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Abstract. We study the translocation mechanism of a granular chain in a horizontally vibrated saw-tooth
channel using MD simulations and macro-scale experiments and show that the translocation speed is
independent of the chain length as long as the chain length is larger than the spatial period of the saw-
tooth. With the help of simulation, we explore the effect of geometry of the container and frequency and
amplitude of vibration as well as chain flexibility on the chain drift speed. We observe that the most
efficient transport is achieved when one of the channel walls is shifted with respect to the other wall by
an amount equal to half the spatial period of the saw-tooth. We define a persistence length for the chain
and show that the translocation speed depends on the ratio of persistence length over the spatial period
of the saw-tooth. The optimum translocation occurs when this ratio is about 0.4. We also determine the
optimum saw-tooth angle for the translocation of the chain as well as the optimum distance between the
two walls. Some properties of this system are similar to those of polymer systems.

1 Introduction

A key step in viral infection is the transfer of viral DNA
from viral capsid to the host cell through the tail tube.
Therefore understanding this process is of great impor-
tance in biology and medical science. In recent years many
theoretical and experimental studies have centered on
DNA translocation and ejection [1–5]. For example, the
effect of confinement on DNA mobility was characterized
in slits and tube-like confinements [6,7] using micro/nano-
fluidic structures in weak and moderate confinement, al-
lowing distinct regimes of transport and mobility of DNA
molecules to be observed [8–10]. Despite these results,
many aspects of the translocation of confined biopolymers
are still unknown or subject of wide debate [11]. This is
largely due to limitations in the available experimental
techniques.

Brownian motors are essential tools in biology and
nano-technology to extract useful work from a noisy envi-
ronment. However, their governing principles are not lim-
ited to the nano scale and can also be implemented to
macroscopic scales such as granular systems where a con-
stant external driving force is provided by shaking the
container. Most granular Brownian motors convert the
random motion of the particles into a directed flow. This
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can either be implemented by breaking the spatial sym-
metry of the boundary conditions [12–18] or by breaking
the symmetry of the driving system [19–21]. In most ex-
amples of the first group, a saw-tooth-shaped boundary is
used to break the symmetry [12–18,22].

In ref. [23], Brownian dynamics simulations both in
the absence and the presence of hydrodynamic interac-
tions [24,25] are used to study the dynamics of a polymer,
subject to a ratchet potential. The average speed of the
polymer and its conformational properties were examined
upon variation in the polymer length, and the ratchet spa-
tial period, where two distinct dynamical regimes were ob-
served. In the regime of a small chain and long ratchet spa-
tial periods, the velocity decreases when the chain length
increases, while for long chains and small ratchet peri-
ods the velocity is insensitive to the variation of the chain
length. One important application of such studies is in
the transport and the size-based separation of biopoly-
mers [26–28].

In recent years, the existence of athermal macroscopic
systems that obey thermodynamic-like laws has been re-
ported [29–33]. However, the application of thermody-
namic/entropic concepts in macroscopic athermal systems
is still a matter of open debate [33]. In these systems, due
to the dissipative nature of the collisions, energy needs to
be constantly supplied to keep the system moving. There-
fore, the system is out of equilibrium. But as long as all
possible states of the system can be properly sampled
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with equal probability, similar behavior can be expected
for granular systems and their thermodynamic counter-
parts [32]. For granular systems, Edwards proposed a sta-
tistical approach to calculate the thermodynamic quanti-
ties from averages over grain configurations, but this ap-
proach was not established rigorously [29, 34]. To explore
the analogy between driven granular media and thermal
equilibrium, Galanis et al. [32] studied a 2D binary mix-
ture of granular particles (rods and spheres) and used en-
tropy maximization to predict the dynamics. They showed
that depletion interactions cause rods to form a specific
configuration. Recently Windows-Yule et al. studied a 3D
vibrated mixture of elongated athermal particles and ap-
plied the minimum free energy principle to explain the
phase behavior and the ordered-disordered transition in
this system. In this context, granular chains consisting
of beads connected by flexible links and excited by vi-
bration are introduced as a macroscopic model for poly-
mer dynamics [30, 31, 35, 36]. This macroscopic system is
used to study unknotting, radius of gyration, ring diffu-
sion, and entropic elasticity of chains [30, 31, 36]. A self-
avoiding walk model for polymers was mimicked by per-
forming experiments with a granular chain agitated by
self-propelled balls [37]. Kudrolli and co-workers have also
studied the structure and dynamics of vibrated granular
chains [29] and diffusion of granular rods [38]. They com-
pared their results for macroscopic chains with equilib-
rium polymer theories. Furthermore, studying the packing
of granular chains in two and three-dimensions showed
a close similarity to that in the glass transition of real
polymers. In fact the glass transition in real polymers is
equivalent to a jamming transition in granular chain sys-
tems [39,40].

Interaction between granular chains and ratchet struc-
tures has also been studied. Chen et al. measured the force
generated on a granular chain moving randomly on a pe-
riodic ratchet plate [41]. Furthermore, Lin and co-workers
experimentally investigated the dynamics of a short gran-
ular chain on a one-dimensional gradient of vibration.
They observed transitions from passive monotonic creep-
ing against the gradient, to rapid stochastic head swinging
with a reversed bias in its direction. Their experimental
results for uniform vibrations showed a non-monotonic de-
velopment of accessible modes behind the transitions, and
confirmed a relationship between the size of the chain and
the spatial gradient [42].

In this paper, we investigate the dynamics and translo-
cation of a granular chain in a horizontally vibrated saw-
tooth channel. To study how breaking spatial symme-
try by saw-tooth-shaped side walls of the narrow corri-
dor leads to a drift speed on the chain, we introduce a
molecular dynamics simulation method and simulate the
translocation mechanisms of the chain. We also perform
experiments in which a granular chain is shaken in a hor-
izontal saw-tooth corridor. By direct imaging of the chain
moving in the corridor we measure the drift speed and
compare it with our simulation results. We explore the
effect of geometry of the container as well as the flexibil-
ity and the length of the chain on the drift mechanism.
The results of this work show strong similarities between

Fig. 1. a) The geometrical parameters of the system. b) Top
view of the experimental setup. c) Visualization of the setup
used in the simulations. The simulated chain re-enters the be-
ginning of the channel as it reaches the end (periodic bound-
ary condition). The vertical arrow shows the direction of the
translocation while the horizontal arrows show the direction of
vibration.

our out-of-equilibrium athermal system and its molecular
counterparts and provide a new insight into the under-
lying entropic mechanisms of chain translocation under
confinement which will be of wide interest to researchers
in the field of granular materials and polymer physics.

2 Methods

The system studied here consists of a saw-tooth corridor
in which one of the walls is shifted with respect to the
other one as shown in fig. 1. The important geometrical
parameters are shown in fig. 1a. α is the angle and L is
the spatial period of the saw-tooth, H is the height of the
teeth, d is the amount of shift between the two walls and
w is half the distance between them as shown in fig. 1a. α
can be set by L and H. Therefore (L,H,w, d) will give a
set of independent geometrical parameters of the system.
We have used the following values in our experiments and
the majority of our simulations: α = 80◦, L = 4.3 cm,
H = 0.76 cm, d = L/2 and w = 0.35 cm. When different
sets of geometrical parameters are used in the simulation
the corresponding values will be mentioned. The struc-
ture is shaken horizontally with the frequency ω in the x
direction.

The granular chain consists of spherical beads con-
nected to each other by loose links. The length of the chain
is described by the number of beads in the chain (N).
The maximum angle between the two consecutive links is
θmax (fig. 2). We can define a persistence length (lp) for
the chain by using the decay of the link-angle correlation:
〈cos(θn − θ1)〉 = 〈cos(θ2 − θ1)〉n−1 ∼ exp[− (n−1)D

lp
], where

θn is the angle of the n-th link and D is the diameter of
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Fig. 2. θmax is the maximum angle between the two consec-
utive links and determines the rigidity of the chain. θmax and
lp of the chain used in our experiments are 45◦ and 21mm re-
spectively. The minimum number of beads required to form a
ring is roughly the same as the persistence length of the chain.

the bead [29,43]. By assuming that (θ2 − θ1) is uniformly
distributed between −θmax and θmax, we can define the
persistent length for a specific θmax.

2.1 Experimental procedure

The experimental setup is composed of a fourteen-cell saw-
tooth corridor made from plexiglass shown in fig. 1b. The
saw-tooth corridor is mounted horizontally and shaken in
the x direction using an off-center pulley which is driven
by an AC motor [22]. The amplitude of the oscillations
is chosen based on experimental observations to achieve a
considerable interaction between the chain and the corri-
dor walls. For very small oscillation amplitudes the chain
does not interact with the corridor walls or gets stuck.
In this work we limit ourselves to a shaking frequency
of 4Hz and an oscillation amplitude of 1.28 ± 0.05 cm in
both the experiments and the simulations, except for the
data shown in figs. 7 and 8 in which the effects of the
shaking frequency and oscillation amplitude are studied
respectively.

The granular chain used in the experiments consists
of hollow nickel-coated aluminium spherical beads of di-
ameter D = 2.5 ± 0.05mm connected to each other by a
loose link. The mass of one bead and its neighboring link
is m = 0.033 gr. Two consecutive links are allowed to have
a maximum angle of π/4 rad and the distance between the
two consecutive beads changes between 0 and l = 0.9mm.
The persistence length of the chain calculated using the
above method is about 9 times the diameter of the beads
(∼ 21mm); the same as the estimation of ref. [29]. This is
roughly the minimum number of beads required to form a
ring (see fig. 2). This number can be used as an estimation
to the rigidity of the chain [29,41].

The length of the chain (N) ranges from 5 to 156 in
our experiments. The average drift speed of the chain is
determined by taking direct images of the end point of the
chain in time. The motion of the chain in the container
is recorded by taking a movie using a CCD camera with
a pixel resolution of 752 × 582 and frame rate of 24Hz.

The end position of the chain is determined to within a
third of the bead diameter by analyzing the images. The
y coordinate of the end position is followed in time to
obtain the drift speed. The average drift speed is finally
calculated by taking an average over 12 runs.

The saw-tooth corridor is connected to a circular reser-
voir at the end of the corridor to collect the chains leaving
the corridor. To avoid the influence of reservoir on the
chain dynamics only those situations are considered here
in which both ends of the chain are inside the corridor and
the chain interacts only with the saw-tooth walls.

2.2 Simulation method

To elucidate the transport mechanism we perform molec-
ular dynamics simulations. The net force imposed on each
bead is a combination of normal and tangential forces, due
to interactions with other beads as well as the container
walls. The position of the centers of the beads i and j
are given by �ri and �rj . Hertzian formulation predicts that
the normal force between particles is proportional to the
normal compression to the power 3/2 [44]. For viscoelastic
particles a damping term need to be added to the elastic
repulsion term [45,46]. Therefore the normal force between
the beads i and j is given by

�Fni,j
= −f(ξ)(kDξ − γmeffvni,j

)n̂i,j , (1)

where k and γ are the elastic and viscoelastic constant
respectively, vni,j

is the normal component of the rel-
ative velocity of different beads at the contact point,
n̂i,j = �rj−�ri

|�rj−�ri| is the normal unit vector at this point and
meff = mimj/(mi + mj) is the effective mass. Here, ξ
is the normal compression at the contact, calculated as
ξ = 1 − rij/D, where D is the bead diameter. According
to Hertzian model f(ξ) =

√
ξ for ξ > 0 and f(ξ) = 0 for

non-positive ξ [22, 45,46].

Bead-bead collision – In general, for particles with dif-
ferent sizes and material properties, the coefficient of the
elastic part is defined as

k =
4
3

√
Reff

(
1 − ν2

i

Yi
+

1 − ν2
j

Yj

)−1

, (2)

in which R−1
eff = R−1

i + R−1
j and Ri, νi and Yi are the

radius, the Poisson ratio, and Young modulus of the grain
i respectively [46]. In fig. 3 the details of bead-bead colli-
sion are schematically shown. Elastic and viscoelastic con-
stants for bead-bead interaction are shown with subscript
“b-b”.

Bead-wall collision – The same equations are used to
model the interaction between the beads and the channel
walls, in which the coefficients have an added subscript
“b-w”. Here we assume that the radius of curvature of
the wall is infinity and the mass of the container is set
to be infinity too. The viscoelastic tangential interaction
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ξ

Fig. 3. The Hertzian model is used to simulate the contacts.
The position of the centers of the beads i and j are given by �ri

and �rj . ξ is the ratio of the normal compression at the contact
as shown in the image.

between the beads and the tangential forces is neglected
to assure that beads remain in contact with the floor of
the channel [22].

Bead-bead bonding – In addition to the above-
mentioned repulsive interactions, there is an attractive in-
teraction between the adjacent beads in the chain, and
is applied when the distance between the center of mass
of two adjacent beads exceeds the D + l limit, where l is
the length of the loose rod. Equation (1) is employed to
model this interaction with f(ξ) = −

√
ξ for non-negative

ξ and f = 0 otherwise. In this case, ξ is defined as
{rij − (D + l)}/D. The parameters of this attractive in-
teraction are shown with subscript “att”.

Bending rigidity – In order to take the bending rigid-
ity of the chain into account, the Hertzian model (eq. (1))
with ξ = θ/θmax − 1 is employed. Here n̂ij is a unit vector
perpendicular to the line passing from the center of adja-
cent beads, in a way to prevent bending. The numerical
values of the coefficients of such interactions are shown
with subscript “bend”.

Calibration parameters – We consider the elastic and
viscoelastic coefficients as calibration parameters by which
one can adjust the simulation results to the experiments.
All parameters in table 1, are only justified by their abil-
ity to reproduce the experimental results. We first started
with a set of coefficients determined by numerically match-
ing the experimental results of a bead bouncing off an alu-
minium and plexiglass plate for bead-bead and bead-wall
interactions, respectively. Then we changed these values
until we achieved the best possible match between the ex-
perimental values and simulation results of the drift speed.

Sliding criterion – To distinguish between sliding and
rolling contacts a method proposed by Kondic [47] is used
for evaluating the tangential force exerted on the chain

Table 1. The numerical values for the contact model coeffi-
cients. These parameters are chosen to achieve the best match
to the experimental results. All values are given in the CGS
system of units.

Coefficient Numerical value Coefficient Numerical value

kb-b 2.187 × 105 γatt 3240

katt 2.187 × 105 γb-w 255.75

kb-w 6.175 × 105 γbend 27

kbend 5.38 × 104 μk 0.4

γb-b 107.75 μs 0.5

by the channel surface. In a first step the contact is as-
sumed to be rolling with f = ma. While the existence of
loose links reduces the rotational degrees of freedom of
the beads, one has to take the other degrees into account
by computing the acceleration of the sphere as a = 0.5as,
with as being the acceleration of the substrate. This is the
final result if the no-sliding condition (|f | ≤ fmax = μsmg)
is satisfied. Otherwise, the sliding contact has to be eval-
uated using the dynamic friction coefficient μd

f = μdmg
Vrs

|Vrs|
, (3)

where Vrs is the velocity of the contact point relative to
the substrate.

Reference frame, boundary conditions and error bars –
Shaking is modeled by a sinusoidal excitation x(t) =
x0 cos(ωt), where ω is the oscillation frequency and
x0 is its amplitude. Since all the simulations are per-
formed in the referential frame of the container, a force
−ω2x0 cos(ωt), is added to each particles to convert non-
inertial frame of reference to inertial reference frame.
The code is written in C++ using a 5th-order predictor-
corrector algorithm for numerical integration of the equa-
tions of motion. The time step increment (Δt) is set to
10−6 s in all simulations. The simulated system is com-
posed of an eleven cell saw-tooth corridor as shown in
fig. 1c. The simulation is run for a very long time with
the periodic boundary condition, which means that the
simulated chain re-enters the beginning of the corridor as
it reaches the end (fig. 1c). Then the drift speed is cal-
culated over different time intervals to estimate the error
bars. The maximum error bar in our simulation is about
4% of the averaged value. So in most of the plots presented
in this work the symbol size for the simulation data points
are chosen to be larger than the error bars.

3 Results and discussion

3.1 Experiment vs. simulation

Performing experiments and simulations reveals that the
chain is always transported in the corridor toward the
wider part of the cells. The transport direction is shown in



Eur. Phys. J. E (2016) 39: 93 Page 5 of 10

Fig. 4. The transition time of the head of the chain as a
function of the transition distance for four different lengths
of the chain measured in both experiments and simulations.
The number of the beads in the chain are 41, 67, 94, and 134
for a, b, c and d respectively.

Fig. 5. Drift speed as a function of the length of the chain,
for both experiment and simulation. Horizontal lines represent
the average values for chains with N > 25.

fig. 1c. Figure 4 shows the transition time of the head of
the chain as a function of the transition distance for four
different lengths of the chain. Both experimental (filled
symbols) and simulation (open symbols) results for the
measured time increase linearly as a function of the po-
sition which indicates that the average drift speed of the
chain is constant in time. Linear fit to the data deter-
mines the drift speed of the chain for different lengths of
the chain as shown in fig. 5. Filled circles in fig. 5 represent
the experimental value of the drift speed. The drift speed
first increases with increasing the chain length for chain
lengths below 25 beads and then reaches a plateau with
an average speed of 0.35± 0.03 cm/s and 0.32± 0.02 cm/s

for experiments and simulations, respectively. The drift
speeds obtained by simulation are about 10% smaller than
the results of our experiments but show the same trend.
The plateaus in fig. 5 indicate that the drift speed is in-
dependent of the chain length except for the small chains.
For chain lengths smaller than 25 beads, the end to end
distance of the chain is comparable to or smaller than the
spatial period of the saw-tooth and in most of the times
the chain sticks in a single cell. But as long as the length of
the corridor is large and the spatial period of the saw-tooth
is small compared to the length of the chain, the length of
the chain does not affect the translocation speed. For the
majority of the data points shown in fig. 5, these two con-
ditions are satisfied. Interestingly similar results are pre-
dicted for the simulation of DNA or polymers transported
in the presence of a saw-tooth potential [23, 24, 26, 48] in
which the drift speed of the polymer is shown to be insen-
sitive to the length of the polymer.

3.2 The transport mechanism

In order to study the drift mechanism in detail, one needs
to consider how the geometrical parameters of the channel
or properties of the chain can affect the translocation. Per-
forming experiments for all these cases is time consuming
and sometimes impossible considering our experimental
limitations. The fair agreement between the simulation re-
sults and experiments shown in fig. 5 indicates the validity
of our simulation method. Therefore in the rest of the pa-
per we present only the simulation results to gain insight
into the driving mechanism of the chain translocation.

i) Effect of chain rigidity on translocation
Transport direction in our system is always toward the
wider part of the cells. In fact the free ends of the chain
prefer to move toward the wider parts of the cell which
is entropically favorable as it has been shown before for
the polymer systems [49, 50]. The entropic origin of the
transport indicates that the chain rigidity should influ-
ence the drift speed, as in polymer systems translocation
is strongly affected by the persistence length of the poly-
mer [51]. In our system the persistent length controls the
chain’s freedom to visit different parts of the cells. So we
expect to hinder the drift speed of the chain by increasing
its rigidity. The rigidity (flexibility) of the chain is defined
by θmax; the smaller the θmax, the higher the rigidity of
the chain. Although in our experiments θmax and conse-
quently the persistence length are fixed, in our simulations
we are able to change them and see how the rigidity af-
fects the drift speed. In fig. 6 the drift speed of the chain
is plotted as a function of the rescaled persistence length
(lp/L), for five different lengths of the chain. The ratio of
persistent length over the spatial period of the saw-tooth is
the pertinent parameter control the structural entropy of
the system. According to fig. 6 when lp/L ∼ 0.4 the data
points are scattered around a drift speed of 0.3 cm/s. Here
the chain is flexible and can easily be bent and form sev-
eral loops. In this regime we have many structural config-
urations for the chain and consequently large areas of the



Page 6 of 10 Eur. Phys. J. E (2016) 39: 93

Fig. 6. Drift speed as a function of rescaled persistence length
(lp/L) for different chain lengths.

cells will be visited by the chain. This causes a high drift
speed. However for higher chain flexibilities (lp/L < 0.4),
the translocation speed slightly decreases mainly because
the flexible chain gets stuck in the corners of the saw-tooth
structure. For (0.4 < lp/L < 1) we also observe a de-
crease of the drift speed with increasing the rigidity of the
chain as expected from the entropically-driven systems.
By increasing the persistent length of the chain, possible
structural configurations of the chain in the cell decrease
considerably and when lp becomes close to L the chain
only forms sinusoidal patterns in the corridor with wave-
lengths of about L. In this regime all the data points for
different chain lengths collapse on a single line at a slope
of −0.44 cm/s. Finally we arrive in the third regime when
the persistent length is larger than the spatial period of
the saw-tooth. Here the freedom of the chain is completely
hindered and the drift speed slightly goes to zero by in-
creasing the persistent length. The preceding simulation
results on the ejection of the polymers from confinements
predict faster ejections for flexible polymers [51], in qual-
itative agreement with our observations.

ii) Role of oscillation frequency and amplitude
The vibration of the saw-tooth channel is responsible for
the chain motion; it pumps kinetic energy to the chain
which in combination with the symmetry breaking due to
the asymmetric geometry of the channel, produces a net
drift speed in a direction perpendicular to the direction of
vibration. Because of the periodic nature of the exerted
force, the frequency of the vibration plays an important
role in the transport mechanism. To investigate this, we
have plotted the simulation predictions of the drift speed
as a function of the oscillation frequency for a chain with
67 beads at a fixed oscillation amplitude of 1.28± 0.05 cm
(fig. 7). Simulation results of fig. 7 show that increasing
the vibration frequency increases the drift speed. Our ex-
periments reveal that the oscillation amplitude needs to
be larger than about 1 cm to observe the drift mechanism
in our experimental setup. Below this value the chain does
not interact considerably with the corridor walls and gets

3 4 5 6 7
0.0

0.5

1.0

1.5

<
V y

>
 (c

m
/s

)

   Hzω
Fig. 7. Drift speed as a function of the vibration frequency,
simulated for a chain of 67 beads. The drift speed increases
with increasing the oscillation frequency.

0.5 1.0 1.5 2.0

0.0

0.3

0.6

<
V y

>
 (c

m
/s

)

 x0 (cm)
Fig. 8. Drift speed as a function of the oscillation amplitude
for a chain of 67 beads. For amplitudes below 1 cm no translo-
cation is observed. Drift speed shows an increasing trend with
increasing the amplitude.

stuck. In fig. 8 the simulation results for the drift speed
as a function of the oscillation amplitude are shown for
a fixed oscillation frequency of 4Hz. These results indi-
cate that for the oscillation amplitude below 1 cm the drift
speed is close to zero in agreement with the experiments.
The effect of the oscillation amplitude on the drift speed
is similar to that of the oscillation frequency and causes
an increase in the drift speed. To understand the effect of
the oscillation parameters on the drift speed we can plot
the drift speed as a function of the shaking acceleration
(Γ = x0(2πω)2). In fig. 9 the dimensionless drift speed
(〈vy〉/vp) is shown as a function of the dimensionless ac-
celeration (Γ/g) on logarithmic scale. The peak velocity
of the container (vp = x0/(2πω)) and the gravitational
acceleration (g) are used to make the drift speed and the
shaking acceleration dimensionless, respectively. Circles in
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Fig. 9. Dimensionless drift speed (〈vy〉/vp) as a function of the
dimensionless acceleration (Γ/g) on Log-Log scale (N = 67).
Circles represent the data of fig. 7 for a fixed amplitude of
1.28 ± 0.05 cm and squares represent the data of fig. 8 for a
fixed frequency of 4 Hz. Both series collapse on a single line
on Log-Log scale. The best power-law fit to all the data is
〈vy〉/vp = 9.89(Γ/g)1.96, shown by a solid line. The data points
for amplitudes 0.8 cm and 1 cm in fig. 8 are not shown on this
graph.

fig. 9 represent the data of fig. 7 for a fixed amplitude of
1.28 ± 0.05 cm except for a single data point related to
the smallest shaking frequency (3.3Hz). The squares show
the same data as those of fig. 8 for a fixed frequency of
4Hz with the exception of the data points for amplitudes
0.8 cm and 1 cm, for which the drift speed was close to
zero. Both series of data collapse on a single line on Log-
Log scale with a slope of about 2. The best power-law fit
to all the data is shown by a solid line with an exponent
of 1.96 (〈vy〉/vp = 9.89(Γ/g)1.96). According to fig. 9 the
drift speed depends quadratically on the shaking acceler-
ation (Γ ).

iii) Effect of geometry on the transport mechanism
The drift of the chain is a direct consequence of symmetry
breaking imposed by the container geometry. To see how
the geometry and the configuration of the boundaries af-
fect the drift speed, the geometrical parameters describing
the asymmetry of the channel have to be studied. Indeed,
by introducing two parameters, one has a complete de-
scription of the asymmetric shape of the boundaries, i) the
relative shifting of the two walls of the corridor, measured
by the ratio d/L and ii) the saw-tooth angle α, as shown
in fig. 1a. Changing these two parameters will change the
shape and the geometry of the corridor and will affect the
translocation as described in the following paragraph.

By considering the geometry of a corridor and neglect-
ing the end boundaries we will see that a corridor with
d = A is a mirror image of one with d = L − A as shown
in fig. 10. This geometrical symmetry implies the same
drift speed for both shifts and consequently a symmetric
behavior for the drift speed around d = L/2. Although in
our experimental setup the parameter d/L is fixed at 1/2,

Fig. 10. A corridor with one of the walls shifted with d = A
(a) is a mirror image of one with d = L − A (b).
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Fig. 11. Drift speed as a function of the shifting ratio (d/L)
for a chain of 67 beads. The data show a symmetric profile
with a maximum at d/L = 1/2. Inset: the same graph for
0 < d/L < 0.5, on Lin-Log scale. The best logarithmic fit to the
data is shown with a solid line (〈vy〉 = 0.378+0.082 Ln(d/L)).

in the simulation we can change the parameter d from 0
to L. In fig. 11 the drift speed of the chain is shown as a
function of d/L. The drift speed has a symmetric profile
with a maximum speed at d/L = 0.5 expected from the
geometry of the corridor. This indicates that the most effi-
cient transport is achieved when one of the walls is shifted
by half the spatial period of the saw-tooth, as we had in
our experimental setup. The same results are found for the
transport of the granular beads in a similar system [22].
But in contrast with the granular bead system [22], which
predicts a non-zero drift speed at d = 0, our granular chain
sticks in the corridor and does not move when the walls
are not shifted.

The inset of fig. 11 shows the same data for d/L ≤ 0.5
on Lin-Log scale with best logarithmic fit to the data
(〈vy〉 = 0.378 + 0.082Ln(d/L)). This graph shows that
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αα1

α2

α3

α1

α2

α3

Fig. 12. a) α increases by decreasing H while L is fixed, b) α
increases when L increases and H is fixed.

Fig. 13. Drift speed as a function of α. Black squares represent
the data for fixed L and H ranging from 0.38 cm to 3 cm while
black dots show the data for fixed H and L changing from
1.3 cm to 10.86 cm, for the following system parameters: N =
67, d = L/2 and w = 0.35 cm.

the drift speed changes with the amount of shift in a log-
arithmic manner.

The saw-tooth angle, α, is another geometrical param-
eter that plays a great role in the transport mechanism. As
it is schematically shown in fig. 12, there are two ways of
varying α, i) α increases while L is fixed and H decreases
(fig. 12a), ii) α increases while H is fixed but L increases
(fig. 12b). In fig. 13 the drift speed is shown as a func-
tion of α, when α is changing by both methods. For both
cases d = L/2. The squares represent a set of geometries
in which L is fixed at 4.3 cm but H varies from 0.38 cm to
3 cm. Here we observe an approximately symmetric pro-
file for the drift speed as a function of α with a maximum
around α = 70◦. But changing α using the second method
with H fixed at 0.76 cm and L is varying from 1.3 cm to
10.86 cm, gives an asymmetric profile for the drift speed
with a maximum at α = 76◦. Furthermore the maximum
drift speed obtained by the first method is larger than the
second one.
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Fig. 14. Drift speed of the chain as a function of the distance
between the two walls in a dimensionless form (2w/x0) for
N = 67, H = 0.76 cm, L = 4.3 cm and d/L = 1/2.

Another important geometrical parameter in this sys-
tem is the distance between the two walls of the corridor,
2w (fig. 1a). Figure 14 shows the drift speed of the chain as
a function of 2w/x0. Here we scale the distance between
the walls by the oscillation amplitude. The drift speed
has a maximum at 2w/x0 ∼ 0.3 and then decreases in a
non-monotonic way. When the distance between the walls
becomes larger than the amplitude (2w/x0 � 1) the drift
speed abruptly goes to zero as expected. In fact when the
walls are far from each other with respect to the amplitude
of the oscillation the interaction between the chain and
both walls decreases, and results in decreasing the drift
speed. On the other hand when the two walls are very
close the chain will be stuck between the walls. Therefore
there is an optimum value for the distance between the
two walls where the speed is maximum.

Finally the drift speed changes with changing the spa-
tial period of the saw-tooth when H and w are fixed. As
observed in fig. 15, we find that the drift speed of the chain
exhibits a single maximum upon variation with respect to
L at L ∼ 3 cm. Data for different chain lengths in fig. 15
collapse on the same curve as long as L is smaller than
the chain length. This is another indication of the insensi-
tivity of the drift speeds to the chain length, as discussed
before.

4 Conclusion

In conclusion, we investigate the translocation of a gran-
ular chain due to spatial symmetry breaking in a horizon-
tally vibrated saw-tooth corridor and study the effect of
the geometry of the container, oscillation parameters as
well as the flexibility of the chain on the drift mechanism
and speed. We perform simulations and experiments of
our system and justify our simulation results with the ex-
periments. The transport always occurs toward the wider
part of the cells due to entropically driven nature of the
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Fig. 15. Simulation results for the drift speed of the chain as
a function of L for different chain lengths and the following
geometrical parameters: d = L/2, H = 0.76 cm, lp = 1.2 cm
and w = 0.35 cm. The maximum drift speed occurs at lp/L ∼
0.4.

problem. The molecular dynamics simulation enables us to
explore the effect of different parameters such as flexibility
of the chain, vibration frequency/amplitude, and geome-
try of the saw-tooth on the drift speed. In addition, we
show that the important length scales are the persistence
length of the chain and the spatial period of the saw-tooth.
We find that as long as the chain length is larger than
the spatial period of the structure the drift speed is in-
dependent of the chain length, similar to molecular coun-
terparts of the system. The stiffness of the chain strongly
affects the translocation speed. The maximum transloca-
tion speed occurs when the persistence length is about
0.4 of the spatial period of the saw-tooth. When lp/L is
larger than 0.4 and below 1, the translocation speed de-
creases linearly with increasing the persistent length of the
chain independent of the chain length. The drift speed in-
creases with increasing both the vibration frequency and
the vibration amplitude and shows a quadratic relation
with respect to the oscillation acceleration.

For geometrical parameters of the container, we pre-
dict an optimum saw-tooth angle for the translocation of
the chain as well as an optimum distance between the
two walls of the corridor. We show that the most efficient
transport is achieved when one of the walls of the corri-
dor is shifted an amount equal to half the spatial period of
the saw-tooth, and the drift speed of the chain is increased
logarithmically with the amount of the shift.

Similarities between our results and entropically driven
polymeric systems indicate that the behavior of our out-
of-equilibrium system can obey the thermodynamic laws.
Therefore understanding such macroscopic athermal sys-
tems may provide insights for studying more complicated
systems e.g., DNA translocation where direct visualiza-
tion is difficult. We believe these findings are of wide in-
terest to researchers in the field of polymer physics, bio-
physics, and granular material. How entropy concepts can

quantitatively describe the dynamics in our system is still
unknown. Additional work is needed to understand the
depth of this analogy and our findings may stimulate fur-
ther work in this area.
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