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We analyze the gravitational dynamics of a classical scalar field coupled to gravity in asymptotically
AdS spacetime, which leads to black hole formation on the shortest nonlinear time scale for some initial
conditions. We show that the observed collapse cannot be described by the well-known process of a
random-phase cascade in the theory of weak turbulence. This implies that the dynamics on this time scale is
highly sensitive to the phases of modes. We explore the alternative possibility of a coherent phase cascade
and analytically find stationary solutions with completely coherent phases and power-law energy spectra.
We show that these power-law spectra lead to diverging geometric backreaction, which is the likely
precursor to black hole formation. In 4þ 1 dimensions, our stationary solution has the same power-law
energy spectrum as the final state right before collapse observed in numerical simulations. We conjecture
that our stationary solutions describe the system shortly before collapse in other dimensions, and predict the
energy spectrum.

DOI: 10.1103/PhysRevD.93.103007

I. INTRODUCTION AND SUMMARY

The nonlinear stability of global anti–de Sitter (AdS)
spacetime has received increasing attention in the past few
years. The other two maximally symmetric spacetimes,
Minkowski and de Sitter, have been shown to be sta-
ble [1,2]. Intuitively speaking, the main difference is that in
those cases, energy can escape to infinity. Global AdS
spacetime, however, comes naturally with reflecting boun-
dary conditions. Any initial perturbation, no matter how
small, is confined to gravitationally interact with itself,
effectively in a finite region, forever. Therefore it is more
likely for the energy distribution to become highly uneven
and backreact strongly on the metric. The long-term out-
come of such nonlinear dynamics is difficult to predict,
which resulted in the richness of the current AdS (in)
stability problem [3–34].
Four years ago, Bizon and Rostworowski presented

interesting numerical results that spurred recent develop-
ments [3]. They showed that initial perturbations with a
small amplitude ϵ collapse to a black hole on the nonlinear
time scale, T ∼ ϵ−2. This result is very interesting.
Perturbation theory guarantees that the instability cannot
develop at any time scale shorter than T ∼ ϵ−2, so the BR
result suggests that global AdS may be unstable at the
shortest possible time scale allowed by the dynamics.
Furthermore, an instability can lead to many different
deviations from empty AdS, and it has no particular reason

to directly become a black hole, but the BR result suggests
that black hole formation may be the generic outcome.
Black hole formation is a natural end point of the

dynamics, since in one way of taking the classical limit,
the black hole is the equilibrium configuration in the
microcanonical ensemble [21,35]. However, there is cer-
tainly no guarantee that the system will equilibrate on this
short time scale. In addition, a generic expectation is that as
the interaction strength decreases, the ergodic region of
phase space decreases in size. This result is proven by the
KAM theorem for a wide class of systems [36], but the
assumptions of the theorem are not met here. So it is
interesting to ask how generic black hole formation is,
particularly on the nonlinear time scale. This question is
dual to the question of how efficient thermalization is in a
large N conformal field theory on a spatial sphere of radius
R, at energies in the range

R−1 ≪ E ≪
N2

R
: ð1:1Þ

Further work showed that although some initial con-
ditions do lead to collapse, black hole formation is not the
only possible behavior at the T ∼ ϵ−2 time scale. In
particular, there exist open sets of initial conditions that
avoid collapse on this time scale. Such a strong conclusion
is based on two cornerstones: First, the discovery of
“islands of stability” [7,8,10], and study of the phase-
coherent dynamics of these noncollapsing solutions in the
two-time formalism [31,34]; and second, the conditional
reliability of the two-time formalism and rescaling
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symmetry that guarantees that these solutions survive in the
small amplitude limit, at the ϵ−2 time scale [30].
In this paper, we take a step towards a similar under-

standing for collapsing solutions. Some evidence showed
that open sets of stable solutions are anchored special
solutions with stationary exponential energy spectra
[31,34]. We will present possibly analogous special sol-
utions for collapsing solutions: stationary solutions with
power-law spectra which causes the right amount of geo-
metric backreaction for black hole formation.
First of all, we have to point out a confusion caused by

how the term “weak turbulence” is used in the AdS (in)
stability problem. As described in many pioneering works
[3,4,9,24,37], weak gravitational interactions between the
AdS eigenstates of linearized perturbations, expanded to
the first nonlinear order, lead to quartic couplings between
the modes. This type of system has been extensively
studied in the theory of weak turbulence. However, it is
misguided to claim that the Kolmogorov-Zakharov power
law in weak turbulence [38,39] explains the power-law
spectrum seen in the collapsing AdS solutions [6].
In the weak turbulence context, the equations of motion

are solved under the random phase ansatz. The phases of
eigenstates are assumed to be randomly distributed, thus
any phase-dependent effect averages to zero. The phase
information is therefore totally discarded, and the ampli-
tudes of eigenstates are described by a phase-independent
dynamics. A basic result under the random phase ansatz is
that for a system with quartic interactions, there is no
energy transfer between the modes on the ϵ−2 time scale;
the nontrivial dynamics occurs on the longer ϵ−4 time scale
[38,39].1 If one really takes the full analogy to weak
turbulence to solve the dynamics of AdS eigenstates, the
Kolmogorov-Zakharov power law will be attained at the
ϵ−4 time scale, which cannot explain the observed black
hole formation in the shorter, ϵ−2 time scale. Therefore, in
order to understand the results of simulations, we must
pursue an analytical strategy that keeps track of the phases
and their relevance in the dynamics.
Keeping track of the phases makes the problem consid-

erably harder. Fortunately, experience tells us that even the
simplest possible solution can provide a lot of insight.
Recall that the sets of stable solutions, sometimes called
stability islands, are anchored on special “quasiperiodic
solutions,” namely exactly stationary solutions, with coher-
ent phases and exponential spectrum, in the two-time
approximation [13,24,31,34]. We will show that the two-
time approximation contains another type of exactly sta-
tionary and coherent solution which likely plays the same

role for collapsing solutions. Although stationary solutions
do not really evolve, their possible forms are highly
constrained, providing important information of the
dynamics. Finding them is often the first step toward
understanding other solutions with similar properties
[31,34]. The solution we find has the following properties:

(i) Instead of an exponential spectrum, these solutions
have a power-law spectrum.2

(ii) Within the two-time approximation, these solutions
are protected by the rescaling symmetry, thus also
persist in the ϵ → 0 limit.

(iii) These solutions come with specific power laws, E ∼
w2−d as a function of the frequency ω, which agree
with the extensive numerical observations in d ¼ 4.

(iv) The backreaction from these coherent power-law
solutions is strong enough to give finite deviation
from empty AdS even in the ϵ → 0 limit. In
particular, the deviation is suggestive of black hole
formation.

The backreaction calculation is not difficult, but is has
been neglected in the recent literature. Although the
possibility of black hole formation largely motivated the
current developments, much recent work has focused on
the scalar field spectrum without establishing an explicit
link to the actual geometric backreaction. Such a link is
necessary to establish that AdS space is indeed unstable,
and to understand the outcome of instability.
In Sec. II, we calculate the relation between the scalar

field power spectrum and the geometric backreaction it
causes, with particular emphasis on diagnosing whether the
backreaction is singular, and when it is, whether it suggests
a black hole, or some other type of singularity. We find that
the phase coherence between modes strongly affects the
backreaction. We compare the fully coherent and the fully
incoherent cases and find that phase coherence leads to
stronger backreaction from the same power law. In par-
ticular, we observe that the power laws found in numerical
simulations are probably insufficient to imply black hole
formation if the phases are incoherent. On the other hand,
the same power laws with coherent phases strongly suggest
black hole formation.
In Sec. III, we derive the stationary coherent power-law

solutions from the recently reported scaling behavior of the
coupling coefficients in [33]. Phase-coherent dynamics
explicitly predicts these power laws in AdSdþ1 with
arbitrary d > 3. The energy per mode as a function of
frequency is given by

E ∼ ω2−d; ð1:2Þ

1Since [38,39] are quite technical and contain a lot of other
information, it may not be straightforward to understand this
point directly by reading it. We sketch a simple derivation in
Appendix A to show the readers how random-phase ansatz kills
any dynamics in the ϵ−2 time scale.

2The power-law solutions evaded earlier solution searches
[31,34] either due to some starting assumption that excluded
power laws from the very beginning, or due to removing solutions
by hand if they run into a UV cutoff, which power-law solutions
usually do.
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where d is the spatial dimension of the bulk theory. The
d ¼ 4 result exactly agrees with many numerical observa-
tions, while higher d can be checked in the future. The
analysis in d ¼ 3 is more subtle due to anomalies in the
scaling and a possible dependence on the UV cutoff. Our
result there is in some tension with the scaling reported in
simulations, and we specifically point out possible causes
to study in the future.
We do not have a precise mathematical argument relating

our stationary solutions to the dynamical collapse.
However, we expect that our time-independent power
law is a good description of the dynamics for a range of
wavelengths that are well separated from the long-wave-
length scale, where the energy is initially injected, and the
(time-dependent) UV scale where the modes have not yet
been populated.
Finally, we explore possible relations between the sta-

tionary power-law solution we found and the actual
dynamical evolution from initial data into high modes. It
is likely too naive to imagine all collapsing solutions as
“approaching” these stationary coherent power-law solu-
tions. Recall that typical stable solutions do not approach
quasiperiodic solutions either. They only evolve around
orbits which seem to center on the quasiperiodic solutions
[31]. The corresponding behavior of a typical unstable
solution is likely more complicated. We suggest a
possible first step in this direction by noticing that two-
mode initial data seems to be particularly prone to collapse
in existing numerical results. In Sec. IV we analytically
derive that indeed two-mode initial data directly leads to an
initially phase-coherent energy cascade. Although this is
only valid for time less than ϵ−2, it might be an interesting
starting point. For example, three-mode initial data does not
have the same simple phase-coherent structure at early
times. One can then numerically study the fate of three-
mode initial data to see whether there are significant
differences.

II. GRAVITATIONAL BACKREACTION
OF COHERENT AND INCOHERENT

POWER LAWS

In this section, we analyze the gravitational backreaction
when a number of modes are turned on. We find qualita-
tively different behaviors when the phases of the modes are
taken to be coherent than when they are incoherent.3 We
particularly focus on a power-law spectrum of amplitudes,
since this is the case that is seen in numerical simulations.
Our convention is to parametrize the amplitudes as a power
law of order−α, namely An ∼ n−α. The allowed frequencies
for a massless field in global AdS are discrete, with ωn ¼
2nþ d in units of the AdS radius, so a power law in

frequency is equivalent to a power law in mode number n.
In the following, we work with the mode number n. Some
other papers in this field use the corresponding energy
spectrum, which will be En ∼ n2−2α. First we present out
results in this chart.

Naked
curvature

Naked
redshift

Black holed ¼ 3 Regular singularity singularity

Incoherent phases α > 5
2

5
2
≥α>3

2
α ≤ 3

2
Never

Coherent phases α > 3 3≥α>2 α ¼ 2 α < 2
d > 3
Incoherent phases α>dþ2

2
dþ2
2
≥α>d

2
α ¼ d

2
α < d

2

Coherent phases α>dþ3
2

dþ3
2
≥α>dþ1

2
α¼dþ1

2
α<dþ1

2

We can see that in (3þ 1) dimensions, independent of
what power law we have, incoherent phases can never
correspond to black hole. Thus an observation of black hole
formation together with any power law implies phase
coherence. In (4þ 1) dimensions, the numerical collapses
reported values of α very close to 2. Since such a value is
right at the edge for incoherent phases, one cannot be as
conclusive. However, coherent phases still leave less doubt
about the connection between this power-law and black
hole formation.
Since we are calculating the backreaction using the

leading order expansion, and the last three columns in this
chart actually correspond to diverging backreaction that
invalidates the expansion, we should explain their physical
meanings more carefully.
These power-law solutions are always well defined as a

dynamically evolving set of harmonic oscillators described
by the two-time formalism [13,23,25],4 which approxi-
mates the actual gravity evolution before backreaction
reaches order one. So what we actually calculate is a
“fictitious backreaction” which approximates the actual
backreaction before it reaches order one. If we start with
some initial conditions with small backreactions, evolve
them with the two-time formalism and they reach any of the
diverging power laws, then before that time, the actual
backreaction does become order one. Reaching order-one
backreaction is already sufficient to show an instability.
Evolving toward a diverging fictitious backreaction in the
two-time formalism then guarantees an order-one back-
reaction for the gravity evolution with an arbitrarily small
initial amplitude. In particular, the form of the diverging
fictitious backreaction represent the form of the actual
backreaction when it reaches order one. So one can ask
whether such form is similar to a Schwarzschild metric or
not, which can be a good sign of what type of large
backreaction it will approach afterward.

3A more precise definition of coherence will become clear
later.

4In a forthcoming publication, we will explain more explicitly
how the oscillating singularity shown in [25] disappears in the
boundary time gauge.
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A. Geometric deviation

With spherical symmetry, we can demand to always put
the metric into a standard form that is easy to compare with
empty AdS,5

ds2 ¼ −ð1þ r2Þdt2 þ dr2

1þ r2
þ r2dΩ2

d−1: ð2:1Þ

We can fix the gauge for the perturbations by enforcing that
r is always the area radius of the (d − 1) sphere, gtt
approaches the empty AdS value at r → ∞, and the off-
diagonal term gtr ¼ 0, leaving only the physical quantities
δgtt and δgrr. In particular, in defining which solutions have
large backreaction, we care about their maximum values in
all space and in all time within one AdS period.6

In a more general treatment without spherical symmetry,
defining which solutions have large backreaction is non-
trivial due to the freedom of gauge choice. It could be
defined through a max-min scheme: scanning through the
entire spacetime for the largest δgμν, then all possible gauge
choices to minimize it. We will leave such an endeavor to
future work.
We are interested in the case that the total energy is small

and approaching zero. Thus the only possibility to have a
large backreaction is to focus the energy into a small region,
much smaller than the AdS radius, which was set to one.
Such a region can be effectively described locally by
Minkowski space, for which the perturbative expansion
of small backreaction is well known,

ds2 ¼−
�
1þ 2M

rd−2
þ4V

�
dt2þ

�
1þ 2M

rd−2

�
dr2þ r2dΩ2

d−1:

ð2:2Þ

HereM and V are the usual definition of the enclosed mass
and gravitational potential,

MðrÞ ¼
Z

r

0

_ϕ2 þ ϕ02

2
dr0; ð2:3Þ

VðrÞ ¼ −
Z

∞

r
ðd − 2ÞMðr0Þ

r0d−1
dr0: ð2:4Þ

Using this approximation, we have

δgtt ¼
2MðrÞ
rd−2

þ 4VðrÞ; δgrr ¼
2MðrÞ
rd−2

: ð2:5Þ

This not only allows us to estimate whether backreaction is
large, but we can further describe the physics of the
backreaction, for example whether it is approaching a
black hole, which requires δgtt ≈ −δgrr. Some may worried
that we are only keeping the leading order in the metric
deviation, while higher order terms always become impor-
tant in an actual black hole formation. We remind the reader
that the formal mathematical definition of an instability is
whether an infinitesimal initial perturbation leads to a
finite perturbation, in which a finite perturbation can be
still small and well approximated by the leading order term.
It is true that strictly speaking, developing some small but
finite δgtt ≈ −δgrr does not guarantee black hole formation.
However, it is clearly different and more suggestive of such
a possibility, compared to situations in which δgtt is very
different from −δgrr.
It would be very interesting to extend our treatment

beyond linearized backreaction. However, this would
require a number of nontrivial steps, such as defining
the modes of the scalar field in the presence of nonlinear
metric perturbations.

B. Single mode

Following the previous section, we can calculate the
geometric backreaction of any field configuration. As a
warm-up exercise, we first consider the situation where all
energy is in one eigenstate, ϕðt; xÞ ¼ AnenðxÞ coswnt and
E ¼ w2

nA2
n. The energy density ρ is given by

ρnðrÞ ≈ w2
nA2

ne2n ∼ End−1 for r ≤ n−1; ð2:6Þ

∼
E

rd−1
for n−1 < r < 1: ð2:7Þ

This directly follows from the large n, small r behavior of
the eigenfunctions enðrÞ in Eq. (3.2). Actually, instead of
going through the hypergeometric function for the actual
en, one can easily derive this energy distribution with the
following physical intuition. Spherically symmetric eigen-
states are basically standing waves from the superpositions
of incoming and outgoing waves. Thus they have roughly
uniform energy for every shell of unit thickness. That leads
to Eq. (2.7). Note that such an energy density would be
divergent at r ¼ 0, but at scales shorter than the wavelength
n−1, it is smeared out and becomes uniform. That means the
central ball of radius n−1 has total energy equal to a large
shell of thickness n−1, which leads to Eq. (2.6).7 In this
physical picture, one can imagine a cutoff at r ¼ 1 and treat
AdS as a finite box.

5The AdS radius is set to 1 for convenience throughout this
paper.

6The reason for scanning through one AdS time was explained
in [30]. At time t, a large and dilute shell may be tuned to
converge at r ¼ 0 and form a black hole within one AdS time,
which is not the long time scale instability we are studying. Thus
such a finely tuned dilute shell, although it only modifies the
metric mildly at that moment, must already mean a large
geometric backreaction for our purpose.
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The enclosed mass in this single mode data can be
estimated as

MðrÞ ¼
Z

r

0

ρnðr̄Þr̄d−1dr̄ ∼ End−1rd for r ≤ n−1;

∼ Er for n−1 < r < 1: ð2:8Þ

Assuming the energy is dominated by the highest possible
mode, n → ∞, we can calculate the backreaction to the
metric from:

δgrr ∼
2MðrÞ
rd−2

∼ 2Er3−d: ð2:9Þ
Note that in d ¼ 3, this never diverges no matter how large
n is. On the other hand,

δgtt −
2M
rd−2

¼ 4VðrÞ ¼ −4
Z

1

r
ðd − 2ÞMðr̄Þ

r̄d−1
dr̄ ∼ 4E ln r for d ¼ 3;

or ∼ −4Er3−d for d > 3: ð2:10Þ

This diverges even for d ¼ 3.
Just from this simple example, we can see how “energy

cascade” is a too naive statement to conclude black hole
formation. Even if all energy goes to one, infinitely high
mode, it only means a black hole in d > 3, since δgrr ∼
−δgtt indeed diverges together. In d ¼ 3, only δgtt diverges
but δgrr does not. It is a large geometric backreaction, but
not a black hole.

C. Power-law spectrum

Next we will consider a power-law spectrum with

An ¼ A0ðnþ 1Þ−α: ð2:11Þ

Even before any calculation, clearly, there should be
some values of α large enough that the contribution
from short wavelength modes is insufficient to
make any feature in short distance scales. Likewise, there
should be values of α small enough that the short distance
behavior is singular. Our goal will be to find those
thresholds.
First of all, we have to make a technical distinction

between a finite power law, α > 3=2, and an infinite power
law, α ≤ 3=2. In the finite case, the spectrum has a finite IR
amplitude for a finite total energy:

Etot ¼
X∞
n¼0

w2
nA2

n ∼
A2
0

2α − 3
: ð2:12Þ

In the infinite case, what we mean by an infinite sum is
implicitly a limiting case when the UV cutoff N on the sum
goes to infinity, while the IR amplitude, A0, drops to zero
accordingly, maintaining a finite total energy:

Etot ¼
XN
n¼0

w2
nA2

n ∼ A2
0 lnN; for α ¼ 3=2; ð2:13Þ

∼ A2
0N

3−2α; for α < 3=2: ð2:14Þ

In addition, there is a very important physical distinction
when multiple eigenstates are involved—whether their
phases, Bn in Eq. (3.1), are coherent or not. This directly
plays a role in the calculation of mass enclosed:

MðrÞ ∼
Z

r

0

rd−11 dr1

�X∞
n¼0

wnAnenðr1Þ cosðwntþ BnÞ
�

2

;

∼
Z

r

0

rd−11 dr1

�X∞
n¼r−1

w2
nA2

nenðr1Þ2

þ
�Xr−1

n¼0

wnAnenð0Þ cosðwntþ BnÞ
�

2
�
: ð2:15Þ

For all modes with n > r−1, they oscillate rapidly within
the integration range, thus the cross terms automatically
vanish from the integral. However, modes with n < r−1 are
basically constant within the integration range. If all of their
phases are coherent, for example t ¼ θn ¼ 0 for all n, then
the cross terms contribute significantly to the mass.

1. Incoherent phases

Here we will derive the result when the phases are
incoherent, thus all cross terms from Eq. (2.15) can be
dropped:

7Throughout this paper, we use ≈ for an actual approximation,
such as dropping subleading terms in large n. We use ∼ when we
also drop all n-independent factors and are only interested in the
scaling with n.
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MðrÞ ∼ A2
0

�
r
X∞
n¼r−1

n2−2α þ rd
Xr−1
n¼0

ndþ1−2α
�

∼ Etotrd for α >
dþ 2

2
;

or ∼ −Etotrd ln r for α ¼ dþ 2

2
;

or ∼ Etotr2α−2 for
3

2
< α <

dþ 2

2
;

or ∼ Etotr for α ≤
3

2
: ð2:16Þ

Note that we are only keeping the small r behavior. Not
surprisingly, for large α, the behavior of lower modes
dominates and the mass scales like volume, which is
independent of α. When the value of α drops below
ðdþ 2Þ=2, the energy density starts to develop a singularity
at r ¼ 0, which grows more singular as α decreases further.
Finally, infinite power laws lead to the same result as a
single mode of arbitrarily high n, as seen in Eq. (2.8).
A singular energy density implies a singular curvature

tensor, but not always a large perturbation in the metric,
which we will calculate here. For a more concise presen-
tation, we only provide the explicit expression in the cases
which the deviation can be singular. Any finite deviation
will go to zero with Etot, so for our purpose their exact r
dependence is not that important:

δgrr ≈
2MðrÞ
rd−2

∼ regular; for α ≥
d
2
;

or ∼ 2Etotr2α−d; for
3

2
< α <

d
2
; d > 3;

or ∼ 2Etotr3−d; for α ≤
3

2
: ð2:17Þ

δgtt −
2M
rd−2

¼ 4VðrÞ

¼ −4ðd− 2Þ
Z

1

r

Mðr1Þ
rd−11

dr1

∼ regular; for α>
d
2
;

or ∼ 4Etot ln r; for α¼ d
2
; or α ≤

3

2
; d¼ 3;

or ∼−4Etotr2α−d; for
3

2
< α<

d
2
; d > 3;

or ∼−4Etotr3−d; for α ≤
3

2
; d > 3: ð2:18Þ

As a quick summary, if the phases are incoherent, then
approaching an α-power law means

(i) Geometric deviation goes to zero with Etot when
α > d=2, but curvature can already get large
when α ≤ ðdþ 2Þ=2.

(ii) Geometric deviation gets large but does not ap-
proach a black hole when α ¼ d=2 in any d and
α ≤ 3=2 in d ¼ 3.

(iii) Geometric deviation gets large as if approaching a
black hole when α < d=2 in d > 3, but it never does
in d ¼ 3.

Just like in the single-mode case, d ¼ 3 is special. With
incoherent phases, one never gets a black hole–like geo-
metric deviation. Large geometric deviation still occurs
when α ≤ 3=2, namely for infinite power laws. That leads
to δgtt blowing up like a log while δgrr stays small. That is
also the situation in other dimensions with exactly α ¼ d=2.
We can plug the behavior of δgrr and δgtt into Eq. (2.2) to
get a better physical intuition for what is happening in these
cases:

ds2 ¼ ð1 − EtotÞð−r−Etotdt2 þ dr2Þ þ r2dΩ2
d−1: ð2:19Þ

There are order-one factors in front of both appearances of
Etot in the above equation that we did not keep track of, but
those are not very relevant for our analysis. The point r ¼ 0
is singular for any positive Etot, but it takes only finite time
for light rays to reach r ¼ 0 and come back to infinity,
so it is not developing a horizon. It is a clear distinction
between this deviation and those approaching an AdS-
Schwarzschild metric.

2. Coherent phases

In Sec. III we will discuss more thoroughly what phase
coherence means in this context. Here let us just assume
t ¼ θn ¼ 0 in Eq. (2.15). That leads to

MðrÞ ∼ A2
0

�
r
X∞
n¼r−1

n2−2α þ rd
�Xr−1

n¼0

n
dþ1
2
−α
�2�

;

∼ Etotrd; for α >
dþ 3

2
;

or ∼ Etotrdðln rÞ2; for α ¼ dþ 3

2
;

or ∼ Etotr2α−3; for
3

2
< α <

dþ 3

2
: ð2:20Þ

We are omitting the technical results for infinite power laws
here. Those cases have an ambiguity regarding the order of
limits: the mode sum cutoff N → ∞ and r → 0; they are
also not too relevant for us since geometric deviation is
already singular for finite power laws with small enough α.
Reducing α further to an infinite power law can only make
the result more singular.
Note that when α ≤ ðdþ 3Þ=2, the energy density is

already singular at r ¼ 0. As expected, this happens earlier
(for a larger α) compared to the case of incoherent phases in
the previous session. It is straightforward to repeat the
calculation of metric deviation and find that they also
diverge earlier:
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δgrr ≈
2MðrÞ
2rd−2

∼ regular; for α ≥
dþ 1

2
;

or ∼ 2Etotr2α−d−1; for
3

2
< α <

dþ 1

2
:

ð2:21Þ

δgtt −
2M
rd−2

¼ 4VðrÞ ¼ −4ðd − 2Þ
Z

1

r

Mðr1Þ
rd−11

dr1

∼ regular; for α >
dþ 1

2
;

or ∼ 4Etot ln r; for α ¼ dþ 1

2
;

or ∼−4Etotr2α−d−1; for 3
2
< α < dþ1

2
:

ð2:22Þ

We have collected all of these results in the summary table
at the beginning of this section.

III. STATIONARY COHERENT
POWER-LAW SOLUTIONS

In this section we examine the evolution equations,
using the two-time formalism, to establish the existence
of phase-coherent power laws as exactly stationary
solutions.

A. Two-time analysis

We first review the two-time formalism that is employed
to describe the AdS-gravity dynamics at the ϵ−2 time scale
[13,23,25]. A spherically symmetric free scalar field in a
fixed AdS background can be decomposed into eigenstates
[40,41],

ϕðt; rÞ ¼
X∞
n¼0

ϕnðtÞenðrÞ

≡X∞
n¼0

ĀnenðrÞ cosðwntþ BnÞ; ð3:1Þ

enðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ dÞn!Γðnþ dÞ
2dΓðnþ d=2ÞΓðnþ d=2þ 1Þ

s

× ð1þ r2Þ−d=2Pðd=2−1;d=2Þ
n

�
1 − r2

1þ r2

�
: ð3:2Þ

The eigenfrequencies are all integers given by wn ¼
2nþ d.
Without gravity, Ān and Bn will stay constant forever.

Including gravity, the presence of energy from this field
modifies the metric, which in turn modifies the evolution of

the field. When such an effect is small, it can be approxi-
mated by8

ϕ̈n þ w2
nϕn ¼

Xkþl¼mþn

k;l;m

Cklmnϕkϕlϕm þOðϕ5Þ: ð3:3Þ

The stability at the T ∼ ϵ−2 time scale, taking the ϵ → 0
limit, can always be addressed within the regime that the
higher order terms can be safely dropped [30]. This is
effectively a collection of quartically coupled harmonic
oscillators.
One can rewrite this second order differential equation

into two first order equations for Ān and Bn:

2wn
dĀn

dt
¼

Xkþl¼mþn

klm

CklmnĀkĀlĀm

× sinðBn þ Bm − Bk − BlÞ; ð3:4Þ

2wn
dBn

dt
¼ Ā−1

n

Xkþl¼mþn

klm

CklmnĀkĀlĀm

× cosðBn þ Bm − Bk − BlÞ: ð3:5Þ

Note that we can rescale time, t ¼ τϵ−2, and also rescale the
amplitudes, Ān ¼ Anϵ, we can then rewrite the dynamical
equations in the “long time” τ.

2wn
dAn

dτ
¼

Xkþl¼mþn

klm

CklmnAkAlAm

× sinðBn þ Bm − Bk − BlÞ; ð3:6Þ

2wn
dBn

dτ
¼ A−1

n

Xkþl¼mþn

klm

CklmnAkAlAm

× cosðBn þ Bm − Bk − BlÞ: ð3:7Þ

This set of equations then represents the evolution of the
scale-independent, relative amplitudes of all modes,
together with their phases.
Note that in the previous section, we have chosen a

gauge that the time at the asymptotic boundary stays the
same, thus our equations here are also in such boundary
gauge. As discussed in [22], such gauge is intuitively
convenient since there exists a Lagrangian (and
Hamiltonian) that reproduces the equations of motion.
Furthermore, the point r ¼ 0 is quite special in the spheri-
cally symmetric setup, and using its proper time can be

8The constraint kþ l ¼ mþ n is the combination of two
effects. (1) The resonant condition wn ¼ �wk � wl � wm, and
(2) the actual evaluation of Cklmn which is related to hidden
symmetries of AdS and extra conserved quantities in the
dynamics [29,32,42].
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misleading. For example, the oscillating divergence
observed in [25] means that the point r ¼ 0 has an infinite
redshift with respect to any other point. Whether this means
a black hole is unclear, as we already explained in Sec. II. In
order to avoid similar confusions, we will stay in this
boundary gauge in the rest of this paper, unless otherwise
specified.
Physically, the phases are coherent if there is some time

during one AdS period where all of the modes are in phase.
The phase θn of the mode n is related to the “slow phase”
Bn by

θnðτ; tÞ ¼ BnðτÞ þ ωnt ¼ BnðτÞ þ ð2nþ dÞt: ð3:8Þ

Note that the slow phase Bn depends on the slow time τ,
while the full phase θn depends on the fast time as well.
For the phases to align at some time during the short time

period δt ¼ 2π requires

θnðτ; tÞ − θmðτ; tÞ ¼ 2πNnm; ð3:9Þ

where Nnm are integers that can depend on the modes
involved. Coherence requires that we can solve this
equation for the short time t over one cycle 0 < t < 2π,
at the same t for all modes. Plugging in the formula for the
phases θn, we have

BnðτÞ − BmðτÞ ¼ 2πNnm þ 2ðn −mÞt: ð3:10Þ

Since the Bn are only defined mod 2π, we can drop the first
term on the right side. Define 2t≡ θðτÞ, the equation
becomes simply

BnðτÞ − BmðτÞ ¼ ðn −mÞθðτÞ: ð3:11Þ

Solving this equation for all choices of m and n requires

BnðτÞ ¼ nγðτÞ þ δðτÞ; ð3:12Þ

where γ, δ are free functions of the slow time that must be
independent of the mode number n, and the equation is
valid mod 2π.
We are interested in describing the behavior at large

mode numbers, so we should allow corrections to this
formula. Our final condition for phase coherence is
therefore

BnðτÞ ¼ nγðτÞ þ δðτÞ þ…: ð3:13Þ

Here “� � �” are just anything that goes to zero in the large n
limit. It may be interesting to consider a weaker notion of
phase coherence, which would still allow for constructive
interference in the gravitational backreaction, but in this
paper we will only use the above definition.

B. Asymptotic phase-coherent power laws

We now want to self-consistently solve the slow-time
evolution equations, Eqs. (3.6) and (3.7), under the coher-
ent phase condition Eq. (3.13). In order to analyze the
equations, we need to know the scaling of the interaction
coefficients Cijkl. In [33], it was reported that in the
boundary gauge, the coefficients obey the simple scaling
law,

CðλkÞðλlÞðλmÞðλnÞ ∼ λdCklmn; ð3:14Þ

for greater than three spatial dimensions, d > 3.
In a forthcoming publication [43], we find that in fact

this scaling is modified for the diagonal terms Ciijj and Ciiii
in d ¼ 4 by additional logarithmic factors; however these
factors do not appear to affect the final results, so here we
use the simple scaling in Eq. (3.14) and defer a more
detailed description to [43]. In higher dimensions, d > 4,
the scaling (3.14) is exact for large mode numbers.
First of all, the phase-locked condition, Eq. (3.13), is

already a natural solution to one of the equations of motion,
Eq. (3.6). Since the resonant condition is mþn¼ kþ l, the
phase-locked condition makes ðBn þ Bm − Bk − BlÞ ¼ 0.
This makes all the sine terms in Eq. (3.6) zero, thus
dAn=dτ ¼ 0. In other words, this choice of phases
guarantees that there is no energy transfer among the
modes. This is exactly the same as in the quasiperiodic,
noncollapsing solutions [31]. The remaining question is
whether the coherent phase assumption is maintained under
time evolution.
Examining the equation for the phase evolution (3.7), all

the cosine factors there are 1 due to the coherent phase
ansatz, so this equation takes a very simple form:

2wn
dBn

dτ
¼ A−1

n

Xkþl¼mþn

k;l;m

CklmnAkAlAm: ð3:15Þ

We need Bn ¼ nγðτÞ þ δðτÞ þ… to maintain the phase
coherence, and ωn ∼ n, so the left side of the equation must
have the n-scaling n2γðτÞ þ nδðτÞ. As long as γðτÞ ≠ 0, this
means that the right-hand side of the above equation must
scale like n2. Plugging in the power-law spectrum,
An ¼ A0n−α, into the right side of Eq. (3.15), we get

2wn
dBn

dτ
¼ A2

0n
α

Xkþl¼mþn

k;l;n

Cklmn½kðmþ n − kÞm�−α: ð3:16Þ

Then we use integrals to approximate the sums:

≈A2
0n

α

Z
dkdmCkðmþn−kÞmn½kðmþ n − kÞm�−α: ð3:17Þ

Whether the integral approximation to the sums is a good
one depends on the detailed dependence of the coefficients

BEN FREIVOGEL and I-SHENG YANG PHYSICAL REVIEW D 93, 103007 (2016)

103007-8



Cijkl on each one of the indices, not only on the overall
scaling. For now, we assume the integral approximation
holds, and leave a more careful analysis for future work.
Within the integral approximation, we can utilize the

scaling behavior in Eq. (3.14):

A2
0n

α

Z
dkdmCkðmþn−kÞmn½kðmþ n − kÞm�−α ð3:18Þ

¼ A2
0n

α

Z
n2dxdzndCxðzþ1−xÞz1n−3α½xðzþ 1 − xÞz�−α

∝ A2
0n

dþ2−2α: ð3:19Þ

Thus α ¼ d=2 is the unique value to provide n2 scaling,
maintaining the phase-locked condition. If we had consid-
ered the special case γ ¼ 0, then the self-consistent solution
would be a different power law, α ¼ d=2þ 1=2. In the
doubly special case γ ¼ δ ¼ 0, the value is α ¼ d=2þ 1.
By examining the early time dynamics in Sec. IV, we
believe that the generic case γ ≠ 0 is dynamically selected.
Note that α ¼ d=2 we find here, strictly speaking, is

necessary but not sufficient for the phases to remain
coherent dynamically. It forbids higher order n scaling
in Bn, but it is not clear whether there are subleading
fractional powers of n or order 1 fluctuating contributions.
Those can potentially ruin the phase coherence, but could
only be checked given subleading behavior of the coupling
coefficients Cijkl. These are difficult to obtain.
Leaving these various caveats aside, we can go ahead

and ask whether the power law predicted by our analysis
agrees with that observed in the full numerical evolution.
Maliborski and Rostworowski [9] suggested a “preliminary
guess” for the energy spectrum,

En ∼ n−
6
5
−4
5
ðd−3Þ: ð3:20Þ

The energy per mode is related to the amplitude by
En ∼ ω2

nA2
n ∼ n2−2α. Plugging in our values of α, our

analysis predicts an energy spectrum

En ∼ n2−d: ð3:21Þ

Recall that we have assumed the scaling (3.14), which is
valid in d > 4, and almost valid (up to logarithmic
corrections) in d ¼ 4. In d ¼ 4, our formula agrees with
the Maliborski-Rostworowski (M-R) guess. In d ¼ 5, we
get En ∼ n−3, while the M-R formula gives n−2.8. It is not a
big difference, and there has not been a lot of data to
accurately determine the actual power yet [44]. Further
numerical results in d ≥ 5 would provide an important
check for our predictions.

1. AdS3þ1

The situation in AdS3þ1 is trickier. As we will explain in
[43], the diagonal terms in the boundary gauge are still
likely to have peculiar behaviors, thus such a gauge choice
does not simplify the matter here. This subsection will be
an exception to the rest of the paper, and we will use the
central gauge, in which the scaling property of Cklmn was
analytically derived in [31,34]:

Cjnjn ∼ n2j2 ln j; CðλkÞðλlÞðλmÞðλnÞ ∼ λ3Cklmn: ð3:22Þ

Fortunately, the diagonal terms trivially satisfy the phase-
locked requirement due to its n2 dependence.9 The remain-
ing question is the off-diagonal terms, which are the same
in either gauge.
These terms can then be analyzed in exactly the same

way as above. Naively extending our result to d ¼ 3 gives
An ∼ n−3=2, or equivalently En ∼ n−1. Note that an energy
spectrum n−1 is not normalizable at large n, so we need to
do a more refined analysis as explained in Sec. II C:
Including a UV cutoff N such that the amplitudes go to
zero as N goes to infinity to conserve total energy. Keeping
that in mind, we can begin with a similar process:

2wn
dBn

dτ
¼ A−1

n

Xkþl¼mþn

k;l;m

CklmnAkAlAm

≈ A2
0n

α

Z
N

0

dm
Z

mþn

0

dkCkðmþn−kÞmn

× ½kðmþ n − kÞm�−α

≈ A2
0n

5−2α
Z N

n

0

dy
Z

yþ1

0

dxCxðyþ1−xÞy1

× ½xðyþ 1 − xÞy�−α: ð3:23Þ

Here N is the UV cutoff which will later go to infinity as A0

goes to zero according to Eq. (2.13). After scaling out n, in
the rescaled integral, only at most 3 out of 4 indices will get
large, and those particular coefficients scale quite differ-
ently. Such scaling behavior was derived in [34]:

CjðλmþλnÞðλmÞðλnÞ ∼ λCjðmþnÞmn; with j ≪ m; n; ð3:24Þ

CkðλlÞðλmÞn ∼ λ2Cklmn; with l; m ≫ k; n: ð3:25Þ

Note that the coefficients with two large indices are actually
one power of λ higher than those with large three indices.
This means that one can use either the λ scaling to analyze
the double integral, or simply keep the boundary terms of

9Even though the sum over diagonal terms may appear to be
logarithmically diverging, indicating some mild cutoff depend-
ence, the n2 factor still guarantees that it does not ruin phase
coherence. This apparent divergence is mitigated or eliminated in
the boundary gauge.
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the x integral and use the λ2 scaling. They lead to the same
answer:

A2
0n

5−2α
Z N

n

0

dy
Z

yþ1

0

dx2Cxðyþ1−xÞy1½xðyþ 1 − xÞy�−α

≈ A2
0n

5−2α
Z N

n

0

dy2C0ðyþ1Þy1½ðyþ 1Þy�−α

≈ A2
0n

5−2α
�
N
n

�
3−2α

∼ Etotn2: ð3:26Þ

We can see that the A2
0N

3−2α combination correctly reduces
to the finite total energy. This is a good assurance that our
estimation is reasonable. The case with α ¼ 3=2 will
produce a log in the second last step but also cancels
out exactly to reach the same final answer.
Quite interestingly, the n2 scaling, thus the phase-lock

condition, is guaranteed by any divergent power law, thus
provides an upper bound α ≤ 3=2. Extensive numerics has
been done in 3þ 1 dimensions, and the most up-to-date
result seems to suggest En ∼ n−6=5 [25], namely α ¼ 8=5,
which slightly exceeds our upper bound. Note that our
bound requires an infinite power law, and any actual
numerical study must have a UV cutoff. It is possible that
such cutoff forbids the power law to be exactly achieved. In
the future, one can try to check whether pushing to higher
cutoff makes the value of α closer to 3=2. If the current
value of α ¼ 6=5 is confirmed, then one of our assumptions
must be wrong. One obvious candidate is that it may be
wrong to replace the sums by integrals.

IV. INITIAL PHASE COHERENCE

Note that the phase-coherent solutions are not guaran-
teed to be attractors. Even if the phase BnðτÞ is dominated
by a term proportional to n at late times, we cannot just
drop the subleading terms. The phases only matter mod 2π,
thus any finite contribution matters. In fact, even the initial
phases are relevant throughout the entire process. Here we
will demonstrate that the two-mode initial data, an initial
condition that has been frequently tested to lead to collapse,
provide an appropriate initial condition leading to coherent
phases.

The two-mode initial data is given by A0 ∼ A1 ∼ ϵ with
arbitrary initial phases B0 and B1. For t ≪ ϵ2, namely
τ ≪ 1, we can pretend that ϕ0 and ϕ1 stay as the free
eigenstates, and solve higher modes in Eq. (3.3) as being
resonantly driven, starting from zero amplitudes, by the
lower ones. For example, ϕ2 obeys the equation

ϕ̈2 þ w2
2ϕ2 ¼ S1102ϕ2

1ϕ0

∼ ϵ3 cos ½ð2w1 − w0Þtþ ð2B1 − B0Þ�; ð4:1Þ

where in the last equality we have only kept the source
terms that are in resonance. This is solved by

ϕ2 ∼ ϵ3t cos ½ð2w1 − w0Þtþ ð2B1 − B0Þ − π=2�: ð4:2Þ

Again we have dropped some order-one factors. We only
care about the powers of ϵ and t, and the phases. The
above behavior for ϕ2 is nothing but the well-known fact
that a constant amplitude, resonant driving force will
lead to a linear growth. It is actually a special case of a
“polynomially driven” harmonic oscillator,

f̈ þ w2f ¼ Ctj cosðwtþ θjÞ; ð4:3Þ

with the solution

f ∼ tjþ1 cosðwtþ θj − π=2Þ; ð4:4Þ

as we will show in Appendix B.
Using this general polynomial growth, one can show that

higher modes, during the time 1 ≪ t ≪ ϵ−2, are given by
the following general form:

ϕn ∼ ϵðϵ2tÞn−1 cos ½wntþ ðn − 1ÞðB1 − B0 − π=2Þ þ B1�:
ð4:5Þ

To establish this, note that Eq. (4.2) is not only the special
case with n ¼ 2, but also the first step for a proof of
mathematical induction. The next step is to assume that
Eq. (4.5) is true for all 2 ≤ i < n, and show that it holds for
ϕnþ1. We can show this as follows:

ϕ̈n þ wnϕn ¼
Xkþl¼mþn

0≤k;l;m<n

Cklmnϕkϕlϕm

∼
Xkþl¼mþn

1≤k;l;m<n

ϵ3ðϵ2tÞkþlþm−3 cos ½wntþ ðkþ l −m − 1ÞðB1 − B0 − π=2Þ þ B1�

þ
Xkþl¼n

1≤k;l<n
ϵ3ðϵ2tÞkþl−2 cos ½wntþ ðkþ l − 2ÞðB1 − B0 − π=2Þ þ 2B1 − B0�

∼ ϵ3ðϵ2tÞn−2 cos½wntþ ðn − 2ÞðB1 − B0 − π=2Þ þ 2B1 − B0�: ð4:6Þ
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The key point allowing for the simplification is that the sum
is dominated by terms with m ¼ 0, since it has the lowest
power of ϵ. Note that these terms have the same phase,
which will be true as long as the initial amplitudes of two
modes are comparable and dominate over others. Thus, the
last line in Eq. (4.6) has only one phase just like Eq. (4.3),
with

θn ¼ ðn − 2ÞðB1 − B0 − π=2Þ þ 2B1 − B0: ð4:7Þ

Thus the solution ϕn is given by Eq. (4.4), which indeed
proves Eq. (4.5). We can now identify the phases Bn in this
regime,

Bn ¼ θn − π=2 ¼ nðB1 − B0 − π=2Þ þ B0 þ π=2: ð4:8Þ

These phases are coherent in the sense of Eq. (3.12).
Furthermore, since in the early stage the phases Bn already
develop a linear n dependence, we think it is natural for the
late time asymptotics to maintain such behavior, thus we
should focus on the γ ≠ 0 case in Eq. (3.13).
Note that every dominant term having the same phase in

Eq. (4.6), independent of the initial amplitudes (as long as it
is two-mode dominated), is a very special property. A three-
mode initial data would have immediately undermined
our simple analysis. Thus we can see that the two-mode
initial data is particularly appropriate to provide initially
coherent phases. It would be very interesting to extend this
type of analysis to more general initial data. This could give
insight into which initial data evolve into a coherent
cascade.
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APPENDIX A: RANDOM PHASE ANSATZ

We can rewrite the two-time equation of motion for the
amplitude An and phase Bn, Eq. (3.6) and (3.7), as one
complex equation for an ¼ AneiBn :

2iwn _an ¼
X
klm

Cklmnakala�m: ðA1Þ

Here the dot is the derivative with respect to the “long time”
τ. The random phase ansatz assumes that the phase Bn is
randomly distributed between 0 and 2π, with a constant
weight, and every mode is independent from one another.
Using this statistics property, we know the property of any
two-mode correlator while averaging over an ensemble of
random phases,

hamani ¼ 0; hama�ni ¼
Nn

wn
δmn: ðA2Þ

Here Nn is the expectation value of “particle number” in a
mode as defined in [23]. We also know the behavior of any
four-mode correlator since it factorizes:

hakala�ma�ni ¼ NmNnðδkmδln þ δknδlmÞ: ðA3Þ

It is then easy to show that

_Nn¼wnðh _ana�niþhan _a�niÞ

¼wn

2

�
−i
X
klm

Cklmnhakala�ma�niþi
X
klm

Cklmnha�ka�l amani
�

¼0: ðA4Þ

In the last step, we simply plug in Eq. (A3).
This proves that if we combine two-time formalism with

the random phase ansatz, we will get no dynamics at the
leading order time scale of the two-time formalism.

APPENDIX B: POLYNOMIALLY DRIVEN
HARMONIC OSCILLATOR

In the main text we needed the solution to a polynomially
driven oscillator, satisfying the equation

f̈ þ w2f ¼ Ctj cosðwtþ θjÞ: ðB1Þ

First we assume that the solution is

f ¼
Xjþ1

i¼0

citi cosðwtþ ξiÞ: ðB2Þ

Taking derivatives and rearranging the sum, we get

f̈ þ w2f ¼ −2ðjþ 1Þtncjþ1w sinðwtþ ξiþ1Þ

þ
Xj

i¼1

ti−1½−2iciw sinðwtþ ξiÞ þ iðiþ 1Þciþ1

× cosðwtþ ξiþ1Þ�: ðB3Þ

This can be solved recursively as

cjþ1 ¼
C

2wðjþ 1Þ ; ðB4Þ
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ci ¼
ðjþ 1Þ!cjþ1

ð2wÞjþ1

ð2wÞi
i!

; ðB5Þ

ξjþ1 ¼ θj − π=2; ðB6Þ

ξi ¼ ξiþ1 þ π=2: ðB7Þ

Whenever ðwtÞ ≫ 1, the solution is dominated by the
highest polynomial,

fðtÞ ≈ C
2w

tjþ1

jþ 1
cosðwtþ θj − π=2Þ: ðB8Þ
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