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We propose an experimental scheme of generating entangled states between two spinor Bose-Einstein
condensates (BECs) using Rydberg excitations. Due to the strong interaction between Rydberg atoms, the Rydberg
excitation creates an interaction between two closely located BECs. The method is suitable particularly for atom
chip and permanent magnetic trap systems, which can create many BECs with an arbitrary two-dimensional
geometry. We show two schemes of entangled state generation, based on stimulated Raman adiabatic passage
(STIRAP) methods. The first method produces a symmetric state with total Sx spin zero between ground and
excited states of the atoms using a single STIRAP pair, while the second produces a NOON state between
hyperfine ground states using two STIRAP pairs. We show that despite the additional complexity of the BECs,
it is possible to identify the initial and final adiabatic states exactly. We verify our theoretical predictions using
numerical simulations on small boson number systems.

DOI: 10.1103/PhysRevA.93.022319

I. INTRODUCTION

Entanglement is now understood to be one of the unique
features of quantum mechanics and is a key ingredient
to quantum information tasks that provide speedups over
its classical counterpart [1]. The controlled creation of en-
tanglement is now routinely achievable in the laboratory
in a great variety of different systems, including trapped
ions, superconducting circuits, photons, quantum dots, and
nitrogen-vacancy (NV) centers in diamond [2–7]. Typically
the systems where controlled entanglement is producible are
microscopic, single-particle systems. While it is natural to
expect that quantum behavior is more apparent in microscopic
systems due to the larger energy scale of quantum effects
for small systems, some macroscopic systems have also been
demonstrated to possess entanglement. One notable example
is using atomic ensembles, where entanglement was produced
between two ensembles by interacting coherent light with
them [8]. This technique was used to realize teleportation
between the ensembles [9]. Several other examples showing
entanglement between macroscopic ensembles have also been
realized [10].

Meanwhile, there has recently been great advances in the
ability to create and control atomic Bose-Einstein condensates
(BECs). This involves not only the ability to trap BECs in a
variety of different geometries and thereby controlling their
spatial wave function [11], but also control the internal states
of the atoms [12–14]. The control of the internal states of the
BEC have been achieved in optical dipole traps as well as in
magnetic traps, but also on atom chips, which allow for a com-
pact platform for forming and controlling BECs. A particularly
promising platform for BECs is the use of permanent magnetic
traps to create BECs [15–19]. In this approach, trapping
centers, made of a material such as FePt [4], are patterned to
create a desired two-dimensional geometry. The atom chip and
permanent magnetic trap approach make it an ideal platform

for creating multiple BECs located in close proximity to each
other. This opens the possibility of creating entanglement
between two BECs. Several theoretical proposals to achieve
this have been investigated such as schemes involving those
using atomic interactions [20,21], entanglement of many
distant BECs in an optical lattice by interference [22], and
entanglement in quantum network of BECs [17,23,24]. En-
tanglement generation in BECs has applications for quantum
computing and quantum metrology [13,21–23,25–27]. For
quantum computation, two hyperfine levels of the atoms in
the BEC can be used as qubit states to encode information.
It is possible to create arbitrary superpositions of the two
components of the BEC and to manipulate them in the same
way as standard qubits [24,28–30].

In this paper we introduce a method of entangling two
BECs using Rydberg excitations. A Rydberg atom is an
atom with one or more electrons with a very high principal
quantum number n. One of the characteristic features of
the Rydberg is that is that it has an extremely large Bohr
radius. For an electron in a Rydberg state corresponding to
n = 100, the diameter of the atom is typically several hundred
nanometers. For separations of 5–10 μm between two Rydberg
atoms, the dominant interaction is a long-range dipole-dipole
interaction due to the Rydberg excitation. At this distance,
other interactions, such as interactions between atoms in the
ground state and a Rydberg atom, or interactions between
two ground states atoms, are negligible [31]. When a Rydberg
excitation is present, this results in a shift of the energy levels of
the surrounding atoms, so that the Rydberg state is off-resonant
with the excitation laser and therefore not accessible, resulting
in a Rydberg blockade. In the context of a BEC, if the energy
level of the Rydberg atom is high enough in a Bose-Einstein
condensate, all other states containing more than one Rydberg
excitation can be ignored [32,33]. In the case of permanent
magnetic traps, the trapping centers can be patterned to have a
lattice period of <10 μm, making them suitable for generating
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entanglement with Rydberg excitations. We take advantage
of this Rydberg blockade between two BECs to produce
entanglement between the internal states of the BECs.

A scheme to entangle two atoms using the Rydberg block-
ade was previously developed in Refs. [3,6]. The procedure
is to use a STIRAP (stimulated Raman adiabatic passage) to
adiabatically create a Rydberg excitation in both of the atoms.
This can be used as the basis of an entangling gate in two
ways. In the first scheme, when the two Rydberg excitations
are both excited, there is a blockade due to the high-energy
penalty of having two Rydberg states. This “pushes” both
of the excitations out of the Rydberg state and an entangled
state is created between the initial ground state and the
intermediate excited state. In the second scheme, a second
STIRAP sequence is used to reverse the effect of the first
STIRAP sequence. This results in a geometric phase that can
be used as the basis of an entangling gate. For the BEC case,
the situation is considerably more complex due to the larger
Hilbert space involved for BECs. In this paper, we show that it
is possible to adapt this scheme and show exactly the adiabatic
initial and final states for the STIRAP process. We perform
some numerical calculations to verify the agreement to the
theory.

The rest of this paper is organized as follows. In Sec. II,
we first describe the single-STIRAP entangling schemes
developed in Refs. [34,35], which will lead to developing
a scheme to entangle two Bose-Einstein condensates. We
confirm our predictions using numerical results. In Sec. III, we
discuss the double-STIRAP geometric phase gate entangling
scheme, first for the atomic case and then we generalize
to BECs. We again show numerical results to verify our
predictions. We summarize our findings in Sec. IV and discuss
future prospects.

II. SINGLE-STIRAP ENTANGLED STATE GENERATION

In this section we discuss a method for generating entan-
glement between two systems using an adiabatic transition
and Rydberg excitations. We first consider for simplicity the
case for qubits, then generalize to two BECs. The form of the
entanglement that is generated is total spin-zero state in the Sx

basis, where N is the number of atoms in the BEC.

A. Qubit case

Let us first review a method of entangling two atoms via a
Rydberg excitation, following Refs. [34,35]. This will serve as
a starting point for generalizing the method for entangling two
BECs. The energy levels involved in the scheme are shown in
Fig. 1(a). The atoms are initially assumed to be in the ground
state gi , where i = 1, 2 is the atom index. Another fi is an
auxiliary state that is unused for this scheme, this will be
used in Sec. III. The Rydberg states ri are excited through an
intermediate state ei . A possible choice for the levels gi and ei

could be the hyperfine ground states of 87Rb. The 5p state of
87Rb would not be a good candidate as an ei state, because it is a
short-lived state. The ei-ri transition may also be a two-photon
Rydberg excitation, where a large intermediate state detuning
with respect to the intermediate 5p state is used.

Ω Ω

θ θ

(a)

(b) (c)

FIG. 1. (a) Representation of the energy levels used for the
STIRAP schemes. gi and fi are the energy levels of the ground
states of the atoms forming the BECs for i = 1, 2. ei are the energy
levels for the excited states, and ri are the Rydberg levels. (b) Pulses
for the STIRAP sequence. The pulses are in counterintuitive order:
the sequence starts with the pulse coupling the unpopulated states
|ei〉 and |ri〉, not affecting the initial state until the pulse coupling
the states |ei〉 and |gi〉 is turned on. (c) Pulses for the two-STIRAP
sequences. The second pulse sequence is in reverse order compared
to the first one. The relative amplitude tan θ = |�e

�r
| is also plotted for

the one- and two-STIRAP sequences.

The Hamiltonian for the system can be written

H = Hr + He + U |r1〉|r2〉〈r1|〈r2|, (1)

Hr = �

2∑
i=1

(�r (t)|ei〉〈ri | + �∗
r (t)|ri〉〈ei |), (2)

He = �

2∑
i=1

(�e(t)|ei〉〈gi | + �∗
e (t)|gi〉〈ei |), (3)

where �r is the Rabi frequency between the excited and
Rydberg states, �e the Rabi frequency between the ground
and excited states, and U is the energy between two Rydberg
atoms due to the dipole-dipole interaction. The interaction is
long ranged, which allows for the atoms to be separated by
several microns and yet have a significant interaction.

1. Independent atom case U = 0

In the absence of the dipole-dipole interactions (U = 0),
the transitions are two independent � systems, which possess
a dark state (eigenstate with zero energy),

|Di(θ )〉 = cos θ |gi〉 − sin θeiφ(t)|ri〉. (4)

Here we have parameterized

�e(t) = Ae(t), (5)

�r (t) = Ar (t)e−iφ(t), (6)
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where the relative amplitude is

tan θ = Ae(t)

Ar (t)
. (7)

Here φ(t) is the relative phase between the two pulses, which
may be time varying. An elementary example of such a
time-dependent phase is φ(t) = ωt , where ω is the detuning.
The state Eq. (4) forms the basis of adiabatically exciting a
Rydberg state from the ground state. This can be performed
by preparing the atom in the ground state |gi〉, then gradually
changing the amplitude of the transitions such that it begins
with θ = 0 and ends with θ = π/2. By doing so the ground
state is adiabatically changed from |gi〉 to |ri〉. This may
be conveniently achieved in practice by two pulses that are
staggered in time in the so-called “counterintuitive” sequence,
where Hr is applied first, as shown in Fig. 1(b).

2. Atoms coupled with Rydberg interaction

With the interactions U turned on, the Hamiltonian Eq. (1)
still possesses two dark states, written as

|D+(θ )〉 = 1√
cos4 θ+2 sin4 θ

[cos 2θ |g1〉 |g2〉+ sin2 θ |e1〉 |e2〉

− eiφ(t) cos θ sin θ (|g1〉 |r2〉 + |r1〉 |g2〉)],
|D−(θ )〉 = 1√

2
[sin θ (|e1〉|g2〉 − |g1〉|e2〉)

+eiφ(t) cos θ (|e1〉|r2〉 − |r1〉|e2〉)]. (8)

The first state is symmetric under interchange of the atoms,
the second is antisymmetric. Due to the energy penalty U of
the |r1〉|r2〉 state, the dark state |D±〉 no longer involves this
state. This is in contrast to the independent case Eq. (4), where
|D1〉|D2〉 involves the double Rydberg state.

Let us consider the case where we start in the state
|g1〉|g2〉 and then impart the same adiabatic procedure as
before. Only |D+〉 contains the initial state as it is symmetric
under interchange of particles, hence this is the relevant
state. Considering φ(t) = 0 for simplicity, and examining the
limiting cases starting from θ = 0 and evolving to θ = π/2,
we may deduce that

|g1〉|g2〉 → 1√
2

(|e1〉 |e2〉 − |g1〉 |g2〉). (9)

This is a maximally entangled state in the states |gi〉 and |ei〉.
Thus, while for U = 0 the STIRAP sequence produces no
entanglement, in this case it directly creates an entangled state.

We may derive the adiabatic transition Eq. (9) in a simple
way that does not require explicit diagonalization of the
Hamiltonian Eq. (1). Let us write Eq. (3) as

He = �Ae(t)
(
σx

1 + σx
2

)
, (10)

where

σx
i = |ei〉〈gi | + |gi〉〈ei |. (11)

By the definition of the dark state, the final state after the
STIRAP pulses is the zero-energy state with only He present.
Thus, we may find the final state by finding the zero-energy

state of He, which has two solutions:

|+〉|−〉 = 1
2 (|g1〉 + |e1〉)(|g2〉 − |e2〉),

|−〉|+〉 = 1
2 (|g1〉 − |e1〉)(|g2〉 + |e2〉). (12)

Again due to the symmetry under interchange of atoms 1 ↔ 2,
the final state must also obey this symmetry as the initial state
is symmetric and the Hamiltonian itself is also symmetric. This
gives the state

|D+(θ = π/2)〉 = 1√
2

(|+〉|−〉 + |−〉|+〉)

= 1√
2

(|e1〉 |e2〉 − |g1〉 |g2〉). (13)

This is the same final state as Eq. (9), which is a maximally
entangled Bell state.

B. Generalizing to the BEC case

We now generalize the entanglement scheme of the previous
section to the BEC case. We assume that the spatial degrees
of freedom of the BEC are completely in the ground state of
the traps, so that they do not play any role in the subsequent
dynamics. The only degrees of freedom are then which levels
are occupied in Fig. 1. We also assume that each BEC contains
a fixed number of atoms, denoted Ni . Due to the Rydberg
blockade, we assume that Rydberg excitation can be occupied
by only one atom. The Hilbert space is therefore spanned by
the states

|ki,σi〉z =
⎧⎨
⎩

1√
ki !(Ni−ki )!

(g†
i )ki (e†i )Ni−ki |0〉 if σi = 0

1√
ki !(Ni−ki−1)!

(g†
i )ki (e†i )Ni−ki−1|ri〉 if σi = r

,

(14)

where g
†
i , e

†
i are the bosonic creation operators for the gi, ei

levels, respectively, σi = 0, ri represents either the absence
or presence of the Rydberg excitation, respectively, and i =
1, 2 labels each of the BECs. The Hamiltonian can now be
straightforwardly adapted to the BEC case,

H = He + Hr + U |r1〉|r2〉〈r1|〈r2|, (15)

Hr = �

2∑
i=1

(�r (t)σ−
i e

†
i + �∗

r (t)σ+
i ei), (16)

He = �

2∑
i=1

(�e(t)e†i gi + �∗
e (t)g†

i ei), (17)

where as before �e,r (t) is the Rabi frequency between the gi ↔
ei and ei ↔ ri states, respectively, and U is the long-ranged
dipole-dipole interaction between the Rydberg states.

1. Independent BEC case U = 0

Let us again first consider the case U = 0, so that the
two BECs are completely decoupled. Due to the multibosonic
nature of the problem, it is nontrivial to write down a general
expression for the dark states. It is possible to write an
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expression for some small boson numbers Ni = 2, 3,

|Di(θ ); Ni = 2〉 ∝ − cos 2θ√
2

|2,0〉z + cos θ sin θ |1,ri〉z

− sin2 θ√
2

|0,0〉z, (18)

|Di(θ ); Ni = 3〉 ∝ − cos 3θ√
3

|3,0〉z + cos 2θ sin θ |2,ri〉z

− cos θ sin2 θ |1,0〉z + sin3 θ |0,ri〉z, (19)

where we have set the relative phase φ between the pulses
to zero for simplicity, and we have omitted normalization
constants. Adiabatically evolving the pulses such that the
relative amplitudes are changed starting from θ = 0 to θ =
π/2, this induces the transitions

|2,0〉z → 1√
2

(|2,0〉z − |0,0〉z) N = 2, (20)

|3,0〉z → 1√
2

(|2,ri〉z − |0,ri〉z) N = 3. (21)

The transition Eqs. (20) and (21) again can be deduced in
a simple way following the same reasoning as the previous
section. Initially, θ = 0, hence �e = 0 and only Hr is present.
As discussed in Ref. [34], the only zero-energy state is when
there is no population in level ei or ri . This means that all the
population must be present in the gi state, and the zero-energy
state is |Ni,0〉. At the end of the adiabatic evolution θ = π/2,
and therefore only He is present. The Hamiltonian on each
BEC is then

H (i)
e = �Ae(t)Sx

i , (22)

where Sx
i = g

†
i ei + e

†
i gi . As the interactions U are off, the

two BECs are completely decoupled and the dark states are
therefore simply a zero eigenvalue eigenstate of Sx

i , separately.
In general, the eigenstates of Sx

i can be written

|ki,σi〉x =
⎧⎨
⎩

1√
ki !(Ni−ki )!

(g†
x,i)

ki (e†x,i)
Ni−ki |0〉 if σi = 0

1√
ki !(Ni−ki−1)!

(g†
x,i)

ki (e†x,i)
Ni−ki−1|ri〉 if σi = r

,

(23)

where kx
i is an integer between 0 and Ni inclusive and the

eigenvalue is 2kx
i − Ni . Here,

g
†
x,i = 1√

2
(g†

i + e
†
i ),

e
†
x,i = 1√

2
(g†

i − e
†
i ). (24)

If Ni is even, the zero-energy eigenstates are simply |kx
i =

Ni/2〉. On the other hand, if Ni is odd, there is no zero
eigenvalue state of Sx

i . As suggested by Eq. (21), the zero
energy eigenstate is in this case that with one Rydberg
excitation, which then makes the number of atoms in the gi and
ei levels even. We may thus infer that in general the adiabatic
evolution induces the transition [34]

|Ni,0〉z →
{∣∣ki = Ni

2 ,0
〉
x

if N even,∣∣ki = Ni−1
2 ,ri

〉
x

if N odd.
(25)

One may easily evaluate that the above reduces to the specific
case shown in Eq. (21) for Ni = 2, 3. The odd or even effect
is caused by the fact that the zero eigenvalues of Sx

i are 2kx
i −

N = 0. This implies that N needs to be an even number for
the eigenvalue to be zero. When it is an odd number, a way to
obtain a zero eigenstate is to occupy a Rydberg level, as N − 1
is then even.

Due to the odd or even effect shown in Eq. (25) (originally
given in Ref. [34]), we note that the above sequence could
be potentially used to detect parity without having to count
the actual number of particles. In this case the scheme would
run as in Fig. 1(c), where there are two STIRAP pairs, first
to detect a Rydberg excitation, then the sequence would be
reversed to return the atoms to their original state. As the state
obtained after the first STIRAP transition depends on the parity
of the Bose-Einstein condensate, determining the presence of a
Rydberg excitation before reversing the transition back would
be equivalent to determining the parity. A novel sensitive
technique to detect Rydberg atoms, which uses the strong
interaction among Rydberg atoms to enhance the imaging
sensitivity, has recently been proposed theoretically and
demonstrated experimentally [36,37]. The parity dependence
of the result in Eq. (25) indicates that this can also be used to
prepare an ensemble with definite even parity in the number
of atoms. For this application, one would remove the Rydberg
atom, for example by ionizing it. The effectiveness of this is
would depend on the level of adiabaticity, and whether there
are any “dark” atoms, which do not respond to the STIRAP
process, due to thermal excitations and other imperfections.

2. BECs coupled with Rydberg interaction

Now let us introduce the interaction U , which couples
the two BECs. It is again a nontrivial problem to find an
exact expression for the dark states. For this reason we have
numerically found the eigenstates of the Hamiltonian Eq. (15)
for a range of parameters. For simplicity we shall consider the
case where there are equal numbers of atoms in each BEC
N1 = N2 = N , although we show generalizations of this in
Sec. III. Some typical results are shown in Fig. 2. We see that
there are generally two energy branches, one centered around
zero energy and another around the Rydberg excitation energy
U . In what we consider, we assume that the initial state is
|N,0〉|N,0〉, i.e., the state with all atoms in the state gi . This is
a zero-energy state at the beginning of the evolution of Fig. 2.
Thus, we are interested in energy eigenstates that have zero
energy for the entire evolution. For all parameters and boson
numbers N we were able to find two zero-energy dark states,
corresponding to the symmetric and antisymmetric solutions
with respect to interchange of BECs, in a similar way to the
single atom case, Eq. (8). As the initial state is symmetric under
interchange of BECs, the relevant dark state is the symmetric
solution; thus, there is a unique state that transfers the initial
state from |N,0〉|N,0〉 to a final zero-energy state.

Despite the difficulty of finding an explicit expression for
the dark state, we may use a similar technique to that used in
the previous section to find the final entangled state. At the
end of the adiabatic evolution, only the Hamiltonian Eq. (17)
is present, which may be written

He = �Ae(t)
(
Sx

1 + Sx
2

)
. (26)
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FIG. 2. Energy eigenvalues ε of the Hamiltonian Eq. (15) for (a,
b) N1 = N2 = 2 and (c, d) N1 = N2 = 3. (b) and (d) are zoomed in
versions of (a) and (c) near the zero-energy region. We use pulses for
�e,r as defined in Eqs. (30) and (31). Parameters used are ε0 = �/τ ,
�t/τ = 0.11, �max

r τ = 500π , �max
e τ = 500π , and Uτ/� = 200π .

We seek the zero-energy eigenstates of this Hamiltonian,
which are |k,0〉x |N − k,0〉x , where k ∈ {0,N}. Note that we
may safely assume there is no Rydberg excitation as the total
number of atoms here is 2N in this case. In general, any
superposition of these states also is a zero eigenvalue state,

thus a candidate state for the final state is
N∑

k=0

ξk|k,0〉x |N − k,0〉x. (27)

However, much like the qubit case discussed above, due to the
symmetric nature of the Hamiltonian Eq. (15) and the initial
state, the state must also be a symmetric state under interchange
of BECs. This imposes the restriction that ξk = ξN−k but still
does not fix all the coefficients. Despite the generality of the
state, the symmetrization guarantees that the final state is
entangled, this implies that there must be at least two values
of ξk , which are nonzero. For example, for the particular case
that only ξ0 and ξN are nonzero, we have the state

1√
2

[|N,0〉x |0,0〉x + |0,0〉x |N,0〉x]. (28)

Ignoring the Rydberg labels, which are all unoccupied, this
is a NOON state in the Sx basis, which is a type of Bell state
involving macroscopic states. Quantifying the entanglement
with the logarithmic negativity, this has an entanglement
E = 1, which is in fact a minimally entangled state within the
possibilities allowed in Eq. (27). A maximally entangled state
would have |ξk| = 1/

√
N + 1, and has an entanglement equal

to Emax = log2(N + 1) [38].

C. Numerical analysis

In the previous sections we showed that there should be a
zero-energy dark state that is suitable for adiabatic evolution.
As is true for any adiabatic process, the Hamiltonian must be
time evolved slowly enough such that the state remains in the
same energetic state. This is best demonstrated by an explicit
evolution of the dynamical system. To this end, we propagate
the time-dependent Schrödinger equation in the basis specified
by Eq. (14) using the fourth-order Runge-Kutta method. We
time-evolve the equation

i�
dψn

dt
=

∑
n′

Hnn′ψn′ , (29)

where n = {k1,σ1,k2,σ2} and n′ = {k′
1,σ

′
1,k

′
2,σ

′
2}, and Hnn′ =

〈k1σ1|z〈k2σ2|zH |k′
1σ

′
1〉z|k′

2σ
′
2〉z with H defined in Eq. (15).

ψn = 〈k1σ1|z〈k2σ2|z|ψ(t)〉, where |ψ(t)〉 is the evolved state at
time t . We use pulse shapes according to the “counterintuitive”
sequence defined by

�e(t) =
{
�max

e sin2
(

πt
τ

)
0 < t < τ

0 otherwise,
(30)

�r (t) =
{

�max
r sin2

(
π(t+�t)

τ

) −�t < t < τ − �t

0 otherwise,
(31)

where τ is the pulse duration, �t > 0 is the delay between the
pulses, and �max

e,r are the maximum amplitudes of the pulses.
The states are initialized such that

ψk1σ1k2σ2 = δk1,Nδσ1,0δk2,Nδσ2,0, (32)

where δn,m is the Kronecker δ.
Figure 3 shows typical results for the probability of

occupation |ψn|2 of each of the basis states as the Schrödinger
equation is evolved. The adiabatic limit can be reached in
one of two ways. The first way is to keep �max

r,e fixed and
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FIG. 3. Probability amplitude |ψn|2 evolution during the STIRAP
sequence for states |k1, k2, r1, r2〉 with (a) N = 2 and (b) N = 3.
In (a), horizontal lines show populations of labeled states in the
ideal adiabatic case. Parameters used are (a) �t/τ = 0.36, �max

r τ =
60π , �max

e τ = 60π , Uτ/� = 200π ; (b) �t/τ = 0.36, �max
r τ = 104,

�max
e τ = 104, Uτ/� = 2�max

r .

make the timescale τ of the pulses long enough such that
the state follows an adiabatic path. Alternatively, for a fixed
pulse duration τ , the pulse amplitudes �max

r,e should be large
enough. These are strictly equivalent as can be considered
by examining the dimensionless parameters in the problem,
which are �max

r,e τ , �t/τ , and Uτ/�. While in our simulations
there is no restriction of the �max

r,e , U, τ that can be chosen,
in an experimental situation the Rydberg blockade is not an
in situ controllable parameter, hence this gives a practical
constraint to what the other parameters can take. In order that
the Rydberg blockade regime is achieved, one should have
U � ��r,e, which limits the strength of the pulses. Thus, then
to achieve adiabaticity under this constraint, one must increase
τ to sufficiently long times.

The probability amplitudes of the numerically evolved
states according to the above are shown in Fig. 3(a). We find
that in the case of N = 2 the evolved state is

|NOON,N = 2〉
= 1√

2
(|2,0〉x |0,0〉x + |0,0〉x |2,0〉x)

= 1√
8

(|0,0〉z|0,0〉z + |2,0〉z|0,0〉z

+ |0,0〉z|2,0〉z + |2,0〉z|2,0〉z) − 1√
2
|1,0〉z|1,0〉z, (33)

0 .0 0 .4 0 .8 1 .2
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

F

N=2(a)

Ω τ

6 8 1 0 1 2 1 4
0 .0 8

0 .0 6

0 .0 4

0 .0 2

0 .0 0

0 .0 2
N=3

<S +S >/2Nx x
1 2

< S + S >/4Nx x
1 2δ( )2 2

(b )

103

Ω τ103

FIG. 4. Fidelity of the final state after adiabatic evolution with
respect to the ideal NOON state Eq. (28). Particle numbers correspond
to (a) N = 2 and (b) N = 3. Parameters used are �t/τ = 0.36,
�max

r = �max
e = �, and Uτ/� = 2�.

which corresponds to a NOON state Eq. (28) with N = 2.
Comparing the probability amplitudes of the NOON state in
the z basis with the numerical results, we see that there is good
agreement with the final values after the adiabatic evolution.
To examine the effectiveness of the adiabatic evolution we
examine the fidelity,

F = |〈NOON,N = 2|ψ(t = τ )〉|2, (34)

of the final states Eq. (33) with the numerically evolved state.
Figure 4(a) shows that the fidelity approaches 1 as expected,
as when �max is increased this improves the adiabaticity of the
STIRAP pulses. For strong pulses (or equivalently long pulse
durations) we obtain the NOON state with very high fidelity.

For the N = 3 case, we do not see that the state approaches
a NOON state, hence this appears to be a special case for
N = 2. The state is found to agree with the general form of
Eq. (27). This state should have the properties of having zero
expectation value with respect to the Hamiltonian Eq. (26),〈(

Sx
1 + Sx

2

)〉 = 0, (35)

and be an eigenstate of Eq. (26), meaning that〈
δ
(
Sx

1 + Sx
2

)2〉 = 〈(
Sx

1 + Sx
2

)2〉 − 〈(
Sx

1 + Sx
2

)〉2 = 0. (36)

Figure 4(b) shows the expectation value and variance as a
function of �max. We see that these approach the expected
value of 0 as the pulse amplitudes are increased, in a similar
way to Fig. 4(a), due to the increased adiabaticity. We find
that as N is increased it becomes more difficult to achieve
adiabaticity, requiring larger values of �max

r,e τ . This will be one
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of the limitations when trying to achieve entangled BEC states
with large N . This is due to the fact that in the nonadiabatic
regime, the process is uncontrolled and can generate a different
state involving more states in the superposition, which would
lead to more entanglement.

To directly observe entanglement in the final state, we
calculated the logarithmic negativity of the final state after
the adiabatic evolution. Due to deviations from perfect adia-
baticity, our final state involves in general a finite population
of Rydberg states, which will have the effect of reducing the
entanglement. We treat this by tracing out these degrees of
freedom to obtain a density matrix in the space of |k1,k2〉:

ρ = Trr1,r2 |ψ〉〈ψ | =
∑
σ1σ2

〈σ1|〈σ2|ψ〉〈ψ |σ1〉|σ2〉. (37)

The logarithmic negativity is then calculated by evaluating

E = log2 ||ρT2 || = log2

∑
i

|λi |, (38)

where ρT2 is the partial transpose of ρ with respect to BEC 2,
and || · || is the trace norm of a matrix. The last form of Eq. (38)
shows the most suitable form for evaluation, where λi are the
eigenvalues of ρT2 . One can straightforwardly evaluate that
the ideal NOON state Eq. (28) has a logarithmic negativity of
E = 1. We note that this is not the maximal entanglement that
the system can possess, the maximally entangled state takes a
value Emax = log2(N + 1) [38]. The reason for this is that the
state Eq. (28) only involves two terms out of a possible N + 1
terms in the superposition.

0 .0 0 .5 1 .0 1 .5 2 .0
0 .0

0 .5

1 .0

1 .5

2 .0

E

N=2(a)

(b)

0 2 4 6 8 1 0 1 2
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

E

N=3

Ω τ103

Ω τ103

FIG. 5. Entanglement, as measured by the logarithmic negativity,
for different pulse amplitudes and (a) N = 2, (b) N = 3. Parameters
used are �t/τ = 0.36, �max

r = �max
e = �, and Uτ/� = 2�.

In Fig. 5 we plot the entanglement generated as a function of
the dimensionless pulse duration. We see that the entanglement
stabilizes to a constant value for large �max

r,e τ , which is a direct
result of adiabaticity. For small �max

r,e τ , the entanglement has
some instability due to the nonadiabatic nature of the STIRAP
pulses. This stabilizes to the adiabatic states as given by
Eq. (33) for N = 2 and Eq. (27) for N = 3. The entanglement
in the adiabatic limit grows with N due to the larger Hilbert
space available. Interestingly, even in the nonadiabatic regime
significant amounts of entanglement can be generated. In both
cases examined, the entanglement quickly grows for very
small STIRAP amplitudes, or equivalently very fast timescales
�max

r,e τ ∼ 10. This is due to the fact that in the nonadiabatic
regime, the process is uncontrolled and might generate a
different final state involving more states in the superposition,
which would lead to more entanglement. Thus, while very
large �max

r,e τ is required for adiabaticity in particular for large
N , from the point of view of entanglement generation, only a
modest �max

r,e τ should be necessary.

III. DOUBLE-STIRAP ENTANGLING
GEOMETRIC PHASE GATE

We now describe a second method for producing entan-
glement between two BECs. In this scheme two STIRAP
pairs are used instead of one, to produce a geometric phase
gate between the states gi and fi (see Fig. 1). The state fi

could be represented by a hyperfine magnetic sublevel. The
first STIRAP pair performs precisely the same operation as
that described in the previous section. The role of the second
STIRAP pair is to reverse the operation performed by the
first STIRAP pair, so that the atoms are returned to the state
gi . In this scheme, the phase φ in Eq. (6) is nonzero. Using
the definition Eq. (6) for the light pulse in the Hamiltonian
Eq. (2), we can interpret this Hamiltonian in the rotating frame
approximation, in which dφ

dt
can be interpreted as a detuning.

A phase is accumulated depending on the populations of g1

and g2, which gives rise to a entangling geometric phase gate.
We again first review the qubit case originally presented in
Refs. [34,35], then generalize to the BEC case.

A. Qubit case

In this section we show the scheme introduced in
Refs. [34,35], which describes a method for entangling two
atoms with a geometric phase gate. Let us consider again the
configuration shown in Fig. 1, but consider a different initial
state for the application of the STIRAP pulses, namely

|ψ(t = 0)〉 = 1
2 (|g1〉 + |f1〉)(|g2〉 + |f2〉), (39)

which is an unentangled state. The STIRAP sequence that will
be followed is showed in Fig. 1(c). The first STIRAP pair is
identical to that discussed in Sec. IIA2. After some time, �T ,
defined as the difference in peak-to-peak times of the second
pulse in each STIRAP, the reverse sequence is applied. Thus,
after the whole sequence, the four states in Eq. (39) return to
their initial state. However, a different phase may develop for
each term in the superposition. The considerations of Sec. IIA1
and IIA2 immediately tell us the resulting transitions for each
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of the states,

|f1〉 |f2〉 → |f1〉 |f2〉 → |f1〉 |f2〉 ,

|f1〉 |g2〉 → eiγ ′
1 |f1〉 |r2〉 → eiγ1 |f1〉 |g2〉 ,

|g1〉 |f2〉 → eiγ ′
1 |r1〉 |f2〉 → eiγ1 |g1〉 |f2〉 ,

|g1〉 |g2〉 → eiγ ′
2 (|e1〉 |e2〉 − |g1〉 |g2〉) → eiγ2 |g1〉 |g2〉 ,

(40)

where we have written the phase picked up after the first
STIRAP pair as γ ′

1,2 and the phase after the complete sequence
as γ1,2.

The final phases γ1,2 may be calculated using the Berry
formula [39],

γ = i

∫ Rf

Ri

〈D| ∇R |D〉 · d R, (41)

where R = (θ,φ) are the time varying parameters controlling
the Hamiltonian and the integration is performed from the
initial to final parameters Ri,f , respectively. Note that there is
no dynamical phase in the final states Eq. (40) as we work in
the frame of reference such that the ground states gi and fi

have zero phase evolution, and we also take the phase Eq. (5)
to be zero.

To calculate γ1 we take the dark state |D〉 to be Eq. (4),
yielding [34]

γ1 = −
∫ φf

φi

sin2 θ (t)dφ

= −
∫ tf

ti

sin2 θ (t)
dφ

dt
dt. (42)

In the pulse scheme that we consider in Fig. 1(c), in terms
of the parameter θ (t), the evolution corresponds to θ (t) =
0 → π/2 → 0. Therefore, in between the two STIRAP pairs,
the integrand is sin2 θ = 1 and picks up a phase during the
entire evolution. We may thus expect that approximately the
phase γ1 ≈ −ω�T . Let us evaluate Eq. (42) under conditions
such that φ(t) = ωt and under the approximation that θ varies
linearly in the region when both STIRAP pairs are on:

θ (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 t � 0
πt

2(τ−�t) 0 < t � τ − �t

π/2 τ − �t < t � �T

−π(t−�T −τ+�t)
2(τ−�t) �T < t � �T + τ − �t

0 t > �T + τ − �t

. (43)

Under this approximation we can evaluate Eq. (42) exactly,
leading to

γ1 = −ω�T. (44)

As expected, the dominant contribution to the integral Eq. (42)
is during the time between the two STIRAP pairs when
sin2 θ = 1 with duration �T . Meanwhile, for γ2 we can
substitute |D+〉 in Eq. (8) into Eq. (41) to obtain

γ2 = −2
∫

cos2 θ (t) sin2 θ (t)

cos4 θ (t) + 2 sin4 θ (t)

dφ

dt
dt. (45)

In contrast to Eq. (42), the integrand of Eq. (45) is zero
in between the two STIRAP pulses where θ = π/2. This
means that the only contribution to the integral is during the
application of each STIRAP pair, not in between. Under the

linear approximation Eq. (43) we may exactly evaluate Eq. (45)
to give

γ2 = 2
3 (−2 +

√
4 + 3

√
2)ω(τ − �t)

≈ −0.581ω(τ − �t). (46)

We see that γ2 is independent of �T as expected since the
integrand of Eq. (45) is zero during this time.

In the regime that ωτ,ω�t  1, the Berry phase picked
during the variation of the STIRAP pulses is negligible and
we may set γ2 ≈ 0. Thus, the only contribution to the Berry
phase is from γ1, with the final state yielding

|ψ(t = �T + τ )〉
= 1

2 [(|f1〉 + eiγ1 |g1〉)|f2〉 + (eiγ1 |f1〉 + |g1〉)|g2〉]. (47)

For eiγ1 = ±i, this is a maximally entangled state.

B. Generalizing to BEC case

As discussed in Sec. II B, explicit dark states for the
BEC Hamiltonian Eq. (1) are difficult to obtain due to the
multiboson nature of the problem. We may, however, deduce
the effect of the geometric phase on BECs under certain
limiting cases. Let us first obtain the dark state in the limits
of θ = 0,π/2 [i.e., only Hr or He is present respectively
in Eq. (1)]. In Sec. IIB2 we considered the case where the
atom numbers in each BEC Ni were the same. We now
generalize this to the case when they are different, N1 �= N2.
We furthermore generalize this to the case when there is a
nonzero population in the auxiliary fi level.

First let us define the Fock states for a BEC when there is a
population in the fi level:

|ki,ni,σi〉z =
⎧⎨
⎩

(g†
i )ki (e†i )ni (f †

i )Ni−ki−ni√
ki !ni !(Ni−ki−ni )!

|0〉 if σi = 0

(g†
i )ki (e†i )ni (f †

i )Ni−ki−ni−1
√

ki !ni !(Ni−ki−ni−1)!
|ri〉 if σi = r

, (48)

where f
†
i is a bosonic creation operator for the state fi with

i = 1,2. In the limit when θ = 0, only Hamiltonian Hr is
present in Eq. (1). As this involves only the levels ei and ri , we
may immediately write down a zero-energy eigenvalue state,∑

k1,k2

ξk1k2 |k1,0,0〉z|k2,0,0〉z, (49)

where ki ∈ [0,Ni] and ξk1k2 are arbitrary coefficients as
any superposition of a zero eigenvalue state also has zero
eigenvalue. In the reverse limit of θ = π/2, only Hamiltonian
He is present in Eq. (1), giving the Hamiltonian Eq. (26). We
may again write the eigenstates as

|ki,ni,σi〉x =

⎧⎪⎨
⎪⎩

(g†
x,i )

ki (e†x,i )
ni (f †

i )Ni−ki−ni√
ki !ni !(Ni−ki−ni )!

|0〉 if σi = 0

(g†
x,i )

ki (e†x,i )
ni (f †

i )Ni−ki−ni−1

√
ki !ni !(Ni−ki−ni−1)!

|ri〉 if σi = r

, (50)

The eigenvalues of these states are

Sx
i |ki,ni,σi〉x = (ki − ni)|ki,ni,σi〉x. (51)

Let us consider how a typical dark state will evolve when
changing parameters from θ = 0 → π/2. At the beginning
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of the evolution with θ = 0 let us focus on one term in the
superposition Eq. (49),

|k1,0,0〉z|k2,0,0〉z. (52)

Let us assume that k1 � k2, as the reverse case can be
immediately written by interchanging labels 1 ↔ 2. For
the case that k1 + k2 is even, we may generalize Eq. (27)
straighforwardly to give

|D(θ = 0 → π/2); k1 + k2 = even〉

=
k1∑

k=0

ξ ′
k|k,k1 − k,0〉x

∣∣∣∣k1 + k2

2
− k,

k2 − k1

2
+ k,0

〉
x

,

(53)

where ξ ′
k are arbitrary coefficients as all the terms in the

superposition have zero eigenvalue. For k1 + k2 odd, we have

|D(θ = 0 → π/2); k1 + k2 = odd〉

= eiφ(t)
k1−1∑
k=0

ξ ′
k|k,k1 − 1 − k,r〉x

×
∣∣∣∣k1 + k2 − 1

2
− k,

k2 − k1 + 1

2
+ k,0

〉
x

+ eiφ(t)
k1∑

k=0

ξ ′′
k |k,k1 − k,0〉x

×
∣∣∣∣k1 + k2 − 1

2
− k,

k2 − k1 − 1

2
+ k,r

〉
x

, (54)

where ξ ′
k and ξ ′′

k are unspecified coefficients that are not
necessary to calculate for our purposes. The fact that the
above states are zero eigenvalue states may be verified by
directly using the definition Eq. (51). The odd or even effect
originates from the same origin as that for the single BEC
case Eq. (25). The total spin Eq. (26) can only have zero
eigenvalues for k1 + k2. For odd k1 + k2, a single Rydberg
excitation remains reducing the total number of atoms in the
gi and ei states by one, making the sum even. The phase factor
eiφ(t) follows from the fact that one can equally absorb this
phase in the Hamiltonian Eq. (16) into the definition of the
Rydberg state |ri〉 → eiφ(t)|ri〉. Then it follows that for each
Rydberg excitation there is time-evolving phase eiφ(t) in the
dark state.

We may now use similar arguments to the previous section
to estimate the Berry phase. Let us again consider the case
that φ(t) = ωt and the regime such that ωτ,ω�t  1, so that
there is negligible phase evolution during the STIRAP pairs.
Then the dominant phase evolution occurs between the two
STIRAP sequences, as for the qubit case. In this case, the only
time-varying variable for the Berry phase is φ:

γ ≈ i

∫ �T

0
〈D| ∂

∂φ
|D〉 dφ

dt
dt. (55)

Substituting Eqs. (53) and (54), we obtain

γ =
{

0 k1 + k2 = even
−ω�T k1 + k2 = odd . (56)

We thus see that depending on whether the total number of
atoms in the gi states is odd or even, a phase is either picked
up or not. We can see immediately that this is consistent with
the qubit case Eq. (40), where a phase γ1 is picked up on odd
terms.

Let us now show that these phases lead to entanglement in
the general case with Ni > 1. As a specific choice of Eq. (49)
let us choose the initial state to be maximal sx

i = g
†
i fi + f

†
i gi

eigenstates with respect to the levels gi and fi (not Sx
i which

are with respect to the levels gi and ei):

1√
N1!N2!

(
g
†
1 + f

†
1√

2

)N1
(

g
†
2 + f

†
2√

2

)N2

|0〉

= 1√
2N1+N2

∑
k1,k2

√(
N1
k1

)(N1
k2

)
|k1,0,0〉|k2,0,0〉. (57)

Applying the rule Eq. (56) we obtain after the two STIRAP
pulses the state

|D(θ = 0 → π/2 → 0)〉 = 1√
2N1+N2

∑
k1,k2

√(
N1
k1

)(N1
k2

)

× eiω�T [(−1)k1+k2 −1]/2|k1,0,0〉|k2,0,0〉. (58)

This may be rewritten by putting the states in Schmidt form,

|D(θ = 0 → π/2 → 0)〉
= e−iω�T/2

[
cos(ω�T/2)

∣∣sx
1 = N1

〉 ∣∣sx
2 = N2

〉
+ i sin(ω�T/2)

∣∣sx
1 = −N1

〉 ∣∣sx
2 = −N2

〉 ]
, (59)

where

∣∣sx
i = ±Ni

〉 = 1√
N1!

(
g
†
i ± f

†
i√

2

)Ni

|0〉

= 1√
2Ni

Ni∑
ki=0

(±1)ki

√(
N1
k2

)
|ki,0,0〉. (60)

For ω�T = π/2, we can view Eq. (59) as a variant of a NOON

state, as in terms of the occupation numbers of the states g
†
i +f

†
i√

2
the first term in Eq. (59) is N1 and N2, while the second terms
are 0 and 0, respectively. An explicit form of the entanglement
in Eq. (58) can be calculated using the logarithmic negativity
Eq. (38). We obtain that the entanglement is for all N1,N2:

E = log2

[
1 +

√
1 − cos(2ω�T )

2

]
. (61)

The entanglement is zero when ω�T = nπ and reaches a
maximum at 2ω�T = (2n + 1)π for integer n.

C. Numerical analysis

In order to demonstrate the generation of entanglement, we
simulate the adiabatic evolution using the same methods as
that given in Sec. II C. The explicit form of the STIRAP pulses
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FIG. 6. (a) Typical time evolution for the geometric phase gate
with two STIRAP sequences for N1 = N2 = 2 from the initial state
|k1 = 0,r1 = 0〉|k2 = 0,r2 = 0〉. Parameters used are �t/τ = 0.40,
�max

r τ = 1000, �max
e τ = 1000, Uτ/� = 2�max

e , ωτ = −0.05, and
�T/τ = 2. (b) Fidelity of the initial state after the two STIRAP
pulses for various values of �max

r = �max
e = �.

are

�e(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�max
e sin2

(
πt
τ

)
if 0 < t < τ

�max
e sin2

(
π(t−�T +�t)

τ

)
if �T − �t < t < �T − �t + τ

0 otherwise

,

(62)

and

�r (t) =

⎧⎪⎨
⎪⎩

�max
e sin2

(
π(t+�t)

τ

)
if − �t < t<τ − �t

�max
e e−iωt sin2

(
π(t−�T )

τ

)
if �T < t<τ + �T

0 otherwise

.

(63)

The first STIRAP pair is identical to Eqs. (30) and (31), and
the second pair occurs a time �T later, but in the reverse order
as the first. As the level fi takes no part in the Hamiltonian
Eq. (15), we take this into account implicitly, by evolving the
same Eq. (29) as for the single STIRAP pair sequence. We
time evolve each term in the superposition Eq. (57) separately
and examine what phase is obtained on the final state.

Figure 6(a) shows the population evolution for typical
parameters. We see that for sufficiently large �max

r,e τ the curves
follow an adiabatic path, such that it returns to the initial state
at the end of the evolution, with the first half of the evolution
being identical to Fig. 3. Figure 6(b) shows the fidelity of the
transfer from various initial states Eq. (52) before and after the
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FIG. 7. (a) Phases picked up during two STIRAP pulse proce-
dure by various states as labeled by |k1,k2〉 = |k1,0,0〉z|k2,0,0〉z in
Eq. (49). The phases picked up by |k2,k1〉 are the same as |k1,k2〉.
Parameters used are the same as in Fig. 6(a). Phases are with
references to the state |0,0〉, which does not pick up any phase under
the evolution. (b) Entanglement created by evolving the two STIRAP
sequence starting from the state | 1√

2
, 1√

2
〉〉| 1√

2
, 1√

2
〉〉. Solid line shows

the result for the phases picked up as in subfigure (a). Dashed lines
shows the ideal result Eq. (60).

geometric phase evolution. Here the fidelity is defined as

F = |(〈k1 = 0,r1 = 0 ⊗ |〈k2 = 0,r2 = 0|)|ψ(t)〉|2. (64)

We see that as before, increasing �max
e,g τ improves the fidelity,

as the system is able to maintain adiabaticity. In the nonadia-
batic regime the return to the initial state is rather uncontrolled,
which gives rise to the noisy behavior [Fig. 6(b)]. We note the
time evolution is completely deterministic, but the complex
nonadiabatic behavior gives a fast dependence with �.

In Fig. 7(a) we plot the phase that each of the states in
Eq. (49) acquires after the geometric gate sequence. We see that
as a function of �T there is a linear relation to the phase that is
obtained on states with odd k1 + k2, as expected from Eq. (56).
The gradient of the phase with �T agrees well with Eq. (56),
giving a value close to ω. For even k1 + k2 the phase variation
with �T is completely flat, in agreement with Eq. (56). The
deviation from zero phase for even states is attributed to the
approximations that were assumed in Eq. (56), namely that
ωτ,ω�T are negligible. In practice we see that due to the lack
of variation of the even terms with �T this provides an offset
to the relative phase between the odd and even terms.

Figure 7(b) shows the entanglement as quantified by the
logarithmic negativity Eq. (38) after starting in the state
Eq. (57). We directly see that entanglement can be created
using the geometric gate sequence. The general behavior has
good agreement with the theory Eq. (61). We see that the
entanglement does not reach zero in the simulations in contrast
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to the theory. We also see a slight offset of the periodicity of
the entanglement curves for the numerically evolved case, in
comparison to the theory. The reason for this is due to the
phases of each of the states involved in the states as shown in
Fig. 7(a) not all giving zero at the end of the double STIRAP
evolution. This again is attributed to the assumptions made
in deriving Eq. (61) breaking down. Specifically, the finite
ωτ,ω�T adds a phase on the even k1 + k2 terms, which offsets
the maximally entangled point. This added phase contributes
to the entanglement, which can account for the fact that the
simulation plot achieves a higher entanglement than the ideal
case.

IV. SUMMARY AND CONCLUSIONS

We have shown two methods of generating entangled states
between two BECs using Rydberg excitations. In the first
method, one STIRAP sequence where a Rydberg state is
produced in each BEC results in a state of the form

N∑
k=0

ξk|k〉x |N − k〉x, (65)

where ξk = ξN−k we label the occupation of an Sx eigenstate
between the levels gi and ei and have omitted the Rydberg
labels that are unoccupied. In the second method, two STIRAP
pulses result in a geometric phase gate, which result for suitable
parameters

cos

(
ω�

2

)
|N〉′x |N〉′x + i sin

(
ω�

2

)
|0〉′x |0〉′x, (66)

where |N〉′x,|0〉′x denotes the full or zero occupation of the
sx = N state between the gi and fi levels as defined in Eq. (60),
respectively. This is a variation of a NOON state, and can
be explicitly written as a NOON state if we define the sx

eigenstates in the opposite way on the two BECs. The primary
advantage of the geometric phase gate is that the type of states
that can be produced are tunable using the delay �T between
the STIRAP pulses. The single-STIRAP sequence does not
have a tunable parameter, hence only the equal superposition
state Eq. (65) can be produced. The price to be paid for this
tunability is a more complex STIRAP sequence.

Both schemes result in entanglement between the BECs.
The single STIRAP sequence has entanglement of the order
of E ∼ log2(N + 1), due to the nature of the entangled state
Eq. (65) created. This is the state produced in the adiabatic
limit, which is likely to be rather challenging to reach for
the large BECs, due to the larger number of states involved.
We have, however, found that even in the nonadiabatic limit
large amounts of entanglement are created, which in fact
exceed the adiabatic case. This occurs on very short timescales,
�τ ∼ 10, according to the cases that we simulated, hence
this may be experimentally advantageous. One aspect of this
approach is that the type of state produced is not particularly

well controlled for the single-STIRAP case, as the parameters
ξk are arbitrary, up to symmetrization. Nevertheless, this
consistently produces entanglement and is guaranteed to exist
in the adiabatic case.

For the double-STIRAP case, a NOON state is generated
independent of N1,N2. The amount of entanglement in this
case is at most E = 1, as shown by Eq. (61). Therefore, the
single-STIRAP sequence has a larger amount of entanglement
as N increases. On the other hand, the type of state is better
controlled, and in the adiabatic limit is of form which is a more
familiar form. A NOON state is well-known to have beneficial
properties from the point of view of quantum metrology.
However, this requires rather large �τ to maintain adiabaticity,
particularly for large N , and is likely to be challenging
experimentally to produce.

One of the main attractive aspects of using the STIRAP
methods and Rydberg excitations is the suppression of
spontaneous emission due to long lifetimes and long-ranged
interactions. In this paper we were concerned more with the
fundamental scheme of extending the single atom methods to
BECs, which makes a direct analytical solution of the dark
states a nontrivial task. In an experimental setting it is possible
to adapt our methods to make them more advantageous in terms
of spontaneous emission using a more complex excitation path
to suppress these effects. For the single-atom case, this has
been discussed in detail in Refs. [34,35]. These should be
directly also applicable to the BEC case. Another direction
that was not considered is how well our scheme is robust
in the presence of decoherence for our particular scheme. A
common problem of NOON states in any physical system is
their sensitivity to decoherence for large particle numbers. In
a typical BEC on atom chips there can be in the region of
N = 103 atoms, hence the effects of accelerated decoherence
can be considerable [38], although excellent coherent times
for BECs in the region of seconds have been observed [40].
As NOON states are very sensitive in the presence of deco-
herence, it is likely the single-STIRAP scheme is more robust
experimentally, in view of the shorter pulses required and the
type of state generated. Alternatively, “kitten” NOON states
could be targeted with the double-STIRAP sequence, provided
the atom numbers in each BEC can be precisely controlled.

ACKNOWLEDGMENTS

T.B. acknowledges the support of NTT Basic Re-
search Laboratories, the Shanghai Research Challenge Fund,
and National Natural Science Foundation of China Grant
No. 61571301. R.S. acknowledges financial support by the EU
H2020 FET Proactive project RySQ (No. 640378), the Marie
Curie Initial Training Network COHERENCE (No. 265031),
and by the Foundation for Fundamental Research on Matter
(FOM), which is part of the Netherlands Organization for
Scientific Research (NWO).

[1] S. Stenholm and K. Suominen, Quantum Approach to Informat-
ics (Wiley, New York, 2005).

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. OBrien, Nature 464, 45 (2010).

022319-11

http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812


IDLAS, DOMENZAIN, SPREEUW, AND BYRNES PHYSICAL REVIEW A 93, 022319 (2016)

[3] P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez,
S. X. Wang, S. Quint, M. F. Brandl, V. Nebendahl, C. F. Roos
et al., New J. Phys. 15, 123012 (2013).

[4] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature (London)
398, 786 (1999).

[5] C. Adami and N. Cerf, in Quantum Computing and Quan-
tum Communications, edited by C. Williams (Springer,
Berlin/Heidelberg, 1999), Vol. 1509 of Lecture Notes in Com-
puter Science, pp. 391–401.

[6] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[7] M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F.

Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Science
316, 1312 (2007).

[8] B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature 413, 400
(2001).

[9] D. Matsukevich, Nature Phys. 9, 389 (2013).
[10] X.-H. Bao, X.-F. Xu, C.-M. Li, Z.-S. Yuan, C.-Y. Lu, and J.-W.

Pan, Proc. Natl. Acad. Sci. USA 109, 20347 (2012).
[11] H. Imai, K. Inaba, H. Tanji-Suzuki, M. Yamashita, and T. Mukai,

Appl. Phys. B 116, 821 (2014).
[12] P. Bohi, M. F. Riedel, J. Hoffrogge, J. Reichel, G. J. Milburn,

J. Corney, T. W. Hansch, and P. Treutlein, Nat. Phys. 5, 592
(2009).

[13] M. F. Riedel, P. Bohi, L. Yun, T. W. Hnsch, A. Sinatra, and P.
Treutlein, Nature 464, 1170 (2010).

[14] S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and T.
Hirano, Phys. Rev. A 82, 033609 (2010).

[15] V. Y. F. Leung, D. R. M. Pijn, H. Schlatter, L. Torralbo-Campo,
A. L. La Rooij, G. B. Mulder, J. Naber, M. L. Soudijn, A.
Tauschinsky, C. Abarbanel et al., Rev. Sci. Instrum. 85, 053102
(2014).

[16] V. Y. F. Leung, A. Tauschinsky, N. van Druten, and R. J. C.
Spreeuw, Quant. Info. Proc. 10, 955 (2011).

[17] A. Abdelrahman, T. Mukai, H. Häffner, and T. Byrnes, Opt.
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