griffiths et al. (2008) used non-linguistic stimuli 
in their experiments, but their results may also have implications for our 
understanding of how humans learn phonological feature combinations. 
However, so far little research is available on this topic. Moreton et al. (2015) 
used the Shepard types to investigate the acquisition of different phonological 
alternation patterns; Pater & Staubs (2013) provided computer simulations 
suggesting that iterated learning reduces complexity in plosive inventories, and I 
present empirical evidence for this hypothesis. I have conducted experiments 
that were inspired by the Shepard types, but applied to phonology, more 
specifically to sound systems, and in particular to plosive inventories.  

All spoken languages that have been described so far make use of plosive 
segments; the vast majority of languages employ (at least) a three-way place of 
articulation contrast (labial vs. coronal vs. dorsal), and most of them also 



  

implement an binary voicing contrast (often voiceless vs. voiced). Table 1 lists 
the six resulting feature combinations that are most common in the world’s 
languages: 

 

Table 1. Common feature combinations in plosive inventories. 

 [labial] [coronal] [dorsal] 
[–voice] /p/ /t/ /k/ 
[+voice] /b/ /d/ /g/ 

 
We can capture these 2·3 = 6 categories in a Shepard-type-like representation. 
Assuming that languages use between three and six feature combinations, the 
following types can be constructed: 
 
 
 

 
        I              II             III            IV            V            VI           VII          VIII  
Fig. 2. The eight types that are based on plosive inventories. 
 
In the learning experiment, participants (n = 96) were assigned one of the types 
from Fig. 2. Since the participants were adults and thus had already acquired a 
phonological system, the experimental stimuli were not segments from spoken 
language, but from sign language. The data set had the same structure as a 
plosive inventory: all signs could be described as a combination of a ternary 
handshape feature and a binary thumb opposition contrast. None of the 
participants had any knowledge of sign language: this way, it was ensured that 
participants acquired a feature system de novo, similar to the way infants learn a 
new phonological system (for evidence for feature learning biases in infants, cf. 
Saffran & Thiessen (2003)). 
 
A male signer was photographed producing the six signs, each eight times, to 
ensure some phonetic variation between tokens. Participants were exposed to 
photos of the signs in random order, and each category in the learner’s type 
appeared in the input 24 times (i.e. each photo was shown three times). This 
means that Type I, II and III learners saw 72 pictures in random order, Type IV, 
V and VI learners saw 96, Type VII learners saw 120 and Type VIII learners 
saw 144. Subsequently, participants were asked to indicate with sliders how 
often they had seen the six possible signs (and two controls). The slider had no 
ticks, in order to avoid preference for the ticked values; its left end was marked 
‘not at all’, its right end ‘very often’. Although participants only saw those two 



  

subjective labels, the left end corresponded to the value 0, the right end to 100; 
responses were scaled to the highest indicated value. For each type, Table 2 
shows the logical complexity and error score (quantified as the average 
misestimation per category): 
 

Table 2. Logical complexity indices and error scores for the eight types. 

 I II III IV V VI VII VIII 
logical complexity 1 3 5 3 1 5 4 1 
error score 4 4 9 11 9 24 14 10 

 
A statistically significant effect of type on error score was found 
(F(7, 88) = 7.206, p < .001), as well as a statistically significant correlation 
between logical complexity and error score (ρ = .365, p < .001). These findings 
are in line with the results from experiments about non-linguistic feature 
learning. 

Knowing what signs participants indicated having seen, we can also interpret 
their responses in terms of the eight types, i.e. as categorizations: Table 3 shows 
the probabilities of type A (rows) being categorized as type B (columns). 

 
Table 3. Categorization responses per type. 

 output 
input I II III IV V VI VII VIII 

I 1.0        
II  .92   .08    
III   .92 .08     
IV    .75   .17 .08 
V     1.0    
VI      .5 .17 .33 
VII       .75 .25 
VIII        1.0 

 
The diagonal that runs from the top left to the bottom right contains the 
“correct” responses. The table reveals interesting patterns: firstly, learners 
generally reproduce inventories with low complexity faithfully (as was also 
clear from the low error scores for types I, V and VIII in Table 2); secondly, if 
learners make an error, they never omit a category that was present in the input, 
but always fill gaps; thirdly, most errors in the types with more than three 
categories favour type VIII, one of the types without gaps. Such regularization 
was reported by a.o. Hudson Kam & Newport (2005) and Ferdinand (2015) as 
well, and it is likely due to inductive biases that aim to reduce complexity. In 



  

fact, this cohort of learners has reduced the cumulative complexity in the data 
set by 11.2%. 
 
We can consider the proportions from Table 3 to be transition probabilities, 
which would make Table 3 a Markov matrix. If we assume that the outputs of 
these learners serve as inputs to a consecutive group of learners, who have the 
same inductive biases and whose outputs are fed to a next group, etc., we can set 
up a Markov chain. Figure 4 shows how the predicted frequencies of the eight 
types evolve, and reveals that a stable final state emerges in approximately 50 
generations.  
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Fig. 4. The development of the relative frequencies of the eight types over 50 generations. 

 
Table 4 lists the predicted frequencies after 50 generations as well as the attested 
frequencies in P-base, a database of segment inventories (Mielke 2008): 
 

Table 4. Predicted relative frequencies for all types after 50 generations, and their 
attested relative frequencies in P-base. 

 Type 
frequency (%) I II III IV V VI VII VIII 
   predicted 12.5 0.0 0.0 0.0 25.0 0.0 0.0 62.5 
   attested 20.1 0.3 1.0 2.7 0.5 0.6 10.8 63.9 

 
 
 



  

In this stable state, only the types with the lowest complexity (I, V, VIII) remain. 
The cumulative logical complexity has been reduced considerably: it is 65.2% 
lower than in the initial state.  

The correlation between the predicted frequencies in the Markov chain and 
the attested frequencies in P-base, both cautiously treated as ranked variables 
because of the low numbers of observations for some types, is not statistically 
significant (Pearson’s r = .625, p = .098). This can largely be ascribed to 
phonetic factors that play a role in the typology of plosive inventories. For 
instance, type I languages in spoken language may be more frequent than types 
II and III because speakers avoid learning an intricate phenomenon like vocal 
fold vibration until all places of articulation have been used; types II and V may 
be rare because they only use part of the oral cavity and would force speakers to 
avoid other regions, which would be articulatorily effortful; /p/ often lenites to 
/f/, creating a type VII system; /g/ frequently undergoes spirantization, also 
leaving a type VII inventory. What still stands, however, is the overwhelming 
majority of type VIII systems, both in the predicted and attested frequencies, and 
the low frequencies of types II, III, IV and VI. 

3. Conclusion 

In learning experiments with a sign language that resembles a plosive inventory, 
logical complexity turned out to be a good predictor of learning success, and a 
single cohort of participants reduced logical complexity by 11.2%; if we use 
their categorization proportions iteratively, the reduction increases to 65.2%. 
The stable state of these iterations correlate fairly well with attested frequencies 
in spoken language, if we also take perceptual and articulatory factors into 
account. These results provide empirical support for the hypothesis that the 
reduction of complexity is a driving factor in language evolution. 
 
 
 
 
 
 
 
 
 
 



  

References 

Chater, Nick & Morten Christiansen (2010). Language acquisition meets 
language evolution. Cognitive Science, 34, 1131-1157. 

Christiansen, Morten & Nick Chater (2008). Language as shaped by the brain. 
Behavioral and Brain Sciences, 31, 489-558. 

Clements, Nick (2003). Feature economy in sound systems. Phonology, 20, 287-
333. 

De Groot, Willem (1931). Phonologie und Phonetik als Funktionswissen-
schaften. Travaux du Cercle Linguistique de Prague, 4, 146-147. 

Feldman, Jacob (2000). Minimization of Boolean complexity in human concept 
learning. Nature, 407, 630-633. 

Ferdinand, Vanessa (2015). Inductive evolution: cognition, culture and 
regularity in language. PhD thesis, University of Edinburgh. 

 Griffiths, Thomas, Brian Christian & Michael Kalish (2008). Using category 
structures to test iterated learning as a method for revealing inductive biases. 
Cognitive Science, 32, 68-107. 

Hudson Kam, Carla & Elissa Newport (2005). Regularizing unpredictable 
variation: the roles of adult and child learners in language formation and 
change. Language Learning and Development, 1 (2), 151-195. 

Kirby, Simon, Mónica Tamariz, Hannah Cornish & Kenny Smith (2015). 
Compression and communication in the cultural evolution of linguistic 
structure. Cognition, 141, 87-102. 

Martinet, André (1968). La linguistique synchronique: études et recherches. 
Paris: Presses Universitaires de France. 

Mielke, Jeff (2008). The emergence of distinctive features. Oxford: Oxford 
University Press. P-base: http://aix1.uottawa.ca/~jmielke/pbase/index.html 

Moreton, Elliot, Joe Pater & Katya Pertsova (2015). Phonological concept 
learning. Cognitive Science, 1-66. 

Pater, Joe & Robert Staubs (2013). Feature economy and iterated grammar 
learning. Presentation, 21st Manchester Phonology Meeting. 

Saffran, Jenny & Erik Thiessen (2003). Pattern induction by infant language 
learners. Developmental Psychology, 39 (3), 484-494. 

Shepard, Roger, Carl Hovland & Herbert Jenkins (1961). Learning and 
memorization of classifications. Psychological Monographs, 75 (13). 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© Seinhorst 2016


