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The analyticity of response functions and scattering amplitudes implies powerful relations between
low-energy observables and the underlying short-distance dynamics. These “IR/UV” relations are rooted
in basic physical principles, such as causality and unitarity. In this paper, we seek similar connections in
inflation, relating cosmological observations to the physics responsible for the accelerated expansion.
We assume that the inflationary theory is Lorentz invariant at short distances, but allow for
nonrelativistic interactions and a nontrivial speed of propagation at low energies. Focusing on forward
scattering, we derive a “sum rule” which equates a combination of low-energy parameters to an integral
which is sensitive to the high-energy behavior of the theory. While for relativistic amplitudes unitarity is
sufficient to prove positivity of the sum rule, this is not guaranteed in the nonrelativistic case. We
discuss the conditions under which positivity still applies, and show that they are satisfied by all known
UV completions of single-field inflation. In that case, we obtain a consistency condition for primordial
non-Gaussianity, which constrains the size and the sign of the equilateral four-point function in terms of
the amplitude of the three-point function. The resulting bound rules out about half of the parameter
space that is still allowed by current observations. Finding a violation of our consistency condition
would point toward less conventional theories of inflation, or violations of basic physical principles.

DOI: 10.1103/PhysRevD.93.023523

I. INTRODUCTION

Causality is one of the fundamental principles of any
physical theory. Requiring the response of a system to be
causal connects seemingly different phenomena, such as
fluctuations and dissipation, or the speed and the attenu-
ation of light in a medium. These connections are most
manifest in frequency space, where causality is encoded in
the analyticity of the response function. Nontrivial relations
between physical observables are then simply a conse-
quence of Cauchy’s integral theorem, which relates the real
and imaginary parts of the response function, as in the
Kramers-Kronig relation. Similar considerations apply to
scattering amplitudes: it is widely believed that (micro)
causality is reflected in the analytic properties of the
S-matrix. In this case, Cauchy’s theorem provides a link
between the low-energy (IR) limit of the scattering ampli-
tude and its high-energy (UV) behavior. In this paper, we
use analyticity (causality) to derive analogous relations
between cosmological observables and the underlying
physics of inflation.
Connections between observables at low energies with

properties at high energies have been explored before in the
context of particle physics and cosmology, e.g. [1–5]. In
particular, the analyticity of scattering amplitudes, together
with unitarity and crossing symmetry, has been exploited to
derive so-called “sum rules” (or “dispersion relations”)
relating parameters of the low-energy theory to integrals
over high-energy cross sections [1–3]. In some cases,

unitarity implies that certain low-energy parameters must
be positive [4]. (The violation of this positivity condition in
the DGP model of modified gravity [6] highlighted that the
corresponding theory lacks a local Lorentz-invariant UV
completion.) Likewise, in [5], this reasoning was applied to
the scattering of longitudinal gauge bosons to falsify
models of new physics in the electroweak sector. In the
present work, we seek for similar IR/UV connections in
single-field inflation.
The IR theory is described in terms of a Goldstone boson

of spontaneously broken time translations [7,8], which we
denote by the field π. This captures a large class of
inflationary models, namely all models of single-field
inflation or any model with a single dynamical degree of
freedom (or “clock”) at horizon crossing.1 Moreover, we
will assume that the UV theory is Lorentz invariant but
allow for a nonrelativistic speed of propagation, as well as
Lorentz-symmetry breaking interactions, in the effective
field theory (EFT) which characterizes the Goldstone
dynamics at low energies.2 Interestingly, quantum vacuum
fluctuations of a weakly interacting Goldstone boson are
sufficient to describe all current observations, without the

1Dissipative single-clock models and excited states may also
be studied within the EFT framework [9–11].

2As we shall see, this introduces extra subtleties in the
derivation of the sum rule. For instance, we can have singularities
which are not directly associated with propagating degrees of
freedom at that scale.
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need to introduce additional light degrees of freedom [12].
However, as measurements become more precise, higher-
order Goldstone self-interactions may be detected, or at
least will be further constrained. The sum rule that we
derive in this paper will be relevant for interpreting future
measurements and to test possible deviations from the
canonical framework.
One of the key parameters that can be measured is cs, the

speed of propagation of the Goldstone boson. Constraints
on primordial non-Gaussianity imply cs ≥ 0.024ð95%CLÞ
[13]. Moreover, at leading order in derivatives, and to
quartic order in fluctuations, the EFT for π contains two
additional low-energy parameters, which we will denote by
c3 and c4, and which are associated with the interactions _π3

and _π4, respectively. [See (3.7) for the precise definition of
the parameters c3 and c4.]
We will constrain these three parameters of the EFT by

studying ππ → ππ scattering, as a function of the center-of-
mass energy ω.3 To perform the computations, we will
exploit the natural hierarchy of scales in the problem (see
Fig. 1). Since Goldstone bosons are derivatively coupled,
their scattering amplitudes are dominated by high-energy
(short-distance) processes near the cutoff scale Λ of the
EFT. Moreover, at lower energies, only a handful of terms
contribute since higher-order terms are suppressed by
inverse powers of the cutoff. These features will allow
us to work in the flat space limit (H → 0) and compute
scattering amplitudes without taking into account the
cosmological expansion. Corrections to our results will
be suppressed by powers of H2=Λ2. We will also use
the so-called decoupling limit (M2

pl → ∞, _H → 0, with

M2
pl
_H ¼ const.), in which the mixing between π and

gravitational perturbations vanishes. Computations per-
formed in the decoupling limit will be accurate up to
corrections that scale as _H=H2 and ω2=M2

pl. A somewhat
unusual fact of the flat space and decoupling limits is that
slow-roll inflation turns into a free theory—i.e. the inflaton
potential VðϕÞ becomes constant and gravitational inter-
actions are turned off. When these limits are taken, ππ
scattering therefore has a trivial scattering amplitude for
slow-roll inflation.
Within these approximations we will derive a sum rule

that links the three parameters, (cs, c3, c4), to an integral
over the imaginary part of the forward scattering amplitude
AðsÞ, where s≡ 4ω2 is the square of the energy in the
center-of-mass frame. The integral will get contributions
from branch cuts or poles arising from the production of
intermediate states. Along the positive real axis, s > 0,
unitarity of the S-matrix enforces positivity of the integral.

On the other hand, positivity on the negative real axis,
s < 0, is not guaranteed for our nonrelativistic system.
Nevertheless, there exists a scale ρ at which Lorentz
symmetry is restored. For jsj > ρ2, crossing symmetry
then relates s- and u-channel processes and the contribution
to the integral is still positive. Below the scale ρ, however,
we cannot rule out cuts and poles on the negative axis that
give negative contributions. When these terms are present,
and dominate, unitarity is not sufficient to enforce that the
integral is positive, unlike in relativistic theories. That
being said, all known examples of UV completions of the
EFT of inflation exhibit positivity. As we will show,
violations may occur only under rather peculiar conditions.
It is therefore interesting to investigate the consequences of
positivity in the sum rule.
When all contributions to the sum rule are positive, it will

enforce the positivity of a certain combination of the EFT
parameters (cs, c3, c4). This then leads to a new consistency
condition4 relating the size and the sign of the parameter c4
to the values of cs and c3. For the special case in which the
interactions are dominated by the parameters c3 and c4
(corresponding to jc4j≳ jc3j ≫ 1), we get:

c4 > ð2c3Þ2: ð1:1Þ

A weaker condition, c4 > −1, holds for any values
of cs and c3. The most general expression of our bound
for arbitrary values of cs, c3, and c4, is given in
Sec. III: cf. (3.18).
The consistency condition has both observational and

theoretical consequences. For example, in [16] it was
pointed out that jc4j ≫ 1 is technically natural, in the
sense of ‘t Hooft [17], since it corresponds to an emergent
π → −π symmetry of the Goldstone action. However, while
both signs of c4 are natural in this sense, (1.1) can only be
satisfied for positive c4 ≫ 1. This is to be compared with
the current observational bound [13]:

FIG. 1. Illustration of the relevant energy scales of the EFT. The
flat space approximation applies for scattering energies above the
Hubble scale, ω2 > H2. The decoupling limit captures the regime
ω2 > j _Hj. The hierarchy H2 ≪ Λ2 is guaranteed by the high
degree of Gaussianity of the primordial perturbations, while
j _Hj ≪ H2 holds as a condition for inflation and is supported by
observations of the spectral index.

3For energies below the cutoff of the EFT, ω ≪ Λ, S-matrix
elements may be computed using π as the interpolating field.
Equivalently, we may use the scalar curvature perturbation ζ,
which is also guaranteed to be present in the UV.

4We use the term “consistency condition” in the same fashion
as in the single-field consistency condition [14,15]. Exceptions to
our results will point to specific violations of our assumptions, for
otherwise consistent theories.
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−8.3 × 107 < c4=c4s < 7.4 × 107 ð95%CLÞ: ð1:2Þ

We see that about half of the parameter space that is still
allowed by observations would be ruled out by our
theoretical considerations, provided positivity of the sum
rule applies.
Aviolation of our consistency condition could arise from

negative contributions to the sum rule, although we will
argue that this would require less conventional models of
inflation. More drastically, a violation could signal the
breakdown of some basic properties of the UV completion
of the EFT of inflation, such as causality, unitarity and
Lorentz invariance.5 Hence, testing our consistency con-
dition provides very useful information about the physics of
inflation. We believe that this further justifies the contin-
uing experimental effort for improving current bounds
on non-Gaussianity, including joint constraints on the
primordial three- and four-point functions [13].
As for the case of light in a medium, one may ultimately

hope to connect the value of cs (or other measurable
quantities) to the microphysics underlying the early phase
of accelerated expansion. Unfortunately, our study of
forward scattering does not lead directly to a sum rule
for cs alone. We will speculate that such a sum rule may be
obtained for nonforward scattering, since the angular
dependence of the scattering amplitude depends solely
on an interaction proportional to (1 − c2s), or through
generalized Kramers-Kronig relations for the Green’s
function. The hypothetical form of the sum rule, together
with positivity, motivates a tantalizing conjecture: The
only Lorentz-invariant UV completion of a cs ¼ 1 theory
obeying the basic properties of the S-matrix [19] is slow-
roll inflation (i.e. a free theory in the flat space and
decoupling limits).
The outline of the paper is as follows. In Sec. II, we

review the analytic properties of relativistic and nonrela-
tivistic scattering amplitudes. We derive a sum rule which
relates the real part of the forward amplitude at low energies
to an integral over its imaginary part. In Sec. III, we assume
positivity of the integral to derive constraints on a combi-
nation of the parameters of the EFTof inflation, including a
consistency condition relating the quartic and cubic cou-
plings. Moreover, armed with the full amplitude, we
present an improved derivation of the critical sound speed
for which the EFT admits a perturbative UV completion
[20]. In Sec. IV, we explicitly demonstrate the validity of
the sum rule for the weakly coupled completion of [21]. We
show that the positivity constraints are satisfied, and argue
that this is a generic feature of a large class of weakly
coupled UV completions of the EFT of inflation. We also

provide evidence for the conjecture that cs ¼ 1 is only
compatible with slow-roll inflation. We discuss the obser-
vational implications of our results in Sec. V. Technical
details are relegated to appendices.

A. Notation and conventions

Our metric signature is (−þþþ). We will use natural
units, c ¼ ℏ≡ 1, and define the reduced Planck mass as
Mpl ≡ ð8πGÞ−1=2. The letter π will refer both to 3.141…
and the Goldstone boson of broken time translations.

We write three-momenta as ~ka and four-momenta as

pa ¼ ðωa; ~kaÞ, where a ¼ f1;…; 4g labels the momentum
of each particle. We also use the traditional Mandelstam
variables (s, t, u) for relativistic 2 → 2 scattering. We will
follow the conventions of [22] and write the S-matrix as

hp3p4jSjp1p2i¼ð2πÞ4δðp1þp2−p3−p4Þ½1þiMðs;θÞ�;
ð1:3Þ

where cos θ≡ k̂1 · k̂3 is the scattering angle. We denote the
amplitude in the forward limit by

AðsÞ≡ lim
θ→0

Mðs; θÞ: ð1:4Þ

For nonrelativistic scattering, we will find it convenient
to introduce a new set of variables. Since defining

~pa ¼ ðωa; csðωaÞ~kaÞ restores (a fake) relativistic invariance
of the free field part of the action, we will use a set of
modified Mandelstam variables in terms of the rescaled
momenta:

~s≡−ð ~p1þ ~p2Þ2; ~t≡−ð ~p1− ~p3Þ2; ~u¼−ð ~p1− ~p4Þ2:
ð1:5Þ

II. ANALYTICITY AND SUM RULES

In this section, we will review the standard analyticity
arguments for relativistic scattering, see e.g. [23], and then
discuss the additional subtleties that arise if the low-energy
limit breaks Lorentz invariance. Some details of the
discussion are relegated to Appendix A. In Sec. III, we
will apply the formalism to the EFT of inflation.

A. Relativistic scattering

For relativistic interactions, it is natural to consider the
amplitude of 2 → 2 scattering to be a function of the
Mandelstam variables s and t, i.e.Mðs; tÞ≡Mðs; θðs; tÞÞ.
A minimal amount of nonanalytic behavior of Mðs; tÞ for
complex s, and at fixed transfer momentum t, is required by
unitarity of the S-matrix: SS† ¼ 1 [19]. In particular, for
forward scattering, t → 0, the optical theorem allows us to
write the imaginary part of the amplitude as

5In fact, we will demonstrate that our bound is closely related,
but not equivalent, to the requirement that the theory does not
allow superluminal propagation around nontrivial backgrounds.
See also [18].
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2Im½AðsÞ� ¼
X
I

Z
dΠIjMðp1; p2 → IÞj2; ð2:1Þ

where I stands collectively for all possible intermediate states,
each with a differential phase space element of dΠI . Using
Hermitian analyticity,AðsÞ ¼ A�ðs�Þ, one may also write

2iIm½AðsÞ�≡Aðsþ iϵÞ−A�ðsþ iϵÞ
¼Aðsþ iϵÞ−Aðs− iϵÞ≡Disc½AðsÞ�; ð2:2Þ

where Disc½AðsÞ� denotes the discontinuity of AðsÞ across
the real axis. The hypothesis of maximal analyticity6 then
assumes that AðsÞ is nonanalytic only when Im½AðsÞ� ≠ 0
along the real axis, i.e. when the right-hand side of (2.1) is
nonzero above the mass thresholds for the states I. For
the physical domain s > 0, this determines the locations of
poles and branch cuts in terms of the energies of the states I.
Moreover, thenonanalyticbehaviorofAðsÞ for theunphysical
values s < 0 is dictated by crossing symmetry. Specifically,
there is a connection between the amplitude at sþ iϵ (above
the branch cuts) and that at −s − iϵ (below the branch cuts),
whichmay be shown to exist even for massless particles [25].
For identical particles, this implies that the forward amplitude
isanevenfunction, i.e.AðsÞ ¼ Að−sÞ, andthesingularities in
the complex s-plane can all be accounted for in terms of s- and
u-channel exchanges.
When the intermediate states I are massive, there is a gap

between the singularities on the real axis. Considering the
function AðsÞ=s3, Cauchy’s theorem then implies the
following sum rule

1

2
A00ðs → 0Þ ¼

I
C

ds
2πi

AðsÞ
s3

; ð2:3Þ

where A00ðsÞ≡ ∂2
sAðsÞ and C is the contour illustrated in

Fig. 2. The Froissart-Martin bound [26,27], jAðsÞj ≤
const × sln2s, for jsj → ∞, lets us drop the contour at
infinity, and only the discontinuities across the branch cuts,
Disc½AðsÞ�≡ 2iIm½AðsÞ�, contribute to the right-hand side
of (2.3),

A00ðs → 0Þ ¼ 2

π

�Z
0

−∞
þ
Z

∞

0

�
ds

Im½AðsÞ�
s3

: ð2:4Þ

The Froissart-Martin bound may be violated when
massless particles are present.7 However, in our case,
the sum rule in (2.4) still applies. As we shall see, this is
because the forward scattering limit happens to be free of

singularities,8 which permits the application of standard
techniques to derive the number of necessary subtractions,
e.g. [28].9

Using (2.1) to write the imaginary part of the amplitude
in terms of the cross section, i.e. Im½AðsÞ�≡ sσðsÞ, and
crossing symmetry which relates the integrals on the
positive and negative axes, Im½Að−sÞ� ¼ −Im½AðsÞ�, we
get the sum rule in its final form:

A00ðs → 0Þ ¼ 4

π

Z
∞

0

ds
σðsÞ
s2

: ð2:5Þ

The right-hand side of (2.5) is manifestly positive, which is
a consequence of unitarity. Extensions to nonforward
scattering are possible, even for unphysical values of t
[28]. However, except for a speculative conjecture in
Sec. IV B, we will concentrate on forward scattering.

B. Nonrelativistic scattering

We now consider the extension to nonrelativistic scatter-
ing. We assume that the theory is Lorentz invariant in the
UV, but allow for a nontrivial sound speed cs ≠ 1, as well
as other Lorentz-symmetry breaking interactions, in the IR.
For simplicity, we will work in the center-of-mass frame,
where the forward amplitude Acm becomes a function of
the square of the center-of-mass energy, 4ω2, which also
coincides with the Mandelstam variable s in this particular

FIG. 2. Illustration of the choice of contour
in (2.3).

6This hypothesis can be demonstrated in perturbation theory—
see [19]. However, one cannot rule out the possibility of nontrivial
analytic behavior due to nonperturbative physics (e.g. [24]).

7In general the amplitude remains polynomially bounded on
the physical sheet [24], so that an integral similar to (2.3) can be
written for some nth derivative of the amplitude.

8Let us remark that turning on gravitational interactions
unavoidably induces divergences in the forward direction. While
this is a general problem—gravity is universal—we expect the
proper treatment of these effects to be highly suppressed in the
cosmological setting, H=Mpl ≪ 1, and not to modify signifi-
cantly the results derived from forward scattering. A similar
attitude is used to ignore singularities from photon exchanges in
QCD processes.

9Alternatively, we could introduce a small mass and later send
it to zero. For scalar particles this does not modify the structure of
the theory nor the UV behavior, which therefore still obeys the
Froissart-Martin bound.
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frame. To match the low-energy and high-energy behaviors
of the scattering amplitude, we write AðsÞ≡Acmð4ω2Þ.
We suppress the “cm” subscript from now on. However, as
we describe in Appendix A, away from the center-of-mass
frame, the forward scattering amplitude in nonrelativistic
theories is typically not a function of only the Mandelstam
variable s.
The argument for analyticity of the scattering amplitude

off the real axis is similar to the relativistic case. However,
for nonrelativistic theories, the amplitude AðsÞ is not
guaranteed to be symmetric under s → −s. Hence, the
sum rule (2.4) still applies, but the relationship between
the contributions for positive and negative s needs to be
reconsidered. In particular, the behavior for s < 0 is not
directly determined (via crossing symmetry) by that at
s > 0. We discuss the subtleties of the nonrelativistic case
in detail in Appendix A and illustrate the novel features in a
specific example in Appendix B. Here, we just summarize
the main results.
We will assume the existence of a high-energy scale, ρ,

above which the theory becomes relativistic. As a conse-
quence, AðsÞ satisfies the relativistic crossing symmetry for
jsj ≫ ρ2. The contribution to the integral in (2.4) from s ∈
ð−∞;−ρ2� can therefore be mapped to s ∈ ½þρ2;þ∞Þ, and
we can write the sum rule as10

A00ðs → 0Þ ¼ 2

π

�Z
∞

0

þ
Z

∞

ρ2

�
ds

Im½AðsÞ�
s3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

þ 2

π

Z
0

−ρ2
ds

Im½AðsÞ�
s3|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

?

: ð2:6Þ

The integral above ρ2 is positive definite, since it corresponds
to thecross section toproducehigh-energystates in the theory,
which we assume is dominated by relativistic interactions.11

Furthermore, for derivatively-coupled theories like the
EFTwe study in Sec. III, the leading order amplitude at low
energies, 0 < s ≪ ρ2, is analytic in s. This is because
particle production will be suppressed by extra factors of s
over the cutoff scale of the EFT.12 In other words, the tree
level contribution dominates the amplitude sinceAðsÞ ∝ s2

and Im½A� ∝ jAj2 ∝ s4. Therefore, at leading order, the
branch cuts induced by loops of light particles do not
contribute to Im½A�. As we will see, other singularities for
0 < s < ρ2 (e.g. poles) do not appear unless extra light
degrees of freedom are present. We therefore conclude that
the first term on the right-hand side of (2.6) is manifestly
positive. Only the region −ρ2 < s < 0may potentially lead
to a negative contribution to the sum rule. In Sec. IVA, we
study an explicit example, in which an extra pole appears in
the region −ρ2 ≪ s < 0. Nevertheless, positivity is still
preserved in this example, and more generally for a large
class of weakly coupled completions of small-cs theories.
In general, violations of positivity require large contribu-
tions from the u-channel whose signs are not fixed by the
equivalent s-channel exchange. Although we cannot rule
out such exotic (plausibly strongly coupled) possibilities,
we are yet to encounter an explicit example. Nonetheless,
we will take an agnostic attitude toward positivity, and in
Sec. III we will derive constraints on the EFTof inflation by
assuming a positive right-hand side of the sum rule. We
believe these to be valuable consistency conditions on a
vast class of single-field models with Lorentz-invariant UV
completions. The same way a violation of the consistency
condition derived in [14,15] would require us to abandon
the single7-field hypothesis, violations of the positivity
constraints we find here, although unlikely, would require
us to incorporate the rather peculiar behavior we have
identified in a full theory of inflation.

III. IMPLICATIONS FOR THE EFT OF INFLATION

In this section, we show how analyticity and unitarity of
ππ → ππ scattering constrains the parameters of the EFTof
inflation. In Sec. III A, we present the effective Lagrangian
for the Goldstone boson π, at leading order in derivatives
and to quartic order in fluctuations. We use this
Lagrangian,13 in Sec. III B, to compute the low-energy
limit of the scattering of π-particles, and derive a positivity
bound on the EFT parameters. In Sec. III C, we discuss
perturbative unitarity of the scattering amplitude, in terms
of its partial wave decomposition. We show that d-wave
scattering leads to an improved derivation of the critical

10As we emphasized in the Introduction, we will work in the
flat space limit, which will allow us to apply this expression to the
EFT of inflation. This is why we have taken s → 0 on the left-
hand side of (2.6), and also in the limits of the integrals on the
right-hand side. In a derivative expansion, the error induced in
the left-hand side will be of orderH2=Λ2, where Λ is the cutoff of
the EFT. (This uses the fact that Goldstone bosons are only
derivatively coupled.) The flat space approximation is more
accurate on the right-hand side of (2.6). This is because the part
of the integral which can be computed within the EFT is
dominated by short-distance processes near the cutoff Λ ≫ H.
In addition, the rest of the integral includes contributions from
higher energies, ω ≫ Λ, where the effects of the cosmological
expansion are even less relevant.

11As we shall see, the forward scattering amplitude in the EFT
is dominated by contact terms without long-range interactions,
and therefore high energies are directly connected with short
distances. In general, high-energy (e.g. super-Planckian) ex-
changes may still remain in a nonrelativistic regime for very
large impact parameters [29,30].

12As we will discuss, the cutoff scale of the EFT, Λ, may be
different from ρ.

13Following [9–11], it is in principle possible to extend our
analysis to dissipative single-clock models or theories with
excited initial states. However, extra care is required when
computing scattering amplitudes for particle excitations in non-
vacuum states. We leave this for future work.
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sound speed for which the EFT admits a perturbative UV
completion [20].

A. Goldstone dynamics

Let us summarize the basic elements of the EFT of
inflation that will be relevant for our discussion. For more
details, we refer the reader to the original papers [7,8] or the
recent reviews [31,32].
The EFT of inflation is an effective theory of the

Goldstone boson, π, associated with the breaking of time
translations in a quasi-de Sitter background. It parametrizes
the low-energy dynamics of adiabatic perturbations in a
large class of inflationary models. The most general action
for π to lowest order in derivatives (per field) is [8]

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

plR

þM2
pl
_Hgμν∂μðtþπÞ∂νðtþπÞ−M2

plð3H2þ _HÞ

þ
X
n

M4
n

n!
ðgμν∂μðtþπÞ∂νðtþπÞþ1Þnþ���

�
; ð3:1Þ

where HðtÞ is the Hubble expansion rate of the inflationary
background and MnðtÞ are parameters defining the higher-
order interactions of the EFT. The effective action, in
principle, includes higher-derivative terms which we did
not display [8]. However, in the flat space and decoupling
limit,14 these terms are subdominant at low energies,
ω=Λ ≪ 1, and will not contribute significantly to the
left-hand side of the sum rule we derive in this paper.15

We will be also interested in the case where _HðtÞ ¼ _H and
M4

nðtÞ ¼ M4
n are independent of time. This captures the

behavior of the EFT of inflation in the limit of exact scale
invariance. Deviations from scale-invariance can be treated
perturbatively, but are not relevant for the present work
since they are required to be small by measurements of the
spectral index.

To relate the low-energy limit of the theory to its high-
energy behavior, we will consider the scattering of π-
particles. Wewill work also in the decoupling and flat space
limit(s), as we discussed in the Introduction. Expanding
(3.1) up to quartic order in powers of π, we get

L2 ¼ M2
plj _Hjð _π2 − ð∇πÞ2Þ þ 2M4

2 _π
2; ð3:2Þ

L3 ¼
�
2M4

2 −
4

3
M4

3

�
_π3 − 2M4

2 _πð∇πÞ2; ð3:3Þ

L4 ¼
�
1

2
M4

2 − 2M4
3 þ

2

3
M4

4

�
_π4

− ðM2
2 − 2M4

3Þ _π2ð∇πÞ2 þ 1

2
M4

2ð∇πÞ4; ð3:4Þ

where ð∇πÞ2 ≡ δij∂iπ∂jπ. If M2 ≠ 0, then the Goldstone
mode propagates with a nontrivial sound speed

c2s ≡
M2

plj _Hj
M2

plj _Hj þ 2M4
2

: ð3:5Þ

Sometimes it will be convenient to rescale the spatial
coordinate as ~xi ¼ xi=cs, so that (fake) Lorentz invariance
is restored in the quadratic part of the action

~L2 ≡ c3sL2 ¼ −
f4π
2
ð ~∂πÞ2; ð3:6Þ

where ð ~∂πÞ2 ≡ gμν ~∂μπ ~∂νπ and f4π ≡ 2M2
plj _Hjcs. The scale

fπ determines the energy scale of the symmetry breaking
and normalizes the amplitude of the power spectrum of π-
fluctuations. The observed amplitude of curvature pertur-
bations, Δ2

ζ ¼ ð2.142� 0.049Þ × 10−9 [35], is reproduced
for fπ ¼ ð58.64� 0.33ÞH. We will find it convenient to
normalize the EFT parameters Mn relative to fπ:

M4
n ≡ cn

f4π
c2n−1s

; ð3:7Þ

where c2 ≡ 1
4
ð1 − c2sÞ. The factors of cs in (3.7) ensure that

cn ∼Oð1Þ are natural parameter values even for cs ≪ 1.
For instance, in DBI inflation [36], all cn are determined
by cs alone; in particular, c3 ¼ −6c22 and c4 ¼ 60c32.
Observational constraints on the parameters (cs, c3, c4)
will be presented in Sec. V. In the following, we will be
concerned with theoretical bounds.
It will be convenient to write the effective Lagrangian in

terms of the canonically normalized field πc ≡ f2ππ:

14We assume that the parameters in the EFT are kept fixed as
we takeM2

pl → ∞ in the decoupling limit. For the case of nonzero
M4

n, this assumption is necessary for self-consistency. However, it
clearly forbids a nontrivial tensor sound speed, ct. When ct ≠ 1
the decoupling limit becomes more subtle, e.g. [33]. We will
explore this possibility elsewhere.

15Higher-derivative terms may be relevant at low (but finite)
energies, provided cs ≪ 1, e.g. [34]. The dispersion relation
could then be quadratic (or higher order) in k at horizon crossing
ω≃H. In this case, the flat space approximation becomes more
subtle, and we need to account for the scaling of different terms in
the action. It is also possible to take a degenerate limitM2

pl
_H → 0,

which violates the null energy condition. Notice, however, that
such specific scenarios are very distinctive from the observational
point of view, since small cs produces a large three-point function
[8]. We will not consider these possibilities here, and assume that
theories of inflation have a well-defined flat space limit, for which
our bounds apply regardless of the value of H. It should be clear,
nonetheless, how to modify our analysis to include such cases.
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~L ¼ −
1

2
ð ~∂πcÞ2 þ 1

Λ2
½α1 _π3c − α2 _πcð ~∂πcÞ2�

þ 1

Λ4
½β1 _π4c − β2 _π

2
cð ~∂πcÞ2 þ β3ð ~∂πcÞ4�; ð3:8Þ

where we have introduced the cutoff scale Λ≡ fπcs and
defined the following auxiliary parameters

α1 ≡ −2c2ð1 − c2sÞ −
4

3
c3; α2 ≡ 2c2; ð3:9Þ

β1 ≡ 1

2
c2ð1 − c2sÞ2 þ 2c3ð1 − c2sÞ þ

2

3
c4;

β2 ≡ −c2ð1 − c2sÞ − 2c3; β3 ≡ 1

2
c2: ð3:10Þ

The organization of the effective Lagrangian (3.8) is
somewhat unconventional: we have written all interactions
in terms of the “relativistic invariant” ð ~∂πcÞ2 and pure time
derivatives _πc. This is motivated by the analytic structure of
scattering amplitudes, as discussed in Appendix A. The key
point is that the “relativistic” part of the interactions will
manifestly behave like a Lorentz-invariant amplitude, so we
can trace all the subtleties of working in a non-Lorentz-
invariant theory to the pure time derivatives.

B. Bounds from positivity

In what follows, wewill derive a number of constraints on
the Lagrangian parameters cn (or equivalentlyMn) from the
requirements of analyticity and unitarity of ππ → ππ scat-
tering. Details of the computations are given in Appendix C.
To gain intuition for the origin of the bounds, we first

consider the special case jc4j ≫ jc3j ≫ 1. In [16], it was
shown that this parameter regime is technically natural, so it
is of a particular observational relevance. In this limit,
the cubic Lagrangian is dominated by the _π3 interaction
(since jα1j → 4

3
jc3j ≫ α2), and the quartic Lagrangian is

domination by _π4 (since jβ1j → 2
3
jc4j ≫ jβ2j ≫ jβ3j). The

effective Lagrangian (3.8) then reduces to

~L → −
1

2
ð ~∂πcÞ2 − 4

3

c3
Λ2

_π3c þ
2

3

c4
Λ4

_π4c: ð3:11Þ

Computing the forward scattering amplitude in the
center-of-mass frame, we find

AðsÞ ¼ ðc4 − ð2c3Þ2Þ
s2

Λ4
; ð3:12Þ

and positivity, A00 > 0, implies

c4 > ð2c3Þ2 ; for jc4j ≫ jc3j ≫ 1: ð3:13Þ

We see that positivity simply requires that the contribution
from the contact diagram (∝ c4) dominates over that from

the exchange diagram (∝ c23). While either sign of c4 is
consistent with naturalness, only positive values satisfy the
bound (3.13).
It is straightforward to repeat the analysis for the

complete Lagrangian (3.8), i.e. without taking a special
limit of the EFT parameters. From the cubic interactions,
we get

M _π3 ¼ −
9

4
α21

s2

Λ4
;

M _πð∂πÞ2 ¼ −4α22
s2

Λ4
;

M _πð∂πÞ2× _π3 ¼ −6α1α2
s2

Λ4
; ð3:14Þ

while the quartic interactions lead to

M _π4 ¼
3

2
β1

s2

Λ4
;

M _π2ð∂πÞ2 ¼ 2β2
s2

Λ4
;

Mð∂πÞ4 ¼ β3ð3þ cos2θÞ s
2

Λ4
: ð3:15Þ

Despite the fact that we have included diagrams that
exchange massless particles, we see that the tree level
amplitudes are analytic in s. Since these are the lowest
dimension operators we could add to the EFT of inflation,
we know that any nonanalytic behavior in the low-energy
limit must enter at higher order in s. Notice also that the
amplitudeMðs; θÞ has no divergences as θ → 0 (due to the
derivative nature of the Goldstone interactions) and there-
fore has a well-defined forward limit:

AðsÞ ¼
X
N

MNðs; 0Þ

¼
�
−
9

4
α21 − 4α22 − 6α1α2 þ

3

2
β1 þ 2β2 þ 4β3

�
s2

Λ4

¼ ðc4 þ 1 − ðð2c3 þ 1Þ − aðcsÞÞ2 − bðcsÞÞ
s2

Λ4
;

ð3:16Þ

where we defined

aðcsÞ≡ 1 − c2s
4

ð4þ 3c2sÞ;

bðcsÞ≡ 1 − c2s
16

ð14þ 19c2s þ 15c4sÞ: ð3:17Þ

Positivity now implies that

c4 þ 1 > ðð2c3 þ 1Þ − aðcsÞÞ2 þ bðcsÞ : ð3:18Þ
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Notice that bðcsÞ ≥ 0, for all cs ∈ ½0; 1�. The right-hand
side of (3.18) is therefore positive semidefinite and we
conclude that

c4 þ 1 > 0 ; for all values of c3 and cs: ð3:19Þ

Moreover, in the limit cs → 1, (3.18) becomes

c4 þ 1 > ð2c3 þ 1Þ2 ; for cs ¼ 1: ð3:20Þ

As we will see in Sec. IV B, the last constraint can be
reproduced by requiring the absence of superluminality
around nontrivial backgrounds (with the additional require-
ment that c3 ¼ 0).

C. Perturbative unitarity

Given the full amplitude, Mðs; θÞ, we can learn more
about the possible UV completions of the EFT by consid-
ering the perturbative unitarity of the partial wave ampli-
tudes [20]. Perturbative unitarity will determine the scale at
which the EFT becomes strongly coupled, and therefore
sets an upper limit on the scale at which new physics must
enter in a weakly coupled theory. These constraints are
qualitatively different from the constraints from analyticity
which must be satisfied at s ¼ 0 for self-consistency of
the EFT. In contrast, perturbative unitarity constrains the
extrapolation of the EFT to higher energies from the growth
of the amplitude with s.
For this purpose, we write the amplitude in the following

form

Mðs; θÞ ¼
�
fðcs; c3; c4Þ þ

1 − c2s
12

P2ðcos θÞ
�
s2

Λ4

≡ 16π
X
l

ð2lþ 1ÞalðsÞPlðcos θÞ: ð3:21Þ

Unitarity of the S-matrix requires that Im½al� ¼ jalj2,
which is only consistent if jRe½al�j < 1

2
. When the tree

level amplitude violates this condition, it means that loop
corrections must be large and hence the theory is strongly
coupled. We say that the theory violates “perturbative
unitarity.” Since the amplitude is a function of energy, this
determines the energy scale at which perturbation theory
breaks down. For s-wave scattering, jRe½a0�j < 1

2
can by

achieved at all energies, by tuning the parameters in the
function fðcs; c3; c4Þ. However, d-wave scattering only
involves the sound speed as a parameter and jRe½a2�j < 1

2

implies

1

60π

1 − c2s
c4s

ω4

f4π
<

1

2
: ð3:22Þ

For a given value of cs, perturbative unitarity will be
violated at a specific energy ω⋆ðcsÞ. Conversely, requiring

the theory to be weakly coupled up to the symmetry
breaking scale fπ, leads to a critical value of the sound
speed

ðcsÞ⋆ ¼ 0.31: ð3:23Þ

For cs < ðcsÞ⋆ the EFT becomes strongly coupled below
the symmetry breaking scale. In other words, weakly
coupled theories cannot produce cs ≤ ðcsÞ⋆ without the
appearance of additional degrees of freedom below fπ. New
physics of this type cannot occur in slow-roll inflationary
models, which thus would be ruled out by a detection of
cs < c⋆.16 Notice that, while our conclusions do not rely on
the specific value of c⋆, the one in (3.23) is somewhat
smaller than the value found in [20], ðcsÞ⋆ ¼ 0.47. The
latter was derived from a partial answer to the s-wave
amplitude, with c3 ¼ c4 ¼ 0. Unlike our previous result,
the critical value reported here in (3.23) is more robust, and
can only be modified by contributions that are higher order
in ω.

IV. SUM RULE AND POSITIVITY AT WORK

The sum rule and positivity bounds discussed in the
previous section are very general, but also quite abstract. At
the same time, many aspects of scattering are subtle and
counterintuitive in the nonrelativistic context. Nevertheless,
we have succeeded in deriving a sum rule relating the IR
parameters of the EFT of inflation to the high-energy
scattering amplitude

1

Λ4
ðc4 þ 1 − ðð2c3 þ 1Þ − aðcsÞÞ2 − bðcsÞÞ

¼ 1

π

Z
∞

−∞
ds

Im½AðsÞ�
s3

: ð4:1Þ

A further understanding of the physical connection
between the low-energy and high-energy behaviors will
require a more intuitive understanding of Im½AðsÞ� in
realistic theories. In this section, we will therefore study
specific examples of models that UV-complete the cs ≪ 1
and cs ¼ 1 limits of the EFT. We will find that all examples
are consistent with our positivity constraints. When cs ≪ 1,
we will also see how the sum rule works explicitly. For
cs ¼ 1, we will find that the positivity constraints are
weaker than those derived from requiring subluminality
around nontrivial background. We suggest that looking at
nonforward scattering would lead to stronger constraints.
Based on those considerations, we will conjecture that
cs ¼ 1 is always UV-completed by slow-roll inflation—i.e.
a free scalar field in the flat space and decoupling limits.

16The current bound cs ≥ 0.024ð95%CLÞ [13] still allows for
either new (weakly coupled) physics or nonperturbative effects
below (or at) fπ . This is similar to the situation in the pre-LHC/
pre-Higgs era in particle physics. For further discussion see [20].
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A. Perturbative Example with cs ≪ 1

The canonical example of inflation with a small sound
speed is DBI inflation [36,37]. While it is easy to show that
the positivity bound (3.18) is satisfied for DBI inflation, it
is less straightforward to study the high-energy scattering in
this theory. To gain more intuition for how our sum rule
works and how positivity arises, it will be instructive to
study an example that remains perturbative up to high
energies, ω ≫ fπ.

1. The πσ-model

A reduced sound speed arises for fluctuations around
curved trajectories in higher-dimensional field spaces. A
simple two-field model that describes such dynamics is
[21] (see also [38–48]):

L ¼ −
1

2
kðσÞð∂ϕÞ2 − 1

2
ð∂σÞ2 − VðσÞ; ð4:2Þ

where

kðσÞ≡ 1þ σ

M
þ � � � ;

VðσÞ≡ 1

2
m2σ2 þ 1

3!
μσ3 þ � � � : ð4:3Þ

We have suppressed additional terms in the potential for σ
which stabilize the second field at σ0 ≪ M; see [39,47].
The Lagrangian in (4.2) is itself only an EFT, valid at first
order in a derivative expansion and up to energies of order
M. The scaleM thus becomes the new cutoff of the theory,
which allows for perturbative control provided ω2 < M2.
Perturbing around the background solution ϕ0ðtÞ, i.e.

writing ϕðt; ~xÞ≡ ϕ0ðtÞ þ _ϕ0πðt; ~xÞ, we get a Lagrangian
for the Goldstone fluctuations π, coupled to the additional
field σ:

L ¼ −
1

2
j _ϕ0j2

�
1þ σ

M

�
½−2_π þ ð∂πÞ2�

−
1

2
ð∂σÞ2 − 1

2
m2σ2 −

1

3!
μσ3;

¼ −
1

2
ð∂π̄Þ2 − 1

2
ð∂σÞ2 − ρσ _̄π −

σð∂π̄Þ2
2M

−
1

2
m2σ2 −

1

3!
μσ3; ð4:4Þ

where we have only kept the leading order terms. In the
second line, we have defined π̄ ¼ j _ϕ0jπ and ρ≡ j _ϕ0j=M. In
the following, we will assume the hierarchy of scales

μ2 ≲m2 ≪ ρ2: ð4:5Þ

The dynamics of the Lagrangian (4.4) are discussed in detail
in [38,47]. At high energies,ω > ρ, the theory describes two
relativistic scalars, whose interaction can be treated as a

small perturbation. Below ω ¼ ρ, the mixing becomes
relevant and the theory reduces to a single propagating
degree of freedom. Form < k < ρ, the dispersion relation of
the Goldstone π is nonlinear, ω ¼ k2=ρ. As explained in
[38], integrating out the field σ produces a nonlocal action
for π, which is not captured by (3.1). In order to have a local
description requires keeping the field σ, even though it then
plays the role of an auxiliary field.17 For k < m (or
ω≲ csm), the dispersion relation becomes linear, and the
low-energy EFT is characterized by a reduced sound speed

c2s ¼
m2

m2 þ ρ2
≃m2

ρ2
: ð4:6Þ

The effective theory is thus described in terms of (3.1)
without reference to σ. Notice that, for cs ≪ 1, the range of
validity of the single-field EFT description is smaller than
the naive expectation, which associates the cutoff of the EFT
with the mass of the particle that has been integrated out.
As explained in [38], this lower scale appears as a result of
the ρ ≫ m hierarchy, which creates the window with a
nonlinear dispersion for csm < ω < ρ. The relevance of the
new scale csm can be seen, for instance, by the presence of a
pole at negative frequencies in the scattering amplitude
(see Fig. 3).
To match the parameters of the model to the EFT

parameters in Sec. III, we note that

M2
plj _Hj ¼ 1

2
j _ϕ0j2; f4π ¼

m
ρ
j _ϕ0j2; Λ4 ¼ m5

ρ5
j _ϕ0j2:

ð4:7Þ
We now compute ππ → ππ scattering in the πσ-model and
show how it fits into the analysis of the previous sections.

2. μ ¼ 0

Let us first consider the special case μ ¼ 0. When
s ≪ c2sm2, the 2 → 2 scattering amplitude for the gapless
mode of the system should match the results of Sec. III B,
after using (4.6) and (4.7). The calculation of the amplitude
is technically straightforward and is performed in
Appendix B. The result in the forward limit is

A ¼ −
Z4ðωÞ
M2

�
ðω2 þ k2Þ2

�
1

4ω2 −m2 − ρ2
−

1

4k2 þm2

�

− ðω2 − k2Þ2 1

m2

	
; ð4:8Þ

where ZðωÞ is the relative normalization between π̄ and the
scattering state of the gapless mode, and is given in (B8). In

17Let us emphasize that most of these features appear because
Lorentz invariance is spontaneously broken, and are common-
place, for example, in nonrelativistic condensed matter systems.
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the low-energy limit, k ≪ m, we have Zðω → 0Þ → cs, and
it is easy to check that the result in (4.8) matches18 the
scattering amplitude computed in the EFT after expanding
in k=m.
For μ ¼ 0, we haveM4

n>2 ¼ 0 and the amplitude trivially
satisfies the positivity constraint. Nevertheless, the analytic
structure and the validity of the sum rule (4.1) arise
quite nontrivially. Equation (4.8) has two poles, one
at s ¼ m2 þ ρ2 ≃ ρ2 and another at s ¼ − 3

4
c2sm2 (or

k2 ¼ − 1
4
m2). These two poles are related by crossing

symmetry, but the pole on the negative axis is shifted
relative to the location of the new physical state on the
positive axis. In the limit cs ≪ 1, the pole at s ¼ − 3

4
c2sm2

dominates the right-hand side of (4.1). In fact, it is the only
contribution at leading order in cs (see Appendix B).

3. μ ≠ 0

For μ ≠ 0, we will generate nonzero M4
3 and M4

4 after
integrating out σ. For sufficiently large μ, we expect the
low-energy contributions to M4

3 and M4
4 to dominate over

M4
2. In the following, we will work in the same limit as at

the beginning of Sec. III B, namely jc4j ≫ jc3j ≫ c2. This
case is particularly interesting because not every choice of
c3 and c4 is consistent with positivity. As a result, this case
offers a nontrivial test of our bounds.
The most reliable way to determine the low-energy

behavior is to compute the forward amplitude and match
to the EFT at low energies. This calculation is performed in
Appendix B. At leading order in cs ≪ 1, the amplitude in
the low-energy limit, s ≪ Λ2, becomes

Aμ2 →
1

8

μ2

m6
s2; ð4:9Þ

which matches the energy scaling of the EFT computation,
as it should. More importantly, the result in (4.9) is

manifestly positive. This means that any choice of μ will
produce a combination of c3 and c4 which is consistent
with the bound in (3.13):

c4 − ð2c3Þ2 ¼
1

8

μ2M2

m4
> 0: ð4:10Þ

Although expected, the result is nontrivial. Naively, it might
have seemed possible19 that the cubic interaction would
generate large values for c3 (≫ 1), while keeping c4 ¼ 0.
This, however, would be inconsistent with positivity.
We have found that the πσ-model always produces a value

of c4 that is in agreement with our consistency condition. As
we discuss in more detail in Appendixes A and B, this is a
generic feature of a large class of models; in particular, this
holds for all weakly coupled theories in which the 2 → 2
scattering of the gapless mode is dominated by the exchange
of a single heavy state at low energies.

B. Conjecture for cs ¼ 1

Single-field slow-roll inflation famously leads to cs ¼ 1
and produces little non-Gaussianity [14]. In fact, in the flat
space and decoupling limits that we have been discussing,
the Lagrangian for slow-roll inflation becomes that of a
free field, L ¼ − 1

2
ð∂ϕÞ2. This theory trivially saturates our

positivity constraints because M4
n≥2 ¼ 0 and AðsÞ ¼ 0.

However, while slow-roll inflation is consistent with our
bound, it is difficult to find an explicit example of a UV-
complete theorywith cs ¼ 1, but c3, c4 ≠ 0. (For example, in
DBI inflation we have cn≥2 → 0 when cs → 1.) In this
section, we will provide suggestive evidence for the con-
jecture that theories with cs ¼ 1 are always UV-completed
by slow-roll inflation, without higher-order Goldstone
self-interactions. If proven, such a result would allow us to
directly link constraints on cs to the unique mechanism for
inflation.
First, we will show that the positivity bound from the

previous section, c4 þ 1 > ð2c3 þ 1Þ2 (for cs ¼ 1), is
weaker than the constraint that derives from imposing
subluminal speed of propagation in nontrivial backgrounds.
For this purpose, we return to the Goldstone Lagrangian in
the form

L
f4π

¼ −
1

2
ð∂πÞ2 þX∞

n¼3

cn
n!

½−2_π þ ð∂πÞ2�n; ð4:11Þ

where we have set c2 ¼ 0 since we are concerned with the
cs ¼ 1 limit. A trivial solution to the linearized equations
for motion is π ¼ αμxμ þ β. For timelike xμ, we can choose
αμ ¼ ðα; 0; 0; 0Þ and β ¼ 0. At leading order in small α, the

FIG. 3. Illustration of the pole structure of the amplitude in
(4.8).

18To directly compare the results one must account for the
rescaling ~xi ¼ xi=cs that we used previously.

19Given that the potential for σ is unstable without including a
quartic interaction, one might have imagined that positivity of the
amplitude is enforced through stability. Perhaps unsurprisingly,
positivity is a more robust feature of perturbation theory that
holds for any μ.
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quadratic Lagrangian for the fluctuations, φ, around this
background (i.e. π ¼ −αtþ φ) is given by

L2

f4π
¼ −

1

2
ð∂φÞ2 þ 4αc3 _φ2 þOðα2Þ; ð4:12Þ

where we have dropped total derivative terms. Around the
new background, the speed of propagation is

c2s;φ ¼ 1þ 8αc3 þOðα2Þ: ð4:13Þ

Since α can have either sign, we require c3 ¼ 0 to avoid
superluminal speed. Going to next order in α, we find

c2s;φ ¼ 1 − 4α2c4 þOðα3Þ; ð4:14Þ

and superluminality is avoided iff c4 ≥ 0. It may be
surprising that in this limit the constraint from sublumin-
ality (c3 ¼ 0, c4 ≥ 0) is stronger than that from positivity
(c4 þ 1 > ð2c3 þ 1Þ2). However, a similar observation was
made in [49]. In a relativistic EFT, it was observed that
positivity of forward scattering gave qualitatively different
bounds from requiring subluminal propagation around
nontrivial backgrounds, and stronger results could be
derived from sum rules involving nonforward scattering
amplitudes. This suggests that a stronger bound may arise
for fixedangle scattering.
Inspection of the full amplitude computed in (3.14) and

(3.15), shows that the only term with angular dependence is
the one proportional to β3 ≡ 1

8
ð1 − c2sÞ. This d-wave

contribution can be isolated for instance by decomposing
the amplitude in partial waves, cf. (3.21), such that
a2ðsÞ ∝ ð1 − c2sÞs2. One may then hope to derive a sum
rule for the d-wave amplitude (and hence the value of cs):

1 − c2s
c4s

¼?
Z

ds fðsÞ; ð4:15Þ

where the function fðsÞwould be related to the partial wave
amplitudes. Isolating partial waves via nonforward
dispersion relations is common in relativistic theories
(e.g. [50]), so it seems feasible to derive a similar
expression in the nonrelativistic regime. Positivity of the
sum rule (4.15), would simply correspond to subluminality
of the speed of propagation at low energies, as is expected
for all consistent (and Lorentz-invariant) UV theories. At
the same time, provided the right-hand-side of (4.15) is
positive, the vanishing of the left-hand-side for cs ¼ 1
would imply that fðsÞ must vanish.20 This would be true

(almost by definition) for a free theory, which would then
constrain all interactions of the EFT to vanish. Hence, it
seems likely that a sum rule which isolates β3 ¼ 0 (or
cs ¼ 1) would ultimately force cn>2 ¼ 0. Unfortunately,
writing a sum rule for the partial waves introduces new
challenges that are not present for the full amplitude at
forward scattering. First of all, the analytic properties of the
scattering amplitude are less understood for nonrelativistic
scattering at fixed angle (or fixed transfer momentum).
Furthermore, going from the amplitude to the partial waves
requires an integration over angles, which in many cases
alters the (non)analytic behavior. Some of these short-
comings may be circumvented in the relativistic context,
mostly because of the extensive use of (s, t, u) crossing
symmetry [50], which is not available in nonrelativistic
theories.
An alternative is to adapt the derivation of the Kramers-

Kronig relation for the refraction index, nðωÞ≡ c−1s ðωÞ, to
our case. If nðωÞ is analytic in the upper-half plane
(as it is for light in a medium), and it satisfies the limit
nðω ≫ ΛÞ → 1, then the equivalent of the Kramers-Kronig
dispersion relation holds

Re½nð0Þ� − 1¼?
Z

∞

0

Im½nðωÞ�
ω

: ð4:16Þ

We notice that (4.16) is qualitatively similar to (4.15).
In particular, if cs ¼ 1 at low energies (i.e. Re½nð0Þ� → 1),
then the dispersive term on the right-hand side again
vanishes. One of the obstacles in this derivation is
establishing the off-shell frequency/momentum depend-
ence of the Green’s function. Although causality guarantees
certain properties for the Green’s function, these are not
translated as easily into the analytic behavior of nðωÞ as in
the electromagnetic case. While we do not think that the
problems described above are insurmountable, they make
the status of nonrelativistic sum rules for partial wave
amplitudes, or the refraction index, somewhat uncertain.
We will return to these issues in future work.

V. CONCLUSIONS

Observations of the CMB anisotropies can be traced
back to the moment of horizon crossing during inflation.
These observations therefore probe energies of order the
inflationary Hubble scale. One of the key challenges in
cosmology is to relate these measurements to the micro-
physics of inflation, which is separated from the Hubble
scale by a sizable energy gap, e.g. ðH=fπÞ2 ≃ 10−4. In
this paper, we used causality (and unitarity) to link
cosmological observables, and the related coefficients
in the IR theory, to the unknown UV dynamics of
inflation.
The information that can be extracted from the low-

energy measurements is limited. The two-point function of

20Ideally, the function fðsÞ would be linked to the imaginary
part of the partial wave amplitude which, due to unitarity and the
optical theorem, carries information about the scattering and
production of intermediate states in an interacting theory. A
vanishing imaginary part would correspond to a free theory.
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temperature fluctuations measures the amplitude (As) and
the scale-dependence (ns) of the primordial scalar pertur-
bations, and puts a bound on the amplitude of tensor
modes, often quoted as the tensor/scalar ratio (r). Higher-
order correlations, in principle, measure (or constrain)
additional parameters. For single-field inflation, these
parameters include the sound speed (cs), as well as a cubic
coupling (c3) and a quartic coupling (c4). The latest
constraints on the parameters cs and c3 from the CMB
bispectrum [13] are shown in Fig. 4. The first constraint on
the parameter c4 has recently been derived from measure-
ments of the CMB trispectrum [13] (see also [51–53])

−8.3 × 107 < c4=c4s < 7.4 × 107 ð95%CLÞ: ð5:1Þ

Let us note that this limit assumes c3 ¼ 0, and a dedicated
analysis of the CMB bispectrum and trispectrum for
general cs, c3 and c4 is still lacking. However, we already
see that much of the parameter space remains to be
observationally explored. The theoretical bounds that we
discussed in this paper are therefore very relevant.
We showed that analyticity of the 2 → 2 scattering

amplitude for the Goldstone boson implies a sum rule that
relates a combination of the parameters (cs, c3, c4) to an
integral over the high-energy spectrum of the scattering
amplitude: cf. (4.1).Hence, theEFTparameters are connected
to specific features of scattering processes in the UV
completion of inflation. Assuming positivity of the sum rule,
we then derived a new consistency condition which bounds
the size of the four-point function in terms of the square of the
three-point function for equilateral configurations. This con-
sistency condition restricts the size and the sign of the quartic
coupling c4. On purely theoretical grounds, we have thus
ruled out about half of the parameter space allowed by (5.1),
for all known UV completions of the EFT of inflation (and

extensions thereof). Whilewe have not been able to construct
an explicit example in which our bound is violated, we have
isolated the necessary ingredients. We have also argued that
our consistency condition is a generic feature in weakly
coupled theories. Hence, finding large negative values of c4
would point toward less conventional (plausibly strongly
coupled) theories of inflation, or more radically to violations
of basic properties of scattering amplitudes (e.g. [19]).
We consider the present work to be only a first and

modest step toward a more complete understanding of the
IR/UV connections between cosmological observations
and the underlying physics of inflation. Many future
directions suggest themselves. For instance, we may hope
to find sum rules for individual parameters of the EFT,
rather than just for a special combination of several of them.
This may be possible by extending our analysis to non-
forward scattering, or through generalized Kramers-Kronig
relations for the Green’s functions. We have speculated that
such an analysis would allow us to derive a sum rule for cs,
the speed of propagation of the Goldstone mode. In this
case, positivity would correspond to the expected sublu-
minality condition: cs < 1. On the other hand, in the limit
cs → 1, the sum rule would constrain the total amplitude to
vanish. This has lead us to conjecture that theories with
cs ¼ 1 can only be UV completed by slow-roll inflation.
While, so far, we have only given suggestive evidence for
this intriguing conjecture, we hope to provide a positive
answer to this question in the near future.
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APPENDIX A: ANALYTICITY OF THE
SCATTERING AMPLITUDE

In this appendix, we discuss further the analytic proper-
ties of 2 → 2 scattering of identical π-particles.

FIG. 4. Observational constraints on the EFT parameters cs and
c3 [13].
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Without loss of generality, the nonforward scattering
amplitudeM may be written as a function of the following
variables:

ω12 ≡ ω1 þ ω2; ~k12 ≡ ~k1 þ ~k2;

ω13 ≡ ω1 − ω3; ~k13 ≡ ~k1 − ~k3;

ω14 ≡ ω1 − ω4; ~k14 ≡ ~k1 − ~k4: ðA1Þ
In the UV, i.e. for ωa ≫ ρ, we expect the amplitude to
become a function of the standard Mandelstam variables (s,
t, u). Moreover, in the IR, some of the contributions to M
may simplify to expressions in terms of the redefined
Mandelstam variables (~s, ~t, ~u) associated with the rescaled

momenta, ~pa ≡ ðωa; csðωaÞ~kaÞ. These contributions come
from the terms in the effective action that mimic relativistic
interactions after the rescaling of the spatial coordinates,
e.g. ð ~∂πÞ4. The general expression for M in the non-
relativistic regime may (and will) contain additional
Lorentz symmetry breaking combinations.
At low energies, the scattering amplitude computed in

the EFT description must, of course, match the one
computed in the full theory. Analyzing this matching
in general may be cumbersome. However, for forward

scattering in the center-of-mass frame (~kab ¼ 0, ω13 ¼
ω14 ¼ 0, ω12 ≡ 2ω) some simplifications occur. In
particular, the amplitude Acm can be expressed in terms
of the square of the center-of-mass energy, ω2

12 ¼ 4ω2,
which in this frame is equal to both s and ~s. For notational
simplicity, we will write the forward scattering amplitude in
the center-of-mass frame as AcmðsÞ≡Acmð4ω2Þ. In the
main text, we dropped the subscript “cm,” but here we keep
it explicit in order to highlight expressions which are only
valid in a fixed frame. The distinction becomes important
when studying the implications of crossing symmetry, since
these are better described in a frame-independent manner
and dropping the cm subscript could lead to confusion.
The standard properties of the relativistic formalism (cf.

Sec. II A) apply to the full amplitude in the UV. This means
that any singularities in AcmðsÞ off the real axis, if present,
would have to come from the nonrelativistic IR behavior of
the amplitude. On the one hand, for positive real s, the
argument that restricts the nonanalytic behavior to a mini-
mum (to be consistent with unitarity and the optical theorem)
remains unchanged. Moreover, for s < −ρ2, crossing sym-
metry relates the amplitudes in the s- and u-channels, where
similar considerations apply. On the other hand, for
−ρ2 < s < 0, we will demonstrate that crossing symmetry
does not simply relate AcmðsÞ to Acmð−sÞ, as in the
relativistic case. However, except for some rather peculiar
behavior, which we will discuss later, singularities for
unphysical values of s will be associated with physical
poles and/or branch cuts for physical values of s (albeit not
directly symmetric points). We therefore do expect the
Mandelstam hypothesis of maximal analyticity to hold,

and any nonanalytic behavior to be restricted to the real s-
axis. It remains to be analyzed whether these singularities
along the negative real axis, especially in the region
−ρ2 < s < 0, could jeopardize positivity of the sum rule
discussed in Sec. II B. As we shall see, crossing symmetry
still plays a major role in determining the location of the
nonanalytic behavior.
In quantum field theory, crossing symmetry follows from

the properties of the Green’s functions and the LSZ
reduction formula [1]. Put simply, field operators may
create an incoming particle or an outgoing antiparticle out
of the vacuum. For a relativistic theory with identical scalar
particles, it is easy to use this property to connect regions of
the scattering amplitude when (s, t, u) are exchanged. For
nonrelativistic theories, the LSZ formula still applies at low
energies, but the relation between the different channels
becomes more subtle. In particular, for energies near the
cutoff Λ and below the UV scale ρ, extra poles or cuts may
develop. The computation in terms of field operators
implies that the crossing symmetry between the s- and
u-channels relates the scattering amplitude under the

exchange ω2 ↔ −ω4 and ~k2 ↔ −~k4. At forward scattering,
this transformation implies

~s≡ω2
12 − c2s ~k

2
12 ¼ 4ω2 ↔ ~u≡ω2

14 − c2s~k
2
14 ¼ −4ω2 ¼ −~s;

ðA2Þ

where we have evaluated the expressions on-shell. The part
of the amplitude that is only a function of ~s (in a generic
frame) is therefore an even function of ~s. However, in
principle the scattering amplitudeM also has contributions
that do not transform as easily. For instance, ω12 ↔ ω14

under the crossing symmetry, but ω14 vanishes in the
center-of-mass frame, while ~s ¼ ω2

12 prior to the crossing
transformation. Terms that vanish in the center-of-mass
frame, e.g. those proportional to ω14, play a vital role in
making crossing symmetry manifest. For this reason, it is
useful to distinguish functional dependence on ~s from
explicit functions of ω12.
To illustrate these considerations, let us study the

exchange of a heavy state in the s-channel, away from
forward scattering and in a generic frame. Using standard
“polology” arguments [1], we expect the amplitude to take
the following form

Ms ⊃
Zðωab; ~kab · ~kcdÞ

ω2
12 − c2r~k

2
12 −M2 þ iϵ

; ðA3Þ

where M is the energy of the intermediate state, cr ≡
crðω12Þ is its speed of propagation, andZ is some unknown
function of the quantities defined in (A1). This expression
must be symmetric with respect to permutations of the
momenta that leave the s-channel fixed: i.e. f1 ↔ 2g and
f3 ↔ 4g. It is useful to write the amplitude in terms of
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variables that make this invariance manifest (after using the
on-shell conditions), namely21

Zðωab; ~kab · ~kcdÞ≡ Zð~s;ω2
12;ω

2
13 þ ω2

14; ~k13 · ~k14;ω13ω14Þ;
ðA4Þ

where we have chosen to express ~k212 in terms of ~s and ω12.
We can then use crossing symmetry to determine the
location of the pole in the u-channel, which we denote
by Mu. Putting both contributions together, we find

M ¼ Ms þMu

⊃
Zð~s;ω2

12;ω
2
13 þ ω2

14; ~k13 · ~k14;ω13ω14Þ
ω2
12 − c2r~k

2
12 −M2 þ iϵ

þ Zð ~u;ω2
14;ω

2
13 þ ω2

12; ~k13 · ~k12;ω13ω12Þ
ω2
14 − c2r~k

2
14 −M2 þ iϵ

: ðA5Þ

Taking the forward limit, ~k13 → 0—but still in a generic
frame—we get

A ⊃
Zð~s;ω2

12;ω
2
14Þ

ω2
12 − c2r ~k

2
12 −M2 þ iϵ

þ Zð−~s;ω2
14;ω

2
12Þ

ω2
14 − c2r~k

2
14 −M2 þ iϵ

;

ðA6Þ
where Zðx; y; zÞ≡ Zðx; y; z; 0; 0Þ. At high energies,
ω ≫ ρ, Lorentz invariance is restored and we expect
crossing symmetry to act in the familiar way. To see this,
we note that csðωÞ, crðωÞ → 1 and ~s → s in the UV.
Moreover, the amplitude will be dominated by a relativ-
istically invariant function,

Zð~s;…Þ⟶ω≫ρ
Zðs;…Þ ¼ ZUVðsÞð1þOðρ=ωÞÞ; ðA7Þ

where ZUVðsÞ ¼ ZUVð−sÞ, as required by crossing sym-
metry when the theory becomes relativistic. As expected,
the expression in (A6) therefore becomes symmetric under
s → −s (and ϵ → −ϵ). This is also manifest in the center-
of-mass frame, where we have

AcmðsÞ⊃
ZUV

cm ðsÞ
s−M2þ iϵ

þ ZUV
cm ð−sÞ

−s−M2þ iϵ
; for s≫ρ2: ðA8Þ

At low energies, on the other hand, crossing symmetry
does not guaranteed that AcmðsÞ is an even function of s.
Instead, we have

AcmðsÞ ⊃
Zcmðs; s;0Þ
s−M2 þ iϵ

þ Zcmð−s;0; sÞ
−c2rc−2s s−M2 þ iϵ

; for s < ρ2;

ðA9Þ

and the two terms are not necessarily related by reflection.
First of all, when cr ≠ cs, the location and residue of the
pole on the negative axis is not the symmetric counterpart
of the one on the positive axis. (This is seen explicitly in
the perturbative example discussed in Sec. IVA and
Appendix B; cf. Fig. 3.) Furthermore, while the optical
theorem forces the residue of the s-channel pole in (A9) to
be positive, this does not imply positivity of the residue of
the u-channel pole. Unitarity alone is not sufficient to
guarantee positivity because the function Zcmðx; y; zÞ is
evaluated for different arguments in the s- and u-channels.
We may then worry that the residue from the negative s-

axis may be negative and dominate over the positive
contribution from the s-channel. Fortunately, in many
circumstances we find that Z is invariant under permuta-
tions of ωa, such that

Z → Zð~s;ω1ω2ω3ω4Þ: ðA10Þ
For example, this property arises when time derivatives act
on the external legs. In the center-of-mass frame, this
means that22

Zð~s;ω1ω2ω3ω4Þ → Zcmðs;ω4Þ ¼ Zcmðs; s2Þ; ðA11Þ
which extends the original form of the crossing symmetry
to all energies. The residues on the positive and negative
s-axes are therefore related, and both constrained to be
positive by the optical theorem. This is also manifestly true
in the example of Sec. IVA and a large class of weakly
coupled extensions.
The above reasoning takes into account poles and branch

cuts that originate in the s-channel. There is, however, a
final subtlety to be discussed. Since Lorentz invariance is
broken, interactions can in principle have an unequal
number of time and space derivatives. For example, a
quartic interaction with three time derivatives and two
spatial derivatives can be consistent with the symmetries of
the EFT. This could in principle produce contributions in
the IR of the form

A ∝ ω5
12 ¼ ðω2

12Þ5=2 → Acm ∝ s5=2: ðA12Þ
To be consistent with unitarity, we must choose these cuts
to run along the negative axis. Notice, however, that in a
generic frame crossing symmetry maps ω12 → ω14 → 0.
Therefore these type of singularities do not have an
s-channel counterpart. While potentially dangerous, these
terms are always subdominant in perturbation theory, since
they involve higher powers of s. They must be absent also
in the UV theory, which is dominated by relativistic

21To avoid a proliferation of different names we abuse notation
and denote both functions in (A4) by Zð� � �Þ.

22In a perturbative setting, attempts to put an unequal number
of time derivatives on each leg fail to produce singularities from
the u-channel in the center-of-mass frame. After summing over
permutations, the u-channel amplitude becomes a function of
ω14, which vanishes when ω1 ¼ ω4 ¼ ω.
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interactions. Hence, at lowest order in s, these rather
peculiar singularities do not present a problem for our
positivity argument.

APPENDIX B: POSITIVITY IN THE πσ-MODEL

In this appendix, we present details of the analysis of the
weakly coupled example of Sec. IVA. Specifically, we will
show how the sum rule (4.1) is realized in this particular
example and demonstrate explicitly that it satisfies our
positivity bound.
For convenience, we recall the Lagrangian for the πσ-

model:

L¼ −
1

2
ð∂π̄Þ2 − 1

2
ð∂σÞ2 − ρσ _̄π −

σð∂π̄Þ2
2M

−
1

2
m2σ2 −

1

3!
μσ3:

ðB1Þ

In the flat space limit, the linearized equations of motion are
given by

ðω2 − k2Þπ̄ þ iρωσ ¼ 0; ðB2Þ

ðω2 − k2 −m2Þσ − iρωπ̄ ¼ 0; ðB3Þ

so that the propagator for ϕ≡ ðπ̄σÞ is

hTðϕpϕT
−pÞi ¼

i
ðω2 − k2Þðω2 − k2 −m2Þ − ω2ρ2 þ iϵ

×

�
ω2 − k2 −m2 −iρω

iρω ω2 − k2

�
: ðB4Þ

The poles of the propagator are associated with the non-
trivial solutions for π̄ and σ, which satisfy

ω2
� ¼ k2 þ 1

2
ðρ2 þm2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2k2 þ 1

4
ðρ2 þm2Þ2

r
: ðB5Þ

The mixing of π̄ and σ presents an additional complication
because at low energies neither π̄ nor σ creates an energy
eigenstate. To correct for this, we will compute the S-matrix
elements using the LSZ formula [22]:

S ¼
�Y4

a¼1

lim
ωa→Ea

ω2
a − E2

a

ZðωaÞ
�
hTðπ̄p1

π̄p2
π̄p3

π̄p4
Þi; ðB6Þ

where Ea is the energy of the gapless state. The function
ZðωÞ is the relative normalization between π̄ and the
canonically-normalized energy eigenmode,23

hTðπ̄pπ̄−pÞi ¼
Z2ðωÞ

ω2 − E2ðkÞ ; ðB7Þ

which in this particular case is given by

Zðωa ¼ EaðkaÞÞ ¼
�
m2 − ρ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2ρ2 þ ðm2 þ ρ2Þ2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2ρ2 þ ðm2 þ ρ2Þ2

p
�1=2

:

ðB8Þ

1. μ ¼ 0

We first consider the special case μ ¼ 0. The forward
scattering amplitude gets contributions from exchange
diagrams that include all the matrix elements in the
propagator (B4). There are three classes of these diagrams:
σ-exchange, π-exchange and πσ-exchange. At low ener-
gies, and for cs ≪ 1, the σ-exchange contribution domi-
nates the amplitude. In the forward limit, we then find the
following amplitude in the center-of-mass frame

A ¼ −
Z4ðk2Þ
M2

�
ðω2 þ k2Þ2

�
1

4ω2 −m2 − ρ2
−

1

4k2 þm2

�

− ðω2 − k2Þ2 1

m2

	
; ðB9Þ

where the last term is from the t-channel exchange. In the
limit ω → 0, this amplitude indeed matches the result of the
EFT computation. We see that the amplitude has poles at
4ω2 ¼ m2 þ ρ2 ≃ ρ2 and 4k2 ¼ −m2 (or 4ω2 ≃ − 3

4
c4sρ2);

cf. Fig. 3. For small cs, the pole on the negative axis is
located much closer to the origin than that on the positive
axis.
We wish to see how the sum rule (4.1) works for the

amplitude (B9). It is easy to see that the residue of the pole
on the negative axis dominates: the pole on the positive axis
is suppressed by a factor of c2s , while the relativistic regime,
M > ω ≫ ρ, only contributes lnðM=ρÞ=M4. Using that
the imaginary part associated with the pole on the negative
axis is

Im½Aðs< 0Þ� ¼Z4ðk2Þ
M2

ðω2þk2Þ2πδð−4k2−m2Þ; ðB10Þ

the sum rule can be written as

1

2
A00ðs → 0Þ ¼ 1

π

Z
0

−∞

ds
s3

Im½AðsÞ�

¼
Z

∞

0

dq
s0ðqÞ
s3ðqÞ

Z4ðqÞ
M2

q2

16
δðq −m2Þ; ðB11Þ

where q ¼ −4k2 and

23Let us emphasize this is just a choice. In principle, the
scattering amplitude can be computed using any interpolating
field with a nonvanishing overlap with the asymptotic eigenstates,
see e.g. [2]. In our case it turns out to be convenient to work
directly with π̄ rather than diagonalizing the propagator in (B4).
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sðqÞ≡ −qþ 2ðm2 þ ρ2Þ − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qρ2 þ ðm2 þ ρ2Þ2

q
;

ðB12Þ

s0ðqÞ≡ ds
dq

¼ −1þ ρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−qρ2 þ ðm2 þ ρ2Þ2

p : ðB13Þ

At leading order in cs ¼ m=ρ ≪ 1, we have

sðq ¼ m2Þ ¼ −
3

4
c2s ;

s0ðq ¼ m2Þ ¼ −
3

2
c2s ;

Z2ðq ¼ m2Þ ¼ 3

4
c2s : ðB14Þ

Substituting this into (B11), we find

1

2
A00ðs → 0Þ ¼ 1

8m2M2
¼ 1

8j _ϕ0j2c2s
; ðB15Þ

where we have used m ¼ csρ and ρ ¼ j _ϕ0j=M. The left-
hand side of (B15) can also be computed directly in the
EFT for the canonically normalized field πc ¼ csπ=j _ϕ0j
(after integrating out σ). In the limit cs ≪ 1, Eq. (3.16)
becomes24

1

2
A00ðs → 0Þ ¼ c3s ×

1

8

1

Λ4
¼ 1

8j _ϕ0j2c2s
; ðB16Þ

where we used Λ ¼ fπcs and f4π ¼ j _ϕ0j2cs. We thus find
exact agreement, at leading order in cs ≪ 1, with the single
pole contribution to the dispersion relation.

2. μ ≠ 0

Finally, we compute the forward scattering amplitude for
μ ≠ 0. We will assume that μ is sufficiently large that we
can neglect all other cubic terms. This example generates
large c3 and c4 in the EFT. We wish to determine whether
the derived EFT parameters satisfy our positivity con-
straint. A similar computation to the one above gives the
Oðμ2Þ contribution to the forward amplitude

Aμ2 ¼ −
μ2

Z4ðωÞ
�

ωρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2ρ2 þ ðm2 þ ρ2Þ2

p
�

4

×

�
1

4ω2 −m2 − ρ2
−

1

4p2 þm2
−

1

m2

�
: ðB17Þ

The analytic properties of this amplitude are similar to the
previous case with poles located at 4ω2 ¼ m2 þ ρ2 ≃ ρ2

and 4k2 ¼ −m2. In the limit ω → 0, we get

Aμ2 →
1

8

μ2

m6
s2; ðB18Þ

which is manifestly positive.
Although the analysis of this appendix was a nontrivial

check of our positivity constraint, the underlying reason for
the positivity was already anticipated in Appendix A.
Specifically, the low-energy amplitude was UV completed
through the exchange of a single heavy state. As a result,
the coefficient function, Z, must scale as s2 in order to
match the low-energy scaling of the EFT.25 It is clear that
this scaling arises from a single derivative acting on each
external leg and therefore Z is manifestly crossing sym-
metric. As a result, the residues of the u- and s-channel
poles must have the same sign, and therefore the forward
amplitude must be positive. One can check that this
conclusion cannot be altered by changing the form of
the interactions or of the mixing term. We conclude that
positivity of the sum rule is a generic feature of weakly
coupled UV completions of the EFT of inflation.

APPENDIX C: LOW-ENERGY ππ → ππ
SCATTERING

In this appendix, we compute the low-energy ππ → ππ
scattering in the EFT of inflation at leading order in the
derivative expansion. At tree level, we have two types of
diagrams: (i) exchange diagrams involving the combination
of two cubic vertices, and (ii) contact diagrams involving
quartic vertices. Wewill treat these two scattering processes
in turn.

1. Exchange diagrams

The Lagrangian at cubic order is

~L3 ¼
1

Λ2
½α1 _π3c − α2 _πcð ~∂πcÞ2�; ðC1Þ

where the parameters αi are defined in (3.9). For each
exchange diagram, we get factors of 1

2
i2 from the two

vertices, i3ð−iÞ3 from the six momenta, and i from the
propagator, leading to an overall factor of − 1

2
i. The two

interactions in (C1) lead to three different types of
exchange diagrams:

24In Sec. III, we rescaled the coordinates by ~xi ¼ xi=cs. This
rescaling changes the normalization of the amplitude. We have
corrected for this difference by rescaling the result of Section III
by a factor of c3s .

25One may also have Z ∝ s in such a way that the leading
contributions to the s- and u-channels cancel in the limit s → 0,
leaving AðsÞ ∝ s2, as required. Such a cancellation will only
occur when the sign of the u-channel term is consistent with a
positive contribution to our sum rule and therefore does not
present a loophole to this argument.
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(1) _π3 × _π3. We first consider the diagram involving two
factors of the interaction _π3. The internal contraction
for this diagramonly involves time derivatives, which
implies that only the s-channel is non-vanishing in
the center-of-mass frame (using ω13 ¼ ω14 ¼ 0).
There are 32 ¼ 9 ways of choosing this internal
contraction and 4×2¼8 diagrams for the s-channel;
hence the symmetry factor in this case is 72. The
vertices give a factor of α21=Λ

4, and we get

iM _π3 ¼ −
1

2
i · 72 ·

α21
Λ4

· ½ω2ð2ωÞ� 1
s
½ω2ð2ωÞ�

¼ −
9i
4
α21

s2

Λ4
; ðC2Þ

where the final equality holds in the center-of-
mass frame.

(2) _πð∂πÞ2 × _πð∂πÞ2. The computation of the diagram
involving two factors of _πð∂πÞ2 is slightly more
involved. Now there are three possible internal
contractions:
(a) . This internal contraction consists of time

derivatives only, so only the s-channel survives.
Since there is only one way of choosing the
internal contraction, the symmetry factor is 8 and
we get

iM _πð∂πÞ2;a ¼ −
1

2
i · 8 ·

ð−α2Þ2
Λ4

× ½ð ~p1 · ~p2Þ2ω�
1

s
½ð ~p3 · ~p4Þ2ω�

¼ −iα22
s2

Λ4
: ðC3Þ

(b) . Again, only the s-channel contributes, but
now there are 4 possible ways of choosing the
internal contraction, giving a symmetry factor of
8 × 4 ¼ 32. The amplitude is

iM _πð∂πÞ2;b ¼ −
1

2
i · 32 ·

ð−α2Þ2
Λ4

× ½ω ~p1 · ð ~p1 þ ~p2Þ�
1

s
½2ωð ~p3 · ~p4Þ�

¼ −2iα22
s2

Λ4
: ðC4Þ

(c) . Since there are no time derivatives
appearing in the internal contraction this time,
naively we would expect that both the t- and u-
channels would contribute. However, it turns out
that both vanish in this case too. To see this, note
that the scattering amplitude in the t-channel
contains terms such as ð ~p1 − ~p3Þ · ð ~p1 þ ~p3Þ ¼
0 (and similarly for the u-channel), giving zero

amplitude.26 Noting that the symmetry factor for
the s-channel is again 32, we find

iM _πð∂πÞ2;c ¼ −
1

2
i · 32 ·

ð−α2Þ2
Λ4

× ½ω ~p1 · ð ~p1 þ ~p2Þ�
1

s
× ½ð ~p3 þ ~p4Þ · ~p3ω�

¼ −iα22
s2

Λ4
: ðC5Þ

(3) _π3 × _πð∂πÞ2. Finally, we consider the exchange
diagram involving both interactions, _π3 and
_πð∂πÞ2. There are two such cross-terms, each with
amplitude proportional to α1α2=Λ4. We have two
types of internal contractions:
(a) . There are three ways of obtaining this

internal contraction, giving the symmetry factor
of 3 × 8 ¼ 24 for the s-channel. We therefore
have

iM _π3× _πð∂πÞ2;a

¼ −i
1

2
· 2 · 24 ·

−α1α2
Λ4

½ð ~p1 · ~p2Þ2ω�
1

s
½2ωω2�

¼ −3iα1α2
s2

Λ4
: ðC6Þ

(b) . The number of terms with this internal
contraction is 3 × 2 ¼ 6, so the symmetry factor
is 6 × 8 ¼ 48. We get

iM _π3× _πð∂πÞ2;b

¼ −i
1

2
· 2 · 48 ·

−α1α2
Λ4

× ½ω ~p1 · ð ~p1 þ ~p2Þ�
1

s
½2ωω2�

¼ −3iα1α2
s2

Λ4
: ðC7Þ

26The absence of low-energy poles is a genuine feature for all
tree level exchange diagrams in the EFT of inflation, so that the
forward scattering limit is well-defined in spite of π being
massless. To see this, first note that any internal contraction
involving time derivative operators will vanish in the t-channel,
and moreover those involving box operators will bring up factors
of t, cancelling with the poles in the denominator. The remaining
contractions then involve terms of the form ∂μ1���μnπ∂ν1���νmπ.
However, since these indices must be contracted with external
legs, they will again induce factors of t, either cancelling within
themselves due to antisymmetry to give zero contribution (as in
our case) or with the poles to yield nonzero but pole-free
amplitudes. Similar arguments hold for the absence of s- and
u-channel poles.
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2. Contact diagrams

The Lagrangian at quartic order is

~L4 ¼
1

Λ4
½β1 _π4c − β2 _π

2
cð ~∂πcÞ2 þ β3ð ~∂πcÞ4�; ðC8Þ

where the parameters βi are defined in (3.10). For each
contact diagram, we get an overall factor of ið−iÞ2i2 ¼ i.
The three interactions in (C8) lead to the following
amplitudes:

(i) _π4. In the center-of-mass frame, this quartic inter-
action has equal contributions from s-, t- and u-
channels, and comes with a symmetry factor of 24,
giving

iM _π4 ¼ i · 24 ·
β1
Λ4

ω4 ¼ 3i
2
β1

s2

Λ4
: ðC9Þ

(ii) _π2ð∂πÞ2. For this interaction each channel comes
with a symmetry factor of 8, and we get

iM _π2ð∂πÞ2 ¼ i · 8 ·
−β2
Λ4

½ω2ð ~p1 · ~p2Þ þ ω2ð ~p1 · ~p3Þ
þ ω2ð ~p1 · ~p4Þ�

¼ iβ2
sðs − ~t − ~uÞ

Λ4
¼ 2iβ2

s2

Λ4
; ðC10Þ

where we used the relation sþ ~tþ ~u ¼ 0 to re-
present the result in terms of s only.

(iii) ð∂πÞ4. The symmetry factor for this interaction is
again 8 for each channel, giving

iMð∂πÞ4 ¼ i · 8 ·
β3
Λ4

½ð ~p1 · ~p2Þð ~p3 · ~p4Þ
þ ð ~p1 · ~p3Þð ~p2 · ~p4Þ
þ ð ~p1 · ~p4Þð ~p2 · ~p3Þ�

¼ 2iβ3
ðs2 þ ~t2 þ ~u2Þ

Λ4
: ðC11Þ

Notice that this is the only amplitude with a non-
trivial angular dependence.

3. Total amplitude

Adding the above results, gives the total amplitude

Mðs; ~tÞ ¼
�
−
9

4
α21 − 4α22 − 6α1α2 þ

3

2
β1 þ 2β2

�
s2

Λ4

þ 2β3
ðs2 þ ~t2 þ ~u2Þ

Λ4
: ðC12Þ

In the forward limit, ~t → 0, we find

AðsÞ ¼
�
−
9

4
α21 − 4α22 − 6α1α2 þ

3

2
β1 þ 2β2 þ 4β3

�
s2

Λ4
:

ðC13Þ
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