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Previous work on the anti–de Sitter (AdS) instability problem within the two-time framework (TTF)
has found an “oscillating singularity” whose presence depends on the gauge choice. We give a physical
interpretation of this singularity as a diverging redshift between the boundary and the center of AdS.
This signals a genuine breakdown of the linearized gravity. One can also identify the diverging
redshift through a backreaction calculation purely in the boundary gauge, where the TTF result stays
regular.

DOI: 10.1103/PhysRevD.94.124008

I. INTRODUCTION

The question of whether global anti–de Sitter (AdS)
spacetime is generically stable or unstable under small
perturbations is a very interesting problem. A conclusive
resolution still eludes us despite the combined efforts of
many people [1–17]. The two-time framework (TTF) is a
well-established tool that reduces the full gravitational
dynamics into the “slow-time” evolution of complex
amplitudes of approximate eigenstates. It operates on two
approximations:

(i) The deviation from empty AdS metric is small, so
we can keep only the leading order gravitational
backreaction.

(ii) The evolution can be averaged over a “fast” time
scale set by the AdS radius, reducing to the
dynamics in a “slow” time scale.

One can simply follow the two-time evolution and observe
whether the first approximation breaks down. If it does not,
then the metric stays near empty AdS and an instability
is not triggered. If it does break down, then it implies an
order one deviation from empty AdS, thus triggering an
instability.
In [1], numerical results suggested that gravitational

instability seems to coincide with a breakdown of TTF from
an oscillating singularity—the complex amplitudes all start
to acquire infinite phases. However, a direct logical link
between the two was missing, because the physical
interpretation of the oscillating singularity remained
unclear. That is because a breakdown of TTF could be
due to failure of either one of the two approximations, but
only the breakdown of the first approximation has direct

implications for the instability.1 Later, in [3], was suggested
that TTF might not suffer from an oscillating singularity if
one chooses a different gauge, a fact that was subsequently
verified numerically in [2]. Those results appeared to add
more confusion.
In this short article, we point out that the combination of

[1] and [2,3] actually eliminates the confusion. A diverging
difference2 between the results in two different gauges
implies a diverging redshift between two different locations
in AdS, which in turn implies a diverging deviation in the
metric. Alternatively, one could have used only the result in
the boundary gauge where the TTF solutions stays finite
[2]. Explicitly calculating its geometric back-reaction
demonstrates the same divergence [14].
Note that the actual geometric backreaction is the TTF

result multiplied by the amplitude squared of the initial
perturbation. A diverging TTF redshift means that linear-
ized gravity breaks down for arbitrarily small initial
amplitude, which triggers a genuine instability of global
AdS.
In Sec. II, we will briefly review the model of spherically

symmetric scalar perturbations in AdS and the perturbation
theory leading to the two-time framework. In Sec. III, we
will compare the result between two different gauges. We
will show that a diverging difference of the phases in these
two different gauges is equivalent to a diverging “averaged”
redshift calculated from backreaction. When the averaged
redshift diverges, the actual redshift must diverge at some
moment, guaranteeing a large deviation from the empty
AdS metric.

*f.dimitrakopoulos@uva.nl
†benfreivogel@gmail.com
‡jpedraza@uva.nl
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1Some may have the intuition that the breakdown of the second
approximation also can only come from large deviations from the
AdS metric, but such a statement is never proven explicitly.

2We will specify what this means in the subsequent sections.
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II. REVIEW OF THE MODEL

The model that is mainly used is a perturbation in the
form of a spherically symmetric massless scalar field which
propagates under its own self-gravitation in the AdS
background. For the metric of asymptotically AdS space-
times we use the following ansatz3:

ds2 ¼ 1

cos2 x
ð−Ae−2δdt2 þ A−1dx2 þ sin2 xdΩ2Þ; ð1Þ

where the functions A and δ depend only on time t and the
radial coordinate x ∈ ½0; π

2
�. The metric (1) is not entirely

gauge fixed. Two gauge fixing conditions that are common
in the literature are δðt; 0Þ ¼ 0 and δðt; π=2Þ ¼ 0. The first
one constitutes the so-called central gauge, and t corre-
sponds to the proper time in the center of AdS, while the
second choice constitutes the boundary gauge, and t
corresponds to the proper time at the boundary.
The equations that govern the evolution of the system are

the wave equation for a massless scalar field and the
Einstein equations with a stress-energy tensor due to ϕ.
Using the variables Φ ¼ ϕ0 and Π ¼ A−1eδ _ϕ, the equations
of motion can be written as

_Φ ¼ ðAe−δΠÞ0; _Π ¼ 1

tanx
ðtan2xAe−δΦÞ0; ð2Þ

while the Einstein equations reduce to the constraints

A0 ¼ 1þ 2sin2x
sin x cos x

ð1 − AÞ − sin x cos xAðΦ2 þ Π2Þ
δ0 ¼ − sin x cos xðΦ2 þ Π2Þ: ð3Þ

We usually turn to perturbation theory to solve this
system of equations. We start with some initial data of the
form ðϕ; _ϕÞt¼0 ¼ ðϵfðxÞ; ϵgðxÞÞ and we look for an
approximate solution as a perturbative, in the amplitude
ϵ, expansion:

ϕðt; xÞ ¼
X∞
k¼0

ϕ2kþ1ðt; xÞϵ2kþ1;

Aðt; xÞ ¼ 1þ
X∞
k¼1

A2kðt; xÞϵ2k;

δðt; xÞ ¼
X∞
k¼1

δ2kðt; xÞϵ2k: ð4Þ

Inserting this ansatz into the equations of motion and
collecting terms of the same order of ϵ we obtain a set of
linear equations which can be solved order by order.
To first order, we merely have a scalar filed propagating

in the AdS background

ϕ̈1 þ Lϕ1 ¼ 0: ð5Þ

Here, L ¼ − 1
tand−1 x

∂xðtand−1 x∂xÞ is the Laplacian
of AdSdþ1 with eigenvalues ω2

j ¼ ð2jþ dÞ2 and eigen-
functions

ej ¼ djcosdxP
ðd
2
−1;d

2
Þ

j ðcosð2xÞÞ;

dj ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!ðjþ d − 1Þ!p
Γðjþ d

2
Þ : ð6Þ

Solving Eq. (5) one simply gets

ϕ1ðt; xÞ ¼
X
j

cð1Þj ðtÞejðxÞ

¼
X
j

ðαjeiωjt þ ᾱje−iωjtÞejðxÞ: ð7Þ

To second order we have the backreaction in the metric
described by A2 and δ2. The solutions are

A2ðt; xÞ ¼ −νðxÞ
Z

x

0

ð _ϕ1ðt; yÞ2 þ ϕ0ðt; yÞ2ÞμðyÞdy; ð8Þ

δ2ðt; xÞ ¼
(
−
R
x
0 ð _ϕ1ðt; yÞ2 þ ϕ0ðt; yÞ2ÞνðyÞμðyÞdy; for δðt; 0Þ ¼ 0R

π=2
x ð _ϕ1ðt; yÞ2 þ ϕ0ðt; yÞ2ÞνðyÞμðyÞdy; for δðt; π=2Þ ¼ 0:

ð9Þ

Here μðxÞ ¼ tanðxÞd−1 and νðxÞ ¼ sinðxÞ cosðxÞ
tanðxÞd−1 .

The first nontrivial dynamics appear at the Oðϵ3Þ order, namely in the equation for ϕ3 in the backreacted background.
Here we will omit the details of the derivation of this equation and we will refer the reader to the numerous works where has
already been presented [4,7,16]. We will only mention, that to this order the field is expanded as

3For simplicity we have set the AdS radius to 1.
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ϕ3ðt; xÞ ¼
X
j

cð3Þj ðtÞejðxÞ; ð10Þ

and the equation of motion for ϕ3 results to an infinite set of
decoupled driven harmonic oscillators for the coefficients

cð3Þj ðtÞ. However, due to the highly commensurate spectrum
of AdSdþ1, numerous resonances appear resulting in a
secular growth of these coefficients at the time scale t ∼ ϵ−2

rendering this naive perturbation expansion invalid. A
refined perturbation theory, known as the two-time frame-
work [7,16] consists of defining a slow time4 τ ¼ ϵ2t and
allow the fields in Eq. (4) to depend on τ as well. The
expansion would now be

ϕ ¼
X∞
k¼0

ϕ2kþ1ðt; τ; xÞϵ2kþ1;

A ¼ 1þ
X∞
k¼1

A2kðt; τ; xÞϵ2k;

δ ¼
X∞
k¼1

δ2kðt; τ; xÞϵ2k: ð11Þ

Now the resonances are entirely captured by the slow-time
evolution of the coefficients5 in the expansion of ϕ1,
Eq. (7):

2iωj
dαj
dτ

¼ Tjjαjj2αj þ
X
i≠j

Rijjαj2i αj

þ
X

jþk¼lþm
j≠l;j≠m

Sjklmαkαlαm: ð12Þ

Using the amplitude-phase representation αjðτÞ ¼
AjðτÞeiBjðτÞ we can rewrite the above equation as

2ωj
dAj

dτ
¼

X
jþk¼lþm
j≠l;j≠m

SjklmAkAlAm sin ðBj þ Bk − Bl − BmÞ

ð13Þ

2ωj
dBj

dτ
¼ TjA2

j þ
X
i≠j

RijA2
i þ A−1

j

X
jþk¼lþm
j≠l;j≠m

SjklmAkAlAm

× cosðBj þ Bk − Bl − BmÞ: ð14Þ

III. COMPARING THE TWO GAUGES

In this section we compare the results in the two gauges.
We will show that within the validity of TTF, they indeed
describe the same physical evolution. The relation between
the two gauges has also been studied in [17] and some of
the results can be found there as well. We will follow
similar notations, but our attention lies on oscillating
singularities that occur in one gauge and not the other.
With some extra care we show what goes wrong as TTF
breaks down when such a singularity develops in the
central gauge.
The gauge choice should not affect any physical quan-

tities. However, the two different gauges do lead to two
different sets of differential equations, which were numeri-
cally evaluated to very different results. In [1] the case of
the two-mode equal energy data in AdS5 was studied and
an oscillating singularity was reported. Namely, the deriv-
atives of the phases blow up. In [2] it was shown that this
singularity does not appear in the boundary gauge and
therefore the singular behavior of the system might be only
an artifact of the gauge choice.
On top of just numerical results, one can also see this

difference from the asymptotic scaling of the Rij coef-
ficients as was first suggested in [3]. It was shown that for
AdS5 the Rij coefficients scale in the central gauge as
RCG
ij ∼ i3j2 and therefore, for a power-law spectrum

An ∼ n−2 as observed in [1], the sum in the second term
of Eq. (14) diverges logarithmically. On the other hand, the
asymptotic scaling of these coefficients in the boundary
gauge was shown to be RBG

ij ∼ i2j2, thus although the
evolution leads to the same power-law spectrum the same
sum converges. One can check that the rest of the sums do
not diverge.
Despite this apparent difference, these results do not

contradict each other. The oscillating singularity observed
in [1], combined with the absence of that in [2], has an
obvious physical meaning. It implies an infinite gravita-
tional redshift between the boundary and the center of the
spacetime.
From the metric (1), one can see that the two gauge

choices are related as

dtBG ¼ e−δðtCG;π2ÞdtCG: ð15Þ

Integrating and keeping terms only up to order Oðϵ2Þ
we get

tBG ¼ tCG − ϵ2
Z

tCG

0

dtδ2ðt; τ; 0Þ þOðϵ4Þ: ð16Þ

Neglecting terms that oscillate in the fast time scale t, we
can approximate δ2ðt; τ; 0Þ by the time averaged quantity
δ2ðτ; 0Þ. For completeness we will present the computation
of this quantity in Sec. III A. We then get

4The slow-time variable τ ¼ ϵ2t characterizes the time scale of
the energy transfer between the normal modes while t character-
izes the oscillations of these normal modes.

5For a detailed treatment of how these equations are obtained
and for explicit expressions of the interaction coefficients, we
refer the reader to the original papers [6,7,16,17].
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tBG ≈ tCG − ϵ2
Z

tCG

0

dtδ2ðτ; 0Þ þOðϵ4Þ

¼ tCG þ 2ϵ2
Z

tCG

0

dt
X
j

ðAjj þ ω2
jVjjÞA2

j þOðϵ4Þ:

ð17Þ

Now, using the fact that the field ϕðt; τ; xÞ transforms as a
scalar under such a gauge transformation one can derive
the relation for the complex coefficients αjðτÞ in the two
gauges from Eq. (7):

ϕCGðtCGÞ ¼ ϕBGðtBGÞ ⇒
αCGj ðτCGÞeiωjtCG ¼ αBGj ðτBGÞeiωjtBG : ð18Þ

The relation of the slow time in the gauges is obtained
simply by multiplying Eq. (17) by ϵ2 to obtain

τBG ¼ τCG þ 2ϵ2
Z

τCG

0

dτ
X
j

ðAjj þ ω2
jVjjÞA2

j þOðϵ4Þ:

ð19Þ

Substituting in the right-hand side of the above equation,
Taylor expanding and neglecting terms that are of order
Oðϵ2Þ we obtain

αCGj ðτCGÞeiωjtCG ≈
�
αBGj ðτCGÞþ ϵ2 _αBGðτCGÞ

Z
τCG

0

δ2dτ

�

×exp

�
iωjtCGþ iωj

Z
τCG

0

δ2dτ

�
: ð20Þ

Therefore, we find that the complex coefficients in the two
gauges are related by

αCGj ðτÞ ¼ αBGj ðτÞ exp
�
iωj

Z
τ

0

δ2ðτ0; 0Þdτ0
�
þOðϵ2Þ ð21Þ

as is also explained in [17]. This result can also be
expressed in the amplitude-phase representation, yielding

ACG
j ðτÞ ¼ ABG

j ðτÞ ð22Þ

BCG
j ðτÞ ¼ BBG

j ðτÞ − ωj

Z
τ

0

dτ0
X
i

ðAii þ ω2
i ViiÞA2

i ðτ0Þ:

ð23Þ

That the amplitudes and the phases are related as above can
be directly checked by applying Eq. (21) to the corre-
sponding evolution equation in the two gauges, Eq. (12),
and recalling that the difference is entirely contained in the
coefficients [17]:

TBG
j ¼ TCG

j þ ω2
jðAjj þ ω2

jVjjÞ; ð24Þ

RBG
ij ¼ RCG

ij þ ω2
jðAii þ ω2

i ViiÞ: ð25Þ

In [14] it was shown that a large geometric backreaction
is related to the amplitude spectra and the coherence of the
phases, where a phase-coherent cascade is defined by a
spectrum of phases that (for large j) is linear in the mode
number j:

BjðτÞ ¼ γðτÞjþ δðτÞ þ � � � : ð26Þ

This is an asymptotic statement and the ellipsis represent
terms that are subleading in j. The reader should be aware
here that the function δðτÞ in the above equation is not the
same function appearing in Eq. (1). From Eq. (22) we see
that the evolution of the amplitudes is not affected by the
choice of the gauge so what remains is to show that phase
coherence is also unaffected and hence the physical
conclusions will be independent of the choice of the gauge.
Starting from Eq. (26) for the central gauge we have

BCG
j ðτÞ ≈ γCGðτÞjþ δCGðτÞ; ð27Þ

and applying Eq. (23) we can obtain the corresponding
expression for the boundary gauge. This reads

BBG
j ðτÞ − ωj

Z
τ

0

dτ0
X
i

ðAii þ ω2
i ViiÞA2

i ðτ0Þ ≈ γCGðτÞj

þ δCGðτÞ ⇒

BBG
j ðτÞ ≈

�
γCGðτÞ þ

Z
τ

0

dτ0
X
i

ðAii þ ω2
i ViiÞA2

i ðτ0Þ
�
j

þ δCGðτÞ: ð28Þ

We see that the phase spectrum in the boundary gauge takes
the form of Eq. (26):

BBG
j ðτÞ ≈ γBGðτÞjþ δBGðτÞ; ð29Þ

with the functions γðτÞ and δðτÞ in the two gauges being
related as

γBGðτÞ ¼ γCGðτÞ þ
Z

τ

0

dτ0
X
i

ðAii þ ω2
i ViiÞA2

i ðτ0Þ ð30Þ

δBGðτÞ ¼ δCGðτÞ: ð31Þ

A. The oscillating singularity
as an infinite gravitational redshift

Having clarified that physical conclusions cannot be
affected by the choice of the gauge, the next step is to
reconcile the two different numerical results in the two
gauges. In this section we will argue that the fact that _Bj
diverges in the one gauge and not in the other can be
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interpreted as an infinite gravitational redshift between the
boundary and the center of the spacetime. Recall that the
gravitational redshift between a source and an observer is
given by the formula:

1þ z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðobsÞ

gttðsourceÞ

s
: ð32Þ

We can compute this quantity in one of the two gauges. Let
us choose the nonsingular boundary gauge and compute the
redshift between the boundary (x ¼ π=2) and the center
(x ¼ 0) of the spacetime. Using the metric (1), the
normalization δðt; π=2Þ ¼ 0 and keeping terms only up
to the order of Oðϵ2Þ, the quantity under the square root
reads

gttðt; 0Þ
gttðt; π=2Þ

∼ 1 − ϵ2δ2ðt; τ; 0Þ þOðϵ4Þ: ð33Þ

The expression for δ2ðt; τ; 0Þ, Eq. (9), yields6

δ2ðt; τ; 0Þ ¼
Z

π=2

0

ð _ϕ1ðt; xÞ2 þ ϕ0
1ðt; xÞ2ÞμðxÞνðxÞdx

¼
Z

π=2

0

X
ij

ð_cð1Þi ðtÞ_cð1Þj ðtÞeiðxÞejðxÞ

þ cð1Þi ðtÞcð1Þj ðtÞeiðxÞejðxÞÞμðxÞνðxÞdx
¼

X
ij

ð_cð1Þi _cð1Þj Vij þ cð1Þi cð1Þj AijÞ: ð34Þ

To go to the second line, we simply used the expansion in

eigenmodes ϕ1ðt; xÞ ¼
P

jc
ð1Þ
j ðtÞejðxÞ and in the third line

we defined the interaction coefficients:

Aij ≡
Z

π=2

0

e0iðxÞe0jðxÞμðxÞνðxÞdx ð35Þ

Vij ≡
Z

π=2

0

eiðxÞejðxÞμðxÞνðxÞdx: ð36Þ

The expansion coefficients cð1Þj are related to the complex
coefficients αj as

7

cð1Þj ¼ αjeiωjt þ ᾱje−iωjt ð37Þ

dcð1Þj

dt
¼ iωjðαjeiωjt − ᾱje−iωjtÞ: ð38Þ

Substituting Eq. (37) in the above expression for δ2ðt; τ; 0Þ
we will get several terms of the form eiΩt, where
Ω ¼ ωi � ωj. Keeping only terms with Ω ¼ 0, the so
called resonant terms,8 we finally obtain the following
expression:

δ2ðt; τ; 0Þ ≈ 2
X
i

ðAii þ ω2
i ViiÞA2

i ðτÞ≡ δ2ðτ; 0Þ: ð39Þ

By differentiating Eq. (23), we can see that this quantity, the
time-averaged δ2, which was first mentioned in Eq. (17), is
precisely the difference of the slow-time derivatives of the
phases in the two gauges. Therefore, by comparing the
results in the boundary and the central time gauge we can
draw conclusions about geometric quantities, and in par-
ticular the gravitational redshift. In the case of interest,
where the derivatives of the phases diverge in one gauge but
not in the other, one concludes that δ2ðτ; 0Þ diverges, and so
does the redshift, Eq. (33). This large backreaction in turn
implies the breakdown of linearized gravity. On the other
hand if the derivatives are finite in both gauges there is no
divergence, while the case is not clear if an oscillating
singularity appears both in the boundary as well as in the
central gauge. In that case δ2ðτ; 0Þ could be either finite or
infinite.

IV. CONCLUSIONS

In this manuscript we presented an explicit derivation on
the anticipated fact that physical results can not be affected
by the different gauge choices. We demonstrated that
gauge-invariant quantities are related to the amplitude
spectrum and the coherence of the phases in the TTF
solution, and both properties are unaffected by the gauge
choice. This result holds even when the difference between
the two gauges diverges. Furthermore we established that
the oscillating singularity observed in [1] is indeed a
physical singularity, by showing that is related to an infinite
redshift between the boundary and the center of the
spacetime.
This means that the breakdown of the TTF observed in

[1] is due to large gravitational effects which lead to the
breakdown of the weak gravity approximation. Such a
conclusion cannot be deduced by the observed singularity
in the central time gauge alone. In that case is not clear
whether the breakdown of the perturbation theory is caused
by strong gravity or by the breakdown of other approx-
imations. Therefore, with our analysis we establish that
the singular solution is a genuine singular solution of the
gravitational problem. Due to the scaling symmetry of the
TTF system the solution will survive in the ϵ → 0 limit, and
thus provide a way to address the phase space of initial
conditions in this limit.6For ease of notation we have omitted to write explicitly the

slow-time dependence in some cases, but it is implicitly assumed.
7As we have stated below Eq. (12) these are also related to Aj

and Bj coefficients as Aj ¼ jαjj and Bj ¼ ArgðαjÞ.
8These are the terms that are proportional to e�iðωi−ωjÞδij. This

procedure is equivalent to time averaging over the fast time t.
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An interesting thing to point out here is that for this
conclusion we need to compare the derivatives of the
phases in the two gauges. Therefore, the fact that in higher
dimensions a discrepancy between the two gauges has not
been observed [2] is rather intriguing. However since in
both gauges an oscillating singularity was observed, and
actually in the central time gauge this divergence was more
prominent than in the boundary time gauge, it might still
signal a diverging redshift, since these results are compat-
ible with a diverging δ2ðτ; 0Þ, as we explained in Sec. III A.
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