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jet boundaries and multi-differential measurements. The process and measurements can

be easily adjusted, as we demonstrate by reproducing many existing soft functions. The

results for a general LHC process with multiple Wilson lines are obtained by treating

Wilson lines that are not back-to-back using a boost. We also obtain, for the first time,

the N -jettiness soft function for generic jet angularities, and the collinear-soft function for

the measurement of two angularities.
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1 Introduction

LHC analyses involve restrictions on QCD radiation to increase their sensitivity. Restric-

tions can be imposed directly by e.g. requiring a specific number of jets, or indirectly

through e.g. the transverse momentum of a Higgs boson. This leads to large logarithms

in the cross section, requiring resummation to obtain reliable predictions. The origin of

these large logarithms is the enhancement of collinear and soft radiation, which are treated

as dynamic degrees of freedom in Soft-Collinear Effective Theory (SCET) [1–4]. SCET is

an effective theory of QCD that achieves resummation through the factorization of hard,

collinear and soft radiation at the level of the Lagrangian.
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In this paper we focus on soft radiation, which is encoded in the soft function in SCET.

The soft function is (schematically) defined as the matrix element

Ŝ(m,µ) =
〈

0
∣∣∣T̄[∏

i

Ŷ †i

]
δ(m− m̂) T

[∏
i

Ŷi

]∣∣∣0〉 , (1.1)

where Yi is a soft Wilson line along the light-like direction of, and in the color representation

of the i-th colored parton participating in the hard scattering. The T (T̄) denote (anti-)

time ordering and the delta function encodes the measurement m through the operator m̂.

We will present an efficient approach to calculate the one-loop soft function, which

is an essential ingredient for resummation at next-to-next-to-leading logarithmic accuracy.

We will not restrict ourselves to a specific process or measurement and demonstrate the

versatility of our method by reproducing the one-loop soft function for thrust [5, 6], angu-

larities [7, 8], transverse momentum [9] and transverse thrust [10]. Results for the double

differential measurement of two angularities and of transverse momentum and beam thrust

are also reproduced [11, 12]. These require an extension of SCET, called SCET+ [12–15],

with additional collinear-soft modes. The collinear-soft function is again a matrix element

of eikonal Wilson lines and can be calculated in the same way. We present for the first time

the calculation of N -jettiness with generic jet angularities and the collinear-soft function

for the double angularity measurement.

Our approach involves a combination of several tricks: we use the coordinates trans-

verse momentum kT , rapidity y and azimuthal angle φ that make the symmetries of the

soft matrix element manifest. By isolating divergences at the integrand level, the inte-

grals are simplified. In particular, the integral for the finite terms can directly be written

down and evaluated numerically, if desired. We work with the cumulative soft function,

as this involves simple manipulations with logarithms rather than plus distributions. The

soft function can be obtained by differentiating the final result. The N -jet soft function is

given by the sum over emissions between all pairs of Wilson lines at one loop. We employ

a boost to make the Wilson lines back-to-back, allowing us to recycle our dijet results.

An extension of the hemisphere decomposition of ref. [16] is needed to handle more com-

plicated boundaries between jets. Our approach is very general, as we also treat rapidity

divergences and divergences with an azimuthal-angle dependence. In the latter case we

find it convenient to use a version of dimensional regularization that has no ε-dependence

associated with the azimuthal angle, and show that this is consistent.

The calculation also provides insight into the structure of the soft function at one

loop. For example, rapidity divergences are simply the divergences as the rapidity of the

soft gluon goes to infinity. The divergent structure near the Wilson lines is dominated by

the asymptotic behavior of the measurement. On the other hand, the divergences away

from the Wilson lines depend on the area in (y, φ)-space on which the measurement is

defined, but are independent of the measurement itself.

The outline of the paper is as follows: in section 2 we present the setup of our cal-

culation. We discuss detailed examples for dijets observables in section 3, generalized

N -jettiness in section 4, and double differential measurements in section 5. The conclu-

sions are in section 6, and additional details related to the Becher-Bell rapidity regulator,
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the calculation of the jet function for transverse thrust and the results for thrust-like N-

jettiness are relegated to the appendices.

2 Calculational framework

In this section we develop our calculational framework. We first describe the measurements

we consider and the rapidity coordinates we use to express them. In section 2.2 we consider

the one-loop soft function for (back-to-back) dijets and present our master formula in

eq. (2.5). We extend this to N -jet production in section 2.3, boosting to frames where

Wilson lines are back-to-back. Multi-differential measurements are discussed in section 2.4.

2.1 Measurement function and rapidity coordinates

For two back-to-back jets, the corresponding soft radiation is emitted from back-to-back

Wilson lines. Its boost invariance is made manifest by describing the emitted gluon using

kT , y and φ. We will denote the contribution of this soft gluon to a measurement by a

function F (kT , y, φ), and require that the measurement is additive when there are multiple

emissions (avoiding clustering effects from jet algorithms, see e.g. [17]).

Collinear safety implies that for two partons in the collinear limit, F (k1T , y, φ) +

F (k2T , y, φ) = F (k1T + k2T , y, φ). Consequently,

F (kT , y, φ) = kT f(y, φ) . (2.1)

For a parton in the presence of a soft gluon f(y′, φ′) = f(y, φ) + O(ksoftT /kT ). In the soft

limit ksoftT → 0 the deflection y′− y and φ′−φ due to the soft gluon go to zero, from which

we conclude that IR safety imposes that f(y, φ) is continuous. We will further assume

that f(y, φ) ≥ 0, such that the measurement restricts the QCD radiation. To rewrite

measurements in these coordinates, we use

kµ = kT (cosh y, cosφ, sinφ, sinh y) , k− = kT e
y , k+ = kT e

−y . (2.2)

Here k∓ = k0 ± k3 denote light-cone coordinates along the back-to-back jets, aligned with

the z-axis.

2.2 Dijets

We find it convenient to calculate the cumulative distribution for the soft function in terms

of the measurement m to avoid dealing with plus distributions

δ[m− kT f(y, φ)]→ θ[m− kT f(y, φ)] ,
1

µ

1

(m/µ)+
→ θ(m) ln

m

µ
,

δ(m)→ θ(m) ,
1

µ

(
ln(m/µ)

m/µ

)
+

→ 1

2
θ(m) ln2 m

µ
, etc. (2.3)

This simplifies intermediate steps, especially for multi-differential measurements. Of

course, the distribution follows from differentiating the final expression with respect to

m and typically does contain plus distributions. We assume that the measurements are

– 3 –
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positive and omit the explicit θ[m] in the following. Naturally, this overall theta function

must be restored when taking the derivative of the cumulative soft functions in order to

e.g. obtain the δ(m) terms in the distributions.

The calculation of the soft function will be carried out using dimensional regularization

for both the UV and IR divergences, causing the virtual contributions to vanish (1/εUV −
1/εIR = 0) and avoiding complications [18–21] from the overlap with collinear radiation.

Since our observable is IR safe the 1/εIR poles cancel, although this is not explicitly visible

due to our choice of regulator. The real emission diagrams with the gluon attaching to

Wilson lines 1 and 2 yield at this order (see also appendix C of ref. [22])

S
(1)
12 (m,µ) = −αs

π2
T1 ·T2

(
eγEµ2

)ε
Γ(1− ε)

νη
∫ ∞
0

dkT

k1+η+2ε
T

∫ ∞
−∞

dy

|2 sinh y|η

∫ 2π

0
dφ θ[m− kT f(y, φ)]

=
αs
π2

T1 ·T2
eεγE

(η + 2ε)Γ(1− ε)
νηµ2ε

mη+2ε

∫ ∞
−∞

dy

∫ 2π

0
dφ

θ[f(y, φ)]f(y, φ)2ε

|2 sinh y|η
. (2.4)

Here T1 and T2 denote the color charge of the emitted gluon in the representation of

Wilson lines 1 and 2, respectively (in the notation of refs. [23, 24]). If there are only two

Wilson lines, T1 ·T2 = −CF for a quark-anti-quark and −CA for two gluons. From eq. (2.4)

it is clear that the soft radiation is uniformly emitted in y and φ. Thus if f(y, φ) goes to a

constant for y → ±∞, the y integral diverges. We control these rapidity divergences in the

soft function using the η regulator of refs. [9, 25]. Other regulators are possible [26–32],

and the expression corresponding to eq. (2.4) for ref. [30] is given in appendix A. Note that

at this order there is no distinction between outgoing and incoming Wilson lines, which is

known to extend to two loops in certain cases [33].

We introduce a function f∞(y, φ) that captures the behavior of the measurement as

y → ±∞, such that ln(f/f∞) is integrable. In practice, f∞ can be obtained by expanding

ln f around 1/y = 0. This allows us to already isolate the divergent behavior at the

integrand level, resulting in our master formula

S
(1)
12 (m,µ) =

αs
2π2

T1 ·T2

∫ ∞
−∞

dy

∫ 2π

0
dφ θ[f(y, φ)] f∞(y, φ)2εe−η|y|

×
[

1

ε
+ 2 ln

µ f(y, φ)

mf∞(y, φ)
+ 2ε

(
ln2 µ

m
− π2

24

)][
1 + η

(
− 1

2ε
+ ln

ν

m

)]
. (2.5)

The UV divergences are fixed by f∞ and the original measurement f only enters in the

finite terms through ln(f/f∞). At this order, only the asymptotic behavior of the rapidity

regulator enters, which is characterized by the (simpler) factor e−η|y|.

An exception is when f vanishes in regions of phase-space (see eq. (2.7)). In these

cases it is convenient to separate f into the measurement fM > 0 and the theta function

fR defining the integration region. Eq. (2.5) now reads

S
(1)
12 (m,µ) =

αs
2π2

T1 ·T2

∫ ∞
−∞

dy

∫ 2π

0
dφ fR(y, φ) f∞(y, φ)2εe−η|y|

×
[

1

ε
+ 2 ln

µ fM (y, φ)

mf∞(y, φ)
+ 2ε

(
ln2 µ

m
− π2

24

)][
1 + η

(
− 1

2ε
+ ln

ν

m

)]
. (2.6)
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Now f∞ can be determined by only considering fM (but is irrelevant if the integration is

cut off by fR). When the region described by fR has a finite area A in (y, φ) space,

S
(1)
12 (m,µ) =

αs
2π2

T1 ·T2

∫ ∞
−∞

dy

∫ 2π

0
dφ fR(y, φ)

[
1

ε
+ 2 ln

µ fM (y, φ)

m

]
=

αs
2π2

T1 ·T2
A

ε
+O(ε0) . (2.7)

Thus the divergence is independent of f∞ and just proportional to this area. This is the

motivation behind the hemisphere decomposition used in section 4. We will present several

applications for dijet observables in section 3, demonstrating the efficiency of this approach.

2.3 N jets

To calculate the soft function for N Wilson lines, we can simply sum over the contribution

from each pair of Wilson lines using eq. (2.5). However, we need to take into account that

the Wilson lines are no longer back-to-back, which we address by boosting to a frame where

they are back-to-back. Using primed coordinates for the former and unprimed coordinates

for the latter, a momentum kµ transforms as

k′µ = B(n′1, n
′
2)k

µ . (2.8)

with

B(n′1, n
′
2) =

(
γ −γ~β T

−γ~β 1 + (γ − 1)~β~β T /~β 2

)
, ~β = −1

2
(n̂′1 + n̂′2) , γ =

√
2√

n′1 ·n′2
, (2.9)

where n′i = (1, n̂′i) (i=1,2) denote the directions of the Wilson lines. The Wilson lines in

the two frames simply transform into each other. Applying the reverse boost to n′1, n
′
2, n̄

′
1

and n̄′2,

ñµ1 =

(
γ−1,

1

2
(n̂′1 − n̂′2)

)
, ñµ2 =

(
γ−1,

1

2
(n̂′2 − n̂′1)

)
,

˜̄nµ1 = −ñµ1 + 2γ(1, ~β) , ˜̄nµ2 = −ñµ2 + 2γ(1, ~β) , (2.10)

so ñ1 and ñ2 are indeed back-to-back, though ñi and ˜̄ni are not. Because ñi and ˜̄ni do not

have the conventional (1, n̂) normalization, we wrote a tilde on the ni and n̄i, though this

normalization is irrelevant for the Wilson lines. One can then convert the measurement

between the two coordinates using Lorentz invariance of scalar products n′i ·k′ = ñi ·k. For

i = 1, 2 this takes a particularly simple form

n′1 ·k′ = γ−1n1 ·k , n′2 ·k′ = γ−1n2 ·k . (2.11)

This approach requires modification in the presence of rapidity divergences, since the

rapidity regulator is not boost invariant. For definiteness we first assume that only the

– 5 –



J
H
E
P
0
3
(
2
0
1
6
)
1
5
3

Wilson line in the n′1 direction requires rapidity regularization. For the exchange of a soft

gluon between the Wilson lines in the n′1 and n′2 direction, the rapidity regulator is(
ν

|n̄′1 ·k′ − n′1 ·k′|

)η
y→∞

=

(
ν

2γkT sinh y

)η
. (2.12)

Although inserting eq. (2.10) leads to complicated expressions, the asymptotic behavior is

simple and is the only thing that matters at one-loop order. The Wilson line requiring the

rapidity regularization is at y =∞, so this is the only relevant limit (y → −∞ is regulated

by dimensional regularization). Note that if instead the Wilson line n2 required rapidity

regularization, the final expression would still be the same. From this we conclude that

we may use our master formula eq. (2.5) by simply replacing ν → ν/γ. In the presence of

additional Wilson lines requiring rapidity regularization, we in principle need a copy of the

rapidity regulator for each direction1

∏
i

(
νi

|n̄′i ·k′ − n′i ·k′|

)ηi
(2.13)

Ensuring that rapidity divergences corresponding to the n′i direction are controlled by ηi,

by taking the other η’s to zero first, implies that eq. (2.12) still holds with ν → νi and

η → ηi. In particular, if at the end of the calculation we take all regulators equal, νi = ν

and ηi = η, we can simply do all calculations by replacing ν → ν/γ in our master formula.

We find our approach of boosting to back-to-back coordinates convenient as it allows

us to recycle results, but it is not necessary. Direct calculations of soft functions with more

than two Wilson lines and rapidity divergences have been carried out in e.g. refs. [10, 35].

2.4 Multi-differential measurements

We now consider multi-differential measurements, where large logarithms associated with

additional scales arise and require resummation. The resummation can be achieved by

an extension of SCET (SCET+) with additional collinear-soft and/or soft-collinear de-

grees of freedom [12–15, 36–39]. These modes arise due to the different scales introduced

by the multi-differential measurements, which will be discussed for an explicit example

in section 5.1. Whereas the soft function defined in eq. (1.1) depends on one measure-

ment m, multi-differential measurements give rise to a soft function depending on multiple

measurements

δ(m− m̂)→
∏
i

δ(mi − m̂i) . (2.14)

The collinear-soft radiation of SCET+ is described by a collinear-soft function, which is

also a matrix element of (collinear-soft) Wilson lines. It can be calculated in the same

manner, as we will show in section 5.

1Even for Wilson lines in the n1 and n̄1 directions we can have separate regulators, since the rapidity

divergences should be cancelled by the collinear radiation in the n1 and n̄1 direction, respectively [34].
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To incorporate the multiple measurements in the soft function, we extend the mea-

surement to a vector

~m = kT ~f(y, φ) . (2.15)

allowing us to write eq. (2.14) for the cumulative soft function as∏
i

θ[mi − kT fi(y, φ)] = θ[max
i
{fi(y, φ)}]

∏
i

θ[mi/fi(y, φ)− kT ] . (2.16)

For a given y and φ this is dominated by a single measurement mI that imposes the

strongest constraint on kT . Regulating this dominant measurement for y → ±∞ through

f∞, we arrive at following expression for the soft function

S
(1)
12 (~m, µ) =

αs
2π2

T1 ·T2

∫ ∞
−∞

dy

∫ 2π

0
dφ θ[max

i
{fi(y, φ)}] f∞(y, φ)2εe−η|y| (2.17)

×
[

1

ε
+ 2 ln

µ fI(y, φ)

mI f∞(y, φ)
+ 2ε

(
ln2 µ

mI
−π

2

24

)][
1 + η

(
− 1

2ε
+ ln

ν

mI

)]
.

We emphasize that the index I denoting the dominant measurement generally depends

on y and φ. The corresponding division of phase-space provides a natural way to do the

integration.

In section 5 we will apply this to several double-differential measurements. Specifically,

the measurement of two angularities [11] and the simultaneous measurement of transverse

momentum and beam thrust [40].

3 Dijet examples

We start by calculating the soft function for the thrust and angularity e+e− event shapes

in sections 3.1 and 3.2. In section 3.3 we determine the transverse momentum soft function

for pp → Z + X (or pp → H + X), which contains rapidity divergences. For transverse

thrust in e+e− collisions, discussed in section 3.4, the divergences depend on the azimuthal

angle. We describe how to treat this in dimensional regularization without breaking the

azimuthal symmetry.

3.1 Thrust

Thrust is an e+e− event shape defined through [41]

τ = 1− T = min
n̂

1

Q

∑
i

min
{
k+i , k

−
i

}
. (3.1)

Here i runs over the final-state particles, Q is the total invariant mass and we minimize

over the dijet axis n̂. The contribution of soft radiation to the measurement m = Qτ ,

corresponds to

f(y, φ) = e−|y| . (3.2)

– 7 –
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Since f is particularly simple, we choose f∞ = f , leading to

S(1)(m = Qτ, µ) = −αsCF
π

∫ ∞
−∞

dy e−2ε|y|
[

1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)]
= −αsCF

π

1

ε

[
1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)]
. (3.3)

Differentiating this leads to the result of refs. [5, 6].

3.2 Angularities

The contribution of soft radiation to the measurement m = Qτa of the angularity [42]

τa =
1

Q

∑
i

kiT e
−|yi|(1−a) , (3.4)

defined along a recoil-free axis [8], which is described by

f(y, φ) = e−|y|(1−a) . (3.5)

This family of event shapes is infrared safe for a < 2 and includes thrust (a = 0) and

broadening (a = 1). For a < 2 and a 6= 1, with f∞ = f , we obtain [7, 8]

S(1)(m = Qτa, µ) = −αsCF
π

∫ ∞
−∞

dy e−2ε|y|(1−a)
[

1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)]
=
αsCF
π

1

a− 1

1

ε

[
1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)]
=
αsCF
π

1

a− 1

[
1

ε2
+

1

ε

(
ln
µ2

Q2
− 2 ln τa

)
+

1

2
ln2 µ

2

Q2
− 2 ln

µ2

Q2
ln τa + 2 ln2 τa −

π2

12

]
. (3.6)

The case a = 1 is equivalent with the transverse momentum measurement discussed next.

3.3 Transverse momentum

When the transverse momentum, pT , of the soft radiation is measured, f is trivial

f(y, φ) = f∞(y, φ) = 1 . (3.7)

However, the calculation is slightly more complicated due to rapidity divergences arising

from y → ±∞ in the y integration,

S(1)(m = pT , µ) = −αsCF
π

∫ ∞
−∞

dy e−η|y|
[

1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)]
×
[
1 + η

(
− 1

2ε
+ ln

ν

m

)]
= −αsCF

π

[
1

ε
+ 2 ln

µ

m
+ 2ε

(
ln2 µ

m
− π2

24

)](
2

η
− 1

ε
+ 2 ln

ν

m

)
. (3.8)

As the rapidity regulator η should not regulate UV divergences, it must be taken to zero

before ε. For Wilson lines in the adjoint representation (gluons), CF → CA. This agrees

with the calculation in ref. [9], when converting their ~pT measurement.
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3.4 Transverse thrust in e+e−

The transverse thrust event shape T⊥ [43], is designed for hadron collisions, but has also

been calculated for e+e− → 2 jets [10],

τ⊥ = 1− T⊥ = max
~n⊥

∑
i |~ki⊥| − |~ki⊥ · ~n⊥|∑

i |~ki⊥|

=

∑
i |~ki⊥| − |~ki⊥ · ~n⊥|

Q| sin θ|
. (3.9)

Here the sum i runs over the final-state particles and the transverse (⊥) is with respect to

the electron-positron beam axis. In the second line, power suppressed contributions have

been neglected in order to write it in terms of the angle θ between the beam and the thrust

axis, and the transverse orientation of the thrust axis ~n⊥. The contribution to τ⊥ from one

soft particle with momentum k is thus described by

f(y, φ) =
1

Q| sin θ|

[√
(cosφ cos θ + sinh y sin θ)2 + sin2 φ− | cosφ cos θ + sinh y sin θ|

]
,

f∞(y, φ) =
sin2 φ

Q sin2 θ
e−|y| , (3.10)

where we have expressed k⊥ and n⊥ in eq. (3.9) in terms of the variables kT , y and φ in

the frame where the thrust axis is along the ẑ direction. Interestingly, the structure of the

divergence as y → ±∞ in eq. (3.10) has an azimuthal angle dependence. This results in

S(1)(m = τ⊥, µ) = −αsCF
2π2

∫ ∞
−∞

dy

∫ 2π

0
dφ (3.11)

×
{
f∞(y, φ)2ε

[
1

ε
+2 ln

µ

m
+2ε

(
ln2 µ

m
− π2

24

)]
+2 ln

f(y, φ)

f∞(y, φ)

}
= −αsCF

π

[
1

ε2
+

2

ε
ln

µ

4mQ sin2 θ
+ 2 ln2 µ

4mQ sin2 θ
+

7π2

12
+A(θ)

]
,

where the finite term A(θ) is given by

A(θ) =
1

π

∫ ∞
−∞

dy

∫ 2π

0
dφ ln

f(y, φ)

f∞(y, φ)
. (3.12)

We remind the reader that these y and φ are defined in the frame where the thrust axis

is along the ẑ axis, while the transverse in transverse thrust means perpendicular to the

beam axis. The results have been cross checked with ref. [10], and agree once the different

scheme for dimensional regularization is taken into account, as discussed in detail below.

The transverse part of the d-dimensional integration measure can be written∫
d2−2εk⊥ =

Ω1−2ε
2

1

2

∫
dk2T (k2T )−ε

∫ 2π

0
dφ
[
sin2(φ− φ0)

]−ε
, (3.13)

where φ−φ0 is the azimuthal angle between the momentum k⊥ and an arbitrary reference

axis. With the choice φ0 = 0 we obtain the integration measure used in ref. [10]. We prefer
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to preserve the azimuthal symmetry, and integrate over the choice of this reference axis∫
d2−2εk⊥ =

Ω1−2ε
2

1

2

∫
dk2T (k2T )−ε

1

2π

∫ 2π

0
dφ0

∫ 2π

0
dφ
[

sin2(φ− φ0)
]−ε

=
Ω2−2ε

2π

1

2

∫
dk2T (k2T )−ε

∫ 2π

0
dφ. (3.14)

When the measurement does not depend on φ the two ways gives the same results since

Ω1−2ε
2

∫ 2π

0
dφ
(
sin2 φ

)−ε
=

2π1−ε

Γ(1− ε)
= Ω2−2ε. (3.15)

However, for transverse thrust, which does depend on the azimuthal angle, the two schemes

give different results for the cumulative soft function. With f2ε∞ ∝ (sin2 φ)2ε, the two

measures lead to contributions to the cumulative soft function that are related through

− αsCF
2π2

1

ε2
Ω2−2ε

2π

∫ 2π

0
dφ (sin2 φ)2ε

= −αsCF
2π2

1

ε2
Ω1−2ε

2

∫ 2π

0
dφ (sin2 φ)ε − αsCF

π

2π2

3
+O(ε). (3.16)

The extra π2 term in the finite part of the cumulative soft function is cancelled by corre-

sponding terms in the two jet functions, calculated in appendix B.

4 N -jettiness with generic jet angularities

We extend the thrust-like N -jettiness definition [16, 44], by considering the measurement

of a different angularity for each jet2

TN =
∑
h

min
`

{
2ω`
Q`

(n′` ·k′h)1−α`/2(n̄′` ·k′h)α`/2

}
≡
∑
`

T `,α`
N , (4.1)

where h runs over the hadronic final-state particles and ` over the jets in the event with

(label) momenta

q′` = ω`n
′
` = ω`(1, n̂

′
`) . (4.2)

The primed variables indicate that the momenta are defined in generic coordinates. We

will later boost to (unprimed) coordinates where two of the Wilson lines are back to back,

as discussed in section 2.3. The ω` in eqs. (4.1) and (4.2) is considered a parameter which

does not transform between frames (i.e. no ω′`). The minimization of eq. (4.1) assigns each

particle to a jet region, and T `,α`
N is the total contribution from jet region `. The ‘standard’

thrust-like N -jettiness definition is recovered if all α` are zero, T `N ≡ T
`,α`=0
N . We show

how our results reduce to the expressions in ref. [16] in appendix C. We will assume α` 6= 1

to avoid rapidity divergences.

2Here we use the term ‘jets’ to refer to both final-state and beam jets.

– 10 –



J
H
E
P
0
3
(
2
0
1
6
)
1
5
3

Sji,bound(mj) Sji,m(mj)

+

mi

mj

mm

=

+ ��

+ �+ �

Sij,hemi(mi)

Sji,hemi(mj)

Sij,m(mi)Sij,m(mm)

Sji,m(mm)

y ! 1y ! �1 0

� = 0

� = 2⇡

Sij,bound(mi)

Sij(m) =

Figure 1. Separation of the soft function, Sij , with a gluon emitted between the ith and jth Wilson

line, into hemisphere, boundary and non-hemisphere contributions. The contributions surrounded

by a gray box are together finite.

The one-loop soft function is the sum over contributions from gluons exchanged be-

tween Wilson lines corresponding to the jets i and j

S(1)(m,µ) =
∑
i<j

S
(1)
ij (m,µ) . (4.3)

To simplify the discussion we consider 1-jettiness in pp collisions (or equivalently 3-jettiness

in e+e− collisions). We label the three jets by ` = i, j,m to make the extension to N jets

straightforward. The contribution of a soft gluon to T i,αi
1 is given by3

kT kiθ
(
kj − ki

)
θ
(
km − ki

)
, (4.4)

and similarly for T j,αj

1 and T m,αm
1 , where we introduced

k` =
2ω`
Q`kT

(n′` ·k′)1−α`/2(n̄′` ·k′)α`/2 . (4.5)

We extend the hemisphere decomposition [16] to handle the azimuthally dependent

phase-space boundaries between regions arising from the more general N -jettiness mea-

surement. This approach is discussed in detail in ref. [45]. The decomposition of S
(1)
ij into

hemisphere, boundary and non-hemisphere contributions is depicted in figure 1 and will

be discussed below. The soft function involves three regions associated with the measure-

ments: θ(kj−ki)θ(km−ki) for mi, θ(ki−kj)θ(km−kj) for mj and θ(ki−km)θ(kj−km) for

mm. With the purpose of making the analytical calculation of the divergent parts, as well

3To simplify the expressions for the measurement functions fM , we already pull out a factor of the

transverse momentum kT in the unprimed coordinates (where Wilson lines are back-to-back).
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as the extension to N jets as easy as possible, we first allow the measurements of mi and

mj to extend over the region of mm. This is then compensated for by the non-hemisphere

contributions Sij,m and Sji,m to the soft function. For a generic measurement, such as

the one considered here, the separation between the regions for mi and mj is a non-trivial

contour in (y, φ)-space, but the divergencies of the soft function do not depend on the

exact form of the contour. We therefore split the (y, φ)-space into the two hemispheres

y > 0 for mi and y < 0 for mj . To compensate for the difference between cutting the phase

space along y = 0 compared to the original contour between mi and mj , we introduce the

boundary contribution Sij,bound + Sji,bound. Adding up these contributions,

S
(1)
ij (m = {T i,αi

1 , T j,αj

1 , T m,αm
1 }, µ) = S

(1)
ij,hemi(mi = T i,αi

1 , µ) + S
(1)
ij,bound(mi = T i,αi

1 }, µ)

+ S
(1)
ij,m(mm = T m,αm

1 , µ) − S(1)
ij,m(mi = T i,αi

1 , µ)

+ (j ↔ i) . (4.6)

As we will see, the hemisphere contributions contain all divergencies, whereas the boundary

and non-hemisphere contributions are UV and IR finite. When there are additional jets, the

hemisphere and boundary contributions are of course the same, but there will be additional

non-hemisphere contributions.

We now boost such that the Wilson lines i and j become back-to-back, allowing us to

use section 2.3 to perform the calculation. Using eqs. (2.10) and (2.11), this leads to the

following expressions for the k` in the back-to-back frame

ki =
2ωi
Qi

γ−1e−y (1−αi/2)
(
ae−y + bey + c cos(φ− φ0)

)αi/2 ,

kj =
2ωj
Qj

γ−1ey (1−αj/2)
(
be−y + aey + c cos(φ− φ0)

)αj/2 ,

km =
2ωm
Qm

(
1

2
ey(ñ0m − ñ3m) +

1

2
e−y(ñ0m + ñ3m)− ñ1m cosφ− ñ2m sinφ

)1−αm/2

×
(

1

2
ey(˜̄n0m − ˜̄n3m) +

1

2
e−y(˜̄n0m + ˜̄n3m)− ˜̄n1m cosφ− ˜̄n2m sinφ

)αm/2

, (4.7)

with

a = γ2 − 1 , b = γ2 , c = 2γ
√

(γ2 − 1) . (4.8)

Here we have explicitly chosen the z-axis through ẑ = 1
2γ(n̂′i − n̂′j). The azimuthal angle

φ0 of the boost −~β in eq. (2.9) plays no role in the rest of the calculation.

The measurement functions for the different jets are defined as

fMi = ki , fMj = kj , fMm = km . (4.9)

Starting with S
(1)
ij,hemi, we have

fRhemi,i = θ(y) . (4.10)
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The form of the measurement simplifies considerably in the limit of y → ∞, in particular

the dependence on the azimuthal angle vanishes

f∞,i = 2
ωi
Qi
γ−1bαi/2e−(1−αi)y . (4.11)

The hemisphere contribution is now

S
(1)
ij,hemi(mi = T i,αi

1 , µ) =
αs
π

Ti ·Tj

∫ ∞
−∞

dy fRhemi,i f
2ε
∞,i

×
[

1

ε
+ 2 ln

µ

mi
+ 2ε

(
ln2 µ

mi
− π2

24

)]
+ Ihemi,i

=
αs
2π

1

(1− αi)
Ti ·Tj

(
1

ε2
+

2

ε
ln
Biµ

mi
+ 2 ln2 Biµ

mi
− π2

12

)
+ Ihemi,i ,

(4.12)

where

Bi = 2
ωi
Qi
γ−1bαi/2 , (4.13)

and the remaining finite integral is

Ihemi,i =
αs
π2

Ti ·Tj

∫ ∞
−∞

dy

∫ 2π

0
dφ fRhemi,i ln

fMi
f∞,i

. (4.14)

The second hemisphere contribution S
(1)
ji,hemi(mj = T j,αj

1 , µ), describing the region y < 0,

is given by replacing i→ j in the final line of eq. (4.12).

Next we calculate the boundary contribution, shown in the second and third column

of figure 1. The integration over y and φ is finite and we can use eq. (2.7) to write

S
(1)
ij,bound(mi, µ) =

αs
2π2

Ti ·Tj

∫ ∞
−∞

dy

∫ 2π

0
dφ fRij,bound

(
1

ε
+ 2 ln

µ

mi
+ 2 ln fMi

)
, (4.15)

with

fRij,bound = θ(−y)θ(kj − ki)− θ(y)θ(ki − kj) , (4.16)

The region for S
(1)
ji,bound(mj , µ) is given by fRji,bound = −fRij,bound. Therefore, the area of the

two contributions are equal but enter with different signs, such that the poles cancel in the

combination. The total boundary contribution is thus

S
(1)
ij,bound(mi, µ) + S

(1)
ji,bound(mj , µ)

=
αs
2π2

Ti ·Tj

∫ ∞
−∞

dy

∫ 2π

0
dφ fRij,bound

(
2 ln

mj

mi
+ 2 ln

fMi
fMj

)
. (4.17)

The measurement functions for the non-hemisphere contributions, S
(1)
ij,m(mm, µ) and

S
(1)
ij,m(mi, µ), shown in the last two columns of figure 1, are defined on the same region,

fRij,m = θ(kj − ki)θ(ki − km) . (4.18)
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Application of eq. (2.7) gives

S
(1)
ij,m(mm = T m,αm

1 , µ) =
αs
2π2

Ti ·Tj

∫ ∞
−∞

dy

∫ 2π

0
dφ fRij,m

(
1

ε
+ 2 ln

µ

mm
+ 2 ln fMm

)
,

(4.19)

and similarly for S
(1)
ij,m(mi, µ) with the replacement m→ i. Subtracting the non-hemisphere

i contribution from the non-hemisphere m contribution, the 1/ε poles cancel and for the

full non-hemisphere contribution we find

S
(1)
ij,m(mm) − S(1)

ij,m(mi) =
αs
π

Ti ·Tj

(
Ĩ0 ln

mi

mm
+ Ĩ1

)
, (4.20)

with

Ĩ0 =
1

π

∫ ∞
−∞

dy

∫ 2π

0
dφ fRm ,

Ĩ1 =
1

π

∫ ∞
−∞

dy

∫ 2π

0
dφ fRm ln

fMm
fMi

. (4.21)

Note that Ĩ0 is simply the area of region m with ki < kj . The result for the second non-

hemisphere contribution S
(1)
ji,m(mm) − S(1)

ji,m(mj) is obtained by the replacement i ↔ j in

eq. (4.20) and eq. (4.21). We show in appendix C how for α` = 0 these expressions reduce

to those in ref. [16].

5 Multi-differential measurements

We present results for the soft function and the collinear-soft function for double differential

measurements. In section 5.1 we consider the simultaneous measurement of (beam) thrust

and transverse momentum, and in section 5.2 the measurement of two angularities.

5.1 Thrust and transverse momentum

Following ref. [12], we combine the (beam) thrust and transverse momentum measurements

of sections 3.1 and 3.3. The soft radiation in the regime pT ∼ τQ is described by a double

differential soft function with

~f(y, φ) = (e−|y|, 1) . (5.1)

When y → ±∞ the transverse momentum measurement dominates,

f∞(y, φ) = 1 , (5.2)

leading to [12]

S(1)(~m = (Qτ, pT ), µ)

= −αsCF
π

∫ ∞
−∞

dy e−η|y|
[

1

ε
+ 2 ln

µ

min(m1e|y|,m2)
+ 2ε

(
ln2 µ

m2
− π2

24

)]
×
[
1 + η

(
− 1

2ε
+ ln

ν

m2

)]
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Mode: Scaling (−,+,⊥)

n-collinear Q
(
1, (pTQ )2, pTQ

)
n̄-collinear Q

(
(pTQ )2, 1, pTQ

)
n-collinear-soft

p2T
τQ

(
1, ( τQpT )2, τQpT

)
n̄-collinear-soft

p2T
τQ

(
( τQpT )2, 1, τQpT

)
soft τQ(1, 1, 1)

Table 1. SCET+ modes describing the measurement of τ and pT in the region τ2Q2 � p2T � τQ2.

= S(1)(m = pT , µ)− θ(m2 −m1)
2αsCF
π

∫ ln(m2/m1)

0
dy 2 ln

m2

m1ey

= S(1)(m = pT , µ)− θ(m2 −m1)
2αsCF
π

ln2 m2

m1
. (5.3)

In the second step we first assumed that min(m1e
|y|,m2) = m2, leading to the transverse

momentum soft function, and corrected for this through the second term.

When τ2Q2 � p2T � τQ2, the cross section is described by SCET+, for which the

modes are listed in table 1. The collinear-soft modes are less collimated than the collinear

modes and more energetic than the soft mode. They are described by collinear-soft func-

tions in the factorization formula. These are matrix elements of (collinear-soft) Wilson

lines and therefore give rise to the same amplitude as in eq. (2.5). However, due to the

collinear nature of this radiation, we use the measurement function for the hemisphere it

goes into.4 For collinear-soft radiation going into the y < 0 hemisphere,

~f(y, φ) = (ey, 1) , f∞(y, φ) = θ(−y) + θ(y)ey . (5.4)

We thus find

S (1)(~m = (p−, pT ), µ) =
1

2
S(1)(~m = (Qτ, pT ), µ)

− αsCF
π

∫ ∞
0

dy e2εy
[

1

ε
+ 2 ln

µ

m1
+ 2ε

(
ln2 µ

m1
− π2

24

)]
− θ(m1 −m2)

αsCF
π

∫ ln(m1/m2)

0
dy 2 ln

m1

m2ey

=
1

2
S(1)(~m = (Qτ, pT ), µ)− αsCF

π

[
− 1

2ε2
− 1

ε
ln

µ

m1

− ln2 µ

m1
+
π2

24
− θ(m1 −m2) ln2 m1

m2

]
, (5.5)

4In the calculation one also integrates over the other hemisphere. This is corrected for through zero-bin

subtractions [19] that remove the overlap with soft radiation, but vanish in pure dimensional regularization.
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exploiting that the measurement is identical to the soft function in eq. (5.3) for y < 0. Our

result agrees with ref. [12].5 Note that the collinear-soft function for the hemisphere y > 0

has an identical expression.

5.2 Two angularities

We now extend section 3.2 to consider the measurement of two angularities τa and τb as in

refs. [11, 12, 46]. Taking 2 > b > a (and a, b 6= 1) implies τb > τa and

~f(y, φ) = (e−|y|(1−a), e−|y|(1−b)) , f∞(y, φ) = e−|y|(1−b) . (5.6)

Writing ma = Qτa and mb = Qτ b, this leads to

S(1)(~m = (ma,mb), µ) = S(1)(mb, µ)

− θ(mb −ma)
2αsCF
π

∫ 1
(b−a)

ln
mb
ma

0
dy 2

(
ln
mb

ma
+ (a− b)y

)
= S(1)(mb, µ)− θ(mb −ma)

2αsCF
π

1

b− a
ln2 mb

ma
. (5.7)

This agrees with the expression in ref. [11], when converting their angular exponents α,

β to our (current) conventions, α = 2 − a, β = 2 − b, and taking into account that they

consider only one jet which halves the result.

The corresponding collinear-soft function has again the same amplitude but a modified

measurement. For collinear-soft radiation going into the y < 0 hemisphere,

~f(y, φ) = (ey(1−a), ey(1−b)) , f∞(y, φ) = θ(−y)ey(1−b) + θ(y)ey(1−a), (5.8)

which is identical to eq. (5.6) for y < 0 but not for y > 0. This leads to

S (1)(~m = (ma,mb), µ) =
1

2
S(1)(~m = (ma,mb), µ)

− αsCF
π

∫ ∞
0

dy e2εy(1−a)
[

1

ε
+ 2 ln

µ

ma
+ 2ε

(
ln2 µ

ma
− π2

24

)]
− θ(ma −mb)

αsCF
π

∫ 1
(b−a)

ln ma
mb

0
dy 2

(
ln
ma

mb
+ (a− b)y

)
=

1

2
S(1)(~m = (ma,mb), µ)− 1

2
S(1)(ma, µ)

− θ(ma −mb)
αsCF
π

1

b− a
ln2 mb

ma

=
1

2
S(1)(mb, µ)− 1

2
S(1)(ma, µ)− αsCF

π

1

b− a
ln2 mb

ma
. (5.9)

This is consistent with matching the SCET+ factorization theorem in the bulk with the

SCETI factorization on the boundary, discussed in section 4 of ref. [12], since the last term

in the second-to-last line of eq. (5.9) drops out due to mb > ma.

5In the second-to-last expression in eq. (3.17) of ref. [12], the δ(k+ − |~k⊥|) term is equal to zero. Due to

a typo, the π2 term is a factor 2 too big there. However, the final result is correct.
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It may not be a priori obvious that the collinear-soft function satisfies the kinematic

constraint ma < mb. However, inserting the collinear-soft scale

µS =
(
mb−1
a m1−a

b

)1/(b−a)
(5.10)

in the finite terms gives,

S (1)(~m = (ma,mb), µS ) =
αsCF
π

(
1

b− 1
ln2 µ

mb
+

1

1− a
ln2 µ

ma
− 1

b− a
ln2 mb

ma

)
= 0 . (5.11)

6 Conclusions

We have presented a convenient method for calculating the effect of soft QCD radiation

at one-loop order, for generic N -jet processes and measurements. This exploits that soft

emissions are uniform in rapidity and azimuthal angle. Through an isolation of the di-

vergent parts, we are able to perform a partial expansion in the regulators already before

the integration, simplifying the calculation of the poles and directly leading to an integral

for the finite terms. By working with cumulative distributions, complications from plus

distributions in intermediate expressions are avoided. As a demonstration of the ease of

the calculational framework, soft functions for a range of processes and measurements are

computed. We obtain original results for the soft function for N -jettiness with generic jet

angularities, which required an extension of the hemisphere decomposition [16] to make the

complicated boundaries between regions tractable, see also ref. [45]. We also determine the

collinear-soft function for the measurement of two angularities for the first time. Many of

the techniques developed in this paper can also be extended to higher order in perturbation

theory. There are new contributions involving gluon exchanges between multiple Wilson

lines, and the divergence structure becomes much more challenging. The NNLO calculation

of the thrust-like N -jettiness soft function was outlined in ref. [47], which seems amenable

to generic SCETI observables. An automated approach to the two-loop soft function for

SCETI observables for dijets is underway [48]. Both of these NNLO calculations rely on

sector decomposition [49, 50] to handle the divergences.

In summary, our method reduces the work required for calculating one-loop soft func-

tions, and can for example be applied to calculate the soft functions for the recently intro-

duced XCone class of jet algorithms [51].
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A Becher-Bell rapidity regulator

One may also use the regulator in [30] to regulate rapidity divergences. This amounts to

the substitution ∫
ddk δ(k2) θ(k0)→

∫
ddk δ(k2) θ(k0)

(
ν−

k−

)α
(A.1)

in the integration over the soft radiation. With k− = kT e
y this leads to the replacements

|2 sinh y|η → eαy , η → α , ν → ν− (A.2)

in eq. (2.4). With this regulator, eq. (2.5) gets modified to

S
(1)
12 (m,µ) =

αs
2π2

T1 ·T2

∫ ∞
−∞

dy

∫ 2π

0
dφ θ[f(y, φ)] f∞(y, φ)2εe−αy (A.3)

×
[

1

ε
+ 2 ln

µ f(y, φ)

mf∞(y, φ)
+ 2ε

(
ln2 µ

m
− π2

24

)][
1 + α

(
− 1

2ε
+ ln

ν−

m

)]
.

Note that in order to regulate the integrals, α has to take opposite signs for y → ∞ and

y → −∞. This is similar to the opposite sign of ε for UV and IR divergencies in dimensional

regularization.

B Jet function for transverse thrust

At one-loop order the jet function contains two emissions. Their contribution to transverse

thrust is given by

τ⊥ =
1

Q sin2 θ

∑
i

k2i⊥>
2Ei

=
1

Q sin2 θ

(
k2T sin2 φ

zQ
+
k2T sin2 φ

(1− z)Q

)
=

s sin2 φ

Q2 sin2 θ
(B.1)

Here k2i⊥> is the momentum component perpendicular to the beam and thrust axis, kT is

the momentum transverse to the thrust axis (equal and opposite for the two emissions),

φ the azimuthal angle around the thrust axis and s the invariant mass. Calculating the

quark jet function in the approach of ref. [52] with no ε-dependence in the φ integral,

J (1)
q (τ⊥) =

∫ ∞
0

ds

∫ 1

0
dz

∫ 2π

0

dφ

2π

(
µ2eγE

4π

)ε [z(1− z)s]−ε

(4π)2−εΓ(1− ε)
2g2CF
s

[
1 + z2

1− z
− ε(1− z)

]
× δ
(
τ⊥ −

s sin2 φ

Q2 sin2 θ

)
= −αsCF

π

(
µ2eγE

Q2 sin2 θ

)ε (1− ε/4)Γ(1/2 + ε) Γ(2− ε)√
π εΓ(1 + ε) Γ(2− 2ε)

1

τ1+ε⊥
. (B.2)

Expanding

1

τ1+ε⊥
= −1

ε
δ(τ⊥) +

(
1

τ⊥

)
+

− ε
(

ln τ⊥
τ⊥

)
+

+O(ε2) , (B.3)

the finite terms in the one-loop jet function differ from the result in ref. [10] by

Jq(τ⊥) = J [10]
q (τ⊥) +

αsCF
π

π2

3
δ(τ⊥) +O(α2

s, ε) . (B.4)
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C Thrust-like N -jettiness

When all α` = 0, the expressions for the soft function contributions given in section 4

simplify and the results of ref. [16] are reproduced, as we will show now. Starting with the

hemisphere and the boundary contributions, we solve remaining integrals analytically and

the sum of eq. (4.12) and eq. (4.15) reduces to the expression [16]

S
(1)
ij,hemi(mi = T i1 , µ) =

αs
2π

Ti ·Tj

[
1

ε2
+

1

ε
ln
ŝijµ

2

m2
i

+
1

2
ln2 ŝijµ

2

m2
i

− π2

12

]
, (C.1)

with

ŝij =
2q′i ·q′j
QiQj

=
4ωiωj
QiQjγ2

. (C.2)

Note that for the thrust-like N -jettiness the measurement regions are φ independent and the

same result can be obtained without the trick of simplifying the hemisphere contributions

by splitting off the boundary contributions.

For the non-hemisphere contributions, the integrals in eq. (4.21) are simplified by

performing the substitutions

ỹ =

√
ñ0m − ñ3m
ñ0m + ñ3m

ey , φ̃ = φ− arccos

√
(ñ1m)2

(ñ1m)2 + (ñ2m)2
, (C.3)

which leads to

Ĩ0(α` = 0) =
1

π

∫ ∞
0

dỹ

ỹ

∫ π

−π
dφ̃ θ

(
ỹ2 − ŝim

ŝjm

)
θ

(
ŝij
ŝjm
− 1− ỹ2 + 2ỹ cos φ̃

)
,

Ĩ1(α` = 0) = Ĩ0(αl = 0) ln

(
ŝjm
ŝij

)
+

1

π

∫ ∞
0

dỹ

ỹ

∫ π

−π
dφ̃

× θ
(
ỹ2 − ŝim

ŝjm

)
θ

(
ŝij
ŝjm
− 1− ỹ2 + 2ỹ cos φ̃

)
ln(ỹ2 + 1− 2ỹ cos φ̃) , (C.4)

with

ŝim =
2q′i · q′m
QiQm

=
2ωiωm
QiQmγ

(ñ0m − ñ3m) , ŝjm =
2q′j · q′m
QjQm

=
2ωjωm
QjQmγ

(ñ0m + ñ3m) . (C.5)

This is in agreement with the non-hemisphere expression of ref. [16]. There the remaining

integrals have been further simplified to one-dimensional integrals.
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