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We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids
at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective
mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable
models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the
corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations.
The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk,
but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model.
For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations
in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift
of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective
field theory are compared with numerical results obtained by time-dependent density matrix renormalization
group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S = 1/2, 1, and 3/2.

DOI: 10.1103/PhysRevB.93.195129

I. INTRODUCTION

Striking properties in many-body quantum systems often
emerge from the interplay between interactions and a con-
strained geometry. In a Fermi gas confined to a single spatial
dimension, for example, interactions lead to dramatically dif-
ferent spectral properties as compared to its higher dimensional
counterparts described by Fermi liquid theory [1–4].

The low-energy limit of one-dimensional (1D) Fermi gases
is conventionally treated within the Luttinger liquid (LL)
framework [5]. Indispensable in this respect is the exactly
solvable Tomonaga-Luttinger (TL) model [6,7], which allows
a nonperturbative treatment of interactions at the cost of an
artificially linearized dispersion relation for the constituent
fermions. Using the technique of bosonization, the model is
solved in terms of bosonic collective modes corresponding to
quantized waves of density.

Static correlations and many thermodynamic properties are
captured remarkably well by the Luttinger liquid approach. For
many dynamic effects, however, it is clear that band curvature
needs to be taken into account. For example, the relaxation of
the bosonic sound modes, or the related width of the dynamical
structure factor (DSF), are not captured by Luttinger liquid
theory, which predicts a delta-function peak for the DSF.
Attempts to treat the DSF broadening in the bosonized theory,
in which the dispersion curvature translates to interactions
between the modes diagonalizing the TL model, are hindered
by on-shell divergences in the perturbative expansion. Certain
aspects of the DSF broadening can nevertheless be captured
in the bosonic basis [8–12]. An alternative approach uses a
reformulation of the TL model including a quadratic correction
to the dispersion in terms of fermionic quasiparticles. In the
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low-energy limit, these turn out to be weakly interacting
[13–15] restoring some of the elements of Fermi liquid theory
in one dimension. At high energies, insight into dynamic
response functions such as the DSF and the spectral function,
and in particular into the characteristic threshold singularities,
can be obtained by mapping the problem to a mobile impurity
Hamiltonian. This approach hinges on the observation that
the thresholds correspond to configurations of a high-energy
hole or particle, which can effectively be considered as
separated from the low-energy subband, and that the threshold
singularities emerge from the scattering of the modes at
the Fermi level on this impurity mode. This identifies the
anomalous correlation structure of 1D gases as an example of
Anderson’s orthogonality catastrophe [16] and links it to the
physics of the x-ray edge singularity [17]. Many new results on
dynamic correlations, in general and for specific models, have
been obtained this way [14,18–29]. This bears relevance to,
e.g., Coulomb drag experiments [9,30–34] as well as relaxation
and transport [35–39]. Dispersion nonlinearity also greatly
influences the propagation of a density bump or dip, which
would retain its shape when time-evolved under the linear
theory but relaxes by emitting shock waves in the nonlinear
theory [40–42]. Closer to the present work is the late-time
dependence of correlations [43–45], which are related to
the singularities in the frequency domain. Collectively, the
extensions of LL theory that include band curvature effects
may be called nonlinear Luttinger liquid (nLL) theory, but we
will mainly be concerned with the mobile impurity approach
to correlations (see Ref. [46] for further details).

Motivated by these theoretical advances, we study the effect
of reflective boundaries on a 1D gas beyond the low-energy
regime. Our work is also inspired by studies of “boundary
critical phenomena” [47–49] within the LL framework that
have unveiled remarkable effects, e.g., in the conductance of
quantum wires [50–52], screening of magnetic impurities [53],
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Friedel oscillations in charge and spin densities [54–56], and
oscillations in the entanglement entropy [57,58].

We focus on response functions which can be locally
addressed—such as the local density of states (LDOS) and
autocorrelation functions—as these are expected to show the
clearest bulk versus boundary contrast. Many studies have
addressed the LDOS for LLs with a boundary [59–68]. LL
theory predicts a characteristic power-law suppression (for
repulsive interactions) of the LDOS at the Fermi level with
different bulk and boundary exponents which are nontrivially
but universally related [69,70]. This has been verified using
different techniques [59,60,66,71] and is used as a consistency
check in the experimental identification of LL physics [72,73].

Away from the Fermi level, no universal results are known.
This pertains both to general statements on the restricted
energy range where the power-law scaling is valid [60,66]
and to details of the line shape at higher energies. Here, we
deal with the latter and argue that the nonanalyticities of,
e.g., the LDOS away from zero energy can be understood
in the framework of nLL theory for systems with open and
periodic boundary conditions alike. The main application
of our theory is in describing the power-law decay of
autocorrelation functions in real time. We show that bulk and
boundary exponents are governed by the same parameters in
the mobile impurity model and obey relations that depend
only on the Luttinger parameter. These relations provide a
quantitative test of the nLL theory. We perform this test
by analyzing time-dependent density matrix renormalization
group (tDMRG) [74,75] results for spin autocorrelations of
critical spin chains. The statement about boundary exponents
applies to integrable models in which the nonanalytic behavior
at finite energies is not susceptible to broadening due to three-
body scattering processes [14,24]. The effects of integrability
breaking are also investigated, both numerically and from
the perspective of the mobile impurity model. We find that
for nonintegrable models the finite-energy singularities in
boundary autocorrelations are broadened by decay processes
associated with boundary operators in the mobile impurity
model. As a result, the boundary autocorrelation decays
exponentially in time in the nonintegrable case.

The paper is organized as follows. In Sec. II, we discuss
the LDOS for spinless fermions as a first example of how dy-
namical correlations in the vicinity of an open boundary differ
from the result in the bulk. In Sec. III, we present the mobile
impurity model used to calculate the exponents in the LDOS
near the boundary. In Sec. IV, we generalize our approach
to predict relations between bulk and boundary exponents of
other dynamical correlation functions, including the case of
spinful fermions. Section V addresses the question whether
finite-energy singularities exist in nonintegrable models. Our
numerical results for the time decay of spin autocorrelation
functions are presented in Sec. VI. Finally, we offer some
concluding remarks in Sec. VII.

II. GREEN’S FUNCTION FOR SPINLESS FERMIONS

We are interested in 1D systems on a half-line, where we
impose the boundary condition that all physical operators
vanish at x = 0. Let us first discuss the case of spinless
fermions on a lattice. We define the (non-time-ordered)

Green’s function at position x as

G(t,x) = 〈{�(x,t),�†(x,0)}〉, (1)

where �(x) annihilates a spinless fermion at position x and
the time evolution �(x,t) = eiHt�(x)e−iH t is governed by a
local Hamiltonian H . The brackets 〈. . .〉 denote the expectation
value in the ground state of H . The Fourier transform to the
frequency domain yields the LDOS

ρ(ω,x) = 1

2π

∫ ∞

−∞
dt eiωtG(t,x). (2)

The boundary case corresponds to the result for x = a,
where a is the lattice spacing for lattice models or the
short-distance cutoff for continuum models. We refer to the
bulk case of G(t,x) as the regime x � a and vt < x, where
v is the velocity that sets the light cone for propagation of
correlations in the many-body system [76]. The latter condition
allows one to neglect the effects of reflection at the boundary,
and is routinely employed in numerical simulations aimed
at capturing the long-time behavior in the thermodynamic
limit [22,24,45,77].

As our point of departure, consider the free fermion model

H0 = −1

2

∑
x�1

[�†(x)� (x + 1) + H.c.]

=
∑

k

εk�
†
k�k, (3)

where εk = − cos k, with k ∈ (0,π ), is the free fermion
dispersion and we set a = 1. The single-particle eigenstates
of H0 are created by

�
†
k =

√
2

π

∑
x�1

sin(kx)�†(x). (4)

We focus on the case of half filling, in which the ground state is
constructed by occupying all states with 0 < k < π/2. In this
case particle-hole symmetry rules out Friedel oscillations [56]
and the average density is homogeneous, 〈�†(x)�(x)〉 = 1/2.
The Green’s function is given exactly by

G0(t,x) = 4

π

∫ π/2

0
dk sin2(kx) cos(εkt), (5)

and the LDOS is

ρ0(ω,x) = 2 sin2[x arccos(ω/ε0)]

π

√
ε2

0 − ω2
θ (ε0 − |ω|), (6)

where ε0 ≡ |εk=0| = 1.
The result for G0(t,x) is depicted in Fig. 1(a). First we

note that, for any fixed position x, there is a clear change
of behavior at the time scale t ∼ Trefl(x) = 2x/v (where
v = 1 for free fermions). This corresponds to the time for
the light cone centered at x to reflect at the boundary and
return to x. For t < Trefl(x), G0(t,x) is independent of x (i.e.,
translationally invariant for fixed t and x > vt/2) and the
result is representative of the bulk autocorrelation. The arrival
of the boundary-reflected correlations makes G0(t,x) deviate
from the bulk case and become x-dependent for t > Trefl(x).
After we take the Fourier transform to the frequency domain,
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(a) (b)

FIG. 1. (a) Green’s function G0(t,x) for free fermions in a semi-
infinite chain at half-filling [Eq. (5)], where x is the distance from the
boundary. The dashed line represents the reflection time Trefl(x) =
2x/v with v = 1. (b) The deep hole configuration responsible for
the oscillations at x = 0 related to the singularities of the LDOS
(Fig. 2). There is an equivalent high-energy particle configuration, not
depicted. The dashed circles indicate the projection onto low-energy
and impurity subbands important once interactions are taken into
account.

the reflection time scale implies that the LDOS in Eq. (6)
oscillates with period 	ω(x) ∼ 2π/Trefl(x) = πv/x. In the
bulk case, the rapid oscillations in the frequency dependence
of ρ0(ω,x � 1) are averaged out by any finite frequency
resolution [68]. In numerical simulations of time evolution
in the bulk, the usual procedure is to stop the simulation at
t < x/v (or before in case the maximum time is limited by
various sources of error [74,75]). This avoids the reflection at
the boundary but at the same time sets the finite frequency
resolution.

Let us now discuss the time dependence of the Green’s
function at the boundary (x = 1) versus in the bulk (x � 1,
vt < x). In both cases (see Fig. 2), the Green’s function
shows oscillations in the long-time decay, which are not
predicted by the usual low-energy approximation of linearizing
the dispersion about kF = π/2 [5]. The explanation for the
real-time oscillations is the same for open or periodic boundary
conditions; for the case of periodic boundary conditions, see
the reviews in Refs. [43,46]. The oscillations stem from a
saddle point contribution to the integral in Eq. (5) with k ≈ 0

x

t t

− 0 0 − 0 000 ω ω

G0(t)

ρ0(ω)ρ0(ω)

G0(t)

FIG. 2. Noninteracting Green’s function G0(t,x) and LDOS
ρ0(ω,x). The curves on the left correspond to the chain end (x = 1),
and the curves on the right to a site in the bulk (x � 1).

[in the hole term of G0(t,x)] or k ≈ π (in the particle term).
This contribution is associated with an excitation with energy
ε0, the maximum energy of a single-hole or single-particle
excitation [see Fig. 1(b)]. We call this energy the band edge of
the free fermion dispersion. The propagator of the band edge
mode decays more slowly in time due to its vanishing group
velocity. The importance of this finite-energy contribution is
manifested in the LDOS as a power-law singularity at ω = ±ε0

(see Fig. 2). Notice the clear difference between the bulk and
the boundary case: while in the bulk the LDOS has a van Hove
singularity at the band edge, ρ0(ω,x � 1) ∼ |ω ± ε0|−1/2, at
the boundary one finds a square-root cusp ρ0(ω,x = 1) ∼
|ω ± ε0|1/2.

One of the main achievements of the nLL theory is to
incorporate the contributions of finite-energy excitations in
dynamical correlation functions for interacting 1D systems
with band curvature [43,46]. Our purpose here is to generalize
this approach to describe the dynamics in the vicinity of a
boundary. For concreteness, we consider the model

H = H0 + V
∑
x�1

n(x)n(x + 1), (7)

where n(x) ≡ �†(x)�(x) is the density operator and we focus
on the repulsive regime V > 0. Importantly, the model in
Eq. (7) is integrable and exactly solvable by Bethe ansatz [78].
This guarantees that the band edge of elementary excitations is
still well defined in the interacting case. We postpone a detailed
discussion about integrability-breaking effects to Sec. V.

Before outlining the derivation of the results for the
interacting model (see Sec. III), we summarize some known
results together with our findings for the Green’s function and
LDOS. The calculation within the LL framework leads to the
well-known predictions [50,69,70]

GLL(t,x) ∼ 1/tα+1, (8)

ρ(ω ≈ 0,x) ∼ |ω|α, (9)

where the exponent α is different for x in the bulk than at
the boundary (subscript “end”): αbulk = (K + K−1)/2 − 1 and
αend = K−1 − 1, where K is the Luttinger parameter (K = 1
for free fermions and K < 1 for repulsive interactions). As
mentioned above, the real-time oscillations are not predicted
by LL theory. It is known that taking into account the
finite-energy contributions within the nLL theory leads to the
following contributions from the band-edge excitation in the
bulk:

Gosc(t,x � 1) ∼ e±iεt /t ᾱbulk+1, (10)

ρ(ω ≈ ±ε,x � 1) ∼ |ω ∓ ε|ᾱbulk, (11)

where ε is the renormalized band edge in the interacting system
and the bulk exponent for the oscillating contribution is

ᾱbulk = −1/2 + γ 2/(2π2K), (12)

with γ the phase shift of low-energy modes due to scattering
off the high-energy hole [for free fermions, γ = 0; the phase
shift for the interacting model in Eq. (7) will be specified in
Sec. III].
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Our new result is that the oscillating contribution at the
boundary is given by

Gosc(t,x = 1) ∼ e±iεt /t ᾱend+1, (13)

ρ(ω ≈ ±ε,x = 1) ∼ |ω ∓ ε|ᾱend, (14)

with the same band-edge frequency ε as in the bulk, but with
a different exponent

ᾱend = 1/2 + γ 2/(π2K). (15)

When the band-edge mode is the dominant finite-energy
contribution to the Green’s function, the asymptotic long-time
decay of G(t,x) is well described by a linear combination of
the Luttinger liquid term in Eq. (8) and the oscillating term in
Eq. (10) or Eq. (13).

There are two noteworthy modifications in going from
the bulk to the boundary: (i) an extra factor of 1/t in
the decay of G osc(t,x); (ii) the doubling of the O(γ 2)
orthogonality catastrophe correction to the exponent [5,16].
Both are recurrent in the exponents that will be discussed
in Sec. IV. Furthermore, while both exponents vary with
interactions, Eqs. (12) and (15) imply the relation

ᾱend − 2ᾱbulk = 3/2, (16)

which is independent of the nonuniversal phase shift γ .

III. MOBILE IMPURITY MODEL WITH OPEN
BOUNDARY

To derive the results above, we use the mode expansion that
includes band-edge excitations

�(x) ∼ eikF xψR(x) + e−ikF xψL(x) + d†(x), (17)

where ψR,L denote the low-energy modes, d† creates a hole in
the bottom of the band (k ≈ 0), and all fields on the right-hand
side are slowly varying on the scale of the short-distance cutoff
a.

A crucial assumption implicit in Eq. (17) is that we identify
the excitations governing the long-time decay in the interacting
model as being “adiabatically connected” with those in the
noninteracting case, in the sense that they carry the same
quantum numbers and their dispersion relations vary smoothly
as a function of interaction strength. This condition can be
verified explicitly for integrable models, where one computes
exact dispersion relations for the elementary excitations. We
should also note that for lattice models such as Eq. (7) the
mode expansion must include a high-energy particle at the top
of the band, with k ≈ π [22]. In the particle-hole symmetric
case, the latter yields a contribution equivalent to that of the
deep hole with k ≈ 0, and we get the particle contribution
in the LDOS simply by taking ω → −ω in the result for the
hole contribution. More generally, the high-energy spectrum
of the interacting model may include other particles and bound
states, which can also be incorporated in the mobile impurity
model [24]; we shall address this question in Sec. VI B.

In Eq. (17), we deliberately write the right and left movers
separately, even though they are coupled by the boundary
conditions [52,53]. The condition �(0) = 0 is satisfied if we

impose

ψL(0) = −ψR(0), d(0) = 0. (18)

These relations can be checked straightforwardly in the
noninteracting case using the single-particle modes �k . The
boundary condition on d(x) means that for any boundary
operator that involves the high-energy mode, we must take
d(a) ∼ a∂xd(0).

We bosonize the low-energy modes with the conventions

ψR,L ∼ e−i
√

2πφR,L , (19)

ψ
†
R,LψR,L ∼ ∓ 1√

2π
∂xφR,L, (20)

where φR,L(x) are chiral bosonic fields that obey
[∂xφR,L(x),φR,L(x ′)] = ±iδ(x − x ′). A convenient way to
treat the boundary conditions for the low-energy modes is to
use the folding trick [51,52]: we include negative coordinates
x < 0 and identify

ψL(x) ≡ −ψR(−x). (21)

For the bosonic fields, we use

φL(x) ≡ φR(−x) +
√

π/2. (22)

The effective Hamiltonian that describes the interaction
between the band-edge mode and the low-energy modes is the
mobile impurity model

HMIM =
∫ ∞

−∞
dx

v

2
(∂xϕ)2 +

∫ ∞

0
dx d†

(
ε + ∂2

x

2M

)
d

+ vγ√
2πK

∫ ∞

0
dx d†d[∂xϕ(x) + ∂xϕ(−x)]. (23)

Here, ϕ(x) is the chiral boson that diagonalizes the Luttinger
model on the unfolded line

ϕ(x) = K− 1
2 + K

1
2

2
φR(x) + K− 1

2 − K
1
2

2
φR(−x), (24)

which obeys [∂xϕ(x),ϕ(x ′)] = i sgn(x)δ(x − x ′). The param-
eters ε, −M and γ are nonuniversal properties of the hole
with k = 0 (which is treated as a mobile impurity): its finite
energy cost, effective mass and dimensionless coupling to the
low-energy modes, respectively. Note that the linear term in
the dispersion vanishes for the band-edge mode, which is why
we have to take into account the effective mass [see Fig. 1(b)].
In models solvable by Bethe ansatz, ε and M are determined by
the exact dispersion of single-hole excitations. The coupling γ

can be obtained from the so-called shift function [23,79] and
the finite size spectrum [24] for periodic boundary conditions.
In Galilean-invariant systems, we can relate γ to the exact
spectrum by using phenomenological relations [25].

The Hamiltonian in Eq. (23) contains only marginal
operators. It can be obtained from the mobile impurity model
in the bulk [15] by applying the folding trick. Remarkably, all
boundary operators that perturb this Hamiltonian and couple
the d field to the bosonic modes are highly irrelevant, as they
necessarily involve the derivative ∂xd(0) (which by itself has
scaling dimension 3/2). For the moment, we neglect the effect
of all formally irrelevant boundary operators, but return to this
point in Sec. V.
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Like in the bulk case, we can decouple the impurity mode
by the unitary transformation

U = exp

{
i

γ√
2πK

∫ ∞

0
dx [ϕ(x) + ϕ(−x)]d†d

}
. (25)

The fields transform as

ϕ̃(x) = Uϕ(x)U † = ϕ(x) + γ

2
√

2πK
Fd (x), (26)

d̃(x) = Ud(x)U † = d(x)e−i
γ√

2πK
[ϕ(x)+ϕ(−x)]

, (27)

where

Fd (x) =
∫ ∞

0
dy [sgn(x − y) + sgn(x + y)]d†(y)d(y). (28)

Equation (26) implies

∂xϕ̃(x) = ∂xϕ(x) + γ√
2πK

d†(x)d(x). (29)

The Hamiltonian becomes noninteracting when written in
terms of the transformed fields

HMIM =
∫ ∞

−∞
dx

v

2
(∂xϕ̃)2 +

∫ ∞

0
dx d̃†

(
ε + ∂2

x

2M

)
d̃. (30)

The crucial point is that the representation of the fermion field
now contains a vertex operator:

�(x) ∼ d†(x) ∼ d̃†(x)e−i
√

2πν�(x), (31)

where

�(x) = ϕ̃(x) + ϕ̃(−x) (32)

and

ν = γ 2/(4π2K). (33)

After the unitary transformation, we can calculate cor-
relations for the free fields using standard methods. The
Green’s function for the free d̃ must be calculated with the
proper mode expansion in terms of standing waves, d̃(x) =√

(2/π )
∫ k0

0 dk sin(kx)d̃k , where k0 � a−1 is the momentum
cutoff of the impurity subband. We obtain

〈d̃(x,t)d̃†(x,0)〉 = e−iεt

√
−iM

2π (t + i0)
[1 − ei2Mx2/(t+i0)].

(34)
In the bulk regime of Eq. (34), we neglect the rapidly oscillating
factor ∝ ei2Mx2/t ; in this case, the free impurity propagator
decays as ∼t−1/2. In the boundary case, we expand for x ∼
a � √

t/M and the free impurity propagator decays as ∼t−3/2.
This faster decay is due to the vanishing of the wave function
at the boundary. It can also be understood by noting that at the
boundary the impurity correlator can be calculated as

〈d̃(a,t)d̃†(a,0)〉 ∼ a2〈∂xd̃(0,t)∂xd̃
†(0,0)〉, (35)

and each spatial derivative amounts to an extra factor of t−1/2

due to the quadratic dispersion of the band-edge mode.
In addition to the free impurity propagator, we have to

consider the correlator [52,53,69]

〈e±i
√

2πν�(x,t)e∓i
√

2πν�(x,0)〉 ∝
∣∣∣∣ x2

t2(4x2 − v2t2)

∣∣∣∣
ν

. (36)

Thus, in the bulk case (2x � vt), the correlator for the vertex
operator adds a factor of ∼t−2ν to the decay of the Green’s
functions. In the boundary case, the factor is ∼t−4ν , a faster
decay that stems from the correlation between ϕ̃(x) and ϕ̃(−x)
for x ∼ a (whereas these become uncorrelated right- and left-
moving bosons in the bulk). Putting the effects together leads
to

Gosc(t,a) ∼ 〈d̃(a, ± t)d̃†(a,0)〉〈ei
√

2πν�(a,t)e−i
√

2πν�(a,0)〉
∼ e∓iεt t−

3
2 −4ν, (37)

(where ± corresponds to particle/hole impurity), which is the
result in Eqs. (13) and (15).

The scaling dimension of the vertex operator e−i
√

2πν� can
be related to a phase shift of the low-energy modes due to
scattering with the d hole, establishing a connection with
the orthogonality catastrophe [20]. For the integrable model
in Eq. (7), the exact phase shift is a simple function of the
Luttinger parameter [22]:

γ = π (1 − K), (38)

where the exact Luttinger parameter is for 0 � V � 1

K = π

2(π − arccos V )
. (39)

The renormalized band edge frequency is

ε = π
√

1 − V 2

2 arccos V
. (40)

The exact velocity of the low-energy modes and the effective
mass of the impurity are also known: v = M−1 = ε (in units
where a = 1).

In the free fermion limit, a particle tunneling into or out of
the system is restricted to the free or occupied single-particle
states. As is visible in Fig. 2 and Eq. (6) the LDOS is then
identically zero outside of the bandwidth set by the dispersion
relation. Turning on interactions allows for tunneling processes
in which the particle leaving or entering the system excites
additional particle-hole pairs. This leads to a small but nonzero
value for the LDOS beyond the threshold energies. The effect
can be included by carefully tracking the regulators in the
Luttinger liquid correlator

〈ei
√

2πνϕ(x,t)e−i
√

2πνϕ(x,0)〉 ∝ [i(vt − i0)]−ν (41)

and the impurity correlator in Eq. (34). At the boundary and
around the band minimum, the LDOS can for instance be
expressed as

ρ(ω ≈ −ε,a) ∼
∫ ∞

−∞
dt

ei(ω+ε)t

(vt + i0)4ν(t − i0)
3
2

∼ [θ (ω + ε) − sin(4πν)θ (−ω − ε)]|ω + ε| 1
2 +4ν . (42)

We see that the shoulder ratio of the two-sided singularity
is determined by an interplay of both the impurity and the
low-energy propagators. This is similar, but slightly different
than the two-sided singularities within the continuum of the
spectral function and the dynamic structure factor [24] for
which the shoulder ratio is determined by the exponents for
right and left movers and the impurity propagator is just a delta
function.
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IV. OTHER CORRELATION FUNCTIONS

The mobile impurity model in Eq. (23) can be used to cal-
culate the exponents in the long-time decay and finite-energy
singularities of several dynamical correlation functions [46].
The general recipe for U(1)-symmetric models is to (i) identify
the operator in the effective field theory that excites the band
edge mode and carries the correct quantum numbers; (ii) write
the operator in terms of free impurity and free bosons after the
unitary transformation; (iii) compute the correlator using the
folding trick in the boundary case. In this section, we apply this
approach to calculate the exponents in the density autocorrela-
tion of spinless fermions, spin autocorrelations of spin chains,
and the single-particle Green’s function of spinful fermions.

A. Density-density correlation

Let us now consider the density autocorrelation

C(t,x) ≡ 〈n(x,t)n(x,0)〉. (43)

Using the mode expansion in Eq. (17), we obtain the expression
for the density operator including high-energy excitations

n(x) = �†(x)�(x)

∼ ψ
†
RψR + ψ

†
LψL + (ei2kF xψ

†
LψR + H.c.)

+[(e−ikF xψ
†
R + eikF xψ

†
L)d† + H.c.], (44)

where kF = π/(2a) for the half-filled chain in the model of
Eq. (7) and we omitted operators that annihilate the ground
state (a vacuum of d particles). In the boundary case, ψL and
ψR are identified according to Eq. (21). The leading operator
generated by the low-energy part of n(x) at the boundary
is ∼∂xϕ(0), a dimension-one operator. As a result, the LL
theory predicts the decay 〈n(a,t)n(a,0)〉 ∼ 1/t2. By contrast,
in the bulk case, the 2kF part of n(x) has dimension K and
gives rise to 〈n(x � a,t)n(x � a,0)〉 ∼ 1/t2K as the leading
contribution for repulsive interactions [5]. In summary, the
low-energy term in the density autocorrelation is

CLL(t,x) ∼ t−β, (45)

with exponents

βend = 2, βbulk = 2K. (46)

On the other hand, the high-energy term in the mode
expansion for the density at the boundary yields

n(a) ∼ d†(a)[e−ikF aψ
†
R(a) − eikF aψ

†
R(−a)] + H.c.

∼ sin(kF a)d†(a)ψ†
R(a) + H.c.. (47)

After bosonizing and performing the unitary transformation,
we find that the high-energy term is given by

n(a) ∼ d̃†(a) exp

[
i

√
π

2

(
1 − γ /π√

K
+

√
K

)
ϕ(a)

]

× exp

[
i

√
π

2

(
1 − γ /π√

K
−

√
K

)
ϕ(−a)

]
+ H.c.

∼ a∂xd̃
†(0) exp

[
i
√

2π

(
1 − γ /π√

K

)
ϕ(0)

]
+ H.c., (48)

where we kept the leading operator in the expansion of the
slowly-varying fields. From Eq. (48), it is straightforward
to show that the autocorrelation function contains a term
oscillating with the frequency of the high-energy hole:

Cosc(t,x) ∼ e−iεt t−β̄ , (49)

with the boundary exponent

β̄end = 3

2
+ (1 − γ /π )2

K
. (50)

This should be compared with the corresponding exponent in
the bulk case [22],

β̄bulk = 1 + K

2
+ (1 − γ /π )2

2K
. (51)

Therefore the exponents associated with the frequency-ε
oscillating term in the density autocorrelation obey the relation

2β̄bulk − β̄end = K − 1
2 . (52)

As mentioned in Sec. III, in lattice models we also have to
consider the band-edge mode corresponding to a particle at the
top of the band. In this case, the density operator contains an
additional term that creates two high-energy modes, namely
a hole at k = 0 and a particle at k = π . In the noninteracting
bulk case of Hamiltonian (3), this term yields a contribution
that behaves as ∼e−i2ε0t /t , where the slow 1/t decay stems
from the propagators of the high-energy particle and hole.
However, in the presence of a repulsive interaction V > 0, the
decay of this contribution changes to ∼e−i2εt /t2 and decays
faster than the frequency-ε term for t � 1/(Ma2V 2) [22]. In
the boundary case, the equivalent contribution is subdominant
even in the noninteracting case, where it becomes ∼e−i2ε0t /t3

due to the faster t−3/2 decay of the free impurity propagator
at the boundary. Therefore the long-time decay of the density
autocorrelation C(t,x = a) is well described by a combination
of the LL term in Eq. (45) and the frequency-ε term in Eq. (49).

For the integrable model in Eq. (7), we can calculate the
exponents β̄bulk/end using Eqs. (38) and (39). We also note
that the power-law decay of Cosc(t,x) implies a finite-energy
nonanalyticity in the Fourier transform

C(ω,x) ∼ |ω − ε|β̄−1. (53)

B. Spin autocorrelations

As an application of our theory to spin chains, we consider
the spin-1/2 XXZ model with an open boundary

HXXZ =
∑
j�1

[
1

2
(S+

j S−
j+1 + H.c.) + 	Sz

jS
z
j+1

]
, (54)

where Sj is the spin operator on site j and 	 is the anisotropy
parameter. We are interested in the long-time decay of the
longitudinal (‖) and transverse (⊥) spin autocorrelations

C‖(t,j ) ≡ 〈
Sz

j (t)Sz
j (0)

〉
, (55)

C⊥(t,j ) ≡ 〈S+
j (t)S−

j (0)〉. (56)
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We focus on the critical regime 0 � 	 � 1. Via a Jordan-
Wigner transformation [5]

Sz
j = �†(j )�(j ) − 1

2 , (57)

S−
j = (−1)j�(j )eiπ

∑
l<j �†(l)�(l), (58)

the XXZ model is equivalent to the spinless fermion model in
Eq. (7) with interaction strength V = 	. Thus, for 	 = 0 (the
XX chain), the model is equivalent to free fermions and some
time-dependent correlations can be calculated exactly [80,81].
For 0 < 	 � 1, the LL approach predicts the asymptotic decay
of nonoscillating terms in the spin autocorrelations [53]:

C
‖
LL(t,j ) ∼ t−β‖

, C⊥
LL(t,j ) ∼ t−β⊥

, (59)

with exponents

β
‖
end = 2, β

‖
bulk = 2K, (60)

β⊥
end = 1

K
, β⊥

bulk = 1

2K
, (61)

where the exact Luttinger parameter is given by Eq. (39)
with V = 	. Notice that the exponents for transverse and
longitudinal autocorrelations coincide at the SU(2) point
	 = 1, where K = 1/2.

The high-energy contributions to the spin operator can be
obtained starting from Eqs. (57) and (58) and employing the
mode expansion for the fermionic field in Eq. (17) [46]. In the
bulk case, we find

Sz
j=x ∼ d̃†(x) exp

[
i

√
π

2

(
1 + K − γ /π√

K

)
ϕ(x)

]

× exp

[
i

√
π

2

(
1 − K − γ /π√

K

)
ϕ(−x)

]
+ H.c., (62)

S−
j=x ∼ d̃†(x) exp

[
− i

√
π

2

(
K + γ /π√

K

)
ϕ(x)

]

× exp

[
i

√
π

2

(
K − γ /π√

K

)
ϕ(−x)

]
. (63)

At the boundary, we obtain

Sz
1 ∼ ∂xd̃

†(0) exp

[
− i

√
2π

(
1 − γ /π√

K

)
ϕ(0)

]
+ H.c., (64)

S−
1 ∼ ∂xd̃

†(0) exp

[
− i

√
2π

(
γ

π
√

K

)
ϕ(0)

]
. (65)

Calculating the correlators along the same lines as the
previous examples, we obtain the oscillating terms in the
autocorrelations

C‖
osc(t,j ) ∼ e−iεt t−β̄‖

, (66)

C⊥
osc(t,j ) ∼ e−iεt t−β̄⊥

, (67)

where

β̄
‖
end = 3

2
+ (1 − γ /π )2

K
, (68)

β̄⊥
end = 3

2
+ (γ /π )2

K
. (69)

We also present, for comparison, the previously known
exponents in the bulk [22,82]:

β̄
‖
bulk = 1 + K

2
+ (1 − γ /π )2

2K
, (70)

β̄⊥
bulk = 1 + K

2
+ (γ /π )2

2K
. (71)

The results for the longitudinal spin autocorrelation are the
same as those for the density autocorrelation derived in
Sec. IV A, as expected from the mapping in Eq. (57). The bulk
and boundary exponents for the spin autocorrelations obey a
relation equivalent to Eq. (52)

2β̄
⊥/‖
bulk − β̄

⊥/‖
end = K − 1

2
, (72)

which is independent of γ .
For the XXZ model, we can simplify the result for the

exponents using the exact phase shift in Eq. (38). The bulk
exponents become

β̄
‖
bulk = K + 1

2
, (73)

β̄⊥
bulk = K + 1

2K
− 1

2
. (74)

Our new results for the boundary exponents are

β̄
‖
end = K + 3

2
, (75)

β̄⊥
end = K + 1

K
− 1

2
. (76)

C. Green’s function for spinful fermions

We now consider interacting spin-1/2 fermions, as de-
scribed by the Hubbard model

H = −
∑
x�1

∑
σ=↑,↓

[�†
σ (x)�σ (x + 1) + H.c.]

+U
∑
x�1

n↑(x)n↓(x), (77)

where U > 0 is the repulsive on-site interaction. Away from
half-filling and in the absence of an external magnetic field,
the low-energy spectrum is described by two bosonic fields
corresponding to decoupled charge and spin collective modes.
Our purpose here is to illustrate the effects of spin-charge
separation on finite-energy contributions to time-dependent
correlation functions. We focus on the single-particle Green’s
function

G↑(t,x) = 〈{�↑(x,t),�†
↑(x,0)}〉. (78)

In the case of spinful fermions, singular features of dynamic
correlations can in principle come from both spinon and holon
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impurities interacting with the low-energy modes [27,28,83].
For repulsive interactions, the spin velocity is smaller than
the charge velocity [5], so the lower threshold of the spinon-
holon continuum is expected to correspond to a finite-energy
spinon impurity rather than a holon. Here we focus on the
contribution from a single high-energy spinon to the Green’s
function and to the LDOS. It is implicitly assumed that the
fermion-fermion interactions are strong enough that there is a
sizable separation between the spinon band edge and the holon
band edge. Otherwise, weak interactions would imply a small
energy scale for spin-charge separation, making it difficult to
resolve the two contributions in real time or in the frequency
domain.

We follow the construction in Ref. [83] to define the opera-
tors that create finite-energy spinons coupled to low-energy
charge and spin bosons, maintaining the correct quantum
numbers. Starting from bosonization expressions like

ψR,σ ∼ e−i
√

2πφRσ , (79)

we go to a spin and charge separated basis. The physical field
is expanded in right and left movers and written in terms of
charge and spin degrees of freedom. We will only need the right
moving component for which the spinon part is projected onto
the impurity operator. This leads to the projection

�↑ ∼ d†
s e

−i
√

π( 1
2 �∗

s − 1
2 �∗

c+�∗
c ). (80)

Here, �∗
ν and �∗

ν , with ν = c,s for charge or spin, re-
spectively, are the conjugate bosonic fields that diagonalize
the Hamiltonian at the Luther-Emery point where spin and
charge modes are exactly separated. The bosonic fields satisfy
[∂x�

∗
ν(x),�∗

ν ′(x ′)] = iδνν ′δ(x − x ′).
The impurity model is

HMIM =
∫ ∞

0
dx

∑
ν=c,s

vν

2

[
1

2Kν

(∂x�
∗
ν)2 + 2Kν(∂x�

∗
ν)2

]

+
∫ ∞

0
dx d†

s

(
εs + ∂2

x

2Ms

)
ds

+
∫ ∞

0
dx

∑
ν

vfν√
π

d†
s ds∂x�

∗
ν, (81)

where vc,s are the charge and spin velocities, respectively, Kc,s

are the Luttinger parameters, εs and −Ms are the energy and
effective mass of the high-energy spinon, and fc,s are impurity-
boson coupling constants. At the Luther-Emery point with
free holons and spinons [83], we have Kc = Ks = 1/2 and
fc = fs = 0. In contrast, SU(2)-symmetric models correspond
to strongly interacting spinons.

We decouple the impurity mode by the unitary transforma-
tion

U = exp

(
−i

∑
ν

Kνfν

vν

√
π

∫ ∞

0
dx d†

s ds�
∗
ν

)
. (82)

We then implement the boundary conditions by the folding
trick and diagonalize the low-energy part of the Hamiltonian
by a canonical transformation. We define

γν = Kνfν

vν

. (83)

The final expression for the projection of the spinful fermion
field operator is

�↑(x) ∼ d̃†
s (x) exp

[(
−

√
2Ks

4
+ γs

π
√

2Ks

)
ϕs(x)

+
(√

2Ks

4
+ γs

π
√

2Ks

)
ϕs(−x)

+
(

1

2
√

2Kc

+
√

2Kc

4
+ γc

π
√

2Kc

)
ϕc(x)

+
(

1

2
√

2Kc

−
√

2Kc

4
+ γc

π
√

2Kc

)
ϕc(−x)

]
. (84)

Here, ϕc,s(x) represent the free low-energy charge and spin
modes after decoupling of the impurity and d̃

†
s creates the

decoupled spinon mode.
The exponents for the corresponding oscillating contri-

bution of G↑(t,x) are easily read off from Eq. (84). Let us
restrict ourselves to the SU(2) invariant case appropriate for
the Hubbard model at zero magnetic field. In this case, Ks = 1
and γs = −π/2. We obtain

G(t,x) ∼ e−iεs t t−ν(s)
, (85)

with

ν
(s)
bulk = 1 + Kc

4
+ 1

4Kc

(
1 + 2γc

π

)2

, (86)

ν
(s)
end = 2 + 1

2Kc

(
1 + 2γc

π

)2

. (87)

The singular behavior of the LDOS is obtained by Fourier
transformation as before. We also obtain the relation

2ν
(s)
bulk − ν

(s)
end = Kc

2
, (88)

which is independent of γc. It would be interesting to
test this prediction numerically and investigate the relative
importance of the spinon and holon impurity configuration for
the autocorrelation and LDOS of the Hubbard model.

V. ROLE OF INTEGRABILITY

Our results predict the exponents of autocorrelation func-
tions at the boundary of critical one-dimensional systems
assuming that the long-time decay is described by a power law.
By Fourier transform, the same theory predicts the exponent of
the nonanalyticity at the finite energy ω = ε in the frequency
domain. We expect this to hold for integrable models, where
one can calculate a well-defined band-edge frequency from the
renormalized dispersion relation (or dressed energy) for the
elementary excitations. Examples of integrable models with
open boundary conditions include the open XXZ chain [84,85]
in Eq. (54) [or, equivalently, its fermionic version in Eq. (7)]
and the Hubbard model [86] in Eq. (77), on which many of the
previous studies of local spectral properties are based.

In generic, nonintegrable models, the persistence of a
nonanalyticity inside a multiparticle continuum is question-
able. It has been argued that a finite-energy singularity can
be protected in 1D systems by conservation of quantum
numbers in high-energy bands [87]. However, the high-energy
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q

FIG. 3. (a) Support of the single-fermion spectral function
A(k,ω) for a generic 1D model of interacting fermions with Fermi
momentum kF . The solid red line represents the lower threshold
ω−(k), below which A(k,ω) vanishes. The band edge frequency can
be identified as ε = ω−(k = 0). (b) Support of the dynamical structure
factor S(q,ω).

subband in our effective mobile impurity model is defined by
a projection of the band edge modes, which carry the same
quantum numbers as the low-energy modes. Thus, strictly
speaking, there is no conservation law associated with the
number of d particles.

Nonetheless, we can argue that the band edge is still
well defined for bulk correlations in a semi-infinite system.
In the bulk, one can measure momentum-resolved response
functions, for instance the spectral function

A(k,ω) = 1

2π

∫ ∞

−∞
dt eiωt

∑
y

e−iky

×〈{�(x + y,t),�†(x,0)}〉, (89)

or the dynamical structure factor

S(q,ω) = 1

2π

∫ ∞

−∞
dt

∑
y

e−iqy〈n(x + y,t)n(x)〉. (90)

In momentum-resolved dynamical correlations, the spectral
weight vanishes identically below a lower threshold [46] [see
Fig. 3(a)]. This threshold is defined by kinematic constraints
and exists even for nonintegrable models. The mobile impurity
model in the bulk then predicts a power-law singularity as the
frequency approaches the threshold from above. For instance,
for the positive-frequency part of the spectral function [24]:

A(k,ω) ∼ [ω − ω−(k)]−1+2ν, (91)

with ν defined in Eq. (33). The band edge frequency that
governs the oscillations in local correlations can be identified
from the spectrum as a local maximum in the lower threshold,
about which the threshold is approximately parabolic. For the
spectral function, this happens for k ≈ 0:

ω−(k ≈ 0) ≈ ε − k2

2M
. (92)

In the dynamical structure factor, the band edge can be read off
from the value of the lower threshold at momentum q = kF ,
corresponding to the excitation composed of a hole at k = 0
and a particle at the Fermi point k = kF [Fig. 3(b)].

The nonanalyticities in the local bulk correlations are
related to the threshold singularities of the momentum-
resolved correlations by integration over momentum. For
instance, integrating the spectral function implies that the

LDOS behaves as

ρ(ω,x � a) =
∫ π/a

−π/a

dk A(k,ω)

∼
∫ k0

−k0

dk θ

(
ω − ε + k2

2M

)∣∣∣∣ω − ε + k2

2M

∣∣∣∣
−1+2ν

∼ |ω − ε|− 1
2 +2ν . (93)

Since the singularities in the momentum-resolved dynamic
response cannot be broadened, the power-law decay of
autocorrelations in the bulk is a generic property of critical
1D systems.

However, since momentum is not conserved in the presence
of a boundary, the above argument cannot be used to establish
power-law decay of autocorrelation functions at the boundary.
From the field theory perspective, the difference between
bulk and boundary cases can be understood by analyzing the
effects of boundary operators that perturb the mobile impurity
model in Eq. (23). In the following, we shall argue that,
although formally irrelevant, boundary operators introduce
two important effects in nonintegrable models: (i) they may
renormalize the frequency of oscillations in the boundary
autocorrelation, which will then differ from the frequency in
the bulk (only the latter being equal to the band edge frequency
ε); (ii) boundary operators that do not conserve the number of
particles in high-energy subbands may give rise to a decay
rate for the mobile impurity, which implies exponential decay
of the boundary autocorrelation in time and the associated
broadening of the nonanalyticity in the frequency domain.

For discussion purposes, we will focus on the regime of
weak interactions, which can be analyzed by perturbation
theory in the free fermion basis, but the argument can be made
more general by bosonizing the low-energy sector and the main
points carry through. If we are interested in the impurity decay,
we can furthermore safely neglect operators that involve the
impurity field but do not couple it to the low-energy modes—
these will at most renormalize the impurity dispersion.

As a simple example of a boundary operator respecting the
symmetries and boundary conditions, consider the impurity-
number-conserving perturbation

∂H = g∂xd
†(0)∂xd(0)ψ†(0)ψ(0). (94)

Here we use ψ(x) = ψR(x) = −ψL(−x) to denote the low-
energy modes of the fermion field on the unfolded line. We
will assume that ∂H is present in the effective Hamiltonian and
analyze its influence on the impurity propagator in perturbation
theory.

It is convenient to Fourier transform the time coordinate to
make use of energy conservation, but not the space coordinate.
We can organize the diagrammatic expansion of the time-
ordered impurity propagator

Gd (x,x ′; t) = 〈T d(x,t)d†(x ′,0)〉 (95)

using the Dyson equation

Gd (x,x; ω) = G
(0)
d (x,x; ω) +

∫
dx1

∫
dx2G

(0)
d (x,x2; ω)

×�(x2,x1; ω)Gd (x1,x; ω). (96)
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If we take only boundary operators into account, the self-
energy � is purely local:

�(x2,x1; ω) = �(ω)δ(x1 − a)δ(x2 − a). (97)

The solution of the Dyson equation for x1 = x2 = a is

Gd (a,a; ω) = 1[
G

(0)
d (a,a; ω)

]−1 − �(ω)
. (98)

It follows from Eq. (98) that the nonanalyticity in the LDOS
will be broadened if the local self-energy �(a,a; ω) has a
nonzero imaginary part at ω = ε.

For the continuation of this calculation, let us use the
notation G(t) = G(a,a; t) for boundary propagators. The free
propagator for the d particle at the boundary is

G
(0)
d (t) = (−iM)3/2

√
2π

θ (t)e−iεt

(t + iη/v)3/2
, (99)

while for the low-energy modes, we have

G
(0)
LL(t) ≡ 〈T ψ(a,t)ψ†(a,0)〉 = [2πi(vt − iη sgn t)]−1,

(100)
where η is a short-distance cutoff and is related to the
bandwidth of the impurity and low-energy subbands.

The first-order correction in the coupling constant g

corresponds to a tadpole diagram proportional to the density
of low-energy modes at the boundary. It will not induce the
decay rate that we are after [rather, it is like a nonuniversal
renormalization of the coupling constant of the boundary
operator ∂xd

†(0)∂xd(0), which does not couple the impurity to
the low-energy modes]. The second-order correction is given
by the expression

δ�(2)(ω) = −ig2
∫ ∞

−∞
dt eiωtG

(0)
LL(t)G(0)

LL(−t)G(0)
d (t). (101)

The imaginary part is then obtained as

Im δ�(2) = −
(

g

2π

)2
M3/2

√
π

×
∫ ∞

−∞
dt

ei(ω−ε)t

(vt − iη)(vt + iη)(t + iη/v)3/2
.

(102)

By power counting in the integral we see that

δ�(2)(ω) ∝ |ε − ω|5/2, (103)

and hence the self-energy vanishes on-shell, when ω = ε, so
this correction will not induce a finite decay rate

1

τ
= − Im �(ω = ε). (104)

The factor of ei(ω−ε)t in Eq. (102) is general for self-energy
contributions generated by perturbations that conserve the
number of d particles. Therefore the decay rate must vanish
to all orders if, for some reason, the irrelevant interactions
conserve the number of high-energy excitations [87].

To derive a nonzero decay rate, we will have to consider
perturbations that do not preserve the number of impurity
modes and may contribute to the self-energy for ω = ε. As
stated before, this is a typical effect of the boundary breaking

translational invariance, since in the bulk kinematic constraints
associated with momentum and energy conservation prevent
the decay of the band-edge mode. Due to the U(1) symmetry
(conservation of the total charge), the annihilation (creation)
of a high-energy hole entails the annihilation (creation) of
a particle in a low-energy state. A family of such boundary
operators that are allowed by symmetry and the boundary
conditions are, for example,

∂Hn = gn∂xd(0)[ψ†(0)ψ(0)]nψ(0) + H.c. (105)

The first nontrivial correction to the self-energy is of second
order in the coupling gn. The diagram corresponds to a simple
low-energy propagator dressed by n particle-hole pairs,

δ�(2)
n (ω) = −ig2

n

∫ ∞

−∞
dt eiωt

[
G

(0)
LL(t)

]n+1[
G

(0)
LL(−t)

]n
,

(106)
leading to

Im δ�(2)
n (ω) = − g2

n

(2πv)2n+1

∫ ∞

−∞
dt

teiωt

i(t2 + η2/v2)n+1
.

(107)
Closing the contour in the upper half plane and picking up the
pole at t = iη/v, we obtain a cutoff-dependent decay rate

1

τ
∝ g2

ne
−εη/v. (108)

In contrast to the earlier case, we do find a possibly finite decay
rate. We note that εη/v ∼ O(1) if the short-distance is of the
order of the lattice spacing a, but εη/v � 1 if η � a.

Boundary operators like ∂Hn will in principle be generated
from lower-order processes for a generic model when we
integrate out the states outside of our impurity and low-energy
subbands in a renormalization group procedure. Physically,
we can think of these processes as the result of a cascade, or
particle shower [88,89], involving many intermediate states,
which are no longer in the description. The number n of
low-energy particle-hole pairs roughly reflects the number
of microscopic interaction processes and has to be sizable
(of the order of ∼vη−1ε−1) to accommodate for the excess
energy. The coupling gn, therefore, will scale with high
powers of the microscopic interaction strength and thus will
be very small for weak interactions leading to a negligible
decay rate. Stronger interactions, however, may show sizable
renormalization effects in the decay rate and frequency shift
of correlations at the boundary.

Coming back to integrability, we argue that the above
corrections do not occur for models with open boundary
conditions solvable by Bethe ansatz. The argument relies on
the fact that the exact eigenstates of the model still define
a conserved impurity state corresponding to a hole in the
quantum number configuration of the ground state. This state is
parametrized by a rapidity λ and has well-defined energy given
by the dressed energy function ε(λ). One can in fact show,
using the thermodynamic Bethe ansatz, that the spectrum
is still determined by the bulk dressed energy function by
a similar type of folding trick to the one we used for the
low-energy theory [90]. Not only does this imply the absence of
a decay rate, also the impurity energy does not renormalize and
the same frequency should be observed in the autocorrelation
in the bulk and at the boundary. The “miracle” of integrability
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thus manifests itself as a fine tuning of the coupling constants
in the effective field theory, in this case the vanishing of the
couplings gn.

VI. NUMERICAL RESULTS FOR SPIN CHAINS

In this section, the field theoretical prediction for the
asymptotic behavior of the autocorrelations C‖/⊥(t,j ) are
checked, numerically, for critical spin chains with size L =
300 and open boundary conditions. We use the adaptive
tDMRG [74,91] keeping up to m = 300 (m = 450) states per
block for the chains with spin S = 1/2 (S = 1 and 3/2). The
time evolution was performed with the second-order Suzuki-
Trotter decomposition with time step 0.025 � δt � 0.3. The
discarded weight was typically about 10−8–10−12 during the
time evolution. The numerical error sources in the tDMRG
have two origins:

(1) The Trotter error, which is related with the order (n) of
the Suzuki-Trotter decomposition. For the order n, this error
is of the order (δt)n+1.

(2) The truncation error associated with the number of
discard states.
These errors can be controlled by decreasing the time step
(δt) and increasing the number of states kept in the DMRG
simulation.

We are interested in the long-time behavior of the lon-
gitudinal and transverse spin autocorrelations at the end site,
C

‖/⊥
end (t) = C‖/⊥(t,1), and in the bulk, C‖/⊥

bulk (t) = C‖/⊥(t,L/2).
As discussed in the Sec. IV B, these autocorrelations can be
described by a combination of universal power laws predicted
by the LL theory and oscillating terms predicted by the nLL
theory.

A. Integrable spin-1/2 model

First, we consider the integrable spin-1/2 XXZ model in
Eq. (54). According to Eqs. (59), (66), and (67), the real parts
of the autocorrelations behave as

Re[C‖
end(t)] = A

‖
1

t2
+ A

‖
2 cos(Wt + ϕ)

t
3
2 +ξ

, (109)

Re[C‖
bulk(t)] = B

‖
1

t2
+ B

‖
2

t2ξ
+ B

‖
3 cos(Wt + ϕ)

t
1
2 +ξ

+B
‖
4 cos(2Wt + ϕ̃)

t ζ
, (110)

Re[C⊥
end(t)] = A⊥

1

t
1
ξ

+ A⊥
2 cos(Wt + ϕ)

t
ξ+ 1

ξ
− 1

2

, (111)

Re[C⊥
bulk(t)] = B⊥

1

t
1

2ξ

+ B⊥
2

t2
+ B⊥

3 cos(Wt + ϕ)

t
ξ+ 1

2ξ
− 1

2

. (112)

Here we have imposed the constraint that for the XXZ model
the interaction dependence of all exponents (bulk or boundary,
low-energy or high-energy) can be expressed in terms of a
single parameter ξ . The theoretical prediction is ξ = K =

π
2(π−arccos 	) . The frequency of the oscillating terms is predicted
to be the same for bulk and boundary autocorrelations, and is
given by W = ε = π

√
1−	2

2 arccos 	
. In Eq. (110), we included the

oscillating term with frequency 2W , which comes from a

0 20 40 60 80 10010
-10

10
-8

10
-6

10
-4

×10
-2

end

bulk

t

R
e

C
e
x
a
c
t(

t)
−

C
tD

M
R

G
(t

)

Δ = 0 δt = 0.1

FIG. 4. The differences between the real parts of the exact results
[Eq. (113)] and the tDMRG data for the autocorrelations C‖(t,j )
for the spin-1/2 XXZ chain with L = 300 and 	 = 0. The bulk (end)
case corresponds to j = L/2 (j = 1). We use m = 200 DMRG states
and time step δt = 0.1. We multiply the results of C

‖
end(t) by 10−2 in

order to see both data in the same figure.

hole at k = 0 and a particle at k = π [22]. The corresponding
exponent is predicted to be ζ = 1 for 	 = 0 but ζ = 2 for
0 < 	 < 1 and t � 1/	2. In the following, we shall test
the analytical predictions from the nLL theory by fitting the
tDMRG data to the expressions above.

Before presenting the fit results, let us consider the chain
with 	 = 0. At this point, the autocorrelation C‖(t,j ) is
equivalent to the density autocorrelation for free spinless
fermion (see Sec. II). It is straightforward to show that for
even size L

C‖(t,j ) =
[

2

L + 1

L/2∑
m=1

sin2

(
mπj

L + 1

)
eiεmt

]2

, (113)

where εm = − cos ( πm
L+1 ). In Fig. 4, we present the differences

between the exact results of C
‖
end/bulk(t) and the tDMRG data

obtained considering m = 200 and δt = 0.1. As we can see,
the agreement is quite good. It is interesting to note that the
errors are of the order ∼10−4–10−6, which are smaller than
the errors due to the use of the second-order Suzuki-Trotter
decomposition, of order (δt)3 = 10−3.

The results depicted in Fig. 4 show that we obtain accurate
results for the C

‖
end/bulk(t) with the tDMRG by using m = 200

and δt = 0.1. Away from the point 	 = 0, we do not have
exact results to compare with. In this case, we compare the
autocorrelations C

‖/⊥
end/bulk(t) for different values of m (m =

100, 200, and 300) and time step δt (δt = 0.3, 0.1, and 0.025),
in order to estimate the numerical errors. Overall, we estimate
that these errors are at least one order of magnitude smaller
than the values of the autocorrelations acquired by tDMRG.

Some typical examples of the numerical data fitted to
Eqs. (109)–(112) are presented in Fig. 5 for the spin-1/2
XXZ chain with anisotropy 	 = 0.6. The parameters ξ and W

obtained by this fitting procedure are given in Table I for some
values of the anisotropy 	. Overall, the parameters obtained
are in agreement with the theoretical prediction presented
in the last column of Table I. In the fitting procedure, the
tDMRG data considered were in the range 15 < t < 80. We
note that the parameter ξ changes slightly depending on the

195129-11
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FIG. 5. Real parts of the autocorrelations C
‖/⊥
end/bulk(t) vs t for

the spin-1/2 XXZ chain for 	 = 0.6, L = 300, and m = 200.
For the longitudinal [(a) and (b)] and transverse [(c) and (d)]
spin autocorrelations we use δt = 0.1 and 0.025, respectively. The
symbols are the tDMRG results and the solid lines are fits to our data
using Eqs. (109)–(112) (see text).

time range used in the fit. One of the largest discrepancies
found corresponds to the parameter ξ obtained from C

‖
end(t)

for 	 = 0.8 (see Table I). Although this exponent (ξ = 0.459)
differs slightly from the predicted (K = 0.6287), we found a
very good agreement of the fit of the tDMRG data to Eq. (109)
if we consider ξ = K fixed, as shown in Fig. 6. It is also
interesting to note that, even though for some values of 	 the
fitted value of ξ is not so close to the predicted one, we found
that |2β

‖/⊥
bulk − β

‖/⊥
end − K + 1/2| < 0.06, which is close to zero

in agreement with the relation predicted in Eq. (72).

B. Effects of bound states and nearly flat bands

Before we start analyzing nonintegrable models, let us
briefly describe some situations where the predictions of
Sec. IV B do not hold. As mentioned in Sec. III, our
mobile impurity model assumes that a single type of high-
energy excitation (the deep hole) is sufficient to describe
the oscillations in the autocorrelation functions. This is

TABLE I. The exponent ξ and the band edge frequency W for
the autocorrelations C

‖/⊥
end/bulk(t) for the spin-1/2 XXZ chain for some

values of 	. The parameters ξ and W were obtained by fitting the
tDMRG data to Eqs. (109)–(112). The last column are the theoretical
predictions for these parameters.

C
‖
end C

‖
bulk C⊥

end C⊥
bulk Exact

ξ 0.992 1.006 0.943 0.981 1
	 = 0

W 1.002 1.000 1.000 1.002 1

ξ 0.849 0.829 0.836 0.893 0.8375
	 = 0.3

W 1.182 1.183 1.184 1.186 1.1835

ξ 0.677 0.678 0.711 0.595 0.7093
	 = 0.6

W 1.355 1.355 1.356 1.358 1.3551

ξ 0.459 0.554 0.649 0.585 0.6287
	 = 0.8

W 1.466 1.465 1.467 1.468 1.4646
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FIG. 6. Real part of the longitudinal spin autocorrelation C
‖
end(t)

vs t for the spin-1/2 XXZ chain with anisotropy 	 = 0.8 and system
size L = 300. The data were obtained using m = 200 DMRG states
and time step δt = 0.1. We fit the tDMRG data to Eq. (109) taking
the parameter ξ to be either free or fixed as ξ = K (see legend).

equivalent to assuming that in the frequency domain, the
dominant finite-energy nonanalyticity occurs at the band edge
of single-hole excitations. However, more generally dynamical
correlation functions may contain additional singularities at
frequencies corresponding to bound states which are absent in
the noninteracting model. In this case, additional oscillating
components in the long-time decay of C

‖/⊥
end/bulk(t) can arise

and decay more slowly than the contribution considered in
Eqs. (109)–(112). While bound states can be incorporated in
a more general mobile impurity model [24], in this work we
look for examples where the existence of bound states can be
ruled out, so we can test the bulk versus boundary behavior of
the band edge contribution.

The signature of bound states can be observed in the
longitudinal spin structure factor

S‖(q,ω) = 1

2π

∫ ∞

−∞
dt eiωt

∑
j

e−iqjC‖(t,j ). (114)

It is known [22] that for the spin-1/2 XXZ chain with
−1 < 	 < 0, which is in the critical regime but is equivalent to
spinless fermions with attractive interactions, S‖(q,ω) exhibits
a narrow peak above the two-spinon continuum. This peak can
be interpreted within the effective field theory as a bound state
of a high-energy particle and a high-energy hole. Figure 7
shows S‖(q,ω) for 	 = −0.25. Although this bound state is
inside a continuum of multiple particle-hole pairs, we expect
that for the integrable model the peak in the longitudinal
spin structure factor is not broadened by decay processes and
is given by a delta function, i.e., S‖(q,ω) ∼ δ(ω − �bs(q)),
where �bs(q) is the dispersion relation of the bound state. In
our numerical results we observe that the peak has a finite width
because the frequency resolution is limited by the finite time
in the tDMRG data. However, as shown in Fig. 7(b), S‖(q,ω)
becomes narrower as the time increases. This is a strong
evidence of the existence of a bound state in the spectrum.

Another situation that limits the applicability of our mobile
impurity model is when the excitation spectrum contains
particles with a large effective mass M , i.e., in the presence of
nearly flat bands. As discussed in Sec. III, the exponents of the
oscillating terms hold for large times compared to the inverse
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FIG. 7. (a) Longitudinal spin structure factor for the spin-1/2
XXZ chain with anisotropy 	 = −0.25 and system size L = 300.
The data were obtained using m = 200 and δt = 0.1. (b) Line shapes
of S(q = 0.9π,ω) obtained for different maximum times.

of the band curvature energy scale, in the regime t � Ma2.
If the mass is large, the asymptotic behavior will only be
observed after extremely long times, beyond the reach of the
tDMRG method.

C. Higher-S spin chains

With the above limitations in mind, we turn to the study
of autocorrelations in nonintegrable models. In principle, a
simple way to break the integrability of the spin-1/2 XXZ
chain (while preserving a gapless spectrum as well as U(1)
and discrete symmetries) is to add small next-nearest-neighbor
exchange couplings, e.g., δH ∼ ∑

j Sz
jS

z
j+2. However, it is

well known that the adaptive tDMRG only works efficiently
for models with nearest-neighbor exchange couplings [92].
For this reason, we study critical spin-S chains with S > 1/2
[93–96] as examples of nonintegrable models. We consider the
Hamiltonian

H =
L∑

j=1

[
Sx

j Sx
j+1 + S

y

j S
y

j+1 + 	Sz
jS

z
j+1 + D

(
Sz

j

)2]
, (115)

where Sj is the spin-S operators acting on site j , 	 is the
exchange anisotropy and D is the single-ion anisotropy.

The expressions for spin-S operators within the low-energy
effective field theory can be obtained by noting that spin chains
with S = n/2 can be represented by n-leg ladders in the limit
where strong rung couplings select the spin-S multiplet of the
local spins 1/2 [95,97]. For instance, for S = 1 we can write
Sj = σ j + τ j , where σ j and τ j are two spin-1/2 operators
that commute with each other, and use the Jordan-Wigner
transformation [essentially two copies of Eqs. (57) and (58)]

FIG. 8. The longitudinal spin structure factor of the critical spin-S
XXZ chains. (a) Results for S = 1 and 	 = −0.1 and (b) for S = 3/2
and 	 = 0.3.

to write σ j and τ j in terms of two fermions, say �σ (j )
and �τ (j ). The resulting fermionic model turns out to be
strongly interacting (and contain long-range interactions), but
the low-energy sector can be treated by bosonization and a
renormalization group analysis [95,97]. A critical phase with
central charge c = 1 (analogous to the spin-1/2 XXZ model
with |	| < 1) can be understood as the result of gapping out all
branches of excitations except for one remaining gapless mode.

Here, we go beyond the low-energy regime and apply the
nLL theory to investigate spin autocorrelations in the critical
phase of model (115). Our main goal is to test the predictions
of Sec. V, namely, the frequency shift and exponential decay of
oscillating terms in the boundary autocorrelation for noninte-
grable models. In the bulk case, the mobile impurity model of
the nLL theory can be applied phenomenologically [46] after
identifying the thresholds of the spectrum in dynamical spin
structure factors. Unlike the spin-1/2 XXZ model, however,
the coupling between the impurity and the low-energy modes
is not known exactly and is regarded as a phenomenological
parameter.

As our first attempt of studying higher-S spin chains, we
calculated the longitudinal spin structure factor for the model
above with D = 0 for S = 1 and 3/2. The results for two
representative values of 	 are shown in Fig. 8. For both values
of S we notice a nearly dispersionless threshold in the spectral
weight for q ≈ π . This behavior is characteristic of finite-
energy excitations with a large effective mass, which hinder
the direct application of our theory since they introduce a small
band curvature energy scale.

Focusing on S = 1 chains, we proceed by modifying the
parameters in Eq. (115) so as to look for a regime with a
larger curvature of the spectrum near q = π . Remarkably, the
gap in the spectrum of S‖(q ≈ π,ω) is consistent with the
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FIG. 9. The longitudinal spin structure factor of the spin-1 XXZ
chain with single-ion anisotropy for 	 = −0.1 and D = −1.

low-energy theory for critical spin-1 chains since the staggered
part of the operator Sz

j excites massive modes [95,97]. We
consider the model with exchange anisotropy 	 = −0.1 and
easy-axis single-ion anisotropy D = −1, which lies in the
critical phase [98]. Figure 9 shows that in this case, the
lower threshold of S‖(q,ω) has a smaller gap and larger band
curvature at q = π . Note also that there is no evidence for
bound states in the spectrum of Fig. 9.

Next, we investigate the autocorrelation C‖(t,j ) for the
spin-1 chain with 	 = −0.1 and D = −1. As discussed in
Sec. V, the sharp lower threshold of S‖(q,ω) implies that the
bulk autocorrelation exhibits power-law decay of its oscillating
components. Note that this argument does not depend on
details of the mobile impurity model; the nonanalyticity in
C

‖
bulk(t) follows from integrating S‖(q,ω) over momentum in

the vicinity of the lower threshold. The frequencies of the
oscillations can be read off from the spectrum of S‖(q,ω) as
the values of ω about which the lower threshold disperses
parabolically. In the examples with spin-1/2 chains, there was
only one such frequency corresponding to the band edge of
single-hole excitations. By contrast, in Fig. 9, we observe two
frequencies that can be identified as “edges” of the support:
W1 ≈ 1.5 (at q ≈ 0.65π ) and W2 ≈ 1.1 (at q ≈ π ). Thus we
have fitted the tDMRG data with the two-frequency formula

Re[C‖
bulk(t)] = B

‖
0

t2
+B

‖
1 cos(W1t + ϕ1)

tβ1
+B

‖
2 cos(W2t + ϕ2)

tβ2
.

(116)

Note that in contrast with Eq. (110), here we include the
nonoscillating term ∼t−2, associated with the gapless q = 0
mode, but omit the term ∼t−2K that in the spin-1/2 case stems
from q = π part of the operator Sz

j in the LL theory. The result
of the fit is shown in Fig. 10. Note that the frequencies obtained
are consistent with the edges of the spectrum observed in Fig. 9.

Finally, we analyze the behavior of the boundary auto-
correlation C

‖
end(t) for the spin-1 chain with 	 = −0.1 and

D = −1. For nonintegrable models, our effective field theory
predicts that boundary operators introduce a nonuniversal
frequency shift and a decay rate for the high-energy mode.
The numerical results indicate that the data can be fitted with a
single oscillating component. We have fitted the tDMRG data
for C

‖
end(t) to two functions:

f1(t) = A1

t2
+ A

pl
2 cos(W ′t + ϕ1)

tβ
(117)
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FIG. 10. Real part of the longitudinal spin autocorrelation C
‖
bulk(t)

vs t for the spin-1 chain with 	 = −0.1, D = −1, and L = 300. The
data were obtained using m = 350 and δt = 0.1. We fit the data to
Eq. (116) and obtain the frequencies W1 = 1.55 and W2 = 1.11 and
exponents β1 = 1.57 and β2 = 1.76.

versus

f2(t) = A′
1

t2
+ A

exp
2 cos(W ′t + ϕ2)e−γ t . (118)

For both fit functions we find W ′ ≈ 1.75. This frequency
is clearly different from the band edge frequencies W1 and
W2 obtained from fitting the bulk autocorrelation and lies
inside the continuum of S‖(q,ω) (see Fig. 9). This result is
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FIG. 11. Real part of the longitudinal spin autocorrelation C
‖
end(t)

vs t for the spin-1 chain with 	 = −0.1, D = −1, and L = 300.
The symbols are the tDMRG results. The data were obtained using
m = 350 and δt = 0.1. (a) Fit to power-law decay in Eq. (117). (b)
Fit to exponential decay in Eq. (118).
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FIG. 12. Same as Fig. 11, after subtracting the nonoscillating
term ∼1/t2. The prefactor A1 = 2.233 was obtained independently
(see Appendix). The slope of the red line is ≈ −0.053.

consistent with our prediction of a nonuniversal frequency
shift for nonintegrable models. Moreover, we can see in
Fig. 11(a) that the best fit to Eq. (117) for t > 15 overestimates
the amplitude of the oscillations at larger times t � 45,
suggesting that the decay is faster than power law. In fact,
the fit to an exponential decay according to Eq. (118) with
γ ≈ 0.059 yields better agreement with the numerical data [see
Fig. 11(b)]. Importantly, the fitted relaxation time 1/γ ≈ 17 is
smaller than the time scales reached by the tDMRG.

In order to observe a clear signature of the exponential
decay of C

‖
end(t), it is convenient to subtract off the nonoscillat-

ing t−2 term in the autocorrelation function. This subtraction
is important because the difference between power-law and
exponential decay of the oscillating component becomes more
pronounced at longer times, after which an exponentially
decaying term would become less significant than the 1/t2

or subleading power-law terms. As explained in Appendix,
we can fix the nonuniversal prefactor A1 in Eq. (117)
by relating it to the prefactor of the uniform term in the
static correlation 〈Sz

1S
z
j 〉 ∼ 1/j 2 for j � 1. The numerical

result for the boundary autocorrelation after subtracting the
nonoscillating term is shown in Fig. 12. It is clear that the
amplitude of the oscillations decays as a straight line on a
log-linear scale. This result indicates an exponential decay of
the boundary autocorrelation in the nonintegrable model, in
agreement with our prediction.

VII. CONCLUSION

In conclusion, we have analyzed the effect of reflective
boundary conditions in one-dimensional quantum liquids on
time-dependent correlations. We have shown that one can
generalize the effective impurity model of a high-energy mode
interacting with the low-energy subband (nonlinear Luttinger
liquid theory) to capture the dominant contributions to late-
time asymptotes of autocorrelations and predict the exponents
of associated power-law singularities in the frequency domain.
This was used to compute, e.g., the autocorrelations in critical
spin chains and the local density of states at the band bottom in
one-dimensional interacting spinless fermions. The boundary
exponents show a characteristic doubling in their dependence
on the phase shifts, which implies relations between the
bulk an boundary exponents depending only on the Luttinger

parameter but not on the phase shifts. Generalizations of the
method were used to derive similar results for spinful models
and different correlation functions.

Our results apply, mutatis mutandis, to the class of inte-
grable models, but they need caution when applied to the
nonintegrable case. While the impurity mode is effectively
protected in the bulk by momentum conservation and power-
law behavior of correlations is generic at zero temperature, the
breaking of translational invariance at the boundary introduces
the possibility of additional renormalization effects. We have
discussed two observable consequences: a shift in the impurity
energy leading to a shift in the oscillation frequency in the
autocorrelation, and the possibility of decay of the impurity
leading to exponential damping. These effects can be analysed
within the impurity model approach by studying boundary
operators as perturbations. Based on the Bethe ansatz solution
for models with reflective boundary conditions, we argue that
integrable models should be devoid of such effects and hence
identical bulk and boundary frequencies should be observed
without exponential decay.

We performed a time-dependent density matrix renormal-
ization group study of both integrable and nonintegrable spin
chains to verify our predictions. For the integrable case, we
studied the XXZ spin-1/2 chain and the numerically obtained
correlations agree very well with the effective field theory
predictions. For the nonintegrable case, we looked at spin
chains of higher spin S > 1/2. We did find evidence for
a nonuniversal frequency shift in this case as well as an
exponential damping factor of the high-energy contribution to
the correlation. Detailed comparison with microscopic models
highlights the properties of the spectrum one should consider
in formulating the effective impurity model. First of all, one
should take into account all contributions from band minima
as well as band maxima. Complications may arise when the
spectrum features bound states which are a priori not taken into
account in the impurity model and lead to additional oscillating
contributions, but the impurity model may in principle be
adjusted to account for these. Bound-state lifetimes are subject
to similar considerations concerning the integrable versus
nonintegrable case as the high-energy impurity modes. A
second complication comes when one of the high-energy bands
becomes nearly flat, resulting in a very large time scale before
the asymptotic behavior of the correlation is reached, which
could possibly push it beyond the times for which reliable
numerical data can be obtained.

An experimental test of the oscillating, high-energy contri-
bution to correlations in real time would most likely involve
the fabrication of an effective spin model using cold atom
systems, for which real-space and time-resolved correlations
can be imaged by many-body Ramsey interferometry [99].
To test our bulk versus boundary predictions one can resort
to an optical boxlike potential [100,101] implementing the
appropriate boundary condition.

It would be interesting to extend our results to more
general boundary conditions. In particular, in the context of
integrable models we may distinguish between integrable
and nonintegrable boundary conditions. Moreover, one may
differentiate between diagonal and nondiagonal boundary
conditions, the latter of which corresponds to boundary con-
ditions that do not conserve particle number in the fermionic
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ELIËNS, RAMOS, XAVIER, AND PEREIRA PHYSICAL REVIEW B 93, 195129 (2016)

picture [85,102,103]. The mobile impurity model, viewed as
a boundary field theory, in principle provides the flexibility to
study all these situations by choosing the appropriate boundary
conditions as well as adding boundary operators to account for
possibly nontrivial boundary bound states.
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APPENDIX: BOUNDARY-BULK SPIN CORRELATION

In this Appendix, we relate the prefactors of the nonoscillat-
ing terms of the time-dependent boundary autocorrelation and
of the static spin correlation. Let us first consider the critical
spin-1/2 XXZ chain with open boundary conditions. We are
going to show that the static spin correlation is given by

〈
Sz

1S
z
j=x

〉 ≈ −2
√

KA

π2x2
+ B(−1)x

x1+K
, (A1)

where K is the Luttinger parameter. The prefactor A is
nonuniversal and also appears in the time-dependent boundary
autocorrelation

〈
Sz

1(t)Sz
1(0)

〉 ∼ − 4A2

π2v2t2
+ oscillating terms. (A2)

Note that if we determine the prefactor A by fitting the
numerical results for the static correlation to Eq. (A1), we
can fix the prefactor of the nonoscillating term in the time-
dependent boundary autocorrelation.

We start with the low-energy representation for Sz
j at the

boundary:

Sz
1 ∼ �†(1)�(1)

∼ : ψ
†
R(1)ψR(1) : + : ψ

†
L(1)ψL(1) :

+ eiπ [ψ†
R(1)ψL(1) + H.c.]

= : ψ
†
R(1)ψR(1) : + : ψ

†
R(−1)ψR(−1) :

+ [ψ†
R(1)ψR(−1) + H.c.]

∼ 4 : ψ
†
R(0)ψR(0) :

∼ − 4√
2π

∂xφR(0). (A3)

Next, we need to perform the Bogoliubov transformation:

φR(x) = K
1
2 + K

1
2

2
ϕR(x) − K

1
2 − K

1
2

2
ϕR(−x). (A4)

In the interacting case, the boundary operator has a nonuniform
prefactor because the expression in Eq. (A3) mixes the
staggered part of the density operator ψ

†
RψL + H.c. (which

has a nonuniversal prefactor when bosonized in the interacting
case) with the uniform part ψ

†
RψR + ψ

†
LψL (which does have

a universal prefactor). For this reason, in the general case, we

must write

Sz
1 ∼ − 4A√

2π
∂xϕR(0), (A5)

where A = 1 for free fermions, but A is nonuniversal in the
interacting case. Using Eq. (A5) together with the bosonic
propagator,

〈∂xϕR(x,t)∂xϕR(0,0)〉 = − 1

2π (x − vt)2
, (A6)

leads to the result in Eq. (A2).
The spin operator in the bulk is given by

Sz
j=x ∼ �†(x)�(x)

∼ ψ
†
R(x)ψR(x) + ψ

†
L(x)ψL(x)

+ (−1)x[ψ†
R(x)ψL(x) + H.c.]

∼
√

K

2π
[∂xϕL(x) − ∂xϕR(x)]

+ (−1)x

2πη
[ei

√
2πK[ϕR (x)−ϕL(x)] + H.c.]. (A7)

Using the folding trick with

∂xϕL(x) = −∂xϕR(−x), (A8)

we obtain

Sz
j ∼ −

√
K

2π
[∂xϕR(x) + ∂xϕR(−x)]

+B ′(−1)x[ei
√

2πK[ϕR (−x)−ϕR (x)] + H.c.], (A9)

where B ′ is nonuniversal.
Let us first focus on the uniform part in Eq. (A9). The

corresponding term in the static correlation is

〈
Sz

1S
z
j

〉 ∼ 2
√

KA

π
[〈∂xϕR(0)∂xϕR(x)〉 + (x → −x)]

= −2
√

KA

π2x2
, (A10)

which is the first term on the rhs of Eq. (A1).
Now consider the staggered part of the operator in Eq. (A9).

Since this term has a nonuniversal prefactor, which is inde-
pendent of A, we shall focus on deriving the exponent of the
large-distance decay. The staggered term in the correlation is〈

Sz
1S

z
j

〉 ∼ (−1)x〈∂xϕR(0)ei
√

2πKϕR (−x)e−i
√

2πKϕR (x)〉. (A11)

This is a three-point function involving three primary fields.
We use the operator product expansion:

: ∂xϕR(0) : : ei
√

2πKϕR (−x) :

=
∞∑

n=0

(i
√

2πK)n

n!
: ∂xϕR(0) : : [ϕR(−x)]n :

∼
∞∑

n=1

(i
√

2πK)n

(n − 1)!
〈∂xϕR(0)ϕR(−x)〉 : [ϕR(−x)]n−1 :

= i
√

2πK〈∂xϕR(0)ϕR(−x)〉 : ei
√

2πKϕR (−x) :
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= i
√

K√
2πx

: ei
√

2πKϕR (−x) : . (A12)

Thus, in the three-point function, we obtain

〈∂xϕR(0)ei
√

2πKϕR (−x)e−i
√

2πKϕR (x)〉
∼ 1

x
〈ei

√
2πKϕR (−x)e−i

√
2πKϕR (x)〉

∼ 1

x

1

(2x)K
. (A13)

It follows that the staggered term in the spin correlation
behaves as 〈

Sz
1S

z
j

〉 ∼ (−1)x

x1+K
, (A14)

which is the second term in Eq. (A1).
For the spin-1 chain, the uniform part of the spin operator

in the bulk becomes

Sz
j ∼ −

√
K

π
[∂xϕR(x) + ∂xϕR(−x)]. (A15)

Note the extra factor of
√

2 in comparison with Eq. (A9),
which comes from combining the densities of two spinless
fermions [95] (more generally, this procedure introduces

a factor of
√

2S for the spin-S operator). The Luttinger
parameter in Eq. (A15) is defined such that the Kosterlitz-
Thouless transition to the gapped Haldane phase happens at
K = 1 and K > 1 in the critical phase [95]. Moreover, for
S = 1, the staggered part of Sz

j couples to gapped modes (recall
the spectrum is gapped at k = π ). As a result, the staggered
term in the static correlation decays exponentially with the
distance from the boundary. The results for the autocorrelation
and static correlation for S = 1 are

〈
Sz

1(t)Sz
1(0)

〉 ≈ − 4C2

π2v2t2
, (A16)

〈
Sz

1S
z
j=x

〉 ≈ −2
√

2KC

π2x2
, (A17)

where the coefficient C is nonuniversal. The LL parameter
K and the spin velocity v can be determined independently
by analyzing the finite-size corrections of the lower energy
states together with the machinery of the conformal field
theory [104], see, for example, Ref. [105]. We found for
the spin-1 chain with 	 = −0.1 and D = −1 the following
values: K = 1.285 and v = 1.211. Using these values and
fitting the DMRG data of the static correlations to Eq. (A17),
we found that C = 2.8423.
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