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In this supplemental material we (i) describe the models and numerical methods used to obtain the results
presented in the manuscript, and (ii) provide a short discussion regarding the statistics of minimal vibrational
frequencies in our ensemble of slowly quenched solids.

Numerical methods

We employ three popular glass forming models in three dimensions:

1. (HARM) A binary mixture of ‘large’ and ‘small’ soft spheres of equal mass m interacting via a one-sided
harmonic radially-symmetric pairwise potential of the form

ϕHARM(rij) =

{
1
2k
(
rij − (σi + σj)

)2
, rij ≤ σi + σj

0 , rij > σi + σj
, (1)

where rij is the distance between the centers of the ith and jth spheres, k is a stiffness constant, and
σi denotes the radius of the ith sphere. We used a 50:50 binary mixture, where half the particles have
a radius of 0.5a0 and the other half of 0.7a0. The microscopic unit of length a0 was chosen as the
diameter of the small particles. m denotes the units of mass, energies are expressed in units of ka20,
temperatures in units of ka20/kB (with kB being the Boltzmann constant), pressure in units of k/a0
and time in units of

√
m/(ka0). We prepared packings with a pressure p = 10−1 and zero temperature

by first equilibrating systems at the density N/V = 1.0 and temperature T = 0.5 for 100.0 microscopic
time units, followed by an energy minimization using a combination of the FIRE algorithm [1] coupled
to a Berensden barostat [2].

2. (KABLJ) The canonical Kob-Andersen binary Lennard-Jones system [4] is a binary mixture of 80%
type A particles and 20% type B particles, interacting via the following radially-symmetric pairwise
potential

ϕLJ(rij) =

 εij

[(
σij
rij

)12
−
(
σij
rij

)6
+ c6

(
rij
σij

)6
+ c4

(
rij
σij

)4
+ c2

(
rij
σij

)2
+ c0

]
,

rij
σij
≤ xc

0 ,
rij
σij

> xc
. (2)

Energies are expressed in terms of εAA, then εAB = 1.5 and εBB = 0.5. The interaction length
parameters are expressed in terms of a0 ≡ σAA, then σAB = 0.8 and σBB = 0.88. xc = 2.5 is the
dimensionless distance for which ϕLJ vanishes continuously up to 3 derivatives, and the density was
set at N/V = 1.2. Temperature is expressed in terms of εAA/kB with kB the Boltzmann constant.
Time is expressed in terms of

√
ma20/εAA, with m denoting the microscopic units of mass. With this

parameter set the system experienced a computer glass transition at Tg ≈ 0.45. Solids were prepared
by equilibrating systems at T = 1.0 for 50.0 time units, followed by a rapid quench to T = 0 by means
of a conventional conjugate gradient algorithm.

3. (3DIPL) A 50:50 binary mixture of ‘large’ and ‘small’ particles of equal mass m, interacting via radially-
symmetric purely repulsive inverse power-law pairwise potentials, that follow

ϕIPL(rij) =

 ε

[(
σij
rij

)n
+

q∑̀
=0

c2`

(
rij
σij

)2`]
,

rij
σij
≤ xc

0 ,
rij
σij

> xc

, (3)
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where rij is the distance between the ith and jth particles, ε is an energy scale, and xc is the dimensionless
distance for which ϕIPL vanishes continuously up to q derivatives. Distances are measured in terms of
the interaction lengthscale a0 between two ‘small’ particles, and the rest are chosen to be σij = 1.18a0
for one ‘small’ and one ‘large’ particle, and σij = 1.4a0 for two ‘large’ particles. The coefficients c2` are
given by

c2` =
(−1)`+1

(2q − 2`)!!(2`)!!

(n+ 2q)!!

(n− 2)!!(n+ 2`)
x−(n+2`)
c . (4)

We chose the parameters xc = 1.48, n = 10, and q = 3. The density was set to be N/V = 0.82a−3
0 .

Temperatures are expressed in terms of ε/kB with kB the Boltzmann constant, and time in terms of√
ma20/ε, with m denoting the microscopic units of mass. This system undergoes a computer glass

transition at Tg ≈ 0.5. Solids were created by first equilibrating system at T = 1.0, followed by a rapid
quench from the melt to zero temperature by means of conjugate gradient. We have also created an
ensemble of slowly quenched solids (see data and discussion in main text), cooled at a rate of 10−5

through the glass transition.

The stopping condition for our minimizations was set as follows; we calculate a characteristic interaction

force scale f̄ ≡
(∑

α f
2
α/N

)1/2
and a characteristic net force scale F̄ ≡

(∑
i |~Fi|2/N

)1/2
, where α labels

a pair of interacting particles, fα ≡ − ∂ϕ
∂rα

is the force exerted between the αth pair, ~Fi ≡ − ∂U
∂~xi

is the net
force experienced by the ith particle, and N is the number of particles in the sample. We then terminate the
minimization algorithm once the ratio F̄ /f̄ drops below 10−10.

Normal modes were calculated both using Matlab [5], and following the methods presented in [6]. We
have validated by comparison of the two methods and resorting to 128-bit precision that our analysis does
not suffer from numerical inaccuracies.

We finally explain here how the spatial decay profile as shown in Fig. 4 of the main text was calculated.
Given a mode Ψ̂, we identify the mode’s core as explained in [3]. We then calculate the median of the square
of Ψ̂’s components over a thin spherical shell, with thickness on the order of a0, and of radius r away from
the mode’s core. The decay profiles are defined as the square root of these medians.

Statistics of low frequency modes in slowly quenched samples

In panel (a) of the figure below we show the direct calculation of the density of states D(ω) for the
slowly-quenched 3DIPL systems with N = 2000. In panel (b) we show the distributions P (ωmin) of minimal
vibrational frequencies calculated for the ensemble of slowly-quenched solids. In panel (c) we plot the same
distributions, but this time as a function of the rescaled minimal frequencies ωminL

3/5. The continuous
magenta lines correspond to the Weibull distribution W (y) ∝ y4e−(y/y0)

5

, with y0 ≈ 5.4. The analysis is
restricted to small systems due to poor statistics for larger systems. It is clear that the rescaling of the
minimal vibrational frequencies by L−3/5 leads to a very good collapse of the distributions. All aformationed
data indicates that the ω4 law persists under a careful quench of structural glasses.
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